
Microsoft®

Dino Esposito

ASP.NET and AJAX:
Architecting
Web Applications

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940527

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Expression, IntelliSense, Internet Explorer, MS, MSDN, Natural, Silverlight,
SQL Server, Visual Basic, Visual C#, Visual InterDev, Visual Studio, Windows, Windows Media, Windows Server and
Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Lynn Finnel
Project Editor: Tracy Ball
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-28134

http://www.microsoft.com/mspress

To the people who help me to smile and often smile, play and laugh with me.

—Dino

This page intentionally left blank

 v

Contents at a Glance

Part I The (Much Needed) Facelift for the Old Web

 1 Under the Umbrella of AJAX. 3

 2 The Easy Way to AJAX . 27

 3 AJAX Architectures . 61

Part II Power to the Client

 4 A Better and Richer JavaScript . 101

 5 JavaScript Libraries . 129

 6 AJAX Design Patterns. 163

 7 Client-Side Data Binding . 223

 8 Rich Internet Applications . 269

 Index . 309

This page intentionally left blank

 vii

Table of Contents
Acknowledgments .xi

Introduction .xiii

Part I The (Much Needed) Facelift for the Old Web

 1 Under the Umbrella of AJAX. 3

What Web Do We Want? . 4

It’s All About User Experience . 4

Origins of the Web . 7

Paradox of the Web . 9

The Biggest Benefi t of AJAX. 11

What’s AJAX, Exactly? . 12

The Paradigm Shift . 14

AJAX and New Web Projects . 17

Adding AJAX Capabilities . 17

Architecture Is the Concern . 18

The Case for Rich Internet Applications . 22

Summary . 24

 2 The Easy Way to AJAX . 27

The ASP.NET AJAX Infrastructure . 28

The Page’s Script Manager . 28

The Microsoft JavaScript Library . 35

Partial Rendering . 37

The UpdatePanel Control . 37

Programming Updatable Panels . 43

Minimizing Data Transfer . 47

Shades of Partial Rendering . 48

AJAX and JavaScript Injections . 53

Remote Methods . 54

Widgets and Effects. 56

Summary . 60

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

viii Table of Contents

 3 AJAX Architectures . 61

The AJAX Service Layer Pattern. 62

Architectural Overview . 62

Inside the HTTP Façade . 70

The AJAX Presentation Layer . 79

Security Considerations . 83

The AJAX Server Pages Pattern . 87

Architectural Overview . 88

The Classic Postback Model Revisited . 90

Libraries in Action . 92

Summary . 97

Part II Power to the Client

 4 A Better and Richer JavaScript . 101

JavaScript Today . 102

The Language and the Browser. 102

Pillars of the Language . 105

JavaScript (If Any) of the Future . 108

The Microsoft AJAX Library . 110

Overview of the Library . 110

JavaScript Language Extensions . 112

Object-Oriented Extensions. 115

Framework Facilities . 119

Summary . 126

 5 JavaScript Libraries . 129

From Server Controls to JavaScript Widgets . 130

The ASP.NET Factor . 130

The Widget Factor . 132

The jQuery Library . 137

The Library at a Glance . 138

The Core Library . 140

jQuery Selectors. 142

Working on Wrapped Sets . 149

jQuery Utilities . 151

Summary . 161

 Table of Contents ix

 6 AJAX Design Patterns. 163

Design Patterns and Code Development. 163

Generalities About Design Patterns . 164

Patterns in AJAX Development . 166

Patterns for JavaScript Development . 168

The Singleton Pattern . 169

The Model-View-Controller Pattern . 170

The On-Demand JavaScript Pattern . 175

The Predictive Fetch Pattern . 178

Generalities of the Predictive Fetch Pattern . 178

Creating a Reference Implementation . 180

The Timeout Pattern . 186

Generalities of the Timeout Pattern . 187

A Timeout Pattern Reference Implementation. 188

Related Patterns . 192

The Progress Indicator Pattern . 194

Generalities of the Progress Indicator Pattern . 194

A Progress Indicator Reference Implementation 196

Canceling an Ongoing Remote Task. 206

Other Patterns . 213

The Micro-Link Pattern . 213

The Cross-Domain Proxy Pattern . 215

The Submission Throttling Pattern . 218

Summary . 221

 7 Client-Side Data Binding . 223

An Architectural Tour of ASP.NET Data Binding . 224

Defi ning the HTML Template. 224

Defi ning the Data Source . 230

Data Binding at the Time of AJAX . 232

The Browser-Side Template Pattern . 235

Generalities of the BST Pattern . 235

Creating a BST Reference Implementation . 238

The HTML Message Pattern . 250

Generalities of the HM Pattern . 250

Developing an HM Reference Implementation . 253

x Table of Contents

A Look at ASP.NET AJAX 4.0. 260

ASP.NET AJAX Templates . 260

ASP.NET Library for ADO.NET Data Services. 266

Summary . 268

 8 Rich Internet Applications . 269

Looking for a Richer Web . 269

The Dream of Binary Code Running over the Web 270

Browser Plug-ins . 271

Microsoft Silverlight at a Glance . 274

Elements of the Silverlight Architecture. 275

Graphics and Multimedia . 277

Building Applications . 279

The Programming Model of Microsoft Silverlight . 282

WPF-Based User Interface . 282

The .NET Base Class Library . 286

Isolated Storage . 289

Networking . 295

Microsoft Silverlight and Code Security . 302

The Security Model . 302

Security Attributes . 303

Secure by Design . 306

Summary . 308

Index . 309

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

 xi

Acknowledgments

A team of people helped me to assemble this book.

Ben Ryan was sneakily convinced to support the project on a colorful Las Vegas night,
 during an ethnic dinner during which we watched waiters coming up from and going down
to the wine cellar in transparent elevators.

Lynn Finnel just didn’t want to let Dino walk alone in this key project after brilliantly
 coordinating at least fi ve book projects in the past.

Kenn Scribner is now Dino’s offi cial book alter ego. Kenn started working with Dino on
books back in 1998 in the age of COM and the Active Template Library. How is it possible
that a book with Dino’s name on the cover isn’t reviewed and inspired (and fi xed) by Kenn’s
unique and broad perspective on the world of software? The extent to which Kenn can be
helpful is just beyond human imagination.

Roger LeBlanc joined the team to make sure that all these geeks sitting together at the
same virtual desktop could still communicate using true English syntax and semantics.

I owe you all the (non-rhetorically) monumental “Thank you” for being so kind, patient,
and accurate.

—Dino

This page intentionally left blank

 xiii

Introduction

This book is the Web counterpart to another recently released book I co-authored with
Andrea Saltarello: Microsoft .NET: Architecting Applications for the Enterprise (Microsoft
Press, 2008). I wrote it, in part, in response to the many architectural questions—both small
questions and big ones—that I was asked repeatedly while teaching ASP.NET, AJAX, and
Silverlight classes.

Everybody in the industry is committed to AJAX. Everybody understands the impact of it.
Everybody recognizes the enormous power that can be derived from its employment in
 real-world solutions.

Very few, though, know exactly how to make it happen. There are so many variations to AJAX
and so many implementations that even after you have found one that suits your needs, you
are left wondering whether that is the best possible option.

The fact is that AJAX triggered a chain reaction in the world of the Web. AJAX represents a
change of paradigm for Web applications. And, as the history of science proves, a paradigm
shift has always had a deep impact, especially in scenarios that were previously stable and
consolidated.

I estimate that it will take about fi ve years to absorb the word AJAX (and all of its background)
into the new defi nition of the Web. And the clock started ticking about four years ago. The
time at which we say “the Web” without feeling the need to specify whether it contains AJAX
or not . . . well, that time is getting closer and closer. But it is not that time yet.

Tools and programming paradigms for AJAX, which were very blurry just a few years ago,
are getting sharper every day. Whether we are talking about JavaScript libraries or suites
of server controls, I feel that pragmatic architectures can be identifi ed. You fi nd them
 thoroughly discussed in Chapter 3, “AJAX Architectures.”

Architecting a Web application today is mostly about deciding whether to prefer the richness
of the solution over the reach of the solution. Silverlight and ASP.NET AJAX are the two
platforms to choose from as long as you remain in the Microsoft ecosystem. But the rich vs.
reach dilemma is a general one and transcends platforms and vendors. A neat answer to that
dilemma puts you on the right track to developing your next-generation Web solution.

Who This Book Is For

I believe that this book is ideal reading for any professionals involved with the ASP.NET
 platform and who are willing or needing to fi nd a solution that delivers a modern and rich
user experience.

xiv Introduction

Companion Content

Examples of techniques and patterns discussed in the book can be found at the following
site: http://www.microsoft.com/learning/en/us/books/12926.aspx.

Hardware and Software Requirements

You’ll need the following hardware and software to work with the companion content
 included with this book:

■ Nearly any version of Microsoft Windows, including Vista (Home Premium Edition,
Business Edition, or Ultimate Edition), Windows Server 2003 and 2008, and
Windows XP Pro.

■ Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition, and Microsoft Visual Web Developer 2008
Express Edition.

■ Microsoft SQL Server 2005 Express Edition, Service Pack 2 or Microsoft SQL Server 2005,
Service Pack 3, or Microsoft SQL Server 2008.

■ The Northwind database of Microsoft SQL Server 2000 is used to demonstrate data-access
techniques. You can obtain the Northwind database from the Microsoft Download Center
(http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-
EEBC53A68034&displaylang=en).

■ 1.6 GHz Pentium III+ processor, or faster.

■ 1 GB of available, physical RAM.

■ Video (800 by 600 or higher resolution) monitor with at least 256 colors.

■ CD-ROM or DVD-ROM drive.

■ Microsoft mouse or compatible pointing device.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might fi nd includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at http://www.microsoft.com/learning/
books/online/developer and is updated periodically.

http://www.microsoft.com/learning/en/us/books/12926.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.microsoft.com/learning/books/online/developer
http://www.microsoft.com/learning/books/online/developer

 Introduction xv

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge
Base article.

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft ASP.NET and AJAX: Architecting Web Applications Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

http://www.microsoft.com/learning/support/books

This page intentionally left blank

 1

Part I

The (Much Needed) Facelift
for the Old Web

In this part:

Chapter 1: Under the Umbrella of AJAX . 3

Chapter 2: The Easy Way to AJAX. 27

Chapter 3: AJAX Architectures . 61

This page intentionally left blank

 3

Chapter 1

Under the Umbrella of AJAX

 Forget what we think we know about the limitations of the Web, and begin to
imagine a wider, richer range of possibilities.

 —Jesse James Garrett

 In 2007, more or less at the same time I was proudly showcasing my hot new book on ASP.NET
AJAX, an old friend of mine started investigating the features of AJAX and the still largely unknown
Silverlight platform. He had just been given the task of planning and coordinating a huge
 migration project within his company.

 He spent about ten years building, maintaining, and progressively enhancing a vertical
 application that had won an industry award and was aimed at some special categories of
professionals, such as lawyers and public accountants. At some point, his company had been
acquired by a larger group and the old application had to be integrated into an existing Web
platform.

 With the whole company about to abruptly switch from a desktop mindset to a Web paradigm,
my friend was trying to be reasonably thoughtful. He was looking for the best available tools
of the current Web paradigm to minimize the pain and costs of migration while delivering an
 effective, desktop-like experience to the existing users. With all the buzz and hype around
AJAX (and that fancy new thing known as Silverlight), his efforts seemed to be a matter of
 prudence and the fruit of an innate “try before you buy” attitude.

 I met my friend at TechEd 2007, where I was giving a couple of presentations on the subject
of ASP.NET AJAX. To my greatest surprise, at the end of my last session he came by and
 whispered apologetically, “Sorry Dino, but is that all of it?” He was aware that his question
might sound insolent or silly and that it undermined the beautiful story I had just told the
audience.

 My presentation had been about how a new age of prosperity and success was about to
begin for all Web developers and architects. It included the success story of how one of the
building blocks of Web 2.0 came along. I told the fantastic story of how the Web was, all of a
sudden, about to offer the same set of functionality as the desktop.

 Unfortunately, the Web is not the desktop.

 And it will never be like that, no matter which moderating suffi x you attach to the word
 desktop. You can label the Web as desktop over HTTP or browser-hosted desktop or even
desktop in the cloud. It is, and will always be, a pure marketing gimmick.

4 Part I The (Much Needed) Facelift for the Old Web

What Web Do We Want?

 My friend got it right quite quickly. The Web is the Web, with its pros and cons. Using AJAX
(or even Silverlight) as a shortcut or, worse yet, as a magic wand to simplify development—
from developing new commercial Web sites to performing complex enterprise migration
projects—is just incorrect. And it’s potentially a deadly decision with regard to the assets of a
company.

 My friend, who looked at AJAX with a totally unbiased mind, had the farsightedness to clearly
and quickly see that AJAX was something important for Web-related development but that it
was not the easy fi x that many people were enthusiastically depicting it to be. (And to some
extent, it’s still being depicted that way today, two years later.)

 In light of this, the following equation is not realistic:

desktop = Web + AJAX

 It doesn’t work outside the dreams of some IT managers.

 Although my friend had perceived the key facts about AJAX, his insight didn’t solve his
 primary concern. By fi guring out AJAX quickly, though, he was able to focus his brainstorming
in the right direction and center his thoughts around the right questions.

 So what are the right questions to ask about AJAX?

It’s All About User Experience

 As I see things, there’s just one key question, and a number of more technical and in-depth
questions spread out from this question later. The fundamental question is, “What Web do
we want?”

 Admittedly, the question implies we are not entirely happy with today’s Web and are looking
for a different type of Web. At the end of the day, what we all want from the Web is a much
better user experience, in the broadest possible meaning of both the term user and the term
experience.

 So what does user experience mean to various people?

User Experience for Dummies

 Jesse James Garrett has made it into the history books as the man who coined the now
 ubiquitous and universal acronym AJAX, back in 2005. (To read the full story, pay a visit to
http://www.adaptivepath.com/ideas/essays/archives/000385.php.)

 For readers who might have spent the last three years in a remote rainforest with no
 connectivity at all, I’ll spell out the acronym here—Asynchronous JavaScript And XML.
(Later in the chapter, I’ll comment on the role and importance of each part of the acronym.)

http://www.adaptivepath.com/ideas/essays/archives/000385.php

 Chapter 1 Under the Umbrella of AJAX 5

 Jesse James Garrett, however, is neither a software architect nor a Web developer. He calls
himself an experience designer, and he’s also the author of a widely referenced book on Web
design titled The Elements of User Experience (New Riders Press, 2002). In short, Jesse James
Garrett is probably one of the most qualifi ed people in the world to give us a concise and
comprehensible defi nition of user experience (UE).

 Understanding the whys and wherefores of UE is the fi rst step to understanding what
Web we want and how to go forward and look for valid technologies to employ in its
implementation.

 The concept of UE is made of many disparate parts. Creating a positive user experience for
a Web site involves enabling end users to use the site for their own purposes, which might
include business, work, personal activities and interests, and entertainment. UE is about how
a Web site (or, generally, any system) is perceived, learned about, and fi nally used; and how a
user feels about that.

 A brilliant team of developers, architects, and designers might be able to serve up a set of Web
functions that meet the original strategic intent. But they might fail to provide a consistent
and pleasant user experience. Using Garrett’s wording, the concept of a good user experience
sounds like this:

 A site that really works fulfi lls your strategic objectives while meeting the needs of
your users. Even the best content and the most sophisticated technology won’t help
you balance those goals without a cohesive, consistent user experience to support it.

 A superior UE springs from a powerful mix of usability, data and work fl ows (often referred
to as information architecture), appealing graphics, and interaction model. As you can see,
there’s no code or software architecture involved at this level. Software comes later or is
 developed in parallel to fi guring out how to implement these characteristics. For sure, it takes
the overall Web development thing to another dimension.

User Experience for the Poor Web User

 Let’s set aside these concepts from the fi eld of experience design as applied to the Web and
focus on the software side of the new Web. For the purposes of this book, we’ll happily
 assume that someone on the development team has valuable ideas they want to instill in the
otherwise foggy minds of the team’s members.

 For the end user, the next WWW (short for the Web We Want) is centered on providing the
user with a high-quality, fi rst-class experience when passing through your site. Whatever that
means. Figuring out what that means is the job of developers, designers, and UE people.

 Note This is a sort of psychological note. For about ten years, the poor Web user navigated
to a site to get some sort of information related to personal or business interests—documents,
 reports, charts, prices, best prices, timetables, account balances, various types of news, live scores,
 itineraries, guides, essays, and so on.

6 Part I The (Much Needed) Facelift for the Old Web

 For part of this decade, the poor Web user felt lucky and happy to draw something of value
from the bottomless well of the Internet. At some point, though, while the well remained largely
bottomless, other critical resources began to be scarce—bandwidth and, more importantly,
 patience.

 The poor Web user could accept slow responses when he had enthusiasm for this new thing.
But when the exciting new thing turned to a commodity, the enthusiasm vanished and the
poor Web user began to wonder if there could be a better way to accomplish the same tasks.
Now if there’s no better way, he feels unhappy and starts looking around for smarter and more
 cutting-edge competitors.

User Experience for Developers

 In raw developer terms, a high-quality user experience means essentially a more responsive
application that can better deal with network latency. Web users today are more sophisticated
than they were ten years ago and demand higher performance and responsiveness regardless
of the latency and bandwidth hurdles you, as a developer, might have to overcome.

 However, you can’t change the laws of physics. It still takes electrons a certain amount of time
to move from one place to another. Therefore, developers work to optimize the server-side
code and logic to tweak every ounce of performance and scalability from that code. But often
even this isn’t enough. That’s when developers look to other tricks, perhaps even very new
tricks that require rethinking how Web applications interact with the user.

 The tricks mostly involve asking the application to do more work on the browser’s side—even
in the background, when the browser is idle—by sending and requesting much less data
over the wire and by repainting smaller areas of the page. In summary, we will accept more
roundtrips, but each carrying only a small chunk of data and only if the communication is
performed in the background and results in partial page refreshes instead of complete page
browser reloads.

 From a developer’s perspective, this is not a small step at all. It’s not merely a smart form of
optimization. Instead, it’s a huge jump that changes our understanding of the foundation of
the Web as we know it today.

 A more responsive application is also more interactive from the user’s perspective. It shows
animations, visual effects, and sharp graphics that change quickly and smoothly to refl ect the
state of the page. This aspect of the new Web is an enhancement aimed at improving the
experience. However, it doesn’t have much to do with hard-core, server-side development
and the information architecture.

 It is rather more about having enhanced graphics and layout, which are more the purview
of the Web designer and artist than the implementing developer. In the end, though, some
browser-side code trickery will still be necessary to give the user the impression that the
page is more responsive and easier to interact with. Building a nice user experience is a team
effort—design plus browser-side script.

 Chapter 1 Under the Umbrella of AJAX 7

 How can developers implement more responsive and interactive Web pages? Again, let
me answer this question with another question. What is a Web page made of? HTML and
JavaScript. These are the pillars of Web pages as we know and write them today. Any tricks
you come up with will necessarily be applied here.

User Experience for Managers

 Written four years ago, Garrett’s aforementioned excellent essay on AJAX is starting to look a
bit—yes, let’s say it—outdated. The paper discusses incontrovertible facts about the mechanics
of the Web with and without AJAX. But it also contains an introduction and a conclusion that
are a bit misleading when read today, four years later. (As a rule of thumb, I consider fi ve years
of software progress as the logical equivalent to a geological era. So four years are defi nitely a
lot of time.)

 Managers might sometimes read through moderately technical stuff like what you fi nd in
Garrett’s work, but it’s very hard for them to read between the lines and grasp the implications
of a technical description. What remains in their mind is that the interactivity and responsiveness
gap between desktop and Web applications is now closing thanks to AJAX.

 AJAX is a big innovation and a revolutionary change for the Web. However, it’s not free and
often costs you quite a bit in terms of resources.

 Managers see the user experience as mashups and cool features. Building a mashup, though,
is not like querying a database table on a local or remote server. Using mashups makes
 well-designed information architecture more essential than ever. It makes software architecture
slightly different and raises a whole bunch of new development issues.

 Making Web sites appealing and easy to navigate is more possible with AJAX than without
it. But AJAX is not magic; it will never give you a desktop platform over HTTP. And, fi nally,
there’s the matter of tradeoffs and making (ideally, correct) decisions.

Origins of the Web

 The Web We Want is a Web that can deliver a much better user experience. As a Web developer
or architect, your role is to increase the responsiveness of pages and the interactivity of most
features. The former will likely require some architectural work on code and information; the
latter just requires more script code to be put to work.

 The fi nal destination for this book is to take you to the recommended architectural changes
needed to get the Web We Want.

 AJAX is a revolution. Great, but why? What is wrong with the old Web?

 Let’s begin by looking at the limitations imposed by the origins of the Web and take our fi rst
step toward understanding why the recommended architectural changes are necessary to
shift to the new, more responsive Web.

8 Part I The (Much Needed) Facelift for the Old Web

The First Cry

 The Web as we know it today was prototyped in the early 1990s at CERN, the European
Organization for Nuclear Research. (The acronym originates from the French name of the
organization.)

 Scientists at CERN worked on the concept of hypertext and arranged an ad hoc markup
 language for expressing interlinked text-based documents and a communication protocol
for retrieving such documents. Needless to say, the markup language is HTML and the
 communication protocol is HTTP. HTTP in particular works on top of a Transmission Control
Protocol (TCP) connection occurring over port 80 by default.

 The fi rst experiment of connecting two machines over HTTP took place in the summer of
1991. Less than two years later, the CERN waived any copyrights on it, thus offi cially starting
the era of the World Wide Web.

 A lot has happened since. We had, for instance, the browser wars. This refers to a period in the
late 1990s when basically each new browser release was made to edge out competitors by
 developing custom extensions to the markup and building in-house technologies to improve
the programmability of sites and, only as a side effect, the user experience. Standardization via
the World Wide Web Consortium (W3C) committees helped to have an offi cial specifi cation for
some Web features such as CSS and HTML Document Object Model (DOM). To be effective,
though, a Web standard must be widely supported by actual browsers. It took years before all
major browsers aligned to support a common set of features (often only in the realm of standard
 specifi cations) that was powerful enough to begin a new era for the Web—the AJAX era.

The Mechanics of the Web

 The Web is based on a request/response model that involves a client browser and the Web
server. This is shown in Figure 1-1.

HTTP request

Browser

CSS
<html>

:
</html>

FIGURE 1-1 The traditional Web application model

 Chapter 1 Under the Umbrella of AJAX 9

 According to this model, a continuous action originates a sort of stop-and-go pattern. The user
interacts with the page and at some point sends a request back to the server. As the server
processes the request, the user waits. Next, a new page is displayed to the user that requires
some more work. The work produces a new request to the server, after which the user waits—
over and over again.

 In HTML, the user starts a request by hitting a submit button. Today, the standard implementation
of the HTML Document Object Model also requires a script-based method, but that was not the
case in the beginning. The browser interprets a submit click as the order of submitting the content
of the host form to the specifi ed action URL. Next, the browser freezes the user interface (UI) until
a new HTML page is received.

 In the classic Web model, the browser implements a request by sending out an HTML form
and receiving a brand new HTML page.

The Original Purpose of HTML and HTTP

 HTML and HTTP were created at CERN to serve a well-defi ned purpose: improving the fl ow
of information across the network and sharing documents more easily using the hypertext
model. A document created using HTML can contain links to other documents in the same
network—for example, documents referenced in the bibliography of a scientifi c paper.

 After they were released for public use in 1993, HTML and HTTP gained the incredible
 success we all know. An army of developers were able to use HTML and HTTP to build
 millions of pages in richer and richer Web sites. Since then, HTTP and HTML in particular have
been squeezed to extract every single fragment of functionality.

 Quite paradoxically, the Web was originally created to serve as an internal tool in a relatively
small community of people—at least compared to today’s communities. It turned out,
 instead, to be a monster that changed our personal lives and our businesses.

Paradox of the Web

 The use of the adverb paradoxically is deliberate. So what is the paradox of the Web?
In 15 years, developers and designers have been able to build the World Wide Web as we
know it today using extremely simple tools that were not specifi cally designed for the job.

 This process has given rise to two opposing forces. One is the force of progress, which wants
the Web to become more powerful every day, with new features and applications. The other
is the resistance from the limitations of the building blocks of the Web, which are not really
designed to support the current workload.

 The paradox lies in the fact that rebuilding the Web entirely is completely unrealistic. We need
to improve it signifi cantly, but without changing its (now inadequate) columns.

10 Part I The (Much Needed) Facelift for the Old Web

The Sturdy, Old Columns That Hold Up the Web

 The Web wasn’t designed for many of the purposes we use it for today. In particular, it wasn’t
designed to do any publishing. It wasn’t specifi cally aimed at building the presentation layer
for any distributed systems. Supporting multimedia content and rich graphics was certainly
not a priority.

 More importantly, it was not designed to secure its content. HTTP is an extremely simple
and effi cient protocol, but it’s not technologically secure. What about HTTPS, then? HTTPS is
 essentially an extra layer of cryptography applied at the gate when the packet leaves or reaches
the computer. HTTPS protects the message but doesn’t help much with authentication and
authorization. What about client certifi cates? Well, they certainly work. But like HTTPS, client
certifi cates are a feature bolted onto the native (and unsecure) HTTP protocol.

 Why was HTTP designed this way?

 In 1991, the whole theme of Web security was unimaginable. Web security started to be
a serious issue only after the bold success of the World Wide Web made it worthwhile
for hackers to plan their attacks. Once we started sending money over the Web, with the
 associated personal information, then and only then did it make it worthwhile for malicious
hackers. Before that, hacking was more a college prank than anything.

 Born as a tool to manage HTTP connections and parse HTML pages, the browser became an
increasingly powerful tool step by step with the rapid increase in the number of Web sites
around the world.

 One of the fi rst enhancements that browsers made to the syntax of HTML was the support
for a programming language—JavaScript. The fi rst browser to deploy a JavaScript engine
was Netscape Navigator 2.0 in December 1995. JavaScript was introduced to give authors of
Web-deployed documents the ability to incorporate some logic and action in HTML pages.

 Later on, other features were added, such as cookies, the Document Object Model (DOM) for
publicly exposing in a programmable way the content being displayed, and cascading style
sheets (CSS) to quickly style elements of the page. In the heat of the “war of the browsers,”
multiple browsers offered the same features with each using its own syntax and model. By
the end of the last century, it was clear that serious Web programming couldn’t be planned
or actually done without common worldwide standards.

 The W3C committees made it happen. As a result of their efforts, we have standard HTML
and a standard JavaScript language. These are the pillars of today’s Web. And for the
 purposes of today, they are tottering pillars.

Pillars Can’t Be Changed

 A pillar is not something you can replace without possibly causing the building to collapse.
You can fi x it or make it stronger, but you can’t replace it. This is the situation we currently
face with the pillars of the World Wide Web: HTML and JavaScript.

 Chapter 1 Under the Umbrella of AJAX 11

 These twin supports for the Web are common and popular. Revolutionary changes to either
of them would seriously affect activity on the Internet. Existing applications wouldn’t be
touched, but new browsers would be needed to run applications based on the modifi ed
 pillars. The whole world of users would split in two—those who can change browsers and
those who can’t or don’t want to change browsers. For the Web, which owes its popularity to
being accessible to all, this is a nightmare scenario.

 The Web grew too quickly to allow people to consider the adequacy or limitations of its
 pillars. Or, put another way, people found it easier to push the Web to the maximum instead
of planning for an infrastructure with more capabilities. On the other hand, the Web is public
and since 1993 it has not been the intellectual property of any company or organization.
Changes to it are possible, but only if they’re in compliance with accepted and recognized
standards.

 Note Despite the Java prefi x in its name, the JavaScript language has very little to do
with the popular Java language. JavaScript was designed to look like a simpler Java for
 nonexpert page authors—hence, the name. JavaScript is an interpreted, dynamic-binding,
and weakly typed language with fi rst-class functions. It has some light fl avors of object
 orientation, it’s not compiled and, maybe more importantly, it’s subject to the browser’s
 implementation.

 Created to add action to Web pages, and kept simple on purpose, the JavaScript language
perfectly met initial expectations for it, but it failed to exceed those expectations. That’s
why JavaScript is currently a pain in the neck for Web developers. But we can’t replace
it without breaking widely agreed upon and stable standards. This is a big part of the
Web paradox.

The Biggest Benefi t of AJAX

 What users want is a better experience, and not all Web applications and sites offer that.
For this reason, the world of the Web is moving toward AJAX.

 AJAX is defi nitely a plus for the Web.

 AJAX capabilities address the user’s experience in the broadest sense—by providing a
 continuous feel, fl icker-free updates, interface facilities, mashups, live data, and so on. AJAX
is the way that’s available to us to reinforce the tottering pillars safely and making them more
stable.

 AJAX is the only signifi cant plus we can afford. This limitation is not merely a matter of
 money or economics. We simply can’t get a new Web redesigned from the foundation
up and implemented without disrupting or just slowing down service. The Web is now a
 fundamental commodity. We all need it. No serious disruptions are allowed.

12 Part I The (Much Needed) Facelift for the Old Web

What’s AJAX, Exactly?

 AJAX is not a technology. AJAX is not something you can install and run. AJAX doesn’t
 require any plug-in modules and is not browser specifi c. Quite the opposite: the key to the
success of AJAX is that virtually any browsers released in the past fi ve years are great hosts
for AJAX-based applications. So what’s AJAX?

 AJAX is a blanket term. As disappointing as it may sound, the term AJAX was coined
 primarily as a concise and cool way to sell a set of technologies and a new approach to Web
development.

 What initially was simply a clever approach to building pages, scaled to the size of an entire
real-world Web front end, turned out to be the incarnation of a new paradigm for writing
Web applications. The AJAX approach is probably destined to last for many years or until
conditions exist for rebuilding the Web from scratch (whichever comes fi rst).

A New Way to Do Web Programming

 AJAX refers to using a set of specifi c browser technologies to build pages. It’s amazing to note
that all these technologies are nothing really new. We’re talking about browser technologies
that have been around for ten years now—XMLHttpRequest, DOM, and JavaScript.

 It’s simple to use these technologies to implement a given set of features in an individual page.
It’s much more complex to build an entire application according to the AJAX paradigm. Why?

 Especially with the advent of ASP.NET, the world of Web programming has been simplifi ed.
Frameworks offer a thick layer of abstraction over basic HTML and HTTP interaction, and
the ASP.NET development environment makes it easy with automated code generation and
remote debugging. And all of it works on the assumption that the browser sends an HTML
form to get back an HTML page, one of the foundational pillars of the Web.

 It’s relatively easy to change the paradigm for a single feature in a single page. It can be quite
 diffi cult, however, to extend the new paradigm to the whole application. Why? Because the world
of AJAX programming has not been similarly simplifi ed—most AJAX implementations (at least
effi cient and properly designed implementations) are still built by hand. But this will change.

The XMLHttpRequest Object

 As I mentioned, AJAX stands for Asynchronous JavaScript and XML. Five years after its
 introduction, and from a more technological point of view, we can say that the fi rst part of
the acronym is acceptable but the second part is arguable.

 The AJAX development model revolves around one common software element—the
XMLHttpRequest object. The availability of this object in most browsers’ object model is the
key to the current ubiquity and success of AJAX applications.

 Chapter 1 Under the Umbrella of AJAX 13

 Originally introduced with Internet Explorer 5.0, the XMLHttpRequest object is an internal
object that the browser publishes to its scripting engine. In this way, the script code found in
any client page—typically, JavaScript code—can invoke the object and take advantage of its
functionality.

 The XMLHttpRequest object allows script code to send HTTP requests and handle their
responses. Functionally speaking, and despite the XML in the name, the XMLHttpRequest
 object is nothing more than a tiny object model to place HTTP calls via script in a
 non-browser-led way. The object is scripted from client JavaScript code and, with regard to
the browser, it operates asynchronously. (With respect to your code, on the other hand, the
call can be either synchronous or asynchronous.)

 When a connection to a Web server is led by the browser, the current page displayed to the
user is lost. The page becomes inactive and frozen as soon as the user clicks to submit the
content to some remote server.

 With XMLHttpRequest, conversely, developers directly control the placement and outcome
of the request. The actual mechanics of the request/response don’t make any difference to
the user. However, the possibility of using XMLHttpRequest enables Web developers to build
features that ultimately deliver a much better user experience.

The Document Object Model

 In addition to XMLHttpRequest, a second technology contributes to making AJAX so effective
and attractive—the availability of an object model that exposes the current content of the
page in an updatable manner.

 Microsoft pioneered updatable Web pages in the late 1990s. With Internet Explorer 4.0
 (released back in 1997), Microsoft introduced Dynamic HTML (DHTML), which is a powerful
combination of HTML, style sheets, and scripts that allows programmatic changes to any
displayed page. Several companies since then have worked out their own DHTML object
model—often referred to as the Browser Object Model (BOM). The W3C committee worked
hard to get vendors to agree on an interoperable and language-neutral solution for exposing
Web pages through an updatable programming interface. The result is the Document Object
Model (DOM) as opposed to a browser-specifi c BOM.

 The DOM is a platform-independent and language-neutral representation of the contents of
a Web page that scripts can access and use to modify the content, structure, and style of the
document.

 Note I’d even dare say that without an updatable DOM the whole AJAX approach wouldn’t be
possible at all. Using XMLHttpRequest, a developer can asynchronously connect to a URL and
grab some fresh data. However, how could she integrate such fresh data into the current page
without an updatable representation of the page? That’s why the DOM is required and critical.

14 Part I The (Much Needed) Facelift for the Old Web

The Paradigm Shift

 We’re all witnessing (and as users, we’re also contributing) to an interesting and fairly unique
phenomenon—the Web is undergoing an epochal change right before our eyes as a result of
our actions.

 Only ten years ago, the majority of developers considered an application far too serious a
thing to reduce it to an unordered mix of script and markup code. In the late 1990s, the cost
of an application was sweat, blood, tears, and endless debugging sessions. There was neither
honor nor fame for the “real” programmer in writing Web applications.

 As drastic as it might sound, the Web revolutionized the concept of an application. Now
AJAX is revolutionizing the concept of a Web application.

 The Web will always remain separate from the desktop, but Web applications are going to
enter a new age.

The Pages-for-Forms Model

 Today, communication between the browser and the Web server occurs through forms.
A form is a collection of values stored in a group of HTML input fi elds.

 From a user’s perspective, the transition occurs through pages. A page is a piece of HTML
markup returned by the Web server. Each user action that originates a new request for the
server results in a new page (or a revamped version of the current page) being downloaded
and displayed.

 The browser-to-server communication employs the classic HTTP protocol. As is widely
known, the HTTP protocol is stateless, which means that each request is not related to the
next and no state is automatically maintained, neither on the client nor on the server.

 The state objects developers know and use in, say, ASP.NET are nothing more than an
 abstraction provided by the server programming environment. The state objects developers
know and use on the client (for example, cookies) are nothing more than an abstraction
 provided by the client browser.

 The Pages-for-Forms model was just fi ne in the beginning of the Web age when pages
 contained little more than formatted text, hyperlinks, and maybe some images. The success
of the Web has prompted users to ask for increasingly more powerful features, and it has
led developers and designers to create more sophisticated services and graphics. As a result,
 today’s pages are heavy and cumbersome.

 Given the current architecture of Web applications, each user action requires a complete
 redraw of the page. Subsequently, heavier pages render out slowly and produce a good
deal of fl ickering. Projected to the whole set of pages in a large, portal-like application, this
 mechanism is perfect for causing great frustration to the poor end user.

 Chapter 1 Under the Umbrella of AJAX 15

 Because nobody is willing to come back to the scanty, “Times New Roman” pages of the
 mid-1990s, a new Web model is possible only via a smarter form of interaction between the
client and the Web server.

The Data-for-Data Model

 For too many years, the old Web model survived because of compatibility and reach. To
 accommodate businesses, Web sites had to be as easy as possible to reach for any potential
customer. From a technology perspective, the AJAX revolution was ready to start back in
1999 when XMLHttpRequest and an updatable DOM were designed and implemented.

 It took a few more years instead.

 This happened because for quite some time only high-end browsers (also known as rich,
 up-level browsers) provided support for both XMLHttpRequest and an updatable DOM. For a
long time, only companies that could exercise strict control over the capabilities of the client
browsers were able to choose the AJAX model for their sites. In short, for too long a rich
browser also has meant a browser with too limited reach. For too long, using such a browser
defi nitely has been a bad choice for most businesses.

 Around 2004, many people realized at the same time that, perhaps because of a rare astral
convergence, 90 percent of the browsers available in the marketplace were supporting the
same set of features—in particular, both XMLHttpRequest and an updatable DOM.

 This made it possible for Web architects and developers to set up the Data-for-Data
 interaction model. According to this model, a Web page puts plain data in the body of a
HTTP packet instead of inserting the content of an HTML form. And the Web server just
 returns plain data—not a whole new HTML page—as its response. Figure 1-2 offers a
 graphical view of the model.

AJAX layer

Browser

HTTP request

Response

JavaScriptJavaScript

FIGURE 1-2 The AJAX Web application model

16 Part I The (Much Needed) Facelift for the Old Web

 Some JavaScript code embedded in the client page triggers an HTTP request to the Web
server using XMLHttpRequest. When the response comes back, another piece of client code
parses it to some JavaScript object and, using DOM, integrates the new content in the current
page.

 From the user’s perspective, the operation takes place asynchronously, and the user can keep
on reading and scrolling the page without interruption.

 Important Is the Data-for-Data interaction model—the essence of AJAX—really a faster
model? Certainly, the Data-for-Data model moves around much less information than the classic
HTTP page response. However, the big issue is network latency, which is more signifi cant a factor
than the transmitted quantity of data. And network latency affects the Data-for-Data interaction
model because requested data is delayed. Moreover, the more roundtrips you make, the more
network latency affects your application (that is, the effects are additive). So what’s the point?

 Performance, though, is not only made of raw numbers. Where a user and a user interface are
concerned, the concept of performance morphs into the concept of perceived performance.
A user who can keep on working with a page will feel much better than one who cannot.
Therefore, data requests are made in the background and performed asynchronously. The user
never knows the data was requested, and the user interface never “freezes” while waiting for new
data. Most commonly, smaller portions of the page are independently updated, further providing
the feeling of (increasing) perceived performance.

 Is that all? As my old friend understood quite quickly, unfortunately XMLHttpRequest and an
 updatable DOM are only the starting point of a much longer revolution that necessarily will need
to touch on the architecture of pages and applications.

Refactoring to AJAX: Features, Pages, and Applications

 Gaining the ability to place asynchronous calls to the Web server while bypassing the browser’s
standard procedure is only the fi rst, and largely preliminary, step to building an AJAX site.

 When the benefi ts of the AJAX model are being discussed, often the following example is
given. Suppose you want to know the balance of your bank account or any other simple and
small piece of information. With the standard Web model, you submit a request to a server
URL and wait for a new page to be (downloaded and) served. Intertwined with advertising,
banners, graphics, menus, and disclaimers is the number you were looking for. With AJAX,
on the other hand, the page remains up and running (with all of its banners, menus, and
 disclaimers) and only the number is downloaded.

 Unfortunately, the example addresses only the feature level. It says nothing about the rest of
the page and the rest of the application.

 AJAX is a paradigm shift. And a paradigm shift always has a dramatic impact because it
 requires that people change their habits and embrace new and largely unknown practices.

 Refactoring is a key word in AJAX.

 Chapter 1 Under the Umbrella of AJAX 17

 What should you refactor in your application? The whole application? Or only a bunch of
 individual pages? Or should you simply consider optimizing just one critical feature or two?

AJAX and New Web Projects

 After a decade of increasingly powerful tools and technologies designed for effective and
quick development of Web sites and applications (such as ASP, Microsoft Visual InterDev,
Dreamweaver, Java Server Pages, ASP.NET, and Microsoft Visual Studio), we’ve been pushed
into the AJAX age where no such tools exist.

 The world of AJAX development is not yet embraced by the tools you use. Everything you
need can be manually created; however, very few tools exist. This is the issue that project
leads (such as my old friend) and IT managers face when they get past the initial enthusiasm.

 As I see things, there are three ways to approach AJAX. One is to just add AJAX capabilities to
an existing solution or to a new solution designed in the traditional, non-AJAX way. Another
is sticking to the Web paradigm (HTML and HTTP) but rethinking the architecture of the
 application and its implementation. This means learning new patterns, facing new issues,
solving new problems, and using new tools. The third approach is to take the route of a
Rich Internet Application (RIA)—a desktop-like application hosted in the Web browser via a
 plug-in.

 I’m going to give a quick strategic overview of these three approaches in the rest of the
chapter. The remainder of this book goes into more detail about a particular approach. Part I,
“The (Much Needed) Facelift for the Old Web,” covers the fi rst approach in more technical
depth. The second approach and RIAs are covered in Part II, “Power to the Client.”

Adding AJAX Capabilities

 Most Web sites today might be signifi cantly improved in terms of usability and user experience
with a touch of AJAX. As mentioned, the core of the AJAX model is an internal browser object
and the DOM. The interface of both is defi ned according to standards—still a de facto standard
for XMLHttpRequest and an offi cial W3C standard for the DOM.

 This means that adding AJAX capabilities requires only a bit of script code. You can add AJAX
capabilities to any page regardless of the underlying programming platform—be it classic
ASP, ASP.NET, Java Server Pages, PHP, or plain HTML.

Selective Updates

 Adding AJAX capabilities entails working at the page level, when not directly at the feature
level. The scaffolding of the application doesn’t change, and so it is for the inspiring
 principles and overall architecture.

18 Part I The (Much Needed) Facelift for the Old Web

 With this approach, you apply selective updates to the parts of a page that need a facelift.
You do so by employing smart tricks to work around the classic behavior of the page.

 Vendors provide some tools to make this process quick and effective. Effectiveness here is a
critical parameter. A solution that applies AJAX updates to a Web page can be based only on
JavaScript and must work well in a cross-browser manner.

 The perfect example of what “adding AJAX capabilities” means is ASP.NET partial rendering,
which I’ll cover in Chapter 2, “The Easy Way to AJAX.” Other possibilities exist, too. For example,
vendors of UI suites such as Telerik, Infragistics, ComponentArt, and Gaiaware offer their own
products that, in the ASP.NET world, allow you to reuse your skills entirely while getting a fully
AJAX-enabled presentation layer.

Costs and Benefi ts

 By simply adding AJAX capabilities, you don’t turn your architecture upside down and you
save signifi cant time and costs. It’s by far the cheapest option, and it still gets you a Web site
that is perceived to be much faster than the old one.

 For developers, the impact is limited, as all they have to learn is how to use a small set of new
controls and features. Adding AJAX capabilities is the most conservative choice; take what
you have and make it better.

 In my opinion, this approach is ideal for existing Web sites when it’s ascertained they need
some updating. If you have a complex site and are concerned about the architecture, this
option is probably as good (or as bad) as others. Selecting a different option certainly gives
rise to additional issues, such as possible shortage of skills, higher learning curves, and longer
development times. Like everything else in AJAX, there’s a tradeoff to be considered.

 Note Currently, the world of the Web is evolving and it’s hard to see which products and
 approaches will emerge from the process. For what it’s worth, this strategy has no signifi cant
future.

 It certainly can be used, and it still makes your site work for you; however, the underlying
 approach is a dead end. It’s likely that in a few years new tools will be created to make building
AJAX solutions a walk in the park in much the same way it is today with classic ASP.NET.

Architecture Is the Concern

 If ASP.NET fully embraces the old model of the Web, which is centered around JavaScript
and HTML, should we conclude that ASP.NET is dead? And if so, what does the future have in
store for us?

 The ASP.NET application model based on postbacks and view states is, technologically
s peaking, probably a thing of the past. However, this doesn’t mean that thousands of pages

 Chapter 1 Under the Umbrella of AJAX 19

will be wiped out tomorrow and that hundreds of applications must be rewritten. More
simply, a superior model is coming out that is more powerful both technologically and
architecturally.

 To take full advantage of the AJAX model, a different architecture is necessary and new
 patterns must be taken into account.

Some Common Architectural Concerns

 If adding AJAX capabilities to an existing site doesn’t have a huge impact on any of the parts
involved, why on earth should we ever consider a different approach?

 In ASP.NET, the classic Web model is implemented through the Web Forms API. The Web
Forms API is based on the concept of the postback. The current page contains just one HTML
form and one or more submit buttons. When the user clicks, the content is uploaded and the
new page is downloaded. The new page is created based on the content that page controls
have stored in the view state and based on the outcomes of the postback event.

 The Web Forms model was created to make Windows and Web development nearly the same
in the .NET platform. ASP.NET also has the merit of bringing a new family of developers to
the arena of building Web applications. For years, Web development has required a radically
different set of skills (such as HTML, JavaScript, DOM, and CSS) than smart C++ developers
possessed. With ASP.NET, building Web applications has become a matter of doing plain old
programming with a fi rst-class language such as C#.

 The Web Forms model sacrifi ced, almost entirely, JavaScript and client-side interaction. With
AJAX, instead, we are moving back to the original characteristics of the Web. And the Web
Forms model is less adequate every day.

 The Web Forms model can still work if you plan to add only a few new features. It stops
working if you want to design a more interactive application from scratch.

Two Tiers and a Data Format

 The original enthusiasm for AJAX tends to wane when project leads fi gure out what it takes
to build a true AJAX application from the ground up. They can see the benefi ts (interactivity,
responsiveness, user experience, performance, and scalability) of an AJAX application, but
they fi nd it diffi cult to plan for it. Why? Most often it’s the lack of tools and a clear vision of
the fi nal architecture.

 Don’t be too surprised to see different people talk about AJAX with different, often opposite,
feelings—one saying it is the next big cool thing, and the other replying that its rate of adoption
is slowing down.

 AJAX is a plus and a necessity. But it requires a new architecture, new patterns, and a new
ad hoc platform from vendors, including Microsoft. This is coming, but slowly.

