

Steve Teixeira and Xavier Pacheco

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Borland®

Delphi™ 6 Developer’s Guide

Borland®

Delphi™ 6 Developer’s Guide
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32115-7

Library of Congress Catalog Card Number: 2001086071

Printed in the United States of America

First Printing: October 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Tiffany Taylor

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Christina Smith

PRODUCTION EDITOR

Rhonda Tinch-Mize

INDEXER

Sharon Shock

PROOFREADER

Harvey Stanbrough

TECHNICAL EDITOR

John Ray Thomas
Tom Theobold

TEAM COORDINATOR

Pamalee Nelson

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Anne Jones

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Octal Publishing, Inc.

Contents at a Glance
Introduction

Part I: Development Essentials

1 Programming in Delphi

2 The Object Pascal Language

3 Adventures in Messaging

Part II: Advanced Techniques

4 Writing Portable Code

5 Multithreaded Techniques

6 Dynamic Link Libraries

Part III: Database Development

7 Delphi Database Architecture

8 Database Development with dbExpress

9 Database Development with dbGo for ADO

Part IV: Component-Based Development

10 Component Architecture: VCL and CLX

11 VCL Component Building

12 Advanced VCL Component Building

13 CLX Component Development

14 Packages to the Max

15 COM Development

16 Windows Shell Programming

17 Using the Open Tools API

Part V: Enterprise Development

18 Transactional Development with COM+/MTS

19 CORBA Development

20 BizSnap Development: Writing SOAP-Based Web Services

21 DataSnap Development

Part VI: Internet Development

22 ASP Development

23 Building WebSnap Applications

24 Wireless Development

Index

Table of Contents
Introduction 1

Who Should Read This Book ..2
Conventions Used in This Book ..2
Delphi 6 Developer’s Guide Web Site ..2
Getting Started ..3

PART I Development Essentials 5

1 Programming in Delphi 7
The Delphi Product Family ..8
Delphi: What and Why ..10

The Quality of the Visual Development Environment11
The Speediness of the Compiler Versus the Efficiency

of the Compiled Code ..12
The Power of the Programming Language Versus

Its Complexity ..13
The Flexibility and Scalability of the Database Architecture14
The Design and Usage Patterns Enforced by the Framework15

A Little History ..15
Delphi 1 ..16
Delphi 2 ..16
Delphi 3 ..17
Delphi 4 ..18
Delphi 5 ..18
Delphi 6 ..19

The Delphi IDE ..19
The Main Window ..20
The Form Designer ..22
The Object Inspector ..22
The Code Editor ..22
The Code Explorer ..23
The Object TreeView ..23

A Tour of Your Project’s Source ..24
Tour of a Small Application ..26
What’s So Great About Events, Anyway? ..28

Contract-Free Programming ..28
Turbo Prototyping ..29
Extensible Components and Environment ..29

DELPHI 6 DEVELOPER’S GUIDE

The Top 10 IDE Features You Must Know and Love30
1. Class Completion ..30
2. AppBrowser Navigation ..30
3. Interface/Implementation Navigation ..31
4. Dock It! ..31
5. The Object Browser ..31
6. GUID, Anyone? ..31
7. C++ Syntax Highlighting ..32
8. To Do.32
9. Use the Project Manager ..32
10. Use Code Insight to Complete Declarations

and Parameters ..33
Summary ..33

2 The Object Pascal Language 35
Comments ..36
Extended Procedure and Function Features ..37

Parentheses in Calls ..37
Overloading ..37
Default Value Parameters ..38

Variables ..39
Constants ..41
Operators ..43

Assignment Operators ..43
Comparison Operators ..43
Logical Operators ..44
Arithmetic Operators ..45
Bitwise Operators ..46
Increment and Decrement Procedures ..46
Do-and-Assign Operators ..47

Object Pascal Types ..48
A Comparison of Types ..48
Characters ..50
A Multitude of Strings ..51
Variant Types ..63
Currency ..75

User-Defined Types ..75
Arrays ..76
Dynamic Arrays ..77
Records ..78
Sets ..80
Objects ..82
Pointers ..83

vi

CONTENTS

Type Aliases ..86
Typecasting and Type Conversion ..87
String Resources ..88
Testing Conditions ..88

The if Statement ..88
Using case Statements ..89

Loops ..90
The for Loop ..90
The while Loop ..91
repeat..until ..92
The Break() Procedure ..92
The Continue() Procedure ..92

Procedures and Functions ..93
Passing Parameters ..94

Scope ..98
Units ..99

The uses Clause ..100
Circular Unit References ..101

Packages ..101
Using Delphi Packages ..102
Package Syntax ..102

Object-Oriented Programming ..103
Object-Based Versus Object-Oriented Programming105

Using Delphi Objects ..105
Declaration and Instantiation ..105
Destruction ..106
Methods ..107
Method Types ..108
Properties ..110
Visibility Specifiers ..111
Inside Objects ..112
TObject: The Mother of All Objects ..113
Interfaces ..114

Structured Exception Handling ..118
Exception Classes ..121
Flow of Execution ..123
Reraising an Exception ..125

Runtime Type Information ..126
Summary ..127

3 Adventures in Messaging 129
What Is a Message? ..130
Types of Messages ..131

vii

DELPHI 6 DEVELOPER’S GUIDE

How the Windows Message System Works132
Delphi’s Message System ..133

Message-Specific Records ..134
Handling Messages ..135

Message Handling: Not Contract Free ..138
Assigning Message Result Values ..139
The TApplication Type’s OnMessage Event139

Sending Your Own Messages ..140
The Perform() Method ..140
The SendMessage() and PostMessage() API Functions141

Nonstandard Messages ..142
Notification Messages ..142
Internal VCL Messages ..143
User-Defined Messages ..144

Anatomy of a Message System: VCL ..146
The Relationship Between Messages and Events154
Summary ..154

PART II Advanced Techniques 155

4 Writing Portable Code 157
General Compatibility ..158

Which Version? ..158
Units, Components, and Packages ..160
IDE Issues ..160

Delphi-Kylix Compatibility ..161
Not in Linux ..162
Compiler/Language Features ..162
Platform-isms ..163

New Delphi 6 Features ..163
Variants ..163
Enum Values ..163
$IF Directive ..164
Potential Binary DFM Incompatibility ..164

Migrating from Delphi 5 ..164
Writable Typed Constants ..164
Cardinal Unary Negation ..164

Migrating from Delphi 4 ..165
RTL Issues ..165
VCL Issues ..165
Internet Development Issues ..165
Database Issues ..166

viii

CONTENTS
ix

Migrating from Delphi 3 ..166
Unsigned 32-bit Integers ..166
64-Bit Integers ..168
The Real Type ..168

Migrating from Delphi 2 ..168
Changes to Boolean Types ..168
ResourceString ..169
RTL Changes ..169
TCustomForm ..169
GetChildren() ..170
Automation Servers ..170

Migrating from Delphi 1 ..171
Summary ..171

5 Multithreaded Techniques 173
Threads Explained ..174

Types of Multitasking ..174
Using Multiple Threads in Delphi Applications175
Misuse of Threads ..175

The TThread Object ..176
TThread Basics ..176
Thread Instances ..180
Thread Termination ..180
Synchronizing with VCL ..182
A Demo Application ..185
Priorities and Scheduling ..187
Suspending and Resuming Threads ..190
Timing a Thread ..190

Managing Multiple Threads ..192
Thread-Local Storage ..192
Thread Synchronization ..196

A Sample Multithreaded Application ..210
The User Interface ..211
The Search Thread ..219
Adjusting the Priority ..224

Multithreading BDE Access ..227
Multithreaded Graphics ..233
Fibers ..238
Summary ..244

6 Dynamic Link Libraries 247
What Exactly Is a DLL? ..248
Static Linking Versus Dynamic Linking ..250

DELPHI 6 DEVELOPER’S GUIDE
x

Why Use DLLs? ..252
Sharing Code, Resources, and Data with Multiple Applications ..252
Hiding Implementation ..252

Creating and Using DLLs ..253
Counting Your Pennies (A Simple DLL)253
Displaying Modal Forms from DLLs ..256

Displaying Modeless Forms from DLLs ..259
Using DLLs in Your Delphi Applications ..261
Loading DLLs Explicitly ..263
The Dynamically Linked Library Entry/Exit Function266

Process/Thread Initialization and Termination Routines266
DLL Entry/Exit Example ..267

Exceptions in DLLs ..271
Capturing Exceptions in 16-Bit Delphi ..271
Exceptions and the Safecall Directive ..272

Callback Functions ..273
Using the Callback Function ..276
Drawing an Owner-Draw List Box ..276

Calling Callback Functions from Your DLLs277
Sharing DLL Data Across Different Processes279

Creating a DLL with Shared Memory ..280
Using a DLL with Shared Memory ..284

Exporting Objects from DLLs ..287
Summary ..293

PART III Database Development 295

7 Delphi Database Architecture 297
Types of Databases ..298
Database Architecture ..299
Connecting to Database Servers ..299

Overview of Database Connectivity ..299
Establishing a Database Connection ..300

Working with Datasets ..300
Opening and Closing Datasets ..301
Navigating Datasets ..305
Manipulating Datasets ..310

Working with Fields ..315
Field Values ..315
Field Data Types ..316
Field Names and Numbers ..317

CONTENTS
xi

Manipulating Field Data ..317
The Fields Editor ..318
Working with BLOB Fields ..324
Filtering Data ..330
Searching Datasets ..332
Using Data Modules ..336
The Search, Range, Filter Demo ..337
Bookmarks ..347

Summary ..348

8 Database Development with dbExpress 349
Using dbExpress ..350

Unidirectional, Read-Only Datasets ..350
dbExpress Versus the Borland Database Engine (BDE)350
dbExpress for Cross-Platform Development351

dbExpress Components ..351
TSQLConnection ..351
TSQLDataset ..354
Backward Compatibility Components ..358
TSQLMonitor ..358

Designing Editable dbExpress Applications359
TSQLClientDataset ..359

Deploying dbExpress Applications ..360
Summary ..361

9 Database Development with dbGo for ADO 363
Introduction to dbGo ..364
Overview of Microsoft’s Universal Data Access Strategy364
Overview of OLE DB, ADO, and ODBC ..364
Using dbGo for ADO ..365

Establishing an OLE DB Provider for ODBC365
The Access Database ..367

dbGo for ADO Components ..367
TADOConnection ..368
Bypassing/Replacing the Login Prompt ..370
TADOCommand ..372
TADODataset ..373
BDE-Like Dataset Components ..373
TADOQuery ..375
TADOStoredProc ..375

Transaction Processing ..375
Summary ..377

DELPHI 6 DEVELOPER’S GUIDE
xii

PART IV Component-Based Development 379

10 Component Architecture: VCL and CLX 381
More on the New CLX ..383
What Is a Component? ..383
Component Hierarchy ..384

Nonvisual Components ..385
Visual Components ..385

The Component Structure ..387
Properties ..388
Types of Properties ..389
Methods ..390
Events ..390
Streamability ..392
Ownership ..393
Parenthood ..394

The Visual Component Hierarchy ..394
The TPersistent Class ..395
TPersistent Methods ..395
The TComponent Class ..395
The TControl Class ..397
The TWinControl and TWidgetControl ..398
The TGraphicControl Class ..399
The TCustomControl Class ..400
Other Classes ..400

Runtime Type Information ..403
The TypInfo.pas Unit: Definer of Runtime Type Information405
Obtaining Type Information ..407
Obtaining Type Information on Method Pointers416
Obtaining Type Information for Ordinal Types420

Summary ..428

11 VCL Component Building 429
Component Building Basics ..430

Deciding Whether to Write a Component430
Component Writing Steps ..431
Deciding on an Ancestor Class ..432
Creating a Component Unit ..433
Creating Properties ..435
Creating Events ..445
Creating Methods ..451
Constructors and Destructors ..452

CONTENTS
xiii

Registering Your Component ..454
Testing the Component ..456
Providing a Component Icon ..458

Sample Components ..459
Extending Win32 Component Wrapper Capabilities459
TddgRunButton—Creating Properties ..470

TddgButtonEdit—Container Components ..477
Design Decisions ..477
Surfacing Properties ..478
Surfacing Events ..478
TddgDigitalClock—Creating Component Events481
Adding Forms to the Component Palette485

Summary ..488

12 Advanced VCL Component Building 489
Pseudo-Visual Components ..490

Extending Hints ..490
Creating a THintWindow Descendant ..490
An Elliptical Window ..493
Enabling the THintWindow Descendant494
Deploying TDDGHintWindow ..494

Animated Components ..494
The Marquee Component ..494
Writing the Component ..495
Drawing on an Offscreen Bitmap ..495
Painting the Component ..497
Animating the Marquee ..498
Testing TddgMarquee ..508

Writing Property Editors ..510
Creating a Descendant Property Editor Object511
Editing the Property As Text ..513
Registering the New Property Editor ..517

Component Editors ..522
TComponentEditor ..523
TDefaultEditor ..524
A Simple Component ..524
A Simple Component Editor ..525
Registering a Component Editor ..526

Streaming Nonpublished Component Data ..527
Defining Properties ..528
An Example of DefineProperty() ..529
TddgWaveFile: An Example of DefineBinaryProperty()530

DELPHI 6 DEVELOPER’S GUIDE
xiv

Property Categories ..538
Category Classes ..539
Custom Categories ..540

Lists of Components: TCollection and TCollectionItem543
Defining the TCollectionItem Class: TRunBtnItem546
Defining the TCollection Class: TRunButtons546
Implementing the TddgLaunchPad, TRunBtnItem,

|and TRunButtons Objects ..547
Editing the List of TCollectionItem Components with a

Dialog Property Editor ..555
Summary ..561

13 CLX Component Development 563
What Is CLX? ..564
The CLX Architecture ..565
Porting Issues ..568

No More Messages ..569
Sample Components ..570

The TddgSpinner Component ..570
Design-Time Enhancements ..584
Component References and Image Lists591
Data-Aware CLX Components ..598

CLX Design Editors ..608
Packages ..613

Naming Conventions ..613
Runtime Packages ..615
Design-Time Packages ..618
Registration Units ..621
Component Bitmaps ..622

Summary ..623

14 Packages to the Max 625
Why Use Packages? ..626

Code Reduction ..626
A Smaller Distribution of Applications—

Application Partitioning ..626
Component Containment ..627

Why Not Use Packages? ..627
Types of Packages ..628
Package Files ..628
Using Runtime Packages ..629
Installing Packages into the Delphi IDE ..629

CONTENTS
xv

Creating Packages ..630
The Package Editor ..630
Package Design Scenarios ..631

Package Versioning ..635
Package Compiler Directives ..635

More on {$WEAKPACKAGEUNIT} ..636
Package Naming Conventions ..637
Extensible Applications Using Runtime

(Add-In) Packages ..637
Generating Add-In Forms ..637

Exporting Functions from Packages ..644
Launching a Form from a Package Function644

Obtaining Information About a Package ..648
Summary ..651

15 COM Development 653
COM Basics ..654

COM: The Component Object Model ..654
COM Versus ActiveX Versus OLE ..655
Terminology ..655
What’s So Great About ActiveX? ..656
OLE 1 Versus OLE 2 ..657
Structured Storage ..657
Uniform Data Transfer ..657
Threading Models ..657
COM+ ..658

COM Meets Object Pascal ..658
Interfaces ..658
Using Interfaces ..661
The HResult Return Type ..666

COM Objects and Class Factories ..667
TComObject and TComObjectFactory ..667
In-Process COM Servers ..669
Out-of-Process COM Servers ..672
Aggregation ..672

Distributed COM ..673
Automation ..673

IDispatch ..674
Type Information ..675
Late Versus Early Binding ..676
Registration ..676
Creating Automation Servers ..676
Creating Automation Controllers ..692

DELPHI 6 DEVELOPER’S GUIDE
xvi

Advanced Automation Techniques ..700
Automation Events ..700
Automation Collections ..713
New Interface Types in the Type Library723
Exchanging Binary Data ..724
Behind the Scenes: Language Support for COM727

TOleContainer ..733
A Small Sample Application ..733
A Bigger Sample Application ..735

Summary ..746

16 Windows Shell Programming 747
A Tray-Notification Icon Component ..748

The API ..748
Handling Messages ..751
Icons and Hints ..752
Mouse Clicks ..752
Hiding the Application ..755
Sample Tray Application ..762

Application Desktop Toolbars ..764
The API ..764
TAppBar: The AppBar Form ..766
Using TAppBar ..775

Shell Links ..779
Obtaining an IShellLink Instance ..781
Using IShellLink ..781
A Sample Application ..790

Shell Extensions ..799
The COM Object Wizard ..801
Copy Hook Handlers ..801
Context Menu Handlers ..808
Icon Handlers ..818
InfoTip Handlers ..827

Summary ..833

17 Using the Open Tools API 835
Open Tools Interfaces ..836
Using the Open Tools API ..839

A Dumb Wizard ..839
The Wizard Wizard ..843
DDG Search ..855

Form Wizards ..868
Summary ..876

CONTENTS

PART V Enterprise Development 877

18 Transactional Development with COM+/MTS 879
What Is COM+? ..880
Why COM? ..880
Services ..881

Transactions ..881
Security ..882
Just-In-Time Activation ..888
Queued Components ..888
Object Pooling ..897
Events ..898

Runtime ..906
Registration Database (RegDB) ..907
Configured Components ..907
Contexts ..907
Neutral Threading ..907

Creating COM+ Applications ..908
The Goal: Scale ..908
Execution Context ..908
Stateful Versus Stateless ..909
Lifetime Management ..910
COM+ Application Organization ..910
Thinking About Transactions ..911
Resources ..912

COM+ in Delphi ..912
COM+ Wizards ..912
COM+ Framework ..913
Tic-Tac-Toe: A Sample Application ..916
Debugging COM+ Applications ..934

Summary ..935

19 CORBA Development 937
CORBA Features ..938
CORBA Architecture ..939

OSAgent ..941
Interfaces ..942

Interface Definition Language (IDL) ..942
Basic Types ..943
User-Defined Types ..944
Aliases ..944
Enumerations ..944
Structures ..944

xvii

DELPHI 6 DEVELOPER’S GUIDE

Arrays ..944
Sequences ..944
Method Arguments ..945
Modules ..945

The Bank Example ..946
Complex Data Types ..958
Delphi, CORBA, and Enterprise Java Beans (EJBs)965

A Crash Course in EJBs for Delphi Programmers965
An EJB Is a Specialized Component ..966
EJBs Live Within a Container ..966
EJBs Have Predefined APIs ..966
The Home and Remote Interfaces ..966
Types of EJBs ..967
Configuring JBuilder 5 for EJB Development967
Building a Simple “Hello, world” EJB ..968

CORBA and Web Services ..975
Creating the Web Service ..975
Creating the SOAP Client Application ..977
Adding the CORBA Client Code to the Web Service978

Summary ..981

20 BizSnap Development: Writing SOAP-Based Web Services 983
What Are Web Services? ..984
What Is SOAP? ..984
Writing a Web Service ..985

A Look at the TWebModule ..985
Defining an Invokable Interface ..986
Implementing an Invokable Interface ..987
Testing the Web Service ..989

Invoking a Web Service from a Client ..991
Generating an Import Unit for the Remote Invokable Object993
Using the THTTPRIO Component ..994

Summary ..995

21 DataSnap Development 997
Mechanics of Creating a Multitier Application998
Benefits of the Multitier Architecture ..999

Centralized Business Logic ..999
Thin-Client Architecture ..1000
Automatic Error Reconciliation ..1000
Briefcase Model ..1000
Fault Tolerance ..1000
Load Balancing ..1000

xviii

CONTENTS

Typical DataSnap Architecture ..1001
Server ..1001
Client ..1004

Using DataSnap to Create an Application ..1007
Setting Up the Server ..1007
Creating the Client ..1009

More Options to Make Your Application Robust1015
Client Optimization Techniques ..1015
Application Server Techniques ..1018

Real-World Examples ..1027
Joins ..1027

More Client Dataset Features ..1039
Two-Tier Applications ..1039

Classic Mistakes ..1041
Deploying DataSnap Applications ..1041

Licensing Issues ..1042
DCOM Configuration ..1042
Files to Deploy ..1043
Internet Deployment Considerations (Firewalls)1044

Summary ..1046

PART VI Internet Development 1047

22 ASP Development 1049
Understanding Active Server Objects ..1050

Active Server Pages ..1050
The Active Server Object Wizard ..1052

Type Library Editor ..1055
ASP Response Object ..1059
First Run ..1060
ASP Request Object ..1061
Recompiling Active Server Objects ..1062
Running Active Server Pages Again ..1063

ASP Session, Server, and Application Objects1065
Active Server Objects and Databases ..1066
Active Server Objects and NetCLX Support1069
Debugging Active Server Objects ..1071

Debugging Active Server Objects with MTS1071
Debugging Using Windows NT 4 ..1073
Debugging Using Windows 2000 ..1074

Summary ..1076

xix

DELPHI 6 DEVELOPER’S GUIDE

23 Building WebSnap Applications 1077
WebSnap Features ..1078

Multiple Webmodules ..1078
Server-side Scripting ..1078
TAdapter Components ..1078
Multiple Dispatching Methods ..1079
Page Producer Components ..1079
Session Management ..1079
Login Services ..1079
User Tracking ..1080
HTML Management ..1080
File Uploading Services ..1080

Building a WebSnap Application ..1080
Designing the Application ..1080
Adding Functionality to the Application1089
Navigation Menu Bar ..1089
Logging In ..1092
Managing User Preference Data ..1095
Persisting Preference Data Between Sessions1099
Image Handling ..1101
Displaying Data ..1103
Converting the Application to an ISAPI DLL1107

Advanced Topics ..1107
LocateFileServices ..1108
File Uploading ..1109
Including Custom Templates ..1111
Custom Components in TAdapterPageProducer1112

Summary ..1114

24 Wireless Development 1115
Evolution of Development—How Did We Get Here?1116

Pre-1980s: Here There Be Dragons ..1116
Late 1980s: Desktop Database Applications1117
Early 1990s: Client/Server ..1117
Late 1990s: Multitier and Internet-Based Transactions1117
Early 2000s: Application Infrastructure Extends to

Wireless Mobile Devices ..1117
Mobile Wireless Devices ..1118

Mobile Phones ..1118
PalmOS Devices ..1118
Pocket PC ..1119
RIM BlackBerry ..1119

xx

CONTENTS

Radio Technologies ..1119
GSM, CDMA, and TDMA ..1119
CDPD ..1119
3G ..1120
GPRS ..1120
Bluetooth ..1120
802.11 ..1120

Server-Based Wireless Data Technologies1121
SMS ..1121
WAP ..1121
I-mode ..1132
PQA ..1132

Wireless User Experience ..1136
Circuit-Switched Versus Packet-Switched Networks1137
Wireless Is Not the Web ..1137
The Importance of Form Factor ..1137
Data Entry and Navigation Techniques1137
M-Commerce ..1138

Summary ..1138

xxi

Foreword
“Delphi 6—two years in the making; a lifetime of productivity.”

I have been happily employed at Borland for more than 16 years now. I came to work here, in
the summer of 1985, to 1) be a part of the new generation of programming tools (the UCSD
Pascal System and command line tools just weren’t enough), 2) help improve the process of
programming (maybe even leaving a little more time for our families and friends), and 3) help
enrich the lives of programmers (myself included). We been innovating and advancing devel-
oper technology for the past 18 years. I enjoy being a part of this great worldwide Borland
community.

Turbo Pascal 1.0 changed the face of programming tools forever. It set the standard in 1983.
Delphi also changed the face of programming once again. Delphi 1.0 focused on making
object-oriented programming, Windows programming, and database programming easier. Later
versions of Delphi focused on easing the pain of writing Internet and distributed applications.
Even though we’ve added a host of features to our products over the years and written pages of
documentation and megabytes of online help, there’s still more information, knowledge, and
advice that is required for developers to complete successful projects.

How do you top the award winning and universally praised Delphi 5? Didn’t Delphi 5 already
simplify the process of building Internet and distributed applications while also improving the
productivity of Delphi programmers? Could the Delphi team push themselves again to meet
the demands of today’s and tomorrow’s developers?

The Delphi team spent more than two years listening to customers, seeing how developers
were using the product, looking at the pain points of programming in the new millennium.
They focused their efforts on radically simplifying the process of developing next generation
e-business Web applications, XML/SOAP based Web Services, B2b/B2C/P2P application
integration, cross-platform applications, distributed applications including integration with
AppServer/EJBs, and Microsoft Windows ME/2000 and Office 2000 applications.

Steve Teixeira and Xavier Pacheco have done it again. They have crafted their developer’s
guide so that you can take advantage of the depth and breadth of Delphi 6 programming.

I’ve known Steve Teixeira (some call him T-Rex) and Xavier Pacheco (some call him just X)
for years as friends, fellow employees, speakers at our annual conference, and as members of
the Borland community.

Previous versions of their developer’s guides have been received enthusiastically by Delphi
developers around the world. Here now is the latest version ready for everyone to enjoy.

Have fun, learn a lot. Here’s hoping that all of your Delphi projects are enjoyable, successful,
and rewarding.

David Intersimone (David I)

Vice President, Developer Relations

Borland Software Corporation

davidi@borland.com

About the Lead Authors
Steve Teixeira is the Director of Core Technology at Zone Labs, a leading creator of Internet
security solutions. Steve has previously served as Chief Technology Officer of ThinSpace, a
mobile/wireless software company, and Full Moon Interactive, a full-service e-business builder.
As a research and development software engineer at Borland, Steve was instrumental in the
development of Delphi and C++Builder. Steve is the best-selling author of four award-winning
books and numerous magazine articles on software development, and his writings are distrib-
uted worldwide in a dozen languages. Steve is a frequent speaker at industry conferences and
events worldwide.

Xavier Pacheco is the President and CEO of Xapware Technologies Inc, a software develop-
ment and consulting company with a purpose of accelerating visions. Xavier is a frequent
speaker at industry conferences and is a contributing author for Delphi periodicals. Xavier is
an internationally known Delphi expert and member of Borland’s select group volunteers—
TeamB. He is the best-selling author of four award-winning books that are distributed world-
wide in a dozen languages. Xavier lives in Colorado Springs with his wife Anne and children
Amanda and Zachary.

About the Contributing Authors
Bob Swart (also known as Dr.Bob—www.drbob42.com) is a UK Borland Connections member
and an independent technical author, trainer, and consultant using Delphi, Kylix, and C++Builder
based in Helmond, The Netherlands. Bob writes regular columns for The Delphi Magazine,
Delphi Developer, UK-BUG Developer’s Magazine, as well as the DevX, TechRepublic, and the
Borland Community Web sites. Bob has written chapters for The Revolutionary Guide to Delphi
2, Delphi 4 Unleashed, C++Builder 4 Unleashed, C++Builder 5 Developer’s Guide, Kylix
Developer’s Guide, and now Delphi 6 Developer’s Guide (for Sams Publishing).

Bob is a frequent speaker at Borland and Delphi/Kylix related seminars all over the world, and
writes his own training material for Dr.Bob’s Delphi Clinics (in The Netherlands and the UK).

In his spare time, Bob likes to watch video tapes of Star Trek Voyager and Deep Space Nine
with his 7-year old son Erik Mark Pascal and 5-year old daughter Natasha Louise Delphine.

Dan Miser is an R&D Project Manager for the DSP group at Borland, where he spends most of
his time researching emerging technologies. Dan also worked on the Delphi R&D team where
his responsibilities included DataSnap development. Dan’s major focus is finding ways to allow
information to be shared across boundaries, and this has allowed him to work with a variety of
distributed computing technologies, including MIDAS, SOAP, DCOM, RMI, J2EE, EJB, Struts,
and RDS. He has also been involved with promoting Delphi by being a contributing author to
the Delphi Developer’s Guide series, acting as a technical editor, writing magazine articles,
participating on the Borland newsgroups as a member of TeamB, and being a speaker at
BorCon on topics such as COM and MIDAS.

David Sampson is an R&D engineer in the Borland RAD Tools Group and is responsible
for the CORBA integration into the RAD products. He is long time Pascal, Delphi, and C++
developer, and is a frequent speaker at the Borland Developer’s Conference. He lives in
Roswell, GA with his wife and enjoys hockey, Aikido, and helping his wife with her pack of
Basenjis.

Nick Hodges is a Senior Development Engineer with Lemanix Corporation in St. Paul, MN.
He is a member of Borland’s TeamB and a long time Pascal and Delphi developer. He serves
on the Borland Conference Advisory Board, is a frequent speaker at the conference, and is a
frequent writer for the Borland Community Site. He lives in St. Paul with his wife and two
children and enjoys reading, running, and helping his wife homeschool their two children.

Ray Konopka is the founder of Raize Software, Inc. and the chief architect for CodeSite and
Raize Components. Ray is also the author of the highly acclaimed Developing Custom Delphi
Components books and the popular “Delphi by Design” column, which appeared in Visual
Developer Magazine. Ray specializes in user interface design and Delphi component develop-
ment, and is a frequent speaker at developer conferences around the world.

www.drbob42.com

Dedication
This book is dedicated to the victims and heroes of September 11, 2001.

Thanks to my family, Helen, Cooper, and Ryan. Without their love, support, and welcome distractions, I’d
likely never be able to finish a book, and I’d almost certainly go crazy trying.

—Steve

Thanks to my family, Anne, Amanda, and Zachary. Your love, patience, and encouragement, I cherish.

—Xavier

Acknowledgments
We need to thank those who, without whose help, this book would never have been written. In
addition to our thanks, we also want to point out that any errors or omissions you find in the
book are our own, in spite of everyone’s efforts.

We’d first like to offer our enormous gratitude to our contributing authors, who lent their superior
software development and writing skills to making Delphi 6 Developer’s Guide better than
it could have been otherwise. Mr. Component himself, Ray Konopka, wrote the excellent Chapter
13, “CLX Component Development.” DataSnap guru Dan Miser pitched in by writing the
brilliant Chapter 21, “DataSnap Development.” Well-known CORBA expert, David Sampson, con-
tributed Chapter 19, “CORBA Development.” Thank you also to Robert “Dr. Bob” Swart, for
bringing his considerable talents to bear on Chapter 22, “ASP Development.” Last (but certainly
not least!), Web wizard Nick Hodges is back in this edition of the book in Chapter 23, “Building
WebSnap Applications.”

Another large round of thank-yous to our technical reviewers (and all around great guys),
Thomas Theobald and John Thomas. These guys managed to squeeze in their duties as uber-
technical reviewers among their day jobs of helping Borland create great software.

While writing the Delphi Developer’s Guide series, we received advice or tips from a number
of our friends and coworkers. These people include (in alphabetical order) Alain “Lino”
Tadros, Anders Hejlsberg, Anders Ohlsson, Charlie Calvert, Victor Hornback, Chuck Jazdzewski,
Daniel Polistchuck, Danny Thorpe, David Streever, Ellie Peters, Jeff Peters, Lance Bullock,
Mark Duncan, Mike Dugan, Nick Hodges, Paul Qualls, Rich Jones, Roland Bouchereau,
Scott Frolich, Steve Beebe, and Tom Butt. We’re certain there are others whose names we can’t
recall, and we owe you all a beer.

Finally, thanks to the gang at Pearson Technology Group: Carol Ackerman, Christina Smith,
Dan Scherf, and the zillions of behind-the-scenes people whom we never met, but without
whose help this book would not be a reality.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and authors’ names as well as your
name and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction
You hold in your hands the fifth edition in the Delphi Developer’s Guide series, and the prod-
uct of literally thousands of man-hours over more than seven years of programming, writing,
and refinement. Xavier and Steve were members of the original Delphi team at Borland, and
this work is the outlet through which they can share their fifteen-plus years of combined expe-
rience developing software in Delphi. In Delphi 6 Developer’s Guide, we have striven to hold
true to the spirit that has made the Delphi Developer’s Guide series perhaps the world’s most
read Delphi books and two-time winner of the Delphi Informant Reader’s Choice award. This
is a book by developers, for developers.

The intent of Delphi 6 Developer’s Guide is to supplement and build on the Delphi Developer’s
Guide series. Ideally, we would have loved to include all the updated content form Delphi 5
Developer’s Guide and all the new content in one book, but Delphi 5 Developer’s Guide was
already thick enough to stretch the technical limitations of modern book binding. In order to
provide enough space to give proper coverage of the entire Delphi 6 feature set, we opted
to publish a new book with new information.

Delphi 6 Developer’s Guide contains a number of all-new chapters, many chapters that have
been significantly enhanced from previous editions, and some of the favorite topics from
Delphi 5 Developers Guide. The information in Delphi 5 Developer’s Guide will not be lost,
however. On the CD accompanying this book, you will find the entire contents of Delphi 5
Developer’s Guide, with each chapter in a separate PDF file. On the inside front cover, we
have also included the table of contents for Delphi 5 Developer’s Guide so you can know at a
glance where to find that programming tidbit. The end result for you, the reader, is essentially
two books in one.

Delphi 6 Developer’s Guide is divided into six sections. Part I, “Development Essentials,” pro-
vides you with the foundation knowledge necessary to be an effective Delphi developers. Part
II, “Advanced Techniques,” highlights some common advanced development issues, such as
threading and dynamic link libraries. Part III, “Database Development,” discusses the many
faces of Delphi’s data access layers. Part IV, “Component-Based Development,” takes you
through the many manifestations of component-based development, from VCL to CLX to
packages to COM and the Open Tools API. Part V, “Enterprise Development,” is intended to
give you the practical knowledge necessary to develop enterprise-grade applications with tech-
nologies such as COM+, CORBA, SOAP/BizSnap, and DataSnap. Finally, Part VI, “Internet
Development,” demonstrates the development of Internet and wireless applications in Delphi.

DELPHI 6 DEVELOPER’S GUIDE

Who Should Read This Book
As the title of this book says, this book is for developers. So, if you’re a developer, and you
use Delphi, you need to have this book. In particular, however, this book is aimed at three
groups of people:

• Delphi developers who are looking to take their craft to the next level.

• Experienced Pascal, C/C++, Java, or Basic programmers who are looking to hit the
ground running with Delphi.

• Programmers who are looking to get the most out of Delphi by leveraging some of its
more advanced and sometimes least obvious features.

Conventions Used in This Book
The following typographic conventions are used in this book:

• Code lines, commands, statements, variables, program output, and any text you see on
the screen appear in a computer typeface.

• Anything that you type appears in a bold computer typeface.

• Placeholders in syntax descriptions appear in an italic computer typeface. Replace the
placeholder with the actual filename, parameter, or whatever element it represents.

• Italics highlight technical terms when they first appear in the text and sometimes are
used to emphasize important points.

• Procedures and functions are indicated by open and close parentheses after the procedure
or function name. Although this isn’t standard Pascal syntax, it helps to differentiate
them from properties, variables, and types.

Within each chapter, you will encounter several Notes, Tips, and Cautions that help to high-
light the important points and aid you in steering clear of the pitfalls.

You will find all the source code and project files on the CD-ROM accompanying this book, as
well as source samples that we could not fit in the book itself.The CD also contains some pow-
erful trial versions of third-party components and tools.

Delphi 6 Developer’s Guide Web Site
Visit our Web site at http://www.xapware.com/ddg to join the Delphi Developer’s Guide
community and obtain updates, extras, and errata information for this book. You can also join
the mailing list for our newsletter and visit our discussion group.

2

http://www.xapware.com/ddg

INTRODUCTION

Getting Started
People sometimes ask what drives us to continue to write Delphi books. It’s hard to explain,
but whenever we meet with other developers and see their obviously well used, book marked,
ratty looking copy of Delphi Developer’s Guide, it somehow makes it worthwhile.

Now it’s time to relax and have some fun programming with Delphi. We’ll start slow but
progress into the more advanced topics at a quick but comfortable pace. Before you know it,
you’ll have the knowledge and technique required to truly be called a Delphi guru.

3

This page intentionally left blank

IN THIS PART
1 Programming in Delphi 7

2 The Object Pascal Language 35

3 Adventures in Messaging 129

Development Essentials
PART

I

This page intentionally left blank

CHAPTER

1
Programming in Delphi

IN THIS CHAPTER
• The Delphi Product Family 8

• Delphi: What and Why 10

• A Little History 15

• The Delphi IDE 19

• A Tour of Your Project’s Source 24

• Tour of a Small Application 26

• What’s So Great About Events, Anyway? 28

• Turbo Prototyping 29

• Extensible Components and Environment 25

• The Top 10 IDE Features You Must Know and
Love 30

This chapter is intended to provide you with a high-level overview of Delphi, including history,
feature sets, how Delphi fits into the world of Windows development, and general tidbits of
information you need to know to be a Delphi developer. And just to get your technical juices
flowing, this chapter also discusses the need-to-know features of the Delphi IDE, pointing out
some of those hard-to-find features that even seasoned Delphi developers might not know
about.

This chapter isn’t about providing an education on the very basics of how one develops soft-
ware in Delphi. We figure you spent good money on this book to learn new and interesting
things—not to read a rehash of content you can already find in Borland’s documentation. True
to that, our mission is to deliver the goods: to show you the power features of this product and
ultimately how to employ those features to build commercial-quality software. Hopefully, our
backgrounds and experience with the tool will enable us to provide you with some interesting
and useful insights along the way. We feel that experienced and new Delphi developers alike
will benefit from this chapter (and this book!), as long as new developers understand that this
isn’t ground zero for a Delphi developer. Start with the Borland documentation and simple
examples. Once you’ve got the hang of how the IDE works and the general flow of application
development, welcome aboard and enjoy the ride!

The Delphi Product Family
Delphi 6 comes in three flavors designed to fit a variety of needs: Delphi 6 Personal, Delphi 6
Professional, and Delphi 6 Enterprise. Each of these versions is targeted at a different type of
developer.

Delphi 6 Personal is the entry-level version. It provides everything you need to start writing
applications with Delphi, and it’s ideal for hobbyists and students who want to break into
Delphi programming on a budget. This version includes the following features:

• Optimizing 32-bit Object Pascal compiler, including a variety of new and enhanced lan-
guage features.

• Visual Component Library (VCL), which includes over 85 components standard on the
Component Palette.

• Package support, which enables you to create small executables and component libraries.

• An IDE that includes an editor, debugger, form designer, and a host of productivity
features.

• IDE enhancements such as visual form inheritance and linking, object tree view, class
completion, and Code Insight.

Development Essentials

PART I
8

• Full support for Win32 API, including COM, GDI, DirectX, multithreading, and various
Microsoft and third-party software development kits (SDKs).

• Licensing permits building applications for personal use only: No commercial distribu-
tion of applications built with Delphi 6 Personal is permitted.

Delphi 6 Professional is intended for use by professional developers who don’t require enter-
prise development capabilities. If you’re a professional developer building and deploying appli-
cations or Delphi components, this product is designed for you. The Professional edition
includes everything in the Personal edition, plus the following:

• More than 225 VCL components on the Component Palette

• More than 160 CLX components for cross-platform development between Windows and
Linux

• Database support, including DataCLX database architecture, data-aware VCL controls,
dbExpress cross-platform components and drivers, ActiveX Data Objects (ADO), the
Borland Database Engine (BDE) for legacy connectivity, a virtual dataset architecture
that enables you to incorporate other database types into VCL, the Database Explorer
tool, a data repository, and InterBase Express native InterBase components

• InterBase and MySQL drivers for dbExpress

• DataCLX database architecture (formerly known as MIDAS) with MyBase XML-based
local data engine

• Wizards for creating COM/COM+ components, such as ActiveX controls, ActiveForms,
Automation servers, property pages, and transactional components

• A variety of third-party tools and components, include the INDY internet tools, the
QuickReports reporting tool, the TeeChart graphing and charting components, and
NetMasters FastNet controls

• InterBase 6 database server and five-user license

• The Web Deployment feature for easy distribution of ActiveX content via the Web

• The InstallSHIELD MSI Light application-deployment tool

• The OpenTools API for developing components that integrate tightly within the Delphi
environment as well as an interface for PVCS version control

• NetCLX WebBroker tools and components for developing cross-platform applications
for the Internet

• Source code for the Visual Component Library (VCL), Component Library for Cross-
platform (CLX), runtime library (RTL), and property editors

• License for commercial distribution of applications developed with Delphi 6 Professional

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

9

Delphi 6 Enterprise is targeted toward developers who create enterprise-scale applications. The
Enterprise version includes everything included in the other two Delphi editions, plus the
following:

• Over 300 VCL components on the Component Palette

• BizSnap technology for creating XML-based applications and Web services

• WebSnap Web application design platform for integrating XML and scripting technolo-
gies with Web-based applications

• CORBA support for client and sever applications, including version 4.0x of the
VisiBroker ORB and Borland AppServer version 4.5

• TeamSource source control software, which enables team development and supports vari-
ous versioning engines (ZIP and PVCS included)

• Tools for easily translating and localizing applications

• SQLLinks BDE drivers for Oracle, MS SQL Server, InterBase, Informix, Sybase, and
DB2

• Oracle and DB2 drivers for dbExpress

• Advanced tools for building SQL-based applications, including SQL Explorer, SQL
Monitor, SQL Builder, and ADT column support in grid

Delphi: What and Why
We’re often asked questions such as “What makes Delphi so good?” and “Why should I
choose Delphi over Tool X?” Over the years, we’ve developed two answers to these types of
questions: a long answer and a short answer. The short answer is productivity. Using Delphi is
simply the most productive way we’ve found to build applications for Windows. Of course,
there are those (bosses and perspective clients) for whom the short answer will not suffice, so
then we must break out the long answer. The long answer describes the combined qualities that
make Delphi so productive. We boil down the productivity of software development tools into
a pentagon of five important attributes:

• The quality of the visual development environment

• The speediness of the compiler versus the efficiency of the compiled code

• The power of the programming language versus its complexity

• The flexibility and scalability of the database architecture

• The design and usage patterns enforced by the framework

Although admittedly many other factors are involved, such as deployment issues, documenta-
tion, third-party support, and so on, we’ve found this simple model to be quite accurate in

Development Essentials

PART I
10

explaining to folks why we choose Delphi. Some of these categories also involve some amount
of subjectivity, but that’s the point; how productive are you with a particular tool? By rating a
tool on a scale of 1 to 5 for each attribute and plotting each on an axis of the graph shown in
Figure 1.1, the end result will be a pentagon. The greater the surface area of this pentagon, the
more productive the tool.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

11

Visual IDE

C
om

piler

LanguageDatabase

Fr
am

ew
or

k

FIGURE 1.1
The development tool productivity graph.

We won’t tell you what we came up with when we used this formula—that’s for you to decide!
Let’s take an in-depth look at each of these attributes and how they apply to Delphi as well as
how they compare with other Windows development tools.

The Quality of the Visual Development Environment
The visual development environment can generally be divided into three constituent compo-
nents: the editor, the debugger, and the form designer. Like most modern rapid application
development (RAD) tools, these three components work in harmony as you design an applica-
tion. While you’re working in the form designer, Delphi is generating code behind the scenes
for the components you drop and manipulate on forms. You can add additional code in the edi-
tor to define application behavior, and you can debug your application from the same editor by
setting breakpoints, watches, and so on.

Delphi’s editor is generally on par with those of other tools. The CodeInsight technologies,
which save you a lot of typing, are probably the best around. They’re based on compiler infor-
mation, rather than type library info like Visual Basic, and are therefore able to help in a wider
variety of situations. Although the Delphi editor sports some good configuration options, I
would rate Visual Studio’s editor as more configurable.

Recent versions of Delphi’s debugger have finally caught up with the debugger support in
Visual Studio, with advanced features such as remote debugging, process attachment, DLL and
package debugging, automatic local watches, and a CPU window. Delphi also has some nice
IDE support for debugging by allowing windows to be placed and docked where you like dur-
ing debugging and enabling that state to be saved as a named desktop setting. One very nice
debugger feature that’s commonplace in interpreted environments such as Visual Basic and
some Java tools is the ability to change code to modify application behavior while the applica-
tion is being debugged. Unfortunately, this type of feature is much more difficult to accomplish
when compiling to native code and is therefore unsupported by Delphi.

A form designer is usually a feature unique to RAD tools, such as Delphi, Visual Basic,
C++Builder, and PowerBuilder. More classical development environments, such as Visual C++
and Borland C++, typically provide dialog editors, but those tend not to be as integrated into the
development workflow as a form designer. Based on the productivity graph from Figure 1.1,
you can see that the lack of a form designer really has a negative effect on the overall productiv-
ity of the tool for application development.

Over the years, Delphi and Visual Basic have engaged in a sort of tug-of-war of form designer
features, with each new version surpassing the other in functionality. One trait of Delphi’s form
designer that sets it apart from others is the fact that Delphi is built on top of a true object-
oriented framework. Given that, changes you make to base classes will propagate up to any
ancestor classes. A key feature that leverages this trait is visual form inheritance (VFI). VFI
enables you to dynamically descend from any of the other forms in your project or in the
Gallery. What’s more, changes made to the base form from which you descend will cascade
and reflect in its descendants. You’ll find more information on this feature in the electronic ver-
sion of Delphi 5 Developer’s Guide on the CD accompanying this book in Chapter 3,
“Application Frameworks and Design Concepts.”

The Speediness of the Compiler Versus the Efficiency
of the Compiled Code
A speedy compile enables you to develop software incrementally, thus making frequent
changes to your source code, recompiling, testing, changing, recompiling, testing again, and so
forth: a very efficient development cycle. When compilation speed is slower, developers are
forced to make source changes in batch, making multiple modifications prior to compiling and
adapting to a less efficient development cycle. The advantage of runtime efficiency is self-evi-
dent; faster runtime execution and smaller binaries are always good.

Perhaps the best-known feature of the Pascal compiler upon which Delphi is based is that it’s
fast. In fact, it’s probably the fastest high-level language native code compiler for Windows.

Development Essentials

PART I
12

C++, which has traditionally been dog-slow in terms of compile speed, has made great strides
in recent years with incremental linking and various caching strategies found in Visual C++
and C++Builder in particular. Still, even these C++ compilers are typically several times
slower than Delphi’s compiler.

Does all this compile-time speed mean a tradeoff in runtime efficiency? The answer is, of
course, no. Delphi shares the compiler back end with the C++Builder compiler, so the effi-
ciency of the generated code is on par with that of a very good C++ compiler. In the latest reli-
able benchmarks, Visual C++ actually rated tops in speed and size efficiency in many cases,
thanks to some very nice optimizations. Although these small advantages are unnoticeable for
general application development, they might make a difference if you’re writing computation-
intensive code.

Visual Basic is a little unique with regard to compiler technology. During development, VB
operates in an interpreted mode and is quite responsive. When you want to deploy, you can
invoke the VB compiler to generate the EXE. This compiler is fairly slow and its speed effi-
ciency rates well behind Delphi and C++ tools. At the time of this writing, Microsoft’s next
iteration, Visual Basic.NET, is in beta and promises to make improvements in this area.

Java is another interesting case. Top Java-based tools such as JBuilder and Visual J++ boast
compile times approaching that of Delphi. Runtime speed efficiency, however, often leaves
something to be desired because Java is an interpreted language. Although Java continues to
make steady improvements, runtime speed in most real-world scenarios lags behind that of
Delphi and C++.

The Power of the Programming Language Versus
Its Complexity
Power and complexity are very much in the eye of the beholder, and this particular category
has served as the guidon for many an online flame war. What’s easy to one person might be
difficult to another, and what’s limiting to one might be considered elegant by yet another.
Therefore, the following is based on the authors’ experience and personal preferences.

Assembly is the ultimate power language. There’s very little you can’t do. However, writing
even the simplest Windows application in assembly is an arduous and error-prone venture. Not
only that, but it’s sometimes nearly impossible to maintain an assembly code base in a team
environment for any length of time. As code passes from one owner to the next to the next,
design ideas and intents become more and more cloudy, until the code starts to look more like
Sanskrit than a computer language. Therefore, we would score assembly very low in this cate-
gory because, although powerful, assembly language is too complex for nearly all application
development chores.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

13

C++ is another extremely powerful language. With the aid of really potent features such as pre-
processor macros, templates, operator overloading, and more, you can very nearly design your
own language within C++. If the vast array of features at your disposal are used judiciously,
you can develop very clear and maintainable code. The problem, however, is that many devel-
opers can’t resist overusing these features, and it’s quite easy to create truly horrible code. In
fact, it’s easier to write bad C++ code than good because the language doesn’t lend itself
toward good design—it’s up to the developer.

Two languages that we feel are very similar in that they strike a very good balance between
complexity and power are Object Pascal and Java. Both take the approach of limiting available
features in an effort to enforce logical design on the developer. For example, both avoid the
very object-oriented but easy-to-abuse notion of multiple inheritance in favor of enabling a
class to implement multiple interfaces. Both lack the nifty but dangerous feature of operator
overloading. Also, both make source files first-class citizens in the language rather than a detail
to be dealt with by the linker. What’s more, both languages take advantage of power features
that add the most bang for the buck, such as exception handling, Runtime Type Information
(RTTI), and native memory-managed strings. Not coincidentally, both languages weren’t writ-
ten by committee but rather nurtured by an individual or small group within a single organiza-
tion with a common understanding of what the language should be.

Visual Basic started life as a language designed to be easy enough for programming beginners
to pick up quickly (hence the name). However, as language features were added to address
shortcomings over the years, Visual Basic has become more and more complex. In an effort to
hide the details from developers, Visual Basic still maintains some walls that must be navigated
around in order to build complex projects. Again, Microsoft’s next-generation Visual
Basic.NET is making significant changes in this area, albeit at the expense of backward
compatibility.

The Flexibility and Scalability of the Database
Architecture
Because of Borland’s lack of a database agenda, Delphi maintains what we feel to be one of
the most flexible database architectures of any tool. Out of the box, dbExpress is very efficient
(although at the expense of advanced functionality), but the selection of drivers is rather lim-
ited. BDE still works and performs relatively well for most applications against a wide range
of data sources, although it is being phased out by Borland. Additionally, the native ADO com-
ponents provide an efficient means for communicating through ADO or ODBC. If InterBase is
your bag, the IBExpress native InterBase components provide the most effective means to
communicate with that database server. If none of this provides the data access you’re looking

Development Essentials

PART I
14

for, you can write your own data-access class by leveraging the abstract dataset architecture or
purchase a third-party dataset solution. Furthermore, DataCLX makes it easy to logically or
physically divide, into multiple tiers, access to any of these data sources.

Microsoft tools logically tend to focus on Microsoft’s own databases and data-access solutions,
be they ODBC, OLE DB, or others.

The Design and Usage Patterns Enforced by the
Framework
This is the magic bullet or the holy grail of software design that other tools seem to be miss-
ing. All other things being equal, VCL is the most important part of Delphi. The ability to
manipulate components at design time, design components, and inherit behavior from other
components using object-oriented (OO) techniques it a critical ingredient to Delphi’s level of
productivity. When writing VCL components, you can’t help but employ solid OO design
methodologies in many cases. By contrast, other component-based frameworks are often too
rigid or too complicated.

ActiveX controls, for example, provide many of the same design-time benefits of VCL con-
trols, but there’s no way to inherit from an ActiveX control to create a new class with some
different behaviors. Traditional class frameworks, such as OWL and MFC, typically require
you to have a great deal of internal framework knowledge in order to be productive, and
they’re hampered by a lack of RAD tool-like design-time support. Microsoft’s .NET common
library finally puts Microsoft on the right track in terms of component-based development, and
it even works with a variety of their tools, including C#, Visual C++, and Visual Basic.

A Little History
Delphi is, at heart, a Pascal compiler. Delphi 6 is the next step in the evolution of the same
Pascal compiler that Borland has been developing since Anders Hejlsberg wrote the first Turbo
Pascal compiler more than 17 years ago. Pascal programmers throughout the years have
enjoyed the stability, grace, and, of course, the compile speed that Turbo Pascal offers. Delphi
6 is no exception—its compiler is the synthesis of more than a decade of compiler experience
and a state-of-the-art 32-bit optimizing compiler. Although the capabilities of the compiler
have grown considerably over the years, the speed of the compiler has remarkably diminished
only slightly. What’s more, the stability of the Delphi compiler continues to be a yardstick by
which others are measured.

Now it’s time for a little walk down memory lane, as we look at each of the versions of Delphi
and a little of the historical context surrounding each product’s release.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

15

Delphi 1
In the early days of DOS, programmers had a choice between productive-but-slow BASIC and
efficient-but-complex assembly language. Turbo Pascal, which offered the simplicity of a struc-
tured language and the performance of a real compiler, bridged that gap. Windows 3.1 pro-
grammers faced a similar choice—a choice between a powerful-yet-unwieldy language such as
C++ and an easy-to-use-but-limiting language such as Visual Basic. Delphi 1 answered that
call by offering a radically different approach to Windows development: visual development,
compiled executables, DLLs, databases, you name it—a visual environment without limits.
Delphi 1 was the first Windows development tool to combine a visual development environ-
ment, an optimizing native-code compiler, and a scalable database access engine. It defined the
phrase rapid application development (RAD).

The combination of compiler, RAD tool, and fast database access was too compelling for scads
of VB developers, and Delphi won many converts. Also, many Turbo Pascal developers rein-
vented their careers by transitioning to this slick, new tool. Word got out that Object Pascal
wasn’t the same as that language we had to use in college that made us feel like we were pro-
gramming with one hand behind our backs, and many more developers came to Delphi to take
advantage of the robust design patterns encouraged by the language and the tool. The Visual
Basic team at Microsoft, lacking serious competition before Delphi, was caught totally unpre-
pared. Slow, fat, and dumb, Visual Basic 3 was arguably no match for Delphi 1.

The year was 1995. Borland was appealing a huge lawsuit loss to Lotus for infringing on the 1-
2-3 “look and feel” with Quattro. Borland was also taking lumps from Microsoft for trying to
play in the application space with Microsoft. Borland got out of the application business by
selling the Quattro business to Novell and targeting dBASE and Paradox to database develop-
ers, as opposed to casual users. While Borland was playing in the applications market,
Microsoft had quietly leveraged its platform business to take away from Borland a vast share
of the Windows developer tools market. Newly refocused on its core competency of developer
tools, Borland was looking to do some damage with Delphi and a new release of Borland C++.

Delphi 2
A year later, Delphi 2 provided all these same benefits under the modern 32-bit operating sys-
tems of Windows 95 and Windows NT. Additionally, Delphi 2 extended productivity with addi-
tional features and functionality not found in version 1, such as a 32-bit compiler that produces
faster applications, an enhanced and extended object library, revamped database support,
improved string handling, OLE support, Visual Form Inheritance, and compatibility with 16-bit
Delphi projects. Delphi 2 became the yardstick by which all other RAD tools are measured.

Development Essentials

PART I
16

The year was 1996, and the most important Windows platform release since 3.0—32-bit
Windows 95—had just happened in the latter part of the previous year. Borland was eager to
make Delphi the preeminent development tool for that platform. An interesting historical note
is that Delphi 2 was originally going to be called Delphi32, to underscore the fact that it was
designed for 32-bit Windows. However, the product name was changed before release to
Delphi 2 to illustrate that Delphi was a mature product and avoid what is known in the soft-
ware business as the “1.0 blues.”

Microsoft attempted to counter with Visual Basic 4, but it was plagued by poor performance,
lack of 16-to-32-bit portability, and key design flaws. Still, there’s an impressive number of
developers who continued to use Visual Basic for whatever the reason. Borland also longed to
see Delphi penetrate the high-end client/server market occupied by tools such as PowerBuilder,
but this version didn’t yet have the muscle necessary to unseat such products from their corpo-
rate perches.

The corporate strategy at this time was undeniably to focus on corporate customers. The deci-
sion to change direction in this way was no doubt fueled by the diminishing market relevance
of dBASE and Paradox, and the dwindling revenues realized in the C++ market also aided this
decision. In order to help jumpstart that effort to take on the enterprises, Borland made the
mistake of acquiring Open Environment Corporation, a middleware company with basically
two products: an outmoded DCE-based middleware that you might call an ancestor of CORBA
and a proprietary technology for distributed OLE about to be ushered into obsolescence by
DCOM.

Delphi 3
During the development of Delphi 1, the Delphi development team was preoccupied with sim-
ply creating and releasing a groundbreaking development tool. For Delphi 2, the development
team had its hands full primarily with the tasks of moving to 32 bit (while maintaining almost
complete backward compatibility) and adding new database and client/server features needed
by corporate IT. While Delphi 3 was being created, the development team had the opportunity
to expand the tool set to provide an extraordinary level of breadth and depth for solutions to
some of the sticky problems faced by Windows developers. In particular, Delphi 3 made it easy
to use the notoriously complicated technologies of COM and ActiveX, World Wide Web appli-
cation development, “thin client” applications, and multitier databases architectures. Delphi 3’s
Code Insight helped to make the actual code-writing process a bit easier, although for the most
part, the basic methodology for writing Delphi applications was the same as in Delphi 1.

This was 1997, and the competition was doing some interesting things. On the low end,
Microsoft finally started to get something right with Visual Basic 5, which included a compiler
to address long-standing performance problems, good COM/ActiveX support, and some key

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

17

new platform features. On the high-end, Delphi was now successfully unseating products such
as PowerBuilder and Forte in corporations.

Delphi lost a key member of the team during the Delphi 3 development cycle when Anders
Hejlsberg, the Chief Architect, decided to move on and took a position with Microsoft
Corporation. The team didn’t lose a beat, however, because Chuck Jazdzewski, long time co-
architect was able to step into the head role.

Delphi 4
Delphi 4 focused on making Delphi development easier. The Module Explorer was introduced
in Delphi, and it enabled you to browse and edit units from a convenient graphical interface.
New code navigation and class completion features enabled you to focus on the meat of your
applications with a minimum of busy work. The IDE was redesigned with dockable toolbars
and windows to make your development more convenient, and the debugger was greatly
improved. Delphi 4 extended the product’s reach into the enterprise with outstanding multitier
support using technologies such as MIDAS, DCOM, MTS, and CORBA.

This was 1998, and Delphi had effectively secured its position relative to the competition. The
front lines had stabilized somewhat, although Delphi continued to slowly gain market share.
CORBA was the industry buzz, and Delphi had it and the competition did not. There was a bit
of a down-side to Delphi 4 as well: After enjoying several years of being the most stable devel-
opment tool on the market, Delphi 4 had earned a reputation among long-time Delphi users for
not living up to the very high standard for solid engineering and stability.

The release of Delphi 4 followed the acquisition of Visigenic, one of the CORBA industry
leaders. Borland changed its name to Inprise in an effort to better penetrate the enterprise, and
the company was in a position to lead the industry to new ground by integrating its tools with
the CORBA technology. To really win, CORBA needed to be made as easy as COM or Internet
development had been made in past versions of Borland tools. However, for various reasons,
the integration wasn’t as full as it should have been, and the CORBA-development tool integra-
tion was destined to play a bit part in the overall software-development picture.

Delphi 5
Delphi 5 moved ahead on a few fronts: First, Delphi 5 continued what Delphi 4 started by
adding many more features to make easy those tasks that traditionally take time, hopefully
enabling you to concentrate more on what you want to write and less on how to write it. These
new productivity features include further IDE and debugger enhancements, TeamSource team
development software, and translation tools. Second, Delphi 5 contained a host of new features
aimed squarely at making Internet development easier. These new Internet features include the

Development Essentials

PART I
18

Active Server Object Wizard for ASP creation, the InternetExpress components for XML sup-
port, and new MIDAS features, making it a very versatile data platform for the Internet.
Finally, Borland built time into the schedule to deliver the most important feature of all for
Delphi 5: stability. Like fine wine, you cannot rush great software, and Borland waited until
Delphi 5 was ready before letting it out the door.

Delphi 5 was released in the latter half of 1999. Delphi continues to penetrate the enterprise,
whereas Visual Basic continues to serve as competition on the low end. However, the battle
lines still appear stable. Inprise brought back the Borland name but only as a brand. The execu-
tive offices went through some turbulent times, with the company divisionalized between tools
and middleware, the abrupt departure of CEO Del Yocam, and the hiring of Internet-savvy
CEO Dale Fuller, who refocused the company back on software developers.

Delphi 6
Clearly the primary theme of Delphi 6 is compatibility with Borland’s Kylix development tool
for Linux. To this end, Borland developed the new Component Library for Cross-Platform
(CLX), which includes VisualCLX for visual development, DataCLX client data-access compo-
nents, and NetCLX Internet components. Applications written using only the CLX library and
portable RTL elements will easily port between the Windows and Linux operating systems.

The new dbExpress set of components and drivers is one of the biggest breakthroughs to come
out of the effort for Linux compatibility because it finally provides a real alternative for the
BDE, which has really begun to show its age in recent years.

A secondary theme of Delphi 6 is essentially to embrace all things XML. This includes XML
for database applications, Web-based applications, and SOAP-based Web services. Delphi
developers have the tools they need to fully embrace the industry-wide trend toward XML,
which provides great benefits in terms of applications that function across the traditional
boundaries of different development tools, platforms, databases, and across the Internet.

Of course, in addition to all these improvements and additions, Delphi 6 brings the normal host
of improvement you’ve come to expect between product versions in core areas like VCL, the
IDE, the debugger, the Object Pascal language, and the RTL.

The Delphi IDE
Just to make sure that we’re all on the same page with regard to terminology, Figure 1.2 shows
the Delphi IDE and calls attention to its major constituents: the main window, the Component
Palette, the toolbars, the Form Designer, the Code Editor, the Object Inspector, Object
TreeView, and the Code Explorer.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

19

FIGURE 1.2
The Delphi 6 IDE.

The Main Window
Think of the main window as the control center for the Delphi IDE. The main window has all
the standard functionality of the main window of any other Windows program. It consists of
three parts: the main menu, the toolbars, and the Component Palette.

The Main Menu
As in any Windows program, you go to the main menu when you need to open and save files,
invoke wizards, view other windows, modify options, and so on. Most items on the main menu
can also be invoked via a button on a toolbar.

The Delphi Toolbars
The toolbars enable single-click access to some operation found on the main menu of the IDE,
such as opening a file or building a project. Notice that each of the buttons on the toolbars
offer a tooltip that contain a description of the function of a particular button. Not including the
Component Palette, there are five separate toolbars in the IDE: Debug, Desktops, Standard,

Development Essentials

PART I
20

Object TreeView Form Designer

Code ExplorerObject Inspector Code Editor

Component PaletteMain Window

Toolbars

View, and Custom. Figure 1.2 shows the default button configuration for these toolbars, but
you can add or remove buttons by selecting Customize from the local menu on a toolbar.
Figure 1.3 shows the Customize toolbar dialog box. You add buttons by dragging them from
this dialog box and drop them on any toolbar. To remove a button, drag it off the toolbar.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

21

FIGURE 1.3
The Customize toolbar dialog box.

IDE toolbar customization doesn’t stop at configuring which buttons are shown. You can also
relocate each of the toolbars, the Component Palette, or the menu within the main window. To
do this, click the raised gray bars on the left side of the toolbars and drag them around the
main window. If you drag the mouse outside the confines of the main window while doing this,
you’ll see yet another level of customization: The toolbars can be undocked from the main
window and reside in their own floating tool windows. Undocked views of the toolbars are
shown in Figure 1.4.

FIGURE 1.4
Undocked toolbars.

The Component Palette
The Component Palette is a double-height toolbar that contains a page control filled with all
the VCL components and ActiveX controls installed in the IDE. The order and appearance of
pages and components on the Component Palette can be configured via a right-click or by
selecting Component, Configure Palette from the main menu.

The Form Designer
The Form Designer begins as an empty window, ready for you to turn it into a Windows appli-
cation. Consider the Form Designer your artist’s canvas for creating Windows applications;
here is where you determine how your applications will be represented visually to your users.
You interact with the Form Designer by selecting components from the Component Palette and
dropping them onto your form. After you have a particular component on the form, you can
use the mouse to adjust the position or size of the component. You can control the appearance
and behavior of these components by using the Object Inspector and Code Editor.

The Object Inspector
With the Object Inspector, you can modify a form’s or component’s properties or enable your
form or component to respond to different events. Properties are data such as height, color, and
font that determine how an object appears onscreen. Events are portions of code executed in
response to occurrences within your application. A mouse-click message and a message for a
window to redraw itself are two examples of events. The Object Inspector window uses the
standard Windows notebook tab metaphor in switching between component properties or
events; just select the desired page from the tabs at the top of the window. The properties and
events displayed in the Object Inspector reflect whichever form or component currently has
focus in the Form Designer.

Delphi also has the capability to arrange the contents of the Object Inspector by category or
alphabetically by name. You can do this by right-clicking anywhere in the Object Inspector and
selecting Arrange from the local menu. Figure 1.5 shows two Object Inspectors side by side.
The one on the left is arranged by category, and the one on the right is arranged by name. You
can also specify which categories you would like to view by selecting View from the local
menu.

One of the most useful tidbits of knowledge that you as a Delphi programmer should know is
that the help system is tightly integrated with the Object Inspector. If you ever get stuck on a
particular property or event, just press the F1 key, and WinHelp comes to the rescue.

The Code Editor
The Code Editor is where you type the code that dictates how your program behaves and
where Delphi inserts the code that it generates based on the components in your application.
The top of the Code Editor window contains notebook tabs, where each tab corresponds to a
different source code module or file. Each time you add a new form to your application, a new
unit is created and added to the set of tabs at the top of the Code Editor. The local menu in the
Code Editor gives you a wide range of options while you’re editing, such as closing files, set-
ting bookmarks, and navigating to symbols.

Development Essentials

PART I
22

FIGURE 1.5
Viewing the Object Inspector by category and by name.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

23

You can view multiple Code Editor windows simultaneous by selecting View, New Edit
Window from the main menu.

TIP

The Code Explorer
The Code Explorer provides a tree-style view of the unit shown in the Code Editor. The Code
Explorer allows easy navigation of units in addition to the ability to easily add new elements or
rename existing elements in a unit. It’s important to remember that there’s a one-to-one rela-
tionship between Code Explorer windows and Code Editor windows. Right-click a node in the
Code Explorer to view the options available for that node. You can also control behaviors such
as sorting and filtering in the Code Explorer by modifying the options found on the Explorer
tab of the Environment Options dialog box.

The Object TreeView
The Object TreeView provides a visual, hierarchical representation of the components placed
on a form, data module, or frame. The tree displays the relationship between individual compo-
nents, such as parent-child, property-to-component, or property-to-property relationships. In
addition to being a means to view relationships, the Object TreeView also serves as a conve-
nient means to establish relationships between components. This can be done most easily by

dropping one component from the palette or the tree on another in the tree. This will establish
the relationship between two components that have a possibility of forming a relationship.

A Tour of Your Project’s Source
The Delphi IDE generates Object Pascal source code for you as you work with the visual com-
ponents of the Form Designer. The simplest example of this capability is starting a new project.
Select File, New Application in the main window to see a new form in the Form Designer and
that form’s source code skeleton in the Code Editor. The source code for the new form’s unit is
shown in Listing 1.1.

LISTING 1.1 Source Code for an Empty Form

unit Unit1;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs;

type
TForm1 = class(TForm)
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation;

{$R *.dfm}

end.

It’s important to note that the source code module associated with any form is stored in a unit.
Although every form has a unit, not every unit has a form. If you’re not familiar with how the
Pascal language works and what exactly a unit is, see Chapter 2, “The Object Pascal
Language,” which discusses the Object Pascal language for those who are new to Pascal from
C++, Visual Basic, Java, or another language.

Development Essentials

PART I
24

Let’s take a unit skeleton one piece at a time. Here’s the top portion:

type
TForm1 = class(TForm) ;
private
{ Private declarations }

public
{ Public declarations }

end;

It indicates that the form object, itself, is an object derived from TForm, and the space in which
you can insert your own public and private variables is labeled clearly. Don’t worry about what
class, public, or private means right now. Chapter 2 discusses Object Pascal in more detail.

The following line is very important:

{$R *.dfm};

The $R directive in Pascal is used to load an external resource file. This line links the .DFM
(which stands for Delphi form) file into the executable. The .DFM file contains a binary repre-
sentation of the form you created in the Form Designer. The * symbol in this case isn’t
intended to represent a wildcard; it represents the file having the same name as the current
unit. So, for example, if the preceding line was in a file called Unit1.pas, the *.DFM would
represent a file by the name of Unit1.dfm.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

25

A nice feature of the IDE is the ability for you to save new DFM files as text rather
than as binary. This option in enabled by default, but you can modify it using the
New Forms As Text check box on the Preferences page of the Environment Options
dialog box. Although saving forms as text format is just slightly less efficient in terms
of size, it’s a good practice for a few of reasons: First, it is very easy to make minor
changes to text DFMs in any text editor. Second, if the file should become corrupted,
it is far easier to repair a corrupted text file than a corrupted binary file. Finally, it
becomes much easier for version control systems to manage the form files. Keep in
mind also that previous versions of Delphi expect binary DFM files, so you will need
to disable this option if you want to create projects that will be used by other ver-
sions of Delphi.

NOTE

The application’s project file; is worth a glance, too. A project filename ends in .DPR (which
stands for Delphi project) and is really nothing more than a Pascal source file with a different
file extension. The project file is where the main portion of your program (in the Pascal sense)
lives. Unlike other versions of Pascal with which you might be familiar, most of the “work” of

your program is done in units rather than in the main module. You can load your project’s
source file into the Code Editor by selecting Project, View Source from the main menu. Here’s
the project file from the sample application:

program Project1;

uses
Forms,
Unit1 in ‘Unit1.pas’ {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

As you add more forms and units to the application, they appear in the uses clause of the pro-
ject file. Notice, too, that after the name of a unit in the uses clause, the name of the related
form appears in comments. If you ever get confused about which units go with which forms,
you can regain your bearings by selecting View, Project Manager to bring up the Project
Manager window.

Development Essentials

PART I
26

Each form has exactly one unit associated with it, and you can also have other “code-
only” units that aren’t associated with any form. In Delphi, you work mostly within
your program’s; units, and you’ll rarely edit your project’s .DPR file.

NOTE

Tour of a Small Application
The simple act of plopping a component such as a button onto a form causes code for that ele-
ment to be generated and added to the form object:

type
TForm1 = class(TForm)
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

Now, as you can see, the button is an instance variable of the TForm1 class. When you refer to
the button in contexts outside TForm1 later in your source code, you must remember to address
it as part of the scope of TForm1 by saying Form1.Button1. Scoping is explained in more detail
in Chapter 2.

When this button is selected in the Form Designer, you can change its behavior through the
Object Inspector. Suppose that, at design time, you want to change the width of the button to
100 pixels, and at runtime, you want to make the button respond to a press by doubling its own
height. To change the button width, move over to the Object Browser window, find the Width
property, and change the value associated with Width to 100. Note that the change doesn’t take
effect in the Form Designer until you press Enter or move off the Width property. To make the
button respond to a mouse click, select the Events page on the Object Inspector window to
reveal the list of events to which the button can respond. Double-click in the column next to
the OnClick event, and Delphi generates a procedure skeleton for a mouse-click response and
whisks you away to that spot in the source code—in this case, a procedure called
TForm1.Button1Click(). All that’s left to do is to insert the code to double the button’s width
between the begin..end of the event’s response method:

Button1.Height := Button1.Height * 2;

To verify that the “application” compiles and runs, press the F9 key on your keyboard and
watch it go!

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

27

Delphi maintains a reference between generated procedures and the controls to
which they correspond. When you compile or save a source code module, Delphi
scans your source code and removes all procedure skeletons for which you haven’t
entered any code between the begin and end. This means that if you didn’t write any
code between the begin and end of the TForm1.Button1Click() procedure, for exam-
ple, Delphi would have removed the procedure from your source code. The bottom
line here is this: Don’t delete event handler procedures that Delphi has created; just
delete your code and let Delphi remove the procedures for you.

NOTE

After you have fun making the button really big on the form, terminate your program and go
back to the Delphi IDE. Now is a good time to mention that you could have generated a
response to a mouse click for your button just by double-clicking a control after dropping it
onto the form. Double-clicking a component automatically invokes its associated component
editor. For most components, this response generates a handler for the first of that component’s
events listed in the Object Inspector.

What’s So Great About Events, Anyway?
If you’ve ever developed Windows applications the traditional way, without a doubt you’ll find
the ease of use of Delphi events a welcome alternative to manually catching Windows messages,
cracking those messages, and testing for window handles, control IDs, WParam parameters,
LParam parameters, and so on. If you don’t know what all that means, that’s okay; Chapter 3,
“Adventures in Messaging,” covers messaging internals.

A Delphi event is often triggered by a Windows message. The OnMouseDown event of a
TButton, for example, is really just an encapsulation of the Windows WM_xBUTTONDOWN mes-
sages. Notice that the OnMouseDown event gives you information such as which button was
pressed and the location of the mouse when it happened. A form’s OnKeyDown event provides
similar useful information for key presses. For example, here’s the code that Delphi generates
for an OnKeyDown handler:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin
end;

All the information you need about the key is right at your fingertips. If you’re an experienced
Windows programmer, you’ll appreciate that there aren’t any LParam or WParam parameters,
inherited handlers, translates, or dispatches to worry about. This goes way beyond “message
cracking” as you might know it because one Delphi event can represent several different
Windows messages, as it does with OnMouseDown (which handles a variety of mouse messages).
What’s more, each of the message parameters is passed in as easy-to-understand parameters.
Chapter 3 gets into the gory details of how Delphi’s internal messaging system works.

Contract-Free Programming
Arguably the biggest benefit that Delphi’s event system has over the standard Windows mes-
saging system is that all events are contract free. What contract free means to the programmer
is that you never are required to do anything inside your event handlers. Unlike standard
Windows message handling, you don’t have to call an inherited handler or pass information
back to Windows after handling an event.

Of course, the downside to the contract-free programming model that Delphi’s event system
provides is that it doesn’t always give you the power or flexibility that directly handling
Windows messages gives you. You’re at the mercy of those who designed the event as far as
what level of control you’ll have over your application’s response to the event. For example,
you can modify and kill keystrokes in an OnKeyPress handler, but an OnResize handler pro-
vides you only with a notification that the event occurred—you have no power to prevent or
modify the resizing.

Development Essentials

PART I
28

Never fear, though. Delphi doesn’t prevent you from working directly with Windows mes-
sages. It’s not as straightforward as the event system because message handling assumes that
the programmer has a greater level of knowledge of what Windows expects of every handled
message. You have complete power to handle all Windows messages directly by using the mes-
sage keyword. You’ll find out much more about writing Windows message handlers in Chapter
3.

The great thing about developing applications with Delphi is that you can use the high-level
easy stuff (such as events) when it suits you and still have access to the low-level stuff when-
ever you need it.

Turbo Prototyping
After hacking Delphi for a little while, you’ll probably notice that the learning curve is espe-
cially mild. In fact, even if you’re new to Delphi, you’ll find that writing your first project in
Delphi pays immediate dividends in the form of a short development cycle and a robust appli-
cation. Delphi excels in the one facet of application development that has been the bane of
many a Windows programmer: user interface (UI) design.

Sometimes the design of the UI and the general layout of a program is referred to as prototyp-
ing. In a nonvisual environment, prototyping an application often takes longer than writing the
application’s implementation, or what is called the back end. Of course, the back end of an
application is the whole objective of the program in the first place, right? Sure, an intuitive and
visually pleasing UI is a big part of the application, but what good would it be, for example, to
have a communications program with pretty windows and dialog boxes but no capacity to send
data through a modem? As it is with people, so it is with applications; a pretty face is nice to
look at, but it has to have substance to be a regular part of our lives. Please, no comments
about back ends.

Delphi enables you to use its custom controls to whip out nice-looking UIs in no time flat. In
fact, you’ll find that after you become comfortable with Delphi’s forms, controls, and event-
response methods, you’ll cut huge chunks off the time you usually take to develop application
prototypes. You’ll also find that the UIs you develop in Delphi look just as nice as—if not bet-
ter than—those designed with traditional tools. Often, what you “mock up” in Delphi turns out
to be the final product.

Extensible Components and Environment
Because of the object-oriented nature of Delphi, in addition to creating your own components
from scratch, you can also create your own customized components based on stock Delphi
components. For more details on this and other types of components, you should take a look at
Part IV, “Component-Based Development.”

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

29

In addition to allowing you to integrate custom components into the IDE, Delphi provides the
capability to integrate entire subprograms, called experts, into the environment. Delphi’s
Expert Interface enables you to add special menu items and dialog boxes to the IDE to inte-
grate some feature that you feel is worthwhile. An example of an expert is the Database Form
Expert located on the Delphi Database menu. Chapter 17, “Using The Open Tools API,” out-
lines the process for creating experts and integrating them into the Delphi IDE.

The Top 10 IDE Features You Must Know and Love
Before we can let you any further into the book, we’ve got to make sure that you’re equipped
with the tools you need to survive and the knowledge to use them. In that spirit, what follows
is a list of what we feel are the top 10 IDE features you must learn to know and love.

1. Class Completion
Nothing wastes a developer’s time more than have to type in all that blasted code! How often is
it that you know exactly what you want to write but are limited by how fast your fingers can
fly over the keys? Until the spec for the PCI-to-medulla oblongata bus is completed to rid you
of all that typing, Delphi has a feature called class completion that goes a long way toward
alleviating the busy work.

Arguably, the most important feature of class completion is that it is designed to work without
being in your face. Simply type in part of a class declaration, press the magic Ctrl+Shift+C
keystroke combination, and class completion will attempt to figure our what you’re trying to
do and generate the right code. For example, if you put the declaration for a procedure called
Foo in your class and invoke class completion, it will automatically create the definition for
this method in the implementation part of the unit. Declare a new property that reads from a
field and writes to a method and invoke class completion, and it will automatically generate the
code for the field and declare and implement the method.

If you haven’t already gotten hooked on class completion, give it a whirl. Soon you’ll be lost
without it.

2. AppBrowser Navigation
Do you ever look at a line of code in your Code Editor and think, “Gee, I wish I knew where
that method is declared”? Well, finding out is as easy as holding down the Ctrl key and click-
ing the name of the token you want to find. The IDE will use debug information assembled in
the background by the compiler to jump to the declaration of the token. Very handy. And like a

Development Essentials

PART I
30

Web browser, there’s a history stack that you can navigate forward and back through using the
little arrows to the right of the tabs in the Code Editor.

3. Interface/Implementation Navigation
Want to navigate between the interface and implementation of a method? Just put the cursor on
the method and use Ctrl+Shift+up arrow or down arrow to toggle between the two positions.

4. Dock It!
The IDE allows you to organize the windows on your screen by docking together multiple
windows as panes in a single window. If you have full window drag set in your windows desk-
top, you can easily tell which windows are dockable because they draw a dithered box when
they’re dragged around the screen. The Code Editor offers three docking bays on its left, bot-
tom, and right sides to which you can affix windows. Windows can be docked side-by-side by
dragging one window to an edge of another or tab-docked by dragging one window to the mid-
dle of another. Once you come up with an arrangement you like, be sure to save it using the
Desktops toolbar. Want to prevent a window from docking? Hold down the Ctrl key while
dragging it or right-click in the window and uncheck Dockable in the local menu.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

31

Here’s a cute hidden feature: Right-click the tabs of tab-docked windows, and you’ll
be able to move the tabs to the top, bottom, left, or right of the window.

TIP

5. The Object Browser
Delphi 1 through 4 shipped with essentially the same icky object browser. If you didn’t know it
was there, don’t feel alone; many folks never used it because it didn’t have a lot to offer.
Delphi now comes equipped with an object browser that enables visual browsing of object
hierarchies. Shown in Figure 1.6, the browser is accessible by selecting View, Browser in the
main menu. This tool presents a tree view that lets you navigate globals, classes, and units and
drill down into scope, inheritance, and references of the symbols.

6. GUID, Anyone?
In the small-but-useful category, you’ll find the Ctrl+Shift+G keystroke combination. Pressing
this keystroke combination will place a fresh new GUID in the Code Editor, which is a real
timesaver when you’re declaring new interfaces.

FIGURE 1.6
The new browser.

7. C++ Syntax Highlighting
If you’re like us, you often like to view C++ files, such as SDK headers, while you work in
Delphi. Because Delphi and C++Builder share the same editor source code, one of the advan-
tages to users is syntax highlighting of C++ files. Just load up a C++ file such as a .CPP or .H
module in the Code Editor, and it handles the rest automatically.

8. To Do. . .
Use the To Do List to manage work in progress in your source files. You can view the To Do
List by selecting View, To Do List from the main menu. This list is automatically populated
from any comments in your source code that begin with the token TODO. You can use the To Do
Items window to set the owner, priority, and category for any To Do item. This window is
shown in Figure 1.7, docked to the bottom of the Code Editor.

9. Use the Project Manager
The Project Manager can be a big timesaver when navigating around large projects—especially
those projects that are composed of multiple EXE or DLL modules, but it’s amazing how many
people forget that it’s there. You can access the Project Manager by selecting View, Project
Manager from the main menu. There are a number of time saving features in the Project
Manager, such as drag-and-drop copying and copy and paste between projects.

Development Essentials

PART I
32

FIGURE 1.7
To Do Items window.

10. Use Code Insight to Complete Declarations
and Parameters
When you type Identifier., a window will automatically pop up after the dot to provide you
with a list of properties, methods, events, and fields available for that identifier. You can right-
click this window to sort the list by name or by scope. If the window goes away before you’re
ready, just press Ctrl+space to bring it back up.

Remembering all the parameters to a function can be a pain, so it’s nice that Code Insight
automatically helps by providing a tooltip with the parameter list when you type
FunctionName(in the Code Editor. Remember to press Ctrl+Shift+space to bring the
tooltip back up if it goes away before you’re ready.

Summary
By now you should have an understanding of the Delphi 6 product line and the Delphi IDE as
well as how Delphi fits into the Windows development picture in general. This chapter was
intended to acclimate you to Delphi and to the concepts used throughout the book. Now the
stage has been set for the really technical stuff to come. Before you move much deeper into the
book, make sure that you’re comfortable using and navigating around the IDE and know how
to work with small projects.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

33

This page intentionally left blank

CHAPTER

2
The Object Pascal Language

IN THIS CHAPTER
• Comments 36

• Extended Procedure and
Function Features 37

• Variables 39

• Constants 41

• Operators 43

• Object Pascal Types 47

• User-Defined Types 75

• Typecasting and Type
Conversion 87

• String Resources 88

• Testing Conditions 88

• Loops 90

• Procedures and
Functions 93

• Scope 97

• Units 99

• Packages 101

• Object-Oriented
Programming 103

• Using Delphi Objects 105

• Structured Exception
Handling 119

• Runtime Type
Information 126

This chapter sets aside the visual elements of Delphi in order to provide you with an overview
of Delphi’s underlying language—Object Pascal. To begin with, you’ll receive an introduction
to the basics of the Object Pascal language, such as language rules and constructs. Later on,
you’ll learn about some of the more advanced aspects of Object Pascal, such as classes and
exception handling. Because this isn’t a beginner’s book, it assumes that you have some expe-
rience with other high-level computer languages such as Java, C/C++, or Visual Basic, and it
compares Object Pascal language structure to that of those other languages. By the time you’re
finished with this chapter, you’ll understand how programming concepts such as variables,
types, operators, loops, cases, exceptions, and objects work in Pascal as compared to Java,
C/C++, and Visual Basic.

Development Essentials

PART I
36

When we mention the C language in this chapter, we are generally referring to a lan-
guage element that exists in both C and C++. Features specific to the C++ language
are referred to as C++.

NOTE

Even if you have some recent experience with Pascal, you’ll find this chapter useful because
this is really the only point in the book where you learn the nitty-gritty of Pascal syntax and
semantics.

Comments
As a starting point, you should know how to make comments in your Pascal code. Object
Pascal supports three types of comments: curly brace comments, parenthesis/asterisk com-
ments, and double backslash comments. Examples of each type of comment follow:

{ Comment using curly braces }
(* Comment using paren and asterisk *)
// double backslash comment

The first two types of comments are virtually identical in behavior. The compiler considers the
comment to be everything between the open-comment and close-comment delimiters. For dou-
ble backslash comments, everything following the double backslash until the end of the line is
considered a comment.

You cannot nest comments of the same type. Although it is legal syntax to nest Pascal
comments of different types inside one another, we don’t recommend the practice.
Here are some examples:

NOTE

continues

Extended Procedure and Function Features
Because procedures and functions are fairly universal topics as far as programming languages
are concerned, we won’t go into too much detail here. We just want to fill you in on a few
unique or little-known features in this area. Where appropriate, we’ll also point out the Delphi
version in which various language features appeared to aid in porting or maintaining code
compatible between various compiler versions.

Parentheses in Calls
Although it has been in the language since Delphi 2, one of the lesser-known features of
Object Pascal is that parentheses are optional when calling a procedure or function that takes
no parameters. Therefore, the following syntax examples are both valid:

Form1.Show;
Form1.Show();

Granted, this feature isn’t one of those things that sends chills up and down your spine, but it’s
particularly nice for those who split their time between Delphi and languages such as C or
Java, where parentheses are required. If you’re not able to spend 100% of your time in Delphi,
this feature means that you don’t have to remember to use different function-calling syntax for
different languages.

Overloading
Delphi 4 introduced the concept of function overloading (that is, the ability to have multiple
procedures or functions of the same name with different parameter lists). All overloaded meth-
ods are required to be declared with the overload directive, as shown here:

procedure Hello(I: Integer); overload;
procedure Hello(S: string); overload;
procedure Hello(D: Double); overload;

Note that the rules for overloading methods of a class are slightly different and are explained
in the section “Method Overloading.” Although this is one of the features most requested by
developers since Delphi 1, the phrase that comes to mind is “Be careful what you wish for.”
Having multiple functions and procedures with the same name (on top of the traditional ability

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

37

{ (* This is legal *) }
(* { This is legal } *)
(* (* This is illegal *) *)
{ { This is illegal }: }

to have functions and procedures of the same name in different units) can make it more difficult
to predict the flow of control and debug your application. Because of this, overloading is a fea-
ture you should employ judiciously. Not to say that you should avoid it; just don’t overuse it.

Default Value Parameters
Also introduced in Delphi 4 were default value parameters (that is, the ability to provide a
default value for a function or procedure parameter and not have to pass that parameter when
calling the routine). In order to declare a procedure or function that contains default value para-
meters, follow the parameter type with an equal sign and the default value, as shown in the fol-
lowing example:

procedure HasDefVal(S: string; I: Integer = 0);

The HasDefVal() procedure can be called in one of two ways. First, you can specify both para-
meters:

HasDefVal(‘hello’, 26);

Second, you can specify only parameter S and use the default value for I:

HasDefVal(‘hello’); // default value used for I

You must follow several rules when using default value parameters:

• Parameters having default values must appear at the end of the parameter list. Parameters
without default values cannot follow parameters with default values in a procedure or
function’s parameter list.

• Default value parameters must be of an ordinal, pointer, or set type.

• Default value parameters must be passed by value or as const. They cannot be reference
(out) or untyped parameters.

One of the biggest benefits of default value parameters is in adding functionality to existing
functions and procedures without sacrificing backward compatibility. For example, suppose that
you sell a unit containing a revolutionary function called AddInts()that adds two numbers:

function AddInts(I1, I2: Integer): Integer;
begin
Result := I1 + I2;

end;

In order to keep up with the competition, you feel you must update this function so that it has
the capability for adding three numbers. However, you’re loathe to do so because adding a
parameter will cause existing code that calls this function to not compile. Thanks to default
parameters, you can enhance the functionality of AddInts() without compromising compatibil-
ity. Here’s an example:

Development Essentials

PART I
38

function AddInts(I1, I2: Integer; I3: Integer = 0);
begin
Result := I1 + I2 + I3;

end;

Variables
You might be used to declaring variables off the cuff: “I need another integer, so I’ll just
declare one right here in the middle of this block of code.” This is a perfectly reasonable
notion if you’re coming from another language such as Java, C, or Visual Basic. If that has
been your practice, you’re going to have to retrain yourself a little in order to use variables in
Object Pascal. Object Pascal requires you to declare all variables up front in their own section
before you begin a procedure, function, or program. Perhaps you used to write free-wheeling
code like this:

void foo(void)
{
int x = 1;
x++;
int y = 2;
float f;
//... etc ...

}

In Object Pascal, any such code must be tidied up and structured a bit more to look like this:

Procedure Foo;
var
x, y: Integer;
f: Double;

begin
x := 1;
inc(x);
y := 2;
//... etc ...

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

39

Object Pascal—like Visual Basic, but unlike Java and C—is not a case-sensitive lan-
guage. Upper- and lowercase is used for clarity’s sake, so use your best judgment, as
the style used in this book indicates. If the identifier name is several words mashed

NOTE

continues

You might be wondering what all this structure business is and why it’s beneficial. You’ll find,
however, that Object Pascal’s structured style of variable declaration lends itself to code that’s
more readable, maintainable, and less buggy than other languages that rely on convention
rather than rule to enforce sanity.

Notice how Object Pascal enables you to group more than one variable of the same type
together on the same line with the following syntax:

VarName1, VarName2: SomeType;

Remember that when you’re declaring a variable in Object Pascal, the variable name precedes
the type, and there’s a colon between the variables and types. Note that the variable initializa-
tion is always separate from the variable declaration.

A language feature introduced in Delphi 2 enables you to initialize global variables inside a
var block. Here are some examples demonstrating the syntax for doing so:

var
i: Integer = 10;
S: string = ‘Hello world’;
D: Double = 3.141579;

Development Essentials

PART I
40

together, remember to capitalize for clarity. For example, the following name is
unclear and difficult to read:

procedure thisprocedurenamemakesnosense;

This code is quite readable, however:

procedure ThisProcedureNameIsMoreClear;

For a complete reference on the coding style guidelines used for this book, see the
electronic version of Delphi 5 Developer’s Guide on the CD accompanying this book.

Preinitialization of variables is only allowed for global variables, not variables that
are local to a procedure or function.

NOTE

Constants
Constants in Pascal are defined in a const clause, which behaves similarly to the C/C++’s
const keyword. Here’s an example of three constant declarations in C:

const float ADecimalNumber = 3.14;
const int i = 10;
const char * ErrorString = “Danger, Danger, Danger!”;

The major difference between C constants and Object Pascal constants is that Object Pascal,
like Visual Basic, doesn’t require you to declare the constant’s type along with the value in the
declaration. The Delphi compiler automatically allocates proper space for the constant based
on its value, or, in the case of scalar constants such as Integer, the compiler keeps track of the
values as it works, and space never is allocated. Here’s an example:

const
ADecimalNumber = 3.14;
i = 10;
ErrorString = ‘Danger, Danger, Danger!’;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

41

The Delphi compiler sees to it that all global data is automatically zero-initialized.
When your application starts, all integer types will hold 0, floating-point types will
hold 0.0, pointers will be nil, strings will be empty, and so forth. Therefore, it isn’t
necessary to zero-initialize global data in your source code.

TIP

Space is allocated for constants as follows: Integer values are “fit” into the smallest
type allowable (10 into a ShortInt, 32,000 into a SmallInt, and so on). Alphanumeric
values fit into Char or the currently defined (by $H) string type. Floating-point values
are mapped to the extended data type, unless the value contains four or fewer deci-
mal places explicitly, in which case it’s mapped to a Comp type. Sets of Integer and
Char are of course stored as themselves.

NOTE

Optionally, you can also specify a constant’s type in the declaration. This provides you with
full control over how the compiler treats your constants:

const
ADecimalNumber: Double = 3.14;
I: Integer = 10;
ErrorString: string = ‘Danger, Danger, Danger!’;

Object Pascal permits the usage of compile-time functions in const and var declarations.
These routines include Ord(), Chr(), Trunc(), Round(), High(), Low(), and SizeOf(). For
example, all of the following code is, valid:

type
A = array[1..2] of Integer;

const
w: Word = SizeOf(Byte);

var
i: Integer = 8;
j: SmallInt = Ord(‘a’);
L: Longint = Trunc(3.14159);
x: ShortInt = Round(2.71828);
B1: Byte = High(A);
B2: Byte = Low(A);
C: char = Chr(46);

Development Essentials

PART I
42

The behavior of 32-bit Delphi type-specified constants is different from that in 16-bit
Delphi 1. In Delphi 1, the identifier declared wasn’t treated as a constant but as a
preinitialized variable called a typed constant. However, in Delphi 2 and later, type-
specified constants have the capability of being truly constant. Delphi provides a
backward-compatibility switch on the Compiler page of the Project, Options dialog
box, or you can use the $J compiler directive. By default, this switch is enabled for
compatibility with Delphi 1 code, but you’re best served not to rely on this capability
because the implementers of the Object Pascal language are trying to move away
from the notion of assignable constants.

CAUTION

If you try to change the value of any of these constants, the Delphi compiler emits an error
explaining that it’s against the rules to change the value of a constant. Because constants are
read-only, Object Pascal optimizes your data space by storing those constants that merit stor-
age in the application’s code pages. If you’re unclear about the notions of code and data pages,

see Chapter 3, “The Win32 API,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this, book.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

43

Object Pascal doesn’t have a preprocessor as does C. There’s no concept of a macro
in Object Pascal and, therefore, no Object Pascal equivalent for C’s #define for con-
stant declaration. Although you can use Object Pascal’s $define compiler directive for
conditional compiles similar to C’s #define, you cannot use it to define constants. Use
const in Object Pascal where you would use #define to declare a constant in C.

NOTE

Operators
Operators are the symbols in your code that enable you to manipulate all types of data. For
example, there are operators for adding, subtracting, multiplying, and dividing numeric data.
There are also operators for addressing a particular element of an array. This section explains
some of the Pascal operators and describes some of the differences between their Java, C, and
Visual Basic counterparts.

Assignment Operators
If you’re new to Pascal, Delphi’s assignment operator is going to be one of the toughest things
to get used to. To assign a value to a variable, use the := operator as you would use the = oper-
ator in Java, C, or Visual Basic. Pascal programmers often call this the gets or assignment
operator, and, the expression

Number1 := 5;

is read either “Number1 gets the value 5” or “Number1 is assigned the value 5.”

Comparison Operators
If you’ve already programmed in Visual Basic, you should be very comfortable with Delphi’s
comparison operators, because they’re virtually identical. These operators are fairly standard
throughout programming languages, so they’re covered only briefly in this section.

Object Pascal uses the = operator to perform logical comparisons between two expressions or
values. Object Pascal’s = operator is analogous to the Java/C == operator, so a Java/C expres-
sion that would be written as

if (x == y)

would be written as this in Object Pascal:

if x = y

Development Essentials

PART I
44

Remember that in Object Pascal, the := operator is used to assign a value to a vari-
able, and the = operator compares the values of two, operands.

NOTE

Object Pascal’s “not equal to” operator is <>, and its purpose is identical to C’s != operator. To
determine whether two expressions are not equal, use this code:

if x <> y then DoSomething

Logical Operators
Pascal uses the words and and or as logical “and” and “or” operators, whereas Java and C use
the && and || symbols, respectively, for these operators. The most common use of the and
and or operators is as part of an if statement or loop, as demonstrated in the following two
examples:

if (Condition 1) and (Condition 2) then
DoSomething;

while (Condition 1) or (Condition 2) do
DoSomething;

Pascal’s logical “not” operator is not, which is used to invert a Boolean expression. It’s analo-
gous to the Java/C’s ! operator. It’s also often used as a part of if statements, as shown here:

if not (condition) then (do something); // if condition is false then...

Table 2.1 provides an easy reference of how Pascal operators map to corresponding Java, C,
and Visual Basic operators.

TABLE 2.1 Assignment, Comparison, and Logical Operators

Operator Pascal Java/C Visual Basic

Assignment := = =

Comparison = == = or Is*

Not equal to <> != <>

Less than < < <

Greater than > > >

TABLE 2.1 Continued

Operator Pascal Java/C Visual Basic

Less than or equal to <= <= <=

Greater than or equal to >= >= >=

Logical and and && And

Logical or or || Or

Logical not not ! Not

*The Is comparison operator is used for objects, whereas the = comparison operator is used for other
types.

Arithmetic Operators
You should already be familiar with most Object Pascal arithmetic operators because they’re
generally similar to those used in Java, C, and Visual Basic. Table 2.2 illustrates all the Pascal
arithmetic operators and their Java, C, and Visual Basic counterparts.

TABLE 2.2 Arithmetic Operators

Operator Pascal Java/C Visual Basic

Addition + + +

Subtraction - - -

Multiplication * * *

Floating-point division / / /

Integer division div / \

Modulus mod % Mod

Exponent None None ^

You might notice that Pascal and Visual Basic provide different division operators for floating-
point and integer math, although this isn’t the case for Java and C. The div operator automati-
cally truncates any remainder when you’re dividing two integer expressions.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

45

Remember to use the correct division operator for the types of expressions with
which you’re working. The Object Pascal compiler gives you an error if you try to
divide two floating-point numbers with the integer div operator or two integers with
the floating-point / operator, as the following code illustrates:

NOTE

continues

Bitwise Operators
Bitwise operators enable you to modify individual bits of a given variable. Common bitwise
operators enable you to shift the bits to the left or right or to perform bitwise “and,” “not,” “or,”
and “exclusive or” (xor) operations with two numbers. The Shift+left and Shift+right operators
are shl and shr, respectively, and they’re much like the Java/C << and >> operators. The
remainder of Pascal’s bitwise operators is easy enough to remember: and, not, or, and xor.
Table 2.3 lists the bitwise operators.

TABLE 2.3 Bitwise Operators

Operator Pascal Java/C Visual Basic

And and & And

Not not ~ Not

Or or | Or

Xor xor ^ Xor

Shift+left shl << None

Shift+right shr >> None

Increment and Decrement Procedures
Increment and decrement procedures generate optimized code for adding or subtracting 1 from
a given integral variable. Pascal doesn’t really provide honest-to-gosh increment and decrement
operators similar to the Java/C ++ and -- operators, but Pascal’s Inc() and Dec() procedures
compile optimally to one machine instruction.

Development Essentials

PART I
46

var
i: Integer;
r: Real;

begin
i := 4 / 3; // This line will cause a compiler error
f := 3.4 div 2.3; // This line also will cause an error

end;

Many other programming languages do not distinguish between integer and float-
ing-point division. Instead, they always perform floating-point division and then con-
vert the result back to an integer when necessary. This can be rather expensive in
terms of performance. The Pascal div operator is faster and more specific.

You can call Inc() or Dec() with one or two parameters. For example, the following two lines
of code increment and decrement variable, respectively, by 1, using the inc and dec assembly
instructions:

Inc(variable);

Dec(variable);

Compare the following two lines, which increment or decrement variable by 3 using the add
and sub assembly instructions:

Inc(variable, 3);

Dec(variable, 3);

Table 2.4 compares the increment and decrement operators of different languages.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

47

With compiler optimization enabled, the Inc() and Dec() procedures often produce
the same machine code as variable := variable + 1 syntax, so use whichever you
feel more comfortable with for incrementing and decrementing variables.

NOTE

TABLE 2.4 Increment and Decrement Operators

Operator Pascal Java/C Visual Basic

Increment Inc() ++ None

Decrement Dec() -- None

Do-and-Assign Operators
Not present in Object Pascal are handy do-and-assign operators like those found in Java and C.
These operators, such as += and *=, perform an arithmetic operation (in this case, an add and
an multiply) before making the assignment. In Object Pascal, this type of operation must be
performed using two separate operators. Therefore, this code in Java or C

x += 5;

becomes this in Object Pascal:

x := x + 5;

Object Pascal Types
One of Object Pascal’s greatest features is that it’s strongly typed, or typesafe. This means that
actual variables passed to procedures and functions must be of the same type as the formal
parameters identified in the procedure or function definition. You won’t see any of the famous
compiler warnings about suspicious pointer conversions that C programmers have grown to
know and love. This is because the Object Pascal compiler won’t permit you to call a function
with one type of pointer when another type is specified in the function’s formal parameters
(although functions that take untyped Pointer types accept any type of pointer). Basically,
Pascal’s strongly typed nature enables it to perform a sanity check of your code—to ensure that
you’ aren’t trying to put a square peg in a round hole.

A Comparison of Types
Delphi’s base types are similar to those of Java, C, and Visual Basic. Table 2.5 compares and
contrasts the base types of Object Pascal with those of these other languages. You might want
to earmark this page because this table provides an excellent reference for matching types
when calling functions in non-Delphi dynamic link libraries (DLLs) or object files (OBJs)
from Delphi (and vice versa).

TABLE 2.5 A Pascal-to-Java-to-C-to-Visual Basic 32-bit Type Comparison

Type of Visual
Variable Pascal Java C/C++ Basic

8-bit signed ShortInt byte char None
integer
8-bit unsigned Byte None BYTE, Byte

integer unsigned short

16-bit signed SmallInt short short Short

integer

16-bit unsigned Word None unsigned short None
integer

32-bit signed Integer, int int, long Integer, Long

integer Longint

32-bit unsigned Cardinal, None unsigned long None
integer LongWord

64-bit signed Int64 long __int64 None
integer

Development Essentials

PART I
48

TABLE 2.5 Continued

Type of Visual
Variable Pascal Java C/C++ Basic

4-byte floating Single float float Single

point

6-byte floating Real48 None None None
point

8-byte floating Double double double Double

point

10-byte floating Extended None long. double None
point

64-bit currency currency None None Currency

8-byte date/time TDateTime None None Date

16-byte variant Variant, None VARIANT** Variant(Default)
OleVariant, Variant†,
TVarData OleVariant†

1-byte character Char None char None

2-byte character WideChar char WCHAR

Fixed-length ShortString None None None
byte string

Dynamic string AnsiString AnsiString† String

Null-terminated PChar None char * None
string

Null-terminated PWideChar None LPCWSTR None
wide string

Dynamic 2-byte WideString String** WideString† None
string

1-byte Boolean Boolean, boolean (Any 1-byte) None
ByteBool

2-byte Boolean WordBool None (Any 2-byte) Boolean

4-byte Boolean BOOL, None BOOL None
LongBool

†A proprietary Borland C++Builder class that emulates the corresponding Object Pascal type
**Not a language element proper, but a commonly used structure or class

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

49

Characters
Delphi provides three character types:

• AnsiChar—This is the standard one-byte ANSI character that programmers have grown
to know and love.

• WideChar—This character is two bytes in size and represents a Unicode character.

• Char—This is currently identical to AnsiChar, but Borland warns that the definition
might change to WideChar in a later version of Delphi.

Keep in mind that because a character is no longer guaranteed to be one byte in size, you
shouldn’t hard-code the size into your applications. Instead, you should use the SizeOf() func-
tion where appropriate.

Development Essentials

PART I
50

If you’re porting 16-bit code from Delphi 1, be sure to bear in mind that the size of
both the Integer and Cardinal types has increased from 16 to 32 bits. Actually, that’s
not quite accurate: Under Delphi 2 and 3, the Cardinal type was treated as an
unsigned 31-bit integer in order to preserve arithmetic precision (because Delphi 2
and 3 lacked a true unsigned 32-bit integer to which results of integer operations
could be promoted). Under Delphi 4 and higher, Cardinal is a true unsigned 32-bit
integer.

NOTE

In Delphi 1, 2, and 3, the Real type identifier specified a 6-byte floating-point num-
ber, which is a type unique to Pascal and generally incompatible with other lan-
guages. In Delphi 4, Real is an alias for the Double type. The old 6-byte floating-
point number is still there, but it’s now identified by Real48. You can also
force the Real identifier to refer to the 6-byte floating-point number using the
{$REALCOMPATIBILITY ON} directive.

CAUTION

The SizeOf() standard procedure returns the size, in bytes, of a type or instance.

NOTE

A Multitude of Strings
Strings are variable types used to represent groups of characters. Every language has its own
spin on how string types are stored and used. Pascal has several different string types to suit
your programming needs:

• AnsiString, the default string type for Object Pascal, is comprised of AnsiChar charac-
ters and allows for virtually unlimited lengths. It’s also compatible with null-terminated
strings.

• ShortString remains in the language primarily for backward compatibility with Delphi 1.
Its capacity is limited to 255 characters.

• WideString is similar in functionality to AnsiString except that it’s comprised of
WideChar characters.

• PChar is a pointer to a null-terminated Char string—like C’s char * and lpstr types.

• PAnsiChar is a pointer to a null-terminated AnsiChar string.

• PWideChar is a pointer to a null-terminated WideChar string.

By default, when you declare a string variable in your code, as shown in the following exam-
ple, the compiler assumes that you’re creating an AnsiString:

var
S: string; // S is an AnsiString

Alternatively, you can cause variables declared as string types to be of type ShortString
instead using the $H compiler directive. When the value of the $H compiler directive is nega-
tive, string variables are ShortString types; and when the value of the directive is positive
(the default), string variables are AnsiString types. The following code demonstrates this
behavior:

var
{$H-}
S1: string; // S1 is a ShortString
{$H+}
S2: string; // S2 is an AnsiString

The exception to the $H rule is that a string declared with an explicit size (limited to a maxi-
mum of 255 characters) is always a ShortString:

var
S: string[63]; // A ShortString of up to 63 characters

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

51

The AnsiString Type
The AnsiString (or long string) type was introduced to the language in Delphi 2. It exists pri-
marily as a result of widespread Delphi 1 customer demand for an easy-to-use string type with-
out the intrusive 255-character limitation. AnsiString is that and more.

Although AnsiString types maintain an almost identical interface as their predecessors, they’re
dynamically allocated and garbage-collected. Because of this, AnsiString is sometimes referred
to as a lifetime-managed type. Object Pascal also automatically manages allocation of string
temporaries as needed, so you needn’t worry about allocating buffers for intermediate results
as you would in C/C++. Additionally, AnsiString types are always guaranteed to be null ter-
minated, which makes them compatible with the null-terminated strings used by the Win32
API. The AnsiString type is actually implemented as a pointer to a string structure in heap
memory. Figure 2.1 shows how an AnsiString is laid out in memory.

Development Essentials

PART I
52

D D G #0Allocation size Ref count Length

AnsiString

FIGURE 2.1
An AnsiString in memory.

The complete internal format of the long string type is left undocumented by Borland,
and Borland reserves the right to change the internal format of long strings with
future releases of Delphi. The information here is intended mainly to help you under-
stand how AnsiString types work, and you should avoid being dependent on the
structure of an AnsiString in your code.

Developers who avoided the implementation of details of string moving from Delphi
1 to Delphi 2 were able to migrate their code with no problems. Those who wrote
code that depended on the internal format (such as the 0th element in the string
being the length) had to modify their code for Delphi 2.

CAUTION

As Figure 2.1 illustrates, AnsiString types are reference counted, which means that several
strings might point to the same physical memory. String copies, therefore, are very fast because
it’s merely a matter of copying a pointer rather than copying the actual string contents. When
two or more AnsiString types share a reference to the same physical string, the Delphi mem-
ory manager uses a copy-on-write technique, which enables it to wait until a string is modified
to release a reference and allocate a new physical string. The following example illustrates
these concepts:

var
S1, S2: string;

begin
// store string in S1, ref count of S1 is 1
S1 := ‘And now for something... ‘;
S2 := S1; // S2 now references S1. Ref count of S1 is 2.
// S2 is changed, so it is copied to its own
// memory space, and ref count of S1 is decremented

S2 := S2 + ‘completely different!’;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

53

Lifetime-Managed Types
In addition to AnsiString, Delphi provides several other types that are lifetime-
managed. These types include WideString, Variant, OleVariant, interface,
dispinterface, and dynamic arrays. You’ll learn more about each of these
types later in this chapter. For now, we’ll focus on what exactly lifetime-managed
types are and how they work.

Lifetime-managed types, sometimes called garbage-collected types, are types that
potentially consume some particular resource while in use and release the resource
automatically when they fall out of scope. Of course, the variety of resources used
depends on the type involved. For example, an AnsiString consumes memory for the
character string while in use, and the memory occupied by the character string is
released when it leaves scope.

For global variables, this process is fairly straightforward: As a part of the finalization
code generated for your application, the compiler inserts code to ensure that each
lifetime-managed global variable is cleaned up. Because all global data is zero-initial-
ized when your application loads, each lifetime-managed global variable will always
initially contain a zero, empty, or some other value indicating the variable is “unused.”
This way, the finalization code won’t attempt to free resources unless they’re actually
used in your application.

Whenever you declare a local lifetime-managed variable, the process is slightly more
complex: First, the compiler inserts code to ensure that the variable is initialized to
zero when the function or procedure is entered. Next, the compiler generates a
try..finally exception-handling block, which it wraps around the entire function
body. Finally, the compiler inserts code in the finally block to clean up the lifetime-
managed variable (exception handling is explained in more detail in the section
“Structured Exception Handling”). With this in mind, consider the following-
procedure:

String Operations
You can concatenate two strings by using the + operator or the Concat() function. The pre-
ferred method of string concatenation is the + operator because the Concat() function exists
primarily for backward compatibility. The following example demonstrates the use of + and
Concat():

{ using + }
var
S, S2: string

begin
S:= ‘Cookie ‘:
S2 := ‘Monster’;
S := S + S2; { Cookie Monster }

end.

{ using Concat() }
var
S, S2: string;

begin
S:= ‘Cookie ‘;
S2 := ‘Monster’;
S := Concat(S, S2); { Cookie Monster }

end.

Development Essentials

PART I
54

procedure Foo;
var
S: string;

begin
// procedure body
// use S here

end;

Although this procedure looks simple, if you take into account the code generation
by the compiler behind the scenes, it would actually look like this:

procedure Foo;
var
S: string;

begin
S := ‘’;
try
// procedure body
// use S here

finally
// clean up S here
end;

end;

Length and Allocation
When first declared, an AnsiString has no length and therefore no space allocated for the
characters in the string. To cause space to be allocated for the string, you can assign the string
to a literal or another string, or you can use the SetLength() procedure, as shown here:

var
S: string; // string initially has no length

begin
S := ‘Doh!’; // allocates at least enough space for string literal
{ or }
S := OtherString // increases ref count of OtherString

// (assume OtherString already points to a valid string)
{ or }
SetLength(S, 4); // allocates enough space for at least 4 chars

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

55

Always use single quotation marks (‘A String’) when working with string literals in
Object Pascal.

NOTE

Concat()is one of many “compiler magic” functions and procedures (like ReadLn()
and WriteLn(), for example) that don’t have an Object Pascal definition. Such func-
tions and procedures are intended to accept an indeterminate number of parameters
or optional parameters, so they cannot be defined in terms of the Object Pascal lan-
guage. Because of this, the compiler provides a special case for each of these func-
tions and generates a call to one of the “compiler magic” helper functions defined in
the System unit. These helper functions are generally implemented in assembly lan-
guage in order to circumvent Pascal language rules.

In addition to the “compiler magic” string support functions and procedures, there
are a variety of functions and procedures in the SysUtils unit designed to make
working with strings easier. Search for “String-handling routines (Pascal-style)” in the
Delphi online help system.

Furthermore, you’ll find some very useful homebrewed string utility functions and
procedures in the StrUtils unit in the \Source\Utils directory on the CD-ROM
accompanying this book.

TIP

You can index the characters of an AnsiString like an array, but be careful not to index
beyond the length of the string. For example, the following code snippet will cause an error:

var
S: string;

begin
S[1] := ‘a’; // Won’t work because S hasn’t been allocated!

end;

This code, however, works properly:

var
S: string;

begin
SetLength(S, 1);
S[1] := ‘a’; // Now S has enough space to hold the character

end;

Win32 Compatibility
As mentioned earlier, AnsiString types are always null-terminated, so they’re compatible with
null-terminated strings. This makes it easy to call Win32 API functions or other functions
requiring PChar-type strings. All that’s required is that you typecast the string as a PChar.
(Typecasting is explained in more detail in the section “Typecasting and Type Conversion.”)
The following code demonstrates how to call the Win32 GetWindowsDirectory() function,
which accepts a PChar and buffer length as parameters:

var
S: string;

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);

end;

After using an AnsiString in which a function or procedure expects a PChar, you must manu-
ally set the length of the string variable to its null-terminated length. The RealizeLength()
function, which also comes from the StrUtils unit, accomplishes that task:

procedure RealizeLength(var S: string);
begin
SetLength(S, StrLen(PChar(S)));

end;

Calling RealizeLength() completes the substitution of a long string for a PChar:

var
S: string;

Development Essentials

PART I
56

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);
RealizeLength(S); // set S length to null length

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

57

Exercise care when typecasting a string to a PChar variable. Because strings are
garbage-collected when they go out of scope, you must pay attention when making
assignments such as P := PChar(Str), where the scope (or lifetime) of P is greater
than Str.

CAUTION

Porting Issues
When you’re porting 16-bit Delphi 1 applications, you need to keep in mind a number of
issues when migrating to AnsiString types:

• In places where you used the PString (pointer to a ShortString) type, you should
instead use the string type. Remember, an AnsiString is already a pointer to a string.

• You can no longer access the 0th element of a string to get or set the length. Instead, use
the Length() function to get the string length and the SetLength() procedure to set the
length.

• There’s no longer any need to use StrPas() and StrPCopy() to convert back and forth
between strings and PChar types. As shown earlier, you can typecast an AnsiString to a
PChar. When you want to copy the contents of a PChar to an AnsiString, you can use a
direct assignment:

StringVar := PCharVar;

Remember that you must use the SetLength() procedure to set the length of a long
string, whereas the past practice was to directly access the 0th element of a short
string to set the length. This issue will arise when you attempt to port 16-bit
Delphi 1.0 code to 32, bits.

CAUTION

The ShortString Type
If you’re a Delphi veteran, you’ll recognize the ShortString type as the Delphi 1.0 string
type. ShortString types are sometimes referred to as Pascal strings or length-byte strings. To
reiterate, remember that the value of the $H directive determines whether variables declared as
string are treated by the compiler as AnsiString or ShortString.

In memory, the string resembles an array of characters in which the 0th character in the string
contains the length of the string, and the string itself is contained in the following characters.
The storage size of a ShortString defaults to the maximum of 256 bytes. This means that you
can never have more than 255 characters in a ShortString (255 characters + 1 length byte =
256). As with AnsiString, working with ShortString is fairly painless because the compiler
allocates string temporaries as needed, so you don’t have to worry about allocating buffers for
intermediate results or disposing of them as you do with C.

Figure 2.2 illustrates how a Pascal string is laid out in memory.

Development Essentials

PART I
58

#3 D D G

FIGURE 2.2
A ShortString in memory.

A ShortString variable is declared and initialized with the following syntax:

var
S: ShortString;

begin
S := ‘Bob the cat.’;

end.

Optionally, you can allocate fewer than 256 bytes for a ShortString using just the string
type identifier and a length specifier, as in the following example:

var
S: string[45]; { a 45-character ShortString }

begin
S := ‘This string must be 45 or fewer characters.’;

end.

The preceding code causes a ShortString to be created regardless of the current setting of the
$H directive. The maximum length you can specify is 255 characters.

Never store more characters to a ShortString than you have allocated memory for. If you
declare a variable as a string[8], for example, and try to assign ‘a_pretty_darn_
long_string’ to that variable, the string would be truncated to only eight characters, and
you would lose data.

When using an array subscript to address a particular character in a ShortString, you could
get bogus results or corrupt memory if you attempt to use a subscript index that’s greater than
the declared size of the ShortString. For example, suppose that you declare a variable as
follows:

var
Str: string[8];

If you then attempt to write to the 10th element of the string as follows, you’re likely to cor-
rupt memory used by other variables:

var
Str: string[8];
i: Integer;

begin
i := 10;

Str[i] := ‘s’; // will corrupt memory

You can have the compiler link in special logic to catch these types of errors at runtime by
selecting Range Checking in the Options, Project dialog box.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

59

Although including range-checking logic in your program helps you find string errors,
range checking slightly hampers the performance of your application. It’s common
practice to use range checking during the development and debugging phases of
your program, but you should remove range checking after you become confident in
the stability of your program.

TIP

Unlike AnsiString types, ShortString types aren’t inherently compatible with null-termi-
nated strings. Because of this, a bit of work is required to be able to pass a ShortString to
a Win32 API function. The following function, ShortStringAsPChar(), is taken from the
STRUTILS.PAS unit mentioned earlier:

func function ShortStringAsPChar(var S: ShortString): PChar;
{ Function null-terminates a string so it can be passed to functions }
{ that require PChar types. If string is longer than 254 chars, then it will }
{ be truncated to 254. }
begin
if Length(S) = High(S) then Dec(S[0]); { Truncate S if it’s too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return “PChar’d” string }

end;

The WideString Type
The WideString type is a lifetime-managed type similar to AnsiString; they’re both dynami-
cally allocated, garbage collected, and even assignment compatible with one another. However,
WideString differs from AnsiString in three key respects:

• WideString types are comprised of WideChar characters rather than AnsiChar characters,
making them compatible with Unicode strings.

• WideString types are allocated using the SysAllocStrLen() API function, making them
compatible with OLE BSTR strings.

• WideString types aren’t reference counted, so assigning one WideString to another
requires the entire string to be copied from one location in memory to another. This
makes WideString types less efficient than AnsiString types in terms of speed and
memory use.

As mentioned earlier, the compiler automatically knows how to convert between variables of
AnsiString and WideString types, as shown here:

var
W: WideString;
S: string;

begin
W := ‘Margaritaville’;
S := W; // Wide converted to Ansi
S := ‘Come Monday’;
W := S; // Ansi converted to Wide

end;

In order to make working with WideString types feel natural, Object Pascal overloads the
Concat(), Copy(), Insert(), Length(), Pos(), and SetLength() routines and the +, =, and <>
operators for use with WideString types. Therefore, the following code is syntactically correct:

var
W1, W2: WideString;
P: Integer;

begin
W1 := ‘Enfield’;

Development Essentials

PART I
60

The functions and procedures in the Win32 API require null-terminated strings. Do
not try to pass a ShortString type to an API function because your program will not
compile. Your life will be easier if you use long strings when working with the API.

CAUTION

W2 := ‘field’;
if W1 <> W2 then
P := Pos(W1, W2);

end;

As with the AnsiString and ShortString types, you can use array brackets to reference indi-
vidual characters of a WideString:

var
W: WideString;
C: WideChar;

begin
W := ‘Ebony and Ivory living in perfect harmony’;
C := W[Length(W)]; // C holds the last character in W

end;

Null-Terminated Strings
Earlier, this chapter mentioned that Delphi has three different null-terminated string types:
PChar, PAnsiChar, and PWideChar. As their names imply, each of these represents a null-termi-
nated string of each of Delphi’s three character types. In this chapter, we refer to each of these
string types generically as PChar. The PChar type in Delphi exists mainly for compatibility
with Delphi 1.0 and the Win32 API, which makes extensive use of null-terminated strings. A
PChar is defined as a pointer to a string followed by a null (zero) value (if you’re unsure of
exactly what a pointer is, read on; pointers are discussed in more detail later in this section).
Unlike memory for AnsiString and WideString types, memory for PChar types isn’t automat-
ically allocated and managed by Object Pascal. Therefore, you’ll usually need to allocate
memory for the string to which it points, using one of Object Pascal’s memory-allocation func-
tions. The theoretical maximum length of a PChar string is just under 4GB. The layout of a
PChar variable in memory is shown in Figure 2.3.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

61

Object Pascal’s AnsiString type can be used as a PChar in most situations, so you
should use this type rather than the PChar type wherever possible. Because memory
management for strings occurs automatically, you greatly reduce the chance of intro-
ducing memory-corruption bugs into your applications if, where possible, you avoid
PChar types and the manual memory allocation associated with them.

TIP

FIGURE 2.3
A PChar in memory.

As mentioned earlier, PChar variables require you to manually allocate and free the memory
buffers that contain their strings. Normally, you allocate memory for a PChar buffer using the
StrAlloc() function, but several other functions can be used to allocate memory for PChar
types, including AllocMem(), GetMem(), StrNew(), and even the VirtualAlloc() API function.
Corresponding functions also exist for many of these functions, which must be used to deallo-
cate memory. Table 2.6 lists several allocation functions and their corresponding deallocation
functions.

TABLE 2.6 Memory Allocation and Deallocation Functions

Memory Allocated with. . . Must Be Freed with. . .

AllocMem() FreeMem()

GlobalAlloc() GlobalFree()

GetMem() FreeMem()

New() Dispose()

StrAlloc() StrDispose()

StrNew() StrDispose()

VirtualAlloc() VirtualFree()

The following example demonstrates memory allocation techniques when working with PChar
and string types:

var
P1, P2: PChar;
S1, S2: string;

begin
P1 := StrAlloc(64 * SizeOf(Char)); // P1 points to an allocation of 63 Chars
StrPCopy(P1, ‘Delphi 6 ‘); // Copy literal string into P1
S1 := ‘Developer’’s Guide’; // Put some text in string S1
P2 := StrNew(PChar(S1)); // P1 points to a copy of S1
StrCat(P1, P2); // concatenate P1 and P2
S2 := P1; // S2 now holds ‘Delphi 6 Developer’s Guide’
StrDispose(P1); // clean up P1 and P2 buffers
StrDispose(P2);

end.

Development Essentials

PART I
62

D D G #0

PChar

Notice, first of all, the use of SizeOf(Char) with StrAlloc() when allocating memory for P1.
Remember that the size of a Char might change from one byte to two in future versions of
Delphi; therefore, you cannot assume the value of Char to always be one byte. SizeOf()
ensures that the allocation will work properly no matter how many bytes a character occupies.

StrCat() is used to concatenate two PChar strings. Note here that you cannot use the + opera-
tor for concatenation as you can with long string and ShortString types.

The StrNew() function is used to copy the value contained by string S1 into P2 (a PChar). Be
careful when using this function. It’s common to have memory-overwrite errors when using
StrNew() because it allocates only enough memory to hold the string. Consider the following
example:

var
P1, P2: Pchar;
begin
P1 := StrNew(‘Hello ‘); // Allocate just enough memory for P1 and P2
P2 := StrNew(‘World’);
StrCat(P1, P2); // BEWARE: Corrupts memory!
.
.
.

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

63

As with other types of strings, Object Pascal provides a decent library of utility func-
tions and procedures for operating on PChar types. Search for “String-handling rou-
tines (null-terminated)” in the Delphi online help system.

You’ll also find some useful null-terminated functions and procedures in the StrUtils
unit in the \Source\Utils directory on the CD-ROM accompanying this book.

TIP

Variant Types
Delphi 2 introduced a powerful data type called the Variant. Variants were brought about
primarily in order to support OLE Automation, which uses the Variant type heavily. In fact,
Delphi’s Variant data type is an encapsulation of the variant used with OLE. Delphi’s imple-
mentation of variants has also proven to be useful in other areas of Delphi programming, as
you’ll soon learn. Object Pascal is the only compiled language that completely integrates vari-
ants as a dynamic data type at runtime and as a static type at compile time in that the compiler
always knows that it’s a variant.

Delphi 3 introduced a new type called OleVariant, which is identical to Variant except that it
can only hold Automation-compatible types. In this section, we initially focus on the Variant
type and then we discuss OleVariant and contrast it with Variant.

Variants Change Types Dynamically
One of the main purposes of variants is to have a variable whose underlying data type cannot
be determined at compile time. This means that a variant can change the type to which it refers
at runtime. For example, the following code will compile and run properly:

var
V: Variant;

begin
V := ‘Delphi is Great!’; // Variant holds a string
V := 1; // Variant now holds an Integer
V := 123.34; // Variant now holds a floating point
V := True; // Variant now holds a boolean
V := CreateOleObject(‘Word.Basic’); // Variant now holds an OLE object

end;

Variants can support all simple data types, such as integers, floating-point values, strings,
Booleans, date and time, currency, and also OLE Automation objects. Note that variants cannot
refer to Object Pascal objects. Also, variants can refer to a non-homogeneous array, which can
vary in size and whose data elements can refer to any of the preceding data types (including
another variant array).

The Variant Structure
The data structure defining the Variant type is defined in the System unit and is also shown in
the following code:

TVarType = Word;
PVarData = ^TVarData;
{$EXTERNALSYM PVarData}
TVarData = packed record
VType: TVarType;
case Integer of
0: (Reserved1: Word;

case Integer of
0: (Reserved2, Reserved3: Word;

case Integer of
varSmallInt: (VSmallInt: SmallInt);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: TDateTime);

Development Essentials

PART I
64

varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);
varUnknown: (VUnknown: Pointer);
varShortInt: (VShortInt: ShortInt);
varByte: (VByte: Byte);
varWord: (VWord: Word);
varLongWord: (VLongWord: LongWord);
varInt64: (VInt64: Int64);
varString: (VString: Pointer);
varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

);
1: (VLongs: array[0..2] of LongInt);

);
2: (VWords: array [0..6] of Word);
3: (VBytes: array [0..13] of Byte);

end;

The TVarData structure consumes 16 bytes of memory. The first two bytes of the TVarData
structure contain a word value that represents the data type to which the variant refers. The fol-
lowing code shows the various values that might appear in the VType field of the TVarData
record. The next six bytes are unused. The remaining eight bytes contain the actual data or a
pointer to the data represented by the variant. Again, this structure maps directly to ‘COM’s
implementation of the variant type. Here’s the code:

{ Variant type codes (wtypes.h) }

varEmpty = $0000; { vt_empty }
varNull = $0001; { vt_null }
varSmallint = $0002; { vt_i2 }
varInteger = $0003; { vt_i4 }
varSingle = $0004; { vt_r4 }
varDouble = $0005; { vt_r8 }
varCurrency = $0006; { vt_cy }
varDate = $0007; { vt_date }
varOleStr = $0008; { vt_bstr }
varDispatch = $0009; { vt_dispatch }
varError = $000A; { vt_error }
varBoolean = $000B; { vt_bool }
varVariant = $000C; { vt_variant }
varUnknown = $000D; { vt_unknown }

//varDecimal = $000E; { vt_decimal } {UNSUPPORTED}
{ undefined $0f } {UNSUPPORTED}

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

65

varShortInt = $0010; { vt_i1 }
varByte = $0011; { vt_ui1 }
varWord = $0012; { vt_ui2 }
varLongWord = $0013; { vt_ui4 }
varInt64 = $0014; { vt_i8 }

//varWord64 = $0015; { vt_ui8 } {UNSUPPORTED}

{ if adding new items, update Variants’ varLast, BaseTypeMap and OpTypeMap }
varStrArg = $0048; { vt_clsid }
varString = $0100; { Pascal string; not OLE compatible }
varAny = $0101; { Corba any }
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

Development Essentials

PART I
66

As you might notice from the type codes in the preceding listing, a Variant cannot
contain a reference to a Pointer or class type.

NOTE

You’ll notice from the TVarData listing that the TVarData record is actually a variant record.
Don’t confuse this with the Variant type. Although the variant record and Variant type have
similar names, they represent two totally different constructs. Variant records allow for multiple
data fields to overlap in the same area of memory (like a C/C++ union). This is discussed in
more detail in the “Records” section later in this chapter. The case statement in the TVarData
variant record indicates the type of data to which the variant refers. For example, if the VType
field contains the value varInteger, only four bytes of the eight data bytes in the variant por-
tion of the record are used to hold an integer value. Likewise, if VType has the value varByte,
only one byte of the eight is used to hold a byte value.

You’ll notice that if VType contains the value varString, the eight data bytes don’t actually
hold the string; instead, they hold a pointer to this string. This is an important point because
you can access fields of a variant directly, as shown here:

var
V: Variant;

begin
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 2;

end;

You must understand that in some cases this is a dangerous practice because it’s possible
to lose the reference to a string or other lifetime-managed entity, which will result in your

application leaking memory or other resources. You’ll see what we mean by the term garbage
collected in the following section.

Variants Are Lifetime Managed
Delphi automatically handles the allocation and deallocation of memory required of a Variant
type. For example, examine the following code, which assigns a string to a Variant variable:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := S;
ShowMessage(V);

end;

As discussed earlier in this chapter in the sidebar “Lifetime-Managed Types,” several things
are going on here that might not be apparent. Delphi first initializes the variant to an unas-
signed value. During the assignment, it sets its VType field to varString and copies the string
pointer into its VString field. It then increases the reference count of string S. When the vari-
ant leaves scope (that is, the procedure ends and returns to the code that called it), it’s cleared
and the reference count of string S is decremented. Delphi does this by implicitly inserting a
try..finally block in the procedure, as shown. here:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := Unassigned; // initialize variant to “empty”
try
V := S;
ShowMessage(V);

finally
// Now clean up the resources associated with the variant

end;
end;

This same implicit release of resources occurs when you assign a different data type to the
variant. For example, examine the following code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
V := S;
V := 34;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

67

This code boils down to the following pseudo-code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
Clear Variant V, ensuring it is initialized to “empty”
try
V.VType := varString; V.VString := S; Inc(S.RefCount);
Clear Variant V, thereby releasing reference to string;
V.VType := varInteger; V.VInteger := 34;

finally
Clean up the resources associated with the variant

end;
end;

If you understand what happens in the preceding examples, you’ll see why it’s not recom-
mended that you manipulate fields of the TVarData record directly, as shown here:

procedure ChangeVariant(S: string);
var
V: Variant

begin
V := S;
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 32;
V := 34;

end;

Although this might appear to be safe, it’s not because it results in the failure to decrement the
reference count of string S, probably resulting in a memory leak. As a general rule, don’t access
the TVarData fields directly, or if you do, be absolutely sure that you know exactly what you’re
doing.

Typecasting Variants
You can explicitly typecast expressions to type Variant. For example, the expression

Variant(X)

results in a Variant type whose type code corresponds to the result of the expression X, which
must be an integer, real, currency, string, character, or Boolean type.

You can also typecast a variant to that of a simple data type. For example, given the assignment

V := 1.6;

Development Essentials

PART I
68

where V is a variable of type Variant, the following expressions will have the results shown:

S := string(V); // S will contain the string ‘1.6’;
// I is rounded to the nearest Integer value, in this case: 2.
I := Integer(V);
B := Boolean(V); // B contains False if V contains 0, otherwise B is True
D := Double(V); // D contains the value 1.6

These results are dictated by certain type-conversion rules applicable to Variant types. These
rules are defined in detail in Delphi’s Object Pascal Language Guide.

By the way, in the preceding example, it’s not necessary to typecast the variant to another data
type to make the assignment. The following code would work just as well:

V := 1.6;
S := V;
I := V;
B := V;
D := V;

What happens here is that the conversions to the target data types are made through an implicit
typecast. However, because these conversions are made at runtime, there’s much more code
logic attached to this method. If you’re sure of the type a variant contains, you’re better off
explicitly typecasting it to that type in order to speed up the operation. This is especially true if
the variant is being used in an expression, which we’ll discuss. next.

Variants in Expressions
You can use variants in expressions with the following operators: +, =, *, /, div, mod, shl, shr,
and, or, xor, not, :=, <>, <, >, <=, and >=.

When using variants in expressions, Delphi knows how to perform the operations based on the
contents of the variant. For example, if two variants, V1 and V2, contain integers, the expression
V1 + V2 results in the addition of the two integers. However, if V1 and V2 contain strings, the
result is a concatenation of the two strings. What happens if V1 and V2 contain two different
data types? Delphi uses certain promotion rules in order to perform the operation. For exam-
ple, if V1 contains the string ‘4.5’ and V2 contains a floating-point number, V1 will be con-
verted to a floating point and then added to V2. The following code illustrates this:

var
V1, V2, V3: Variant;

begin
V1 := ‘100’; // A string type
V2 := ‘50’; // A string type
V3 := 200; // An Integer type
V1 := V1 + V2 + V3;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

69

Based on what we just mentioned about promotion rules, it would seem at first glance that the
preceding code would result in the value 350 as an integer. However, if you take a closer look,
you’ll see that this is not the case. Because the order of precedence is from left to right, the
first equation executed. is V1 + V2. Because these two variants refer to strings, a string con-
catenation is performed, resulting in the string ‘10050’. That result is then added to the integer
value held by the variant V3. Because V3 is an integer, the result ‘10050’ is converted to an
integer and added to V3, thus providing an end result of 10250.

Delphi promotes the variants to the highest type in the equation in order to successfully carry
out the calculation. However, when an operation is attempted on two variants of which Delphi
cannot make any sense, an invalid variant type conversion exception is raised. The following
code illustrates this:

var
V1, V2: Variant;

begin
V1 := 77;
V2 := ‘hello’;
V1 := V1 / V2; // Raises an exception.

end;

As stated earlier, it’s sometimes a good idea to explicitly typecast a variant to a specific data
type if you know what that type is and if it’s used in an expression. Consider the following line
of code:

V4 := V1 * V2 / V3;

Before a result can be generated for this equation, each operation is handled by a runtime func-
tion that goes through several gyrations to determine the compatibility of the types the variants
represent. Then the conversions are made to the appropriate data types. This results in a large
amount of overhead and code size. A better solution is obviously not to use variants. However,
when necessary, you can also explicitly typecast the variants so the data types are resolved at
compile time:

V4 := Integer(V1) * Double(V2) / Integer(V3);

Keep in mind that this assumes you know the data types the variants represent.

Empty and Null
Two special VType values for variants merit a brief discussion. The first is varEmpty, which
means that the variant has not yet been assigned a value. This is the initial value of the variant
set by the compiler as it comes into scope. The other is varNull, which is different from
varEmpty in that it actually represents the value Null as opposed to a lack of value. This dis-
tinction between no value and a Null value is especially important when applied to the field

Development Essentials

PART I
70

values of a database table. In Part III of this book, “Database Development,” you’ll learn how
variants are used in the context of database applications.

Another difference is that attempting to perform any equation with a variant containing a
varEmpty VType value will result in an invalid variant operation exception. The same isn’t true
of variants containing a varNull value, however. When a variant involved in an equation con-
tains a Null value, that value will propagate to the result. Therefore, the result of any equation
containing a Null is always Null.

If you want to assign or compare a variant to one of these two special values, the System unit
defines two variants, Unassigned and Null, which have the VType values of varEmpty and
varNull, respectively.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

71

It might be tempting to use variants instead of the conventional data types because
they seem to offer so much flexibility. However, this will increase the size of your
code and cause your applications to run more slowly. Additionally, it will make your
code more difficult to maintain. Variants are useful in many situations. In fact, the
VCL, itself, uses variants in several places, most notably in the ActiveX and database
areas, because of the data type flexibility they offer. Generally speaking, however,
you should use the conventional data types instead of variants. Only in situations
where the flexibility of the variant outweighs the performance of the conventional
method should you resort to using variants. Ambiguous data types beget ambiguous
bugs.

CAUTION

Variant Arrays
Earlier we mentioned that a variant can refer to a nonhomogeneous array. Therefore, the fol-
lowing syntax is valid:

var
V: Variant;
I, J: Integer;

begin
I := V[J];

end;

Bear in mind that, although the preceding code will compile, you’ll get an exception at runtime
because V does not yet contain a variant array. Object Pascal provides several variant array sup-
port functions that allow you to create a variant array. Two of these functions are
VarArrayCreate() and VarArrayOf().

VarArrayCreate()

VarArrayCreate() is defined in the Variants unit as

function VarArrayCreate(const Bounds: array of Integer;
VarType: Integer): Variant;

To use VarArrayCreate(), you pass in the array bounds for the array you want to create and a
variant type code for the type of the array elements (the first parameter is an open array, which
is discussed in the “Passing Parameters” section later in this chapter). For example, the follow-
ing code returns a variant array of integers and assigns values to the array items:

var
V: Variant;

begin
V := VarArrayCreate([1, 4], varInteger); // Create a 4-element array
V[1] := 1;
V[2] := 2;
V[3] := 3;
V[4] := 4;

end;

If variant arrays of a single type aren’t confusing enough, you can pass varVariant as the type
code in order to create a variant array of variants! This way, each element in the array has the
ability to contain a different type of data. You can also create a multidimensional array by pass-
ing in the additional bounds required. For example, the following code creates an array with
the bounds [1..4, 1..5]:

V := VarArrayCreate([1, 4, 1, 5], varInteger);

Development Essentials

PART I
72

The Variants unit was added to the RTL in Delphi 6 because the support for variants
was migrated out of the System unit. Among other things, this physical separation of
the variant support code helped to smooth compatibility with Borland Kylix and pro-
vided the ability to extend variants to support developer-specified data types.

NOTE

VarArrayOf()

The VarArrayOf() function is defined in the Variants unit as

function VarArrayOf(const Values: array of Variant): Variant;

This function returns a one-dimensional array whose elements are given in the Values parame-
ter. The following example creates a variant array of three elements with an integer, a string,
and a floating-point value:

V := VarArrayOf([1, ‘Delphi’, 2.2]);

Variant Array Support Functions and Procedures
In addition to VarArrayCreate() and VarArrayOf(), there are several other variant array sup-
port functions and procedures. These functions are defined in the Variants System unit and
are also shown here:

procedure VarArrayRedim(var A: Variant; HighBound: Integer);
function VarArrayDimCount(const A: Variant): Integer;
function VarArrayLowBound(const A: Variant; Dim: Integer): Integer;
function VarArrayHighBound(const A: Variant; Dim: Integer): Integer;
function VarArrayLock(const A: Variant): Pointer;
procedure VarArrayUnlock(const A: Variant);
function VarArrayRef(const A: Variant): Variant;
function VarIsArray(const A: Variant): Boolean;

The VarArrayRedim() function allows you to resize the upper bound of the rightmost dimen-
sion of a variant array. The VarArrayDimCount() function returns the number of dimensions in
a variant array. VarArrayLowBound() and VarArrayHighBound() return the lower and upper
bounds of an array, respectively. VarArrayLock() and VarArrayUnlock() are two special func-
tions, which are described in further detail in the next section.

VarArrayRef() is intended to work around a problem that exists in passing variant arrays to
OLE Automation servers. The problem occurs when you pass a variant containing a variant
array to an automation method, like this:

Server.PassVariantArray(VA);

The array is passed not as a variant array but rather as a variant containing a variant array—an
important distinction. If the server expected a variant array rather than a reference to one, the
server will likely encounter an error condition when you call the method with the preceding
syntax. VarArrayRef() takes care of this situation by massaging the variant into the type and
value expected by the server. Here’s the syntax for using VarArrayRef():

Server.PassVariantArray(VarArrayRef(VA));

VarIsArray() is a simple Boolean check, which returns True if the variant parameter passed
to it is a variant array or False otherwise.

Initializing a Large Array: VarArrayLock() and VarArrayUnlock()

Variant arrays are important in OLE Automation because they provide the only means for pass-
ing raw binary data to an OLE Automation server (note that pointers aren’t a legal type in OLE
Automation, as you’ll learn in Chapter 15, “COM Development”). However, if used incor-
rectly, variant arrays can be a rather inefficient means of exchanging data. Consider the follow-
ing line of code:

V := VarArrayCreate([1, 10000], VarByte);

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

73

This line creates a variant array of 10,000 bytes. Suppose that you have another array (nonvari-
ant) declared of the same size and you want to copy the contents of this nonvariant array to the
variant array. Normally, you can only do this by looping through the elements and assigning
them to the elements of the variant array, as shown here:

begin
V := VarArrayCreate([1, 10000], VarByte);
for i := 1 to 10000 do
V[i] := A[i];

end;

The problem with this code is that it’s bogged down by the significant overhead required just
to initialize the variant array elements. This is because the assignments to the array elements
must go through the runtime logic to determine type compatibility, the location of each ele-
ment, and so forth. To avoid these runtime checks, you can use the VarArrayLock() function
and the VarArrayUnlock() procedure.

VarArrayLock() locks the array in memory so that it cannot be moved or resized while it’s
locked, and it returns a pointer to the array data. VarArrayUnlock() unlocks an array locked
with VarArrayLock() and once again allows the variant array to be resized and moved in
memory. After the array is locked, you can employ a more efficient means to initialize the data
by using, for example, the Move() procedure with the pointer to the array’s data. The following
code performs the initialization of the variant array shown earlier, but in a much more efficient
manner:

begin
V := VarArrayCreate([1, 10000], VarByte);
P := VarArrayLock(V);
try
Move(A, P^, 10000);

finally
VarArrayUnlock(V);

end;
end;

Supporting Functions
There are several other common support functions for variants that you can use. These func-
tions are declared in the Variants System unit and are also listed here:

procedure VarClear(var V: Variant);
procedure VarCopy(var Dest: Variant; const Source: Variant);
procedure VarCast(var Dest: Variant; const Source: Variant; VarType: Integer);
function VarType(const V: Variant): Integer;
function VarAsType(const V: Variant; VarType: Integer): Variant;
function VarIsEmpty(const V: Variant): Boolean;

Development Essentials

PART I
74

function VarIsNull(const V: Variant): Boolean;
function VarToStr(const V: Variant): string;
function VarFromDateTime(DateTime: TDateTime): Variant;
function VarToDateTime(const V: Variant): TDateTime;

The VarClear() procedure clears a variant and sets the VType field to varEmpty. VarCopy()
copies the Source variant to the Dest variant. The VarCast() procedure converts a variant to a
specified type and stores that result into another variant. VarType() returns one of the varXXX
type codes for a specified variant. VarAsType() has the same functionality as VarCast().
VarIsEmpty() returns True if the type code on a specified variant is varEmpty. VarIsNull()
indicates whether a variant contains a Null value. VarToStr() converts a variant to its string
representation (an empty string in the case of a Null or empty variant). VarFromDateTime()
returns a variant that contains a given TDateTime value. Finally, VarToDateTime() returns the
TDateTime value contained in a variant.

OleVariant

The OleVariant type is nearly identical to the Variant type described throughout this section
of this chapter. The only difference between OleVariant and Variant is that OleVariant
only supports Automation-compatible types. Currently, the only VType supported that’s not
Automation-compatible is varString, the code for AnsiString. When an attempt is made to
assign an AnsiString to an OleVariant, the AnsiString will be automatically converted to an
OLE BSTR and stored in the variant as a varOleStr.

Currency

Delphi 2.0 introduced a new type called Currency, which is ideal for financial calculations.
Unlike floating-point numbers, which allow the decimal point to “float” within a number,
Currency is a fixed-point decimal type that’s hard-coded to a precision of 15 digits before the
decimal and four digits after the decimal. As such, it’s not susceptible to round-off errors as are
floating-point types. When porting your Delphi 1.0 projects, it’s a good idea to use this type in
place of Single, Real, Double, and Extended where money is involved.

User-Defined Types
Integers, strings, and floating-point numbers often are not enough to adequately represent vari-
ables in the real-world problems that programmers must try to solve. In cases like these, you
must create your own types to better represent variables in the current problem. In Pascal,
these user-defined types usually come in the form of records or objects; you declare these
types using the Type keyword.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

75

Arrays
Object Pascal enables you to create arrays of any type of variable (except files). For example, a
variable declared as an array of eight integers reads like this:

var
A: Array[0..7] of Integer;

This statement is equivalent to the following C declaration:

int A[8];

It’s also equivalent to this Visual Basic statement:

Dim A(8) as Integer

Object Pascal arrays have a special property that differentiates them from other languages:
They don’t have to begin at a certain number. You can therefore declare a three-element array
that starts at 28, as in the following example:

var
A: Array[28..30] of Integer;

Because Object Pascal arrays aren’t guaranteed to begin at 0 or 1, you must use some care
when iterating over array elements in a for loop. The compiler provides built-in functions
called High() and Low(), which return the lower and upper bounds of an array variable or
type, respectively. Your code will be less error prone and easier to maintain if you use these
functions to control your for loop, as shown here:

var
A: array[28..30] of Integer;
i: Integer;

begin
for i := Low(A) to High(A) do // don’t hard-code for loop!
A[i] := i;

end;

Development Essentials

PART I
76

Always begin character arrays at 0. Zero-based character arrays can be passed to func-
tions that require PChar-type variables. This is a special-case allowance that the com-
piler provides.

TIP

To specify multiple dimensions, use a comma-delimited list of bounds:

var
// Two-dimensional array of Integer:
A: array[1..2, 1..2] of Integer;

To access a multidimensional array, use commas to separate each dimension within one set of
brackets:

I := A[1, 2];

Dynamic Arrays
Dynamic arrays are dynamically allocated arrays in which the dimensions aren’t known at
compile time. To declare a dynamic array, just declare an array without including the dimen-
sions, like this:

var
// dynamic array of string:
SA: array of string;

Before you can use a dynamic array, you must use the SetLength() procedure to allocate
memory for the array:

begin
// allocate room for 33 elements:
SetLength(SA, 33);

Once memory has been allocated, you can access the elements of the dynamic array just like a
normal array:

SA[0] := ‘Pooh likes hunny’;
OtherString := SA[0];

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

77

Dynamic arrays are always zero-based.

NOTE

Dynamic arrays are lifetime managed, so there’s no need to free them when you’re through
using them because they’ll be released when they leave scope. However, there might come a
time when you want remove the dynamic array from memory before it leaves scope (if it uses
a lot of memory, for example) To do this, you need only assign the dynamic array to nil:

SA := nil; // releases SA

Dynamic arrays are manipulated using reference semantics similar to AnsiString types rather
than value semantics like a normal array. A quick test: What is the value of A1[0] at the end of
the following code fragment?

var
A1, A2: array of Integer;

begin
SetLength(A1, 4);
A2 := A1;
A1[0] := 1;
A2[0] := 26;

The correct answer is 26. The reason is because the assignment A2 := A1 doesn’t create a new
array but instead provides A2 with a reference to the same array as A1. Therefore, any modifica-
tions to A2 will also affect A1. If you want instead to make a complete copy of A1 in A2, use the
Copy() standard procedure:

A2 := Copy(A1);

After this line of code is executed, A2 and A1 will be two separate arrays initially containing
the same data. Changes to one will not affect the other. You can optionally specify the starting
element and number of elements to be copied as parameters to Copy(), as shown here:

// copy 2 elements, starting at element one:
A2 := Copy(A1, 1, 2);

Dynamic arrays can also be multidimensional. To specify multiple dimensions, add an addi-
tional array of to the declaration for each dimension:

var
// two-dimensional dynamic array of Integer:
IA: array of array of Integer;

To allocate memory for a multidimensional dynamic array, pass the sizes of the other dimen-
sions as additional parameters to SetLength():

begin
// IA will be a 5 x 5 array of Integer
SetLength(IA, 5, 5);

You access multidimensional dynamic arrays the same way you do normal multidimensional
arrays; each element is separated by a comma with a single set of brackets:

IA[0,3] := 28;

Records
A user-defined structure is referred to as a record in Object Pascal, and it’s the equivalent of
C’s struct or Visual Basic’s Type. As an example, here’s a record definition in Pascal as well
as equivalent definitions in C and Visual Basic:

{ Pascal }
Type
MyRec = record
i: Integer;

Development Essentials

PART I
78

d: Double;
end;

/* C */
typedef struct {
int i;
double d;

} MyRec;

‘Visual Basic
Type MyRec
i As Integer
d As Double

End Type

When working with a record, you use the dot symbol to access its fields. Here’s an example:

var
N: MyRec;

begin
N.i := 23;
N.d := 3.4;

end;

Object Pascal also supports variant records, which allow different pieces of data to overlay the
same portion of memory in the record. Not to be confused with the Variant data type, variant
records allow each overlapping data field to be accessed independently. If your background is
C, you’ll recognize variant records as being the same concept as a union within C struct. The
following code shows a variant record in which a Double, Integer, and char all occupy the
same memory space:

type
TVariantRecord = record
NullStrField: PChar;
IntField: Integer;
case Integer of
0: (D: Double);
1: (I: Integer);
2: (C: char);

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

79

The rules of Object Pascal state that the variant portion of a record cannot be of any
lifetime-managed type.

NOTE

Here’s the C equivalent of the preceding type declaration:

struct TUnionStruct
{
char * StrField;
int IntField;
union u
{
double D;
int i;
char c;

};
};

Sets
Sets are a uniquely Pascal type that have no equivalent in Visual Basic, C, or C++ (although
Borland C++Builder does implement a template class called Set, which emulates the behavior
of a Pascal set). Sets provide a very efficient means of representing a collection of ordinal,
character, or enumerated values. You can declare a new set type using the keywords set of
followed by an ordinal type or subrange of possible set values. Here’s an example:

type
TCharSet = set of char; // possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

TSubrangeSet = set of 1..10; // possible members: 1 - 10
TAlphaSet = set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

Note that a set can only contain up to 256 elements. Additionally, only ordinal types can follow
the set of keywords. Therefore, the following declarations are illegal:

type
TIntSet = set of Integer; // Invalid: too many elements
TStrSet = set of string; // Invalid: not an ordinal type

Sets store their elements internally as individual bits, which makes them very efficient in terms
of speed and memory usage. Sets with fewer than 32 elements in the base type can be stored
and operated upon in CPU registers, for even greater efficiency. Sets with 32 or more elements
(such as a set of char–255 elements) are stored in memory. To get the maximum performance
benefit from sets, keep the number of elements in the set’s base type under 32.

Using Sets
Use square brackets when referencing set elements. The following code demonstrates how to
declare set type variables and assign them values:

Development Essentials

PART I
80

type
TCharSet = set of char; // possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

var
CharSet: TCharSet;
EnumSet: TEnumSet;
SubrangeSet: set of 1..10; // possible members: 1 - 10
AlphaSet: set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

begin
CharSet := [‘A’..’J’, ‘a’, ‘m’];
EnumSet := [Saturday, Sunday];
SubrangeSet := [1, 2, 4..6];
AlphaSet := []; // Empty; no elements

end;

Set Operators
Object Pascal provides several operators for use in manipulating sets. You can use these opera-
tors to determine set membership, union, difference, and intersection.

Membership
Use the in operator to determine whether a given element is contained in a particular set. For
example, the following code would be used to determine whether the CharSet set mentioned
earlier contains the letter ‘S’:

if ‘S’ in CharSet then
// do something;

The following code determines whether EnumSet lacks the member Monday:

if not (Monday in EnumSet) then
// do something;

Union and Difference
Use the + and - operators or the Include() and Exclude() procedures to add and remove ele-
ments to and from a set variable:

Include(CharSet, ‘a’); // add ‘a’ to set
CharSet := CharSet + [‘b’]; // add ‘b’ to set
Exclude(CharSet, ‘x’); // remove ‘z’ from set
CharSet := CharSet - [‘y’, ‘z’]; // remove ‘y’ and ‘z’ from set

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

81

Intersection
Use the * operator to calculate the intersection of two sets. The result of the expression Set1 *
Set2 is a set containing all the members that Set1 and Set2 have in common. For example, the
following code could be used as an efficient means for determining whether a given set con-
tains multiple elements:

if [‘a’, ‘b’, ‘c’] * CharSet = [‘a’, ‘b’, ‘c’] then
// do something

Objects
Think of objects as records that also contain functions and procedures. Delphi’s object model
is discussed in much greater detail later in the “Using Delphi Objects” section of this chapter,
so this section covers just the basic syntax of Object Pascal objects. An object is defined as
follows:

Type
TChildObject = class(TParentObject);
SomeVar: Integer;
procedure SomeProc;

end;

Although Delphi objects aren’t identical to C++ objects, this declaration is roughly equivalent
to the following C++ declaration:

class TChildObject : public TParentObject
{
int SomeVar;
void SomeProc();

};

Methods are defined in the same way as normal procedures and functions (which are discussed
in the section “Procedures and Functions”), with the addition of the object name and the dot
symbol operator:

procedure TChildObject.SomeProc;
begin
{ procedure code goes here }

end;

Development Essentials

PART I
82

When possible, use Include() and Exclude() to add and remove a single element to
and from a set rather than the + and - operators. Both Include() and Exclude() con-
stitute only one machine instruction each, whereas the + and - operators require 13 +
6n (where n is the size in bits of the set) instructions.

TIP

Object Pascal’s . symbol is similar in functionality to Visual Basic’s . operator and C++’s ::
operator. You should note that, although all three languages allow usage of classes, only Object
Pascal and C++ allow the creation of new classes that behave in a fully object-oriented man-
ner, which we’ll describe in the section “Object-Oriented Programming.”

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

83

Object Pascal objects aren’t laid out in memory the same as C++ objects, so it’s not
possible to use C++ objects directly from Delphi (and vice versa). If you are interested
in learning more about how this is done, you might want to browse Chapter 13,
“Hard-core Techniques,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this book. That chapter shows a technique for sharing objects
between C++ and Delphi.

An exception to this is Borland C++Builder’s capability of creating classes that map
directly to Object Pascal classes using the proprietary __declspec(delphiclass) direc-
tive. Such objects are likewise incompatible with regular C++ objects.

NOTE

Pointers
A pointer is a variable that contains a memory location. You already saw an example of a
pointer in the PChar type earlier in this chapter. Pascal’s generic pointer type is called, aptly,
Pointer. A Pointer is sometimes called an untyped pointer because it contains only a memory
address, and the compiler doesn’t maintain any information on the data to which it points. That
notion, however, goes against the grain of Pascal’s typesafe nature, so pointers in your code
will usually be typed pointers.

Pointers are a somewhat advanced topic, and you definitely don’t need to master
them to write a Delphi application. As you become more experienced, pointers will
become another valuable tool for your programmer’s toolbox.

NOTE

Typed pointers are declared by using the ^ (or pointer) operator in the Type section of your
program. Typed pointers help the compiler keep track of exactly what kind of type a particular
pointer points to, thus enabling the compiler to keep track of what you’re doing (and can do)
with a pointer variable. Here are some typical declarations for pointers:

Type
PInt = ^Integer; // PInt is now a pointer to an Integer

Foo = record // A record type
GobbledyGook: string;
Snarf: Real;

end;
PFoo = ^Foo; // PFoo is a pointer to a foo type

var
P: Pointer; // Untyped pointer
P2: PFoo; // Instance of PFoo

Development Essentials

PART I
84

C programmers will notice the similarity between Object Pascal’s ^ operator and C’s *
operator. Pascal’s Pointer type corresponds to C’s void * type.

NOTE

Remember that a pointer variable only stores a memory address. Allocating space for whatever
the pointer points to is your job as a programmer. You can allocate space for a pointer by using
one of the memory-allocation routines discussed earlier and shown in Table 2.6.

When a pointer doesn’t point to anything (its value is zero), its value is said to be nil,
and it is often called a nil or null pointer.

NOTE

If you want to access the data that a particular pointer points to, follow the pointer variable
name with the ^ operator. This method is known as dereferencing the pointer. The following
code illustrates working with pointers:

Program PtrTest;

Type
MyRec = record
I: Integer;
S: string;
R: Real;

end;
PMyRec = ^MyRec;

var
Rec : PMyRec;

begin
New(Rec); // allocate memory for Rec
Rec^.I := 10; // Put stuff in Rec. Note the dereference
Rec^.S := ‘And now for something completely different.’;

Rec^.R := 6.384;
{ Rec is now full }
Dispose(Rec); // Don’t forget to free memory!

end.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

85

When to Use New()
Use the New() function to allocate memory for a pointer to a structure of a known
size. Because the compiler knows how big a particular structure is, a call to New() will
cause the correct number of bytes to be allocated, thus making it safer and more con-
venient to use than GetMem() or AllocMem(). Never allocate Pointer or PChar vari-
ables by using the New() function because the compiler cannot guess how many bytes
you need for this allocation. Remember to use Dispose() to free any memory you
allocate using the New() function.

You’ll typically use GetMem() or AllocMem() to allocate memory for structures for
which the compiler cannot know the size. The compiler cannot tell ahead of time
how much memory you want to allocate for PChar or Pointer types, for example,
because of their variable-length nature. Be careful not to try to manipulate more
data than you have allocated with these functions, however, because this is one of
the classic causes of an Access Violation error. You should use FreeMem() to clean up
any memory you allocate with GetMem() or AllocMem(). AllocMem(), by the way, is a
bit safer than GetMem() because AllocMem() always initializes the memory it allocates
to zero.

One aspect of Object Pascal that might give C programmers some headaches is the strict type
checking performed on pointer types. For example, the variables a and b in the following
example aren’t type compatible:

var
a: ^Integer;
b: ^Integer;

By contrast, the variables a and b in the equivalent declaration in C are type compatible:

int *a;
int *b

Object Pascal creates a unique type for each pointer-to-type declaration, so you must create a
named type if you want to assign values from a to b, as shown here:

type
PtrInteger = ^Integer; // create named type

var
a, b: PtrInteger; // now a and b are compatible

Type Aliases
Object Pascal has the capability to create new names, or aliases, for types that are already
defined. For example, if you want to create a new name for an Integer called
MyReallyNiftyInteger, you could do so using the following code:

type
MyReallyNiftyInteger = Integer;

The newly defined type alias is compatible in all ways with the type for which it’s an alias,
meaning, in this case, that you could use MyReallyNiftyInteger anywhere in which you could
use Integer.

It’s possible, however, to define strongly typed aliases that are considered new, unique types by
the compiler. To do this, use the type reserved word in the following manner:

type
MyOtherNeatInteger = type Integer;

Using this syntax, the MyOtherNeatInteger type will be converted to an Integer when neces-
sary for purposes of assignment, but MyOtherNeatInteger will not be compatible with Integer
when used in var and out parameters. Therefore, the following code is syntactically correct:

var
MONI: MyOtherNeatInteger;
I: Integer;

begin
I := 1;
MONI := I;

On the other hand, the following code will not compile:

procedure Goon(var Value: Integer);
begin
// some code

end;

var
M: MyOtherNeatInteger;

begin
M := 29;
Goon(M); // Error: M is not var compatible with Integer

In addition to these compiler-enforced type compatibility issues, the compiler also generates
runtime type information for strongly typed aliases. This enables you to create unique property
editors for simple types, as you’ll learn in Chapter 12, “Advanced VCL Component Building.”

Development Essentials

PART I
86

Typecasting and Type Conversion
Typecasting is a technique by which you can force the compiler to view a variable of one type
as another type. Because of Pascal’s strongly typed nature, you’ll find that the compiler is very
picky about types matching up in the formal and actual parameters of a function call. Hence,
you occasionally will be required to cast a variable of one type to a variable of another type to
make the compiler happy. Suppose, for example, that you need to assign the value of a charac-
ter to a byte variable:

var
c: char;
b: byte;

begin
c := ‘s’;
b := c; // compiler complains on this line

end.

In the following syntax, a typecast is required to convert c into a byte. In effect, a typecast
tells the compiler that you really know what you’re doing and want to convert one type to
another:

var
c: char;
b: byte;

begin
c := ‘s’;
b := byte(c); // compiler happy as a clam on this line

end.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

87

You can typecast a variable of one type to another type only if the data size of the
two variables is the same. For example, you cannot typecast a Double as an Integer.
To convert a floating-point type to an integer, use the Trunc() or Round() functions.
To convert an integer into a floating-point value, use the assignment operator:
FloatVar := IntVar.

NOTE

Object Pascal also supports a special variety of typecasting between objects using the as opera-
tor, which is described later in the “Runtime Type Information” section of this chapter.

String Resources
Delphi 3 introduced the capability to place string resources directly into Object Pascal source
code using the resourcestring clause. String resources are literal strings (usually those dis-
played to the user) that are physically located in a resource attached to the application or
library rather than embedded in the source code. Your source code references the string
resources in place of string literals. By separating strings from source code, your application
can be translated more easily by added string resources in a different language. String
resources are declared in the form of identifier = string literal in the resourcestring
clause, as shown here:

resourcestring
ResString1 = ‘Resource string 1’;
ResString2 = ‘Resource string 2’;
ResString3 = ‘Resource string 3’;

Syntactically, resource strings can be used in your source code in a manner identical to string
constants:

resourcestring
ResString1 = ‘hello’;
ResString2 = ‘world’;

var
String1: string;

begin
String1 := ResString1 + ‘ ‘ + ResString2;
.
.
.

end;

Testing Conditions
This section compares if and case constructs in Pascal to similar constructs in C and Visual
Basic. We assume that you’ve used these types of programmatic constructs before, so we don’t
spend time explaining them to you.

The if Statement
An if statement enables you to determine whether certain conditions are met before executing
a particular block of code. As an example, here’s an if statement in Pascal, followed by equiv-
alent definitions in C and Visual Basic:

Development Essentials

PART I
88

{ Pascal }
if x = 4 then y := x;

/* C */
if (x == 4) y = x;

‘Visual Basic
If x = 4 Then y = x

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

89

If you have an if statement that makes multiple comparisons, make sure that you
enclose each set of comparisons in parentheses for code clarity. Do this:

if (x = 7) and (y = 8) then

However, don’t do this (it causes the compiler displeasure):

if x = 7 and y = 8 then

NOTE

Use the begin and end keywords in Pascal almost as you would use { and } in C and C++. For
example, use the following construct if you want to execute multiple lines of text when a given
condition is true:

if x = 6 then begin
DoSomething;
DoSomethingElse;
DoAnotherThing;

end;

You can combine multiple conditions using the if..else construct:

if x =100 then
SomeFunction

else if x = 200 then
SomeOtherFunction

else begin
SomethingElse;
Entirely;

end;

Using case Statements
The case statement in Pascal works in much the same way as a switch statement in C and C++.
A case statement provides a means for choosing one condition among many possibilities with-
out a huge if..else if..else if construct. Here’s an example of Pascal’s case statement:

case SomeIntegerVariable of
101 : DoSomething;

202 : begin
DoSomething;
DoSomethingElse;

end;
303 : DoAnotherThing;
else DoTheDefault;

end;

Development Essentials

PART I
90

The selector type of a case statement must be an ordinal type. It’s illegal to use
nonordinal types, such as strings, as case selectors.

NOTE

Here’s the C switch statement equivalent to the preceding example:

switch (SomeIntegerVariable)
{
case 101: DoSomeThing(); break;
case 202: DoSomething();

DoSomethingElse(); break
case 303: DoAnotherThing(); break;
default: DoTheDefault();

}

Loops
A loop is a construct that enables you to repeatedly perform some type of action. Pascal’s loop
constructs are very similar to what you should be familiar with from your experience with
other languages, so we don’t spend any time teaching you about loops. This section describes
the various loop constructs you can use in Pascal.

The for Loop
A for loop is ideal when you need to repeat an action a predetermined number of times.
Here’s an example, albeit not a very useful one, of a for loop that adds the loop index to a
variable 10 times:

var
I, X: Integer;

begin
X := 0;
for I := 1 to 10 do
inc(X, I);

end.

The C equivalent of the preceding example is as follows:

void main(void) {
int x, i;
x = 0;
for(i=1; i<=10; i++)
x += i;

}

Here’s the Visual Basic equivalent of the same concept:

X = 0
For I = 1 to 10
X = X + I

Next I

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

91

A caveat to those familiar with Delphi 1: Assignments to the loop control variable are
no longer allowed due to the way the loop is optimized and managed by the 32-bit
compiler.

CAUTION

The while Loop
Use a while loop construct when you want some part of your code to repeat itself while some
condition is true. A while loop’s conditions are tested before the loop is executed, and a classic
example for the use of a while loop is to repeatedly perform some action on a file as long as
the end of the file isn’t encountered. Here’s an example demonstrating a loop that reads one
line at a time from a file and writes it to the screen:

Program FileIt;

{$APPTYPE CONSOLE}

var
f: TextFile; // a text file
s: string;

begin
AssignFile(f, ‘foo.txt’);
Reset(f);
while not EOF(f) do begin
readln(f, S);
writeln(S);

end;
CloseFile(f);

end.

Pascal’s while loop works basically the same as C’s while loop or Visual Basic’s Do While
loop.

repeat..until

The repeat..until loop addresses the same type of problem as a while loop but from a dif-
ferent angle. It repeats a given block of code until a certain condition becomes True. Unlike a
while loop, the loop code is always executed at least once because the condition is tested at the
end of the loop. Pascal’s repeat..until is roughly equivalent to C’s do..while loop.

For example, the following code snippet repeats a statement that increments a counter until the
value of the counter becomes greater than 100:

var
x: Integer;

begin
X := 1;
repeat
inc(x);

until x > 100;
end.

The Break() Procedure
Calling Break() from inside a while, for, or repeat loop causes the flow of your program to
skip immediately to the end of the currently executing loop. This method is useful when you
need to leave the loop immediately because of some circumstance that might arise within the
loop. Pascal’s Break() procedure is analogous to C’s break and Visual Basic’s Exit statement.
The following loop uses Break() to terminate the loop after five iterations:

var
i: Integer;

begin
for i := 1 to 1000000 do
begin
MessageBeep(0); // make the computer beep
if i = 5 then Break;

end;
end;

The Continue() Procedure
Call Continue() inside a loop when you want to skip over a portion of code and the flow of
control to continue with the next iteration of the loop. Note in the following example that the
code after Continue() isn’t executed in the first iteration of the loop:

Development Essentials

PART I
92

