

Training
Guide

Designed to help enterprise administrators develop real-world,
job-role-specific skills—this Training Guide focuses on deploying
and managing core infrastructure services in Windows Server 2012.
Build hands-on expertise through a series of lessons, exercises,
and suggested practices—and help maximize your performance
on the job.

This Microsoft Training Guide:
• Provides in-depth, hands-on training you take at your own pace
• Focuses on job-role-specific expertise for deploying and

managing Windows Server 2012 core services
• Creates a foundation of skills which, along with on-the-job

experience, can be measured by Microsoft Certification exams
such as 70-410

Sharpen your skills. Increase your expertise.
• Plan a migration to Windows Server 2012
• Deploy servers and domain controllers
• Administer Active Directory® and enable advanced features
• Ensure DHCP availability and implement DNSSEC
• Perform network administration
• Deploy and manage Hyper-V® hosts and virtual machines
• Deploy and manage Storage Spaces and iSCSI storage
• Deploy and manage print servers
• Plan, configure, and manage Group Policy
• Automate administrative tasks with Windows PowerShell™

Programming in HTML5 with
JavaScript and CSS3 Program

m
ing in H

TM
L5 w

ith
JavaScript and CSS3

About You
This Training Guide will be most useful
to IT professionals who have at least
three years of experience administering
previous versions of Windows Server in
midsize to large environments.

About the Author
Mitch Tulloch is a widely recognized
expert on Windows administration and
has been awarded Microsoft® MVP
status for his contributions supporting
those who deploy and use Microsoft
platforms, products, and solutions. He
is the author of Introducing Windows
Server 2012 and the upcoming
Windows Server 2012 Virtualization
Inside Out.

About the Practices
For most practices, we recommend
using a Hyper-V virtualized
environment. Some practices will
require physical servers.

For system requirements, see the
Introduction.

Preparing for
Microsoft Certification?
Get the official exam-prep guide
for Exam 70-410.

Exam Ref 70-410: Installing and
Configuring Windows Server 2012
ISBN 9780735673168

Glenn Johnson
microsoft.com/mspress

Certification/
Windows Server0 000000 000000

ISBN: 978-0-7356-xxxx-x

9 0 0 0 0 U.S.A. $39.99
Canada $41.99

[Recommended]

spine = 1.28”

Programming
in HTML5 with
JavaScript and
CSS3

Glenn Johnson

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Glenn Johnson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2013933428
ISBN: 978-0-7356-7438-7

Printed and bound in the United States of America.

Fourth Printing: September 2015

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Carol Dillingham
Editorial Production: nSight, Inc.
Technical Reviewer: Pierce Bizzaca; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Copyeditor: Kerin Forsyth
Indexer: Lucie Haskins
Cover: Twist Creative • Seattle

Contents at a glance

Introduction	 xxi

CHAPTER 1	 Getting started with Visual Studio 2012 and Blend
	 for Visual Studio 2012	 1

CHAPTER 2	 Getting started with HTML5	 29

CHAPTER 3	 Getting started with JavaScript	 65

CHAPTER 4	 Getting started with CSS3	 137

CHAPTER 5	 More HTML5	 205

CHAPTER 6	 Essential JavaScript and jQuery	 261

CHAPTER 7	 Working with forms	 311

CHAPTER 8	 Websites and services	 341

CHAPTER 9	 Asynchronous operations	 393

CHAPTER 10	 WebSocket communications	 415

CHAPTER 11	 HTML5 supports multimedia	 437

CHAPTER 12	 Drawing with HTML5	 459

CHAPTER 13	 Drag and drop	 507

CHAPTER 14	 Making your HTML location-aware	 539

CHAPTER 15	 Local data with web storage	 555

CHAPTER 16	 Offline web applications	 581

Index	 621

v

Contents

	 Introduction	 xix
Backward compatibility and cross-browser compatibility	 xx

System requirements	 xx

Practice exercises	 xxi

Acknowledgments	 xxi

Errata and book support	 xxi

We want to hear from you	 xxii

Stay in touch	 xxii

Chapter 1	 Getting started with Visual Studio 2012 and Blend
for Visual Studio 2012	 4

Lesson 1: Visual Studio 2012. 5

Visual Studio 2012 editions	 5

Visual Studio 2012 support for HTML5	 6

CSS3 support	 7

JavaScript support	 7

Exploring Visual Studio Express 2012 for Windows 8	 8

Exploring Visual Studio Express 2012 for Web	 12

Lesson summary	 14

Lesson review	 15

Lesson 2: Blend for Visual Studio 2012. 16

Exploring Blend	 16

Lesson summary	 22

Lesson review	 23

Practice exercises . 23

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Contents

Exercise 1: Hello World with Visual Studio Express 2012
for Windows 8	 24

Exercise 2: Hello World with Visual Studio Express 2012
for Web	 25

Exercise 3: Hello World with Blend	 27

Suggested practice exercises . 28

Answers. 29

Chapter 2	 Getting started with HTML5	 32
Lesson 1: Introducing HTML5. 32

Understanding HTML, XHTML, and HTML5	 33

Introducing semantic markup	 34

Working with elements	 35

Creating an HTML document	 43

Lesson summary	 45

Lesson review	 46

Lesson 2: Embedding content. 47

Embedding HTML by using inline frames	 47

Working with hyperlinks	 49

Adding images to your HTML document	 50

Embedding plug-in content	 53

Lesson summary	 55

Lesson review	 56

Practice exercises . 56

Exercise 1: Create a simple website by using Visual Studio
Express for Web	 56

Exercise 2: Create additional pages	 59

Exercise 3: Embedding Content	 61

Suggested practice exercises . 64

Answers. 65

Chapter 3	 Getting started with JavaScript	 65
Lesson 1: Introducing JavaScript . 66

Understanding JavaScript	 66

viiContents

Understanding the role of data	 67

Using statements	 71

Working with functions	 73

Scoping variables	 77

Nesting functions and nested local variable scoping	 78

Converting to a different type	 78

Conditional programming	 80

Implementing code loops	 84

Handling errors	 87

Lesson summary	 88

Lesson review	 88

Lesson 2: Writing, testing, and debugging JavaScript. 89

Hello World from JavaScript	 90

Using the script tag	 100

Handling browsers that don’t support JavaScript	 101

Inline JavaScript vs. external JavaScript files	 102

Placing your script elements	 102

Using the Visual Studio .NET JavaScript debugger	 103

Lesson summary	 107

Lesson review	 107

Lesson 3: Working with objects. 108

Working with arrays	 108

Accessing DOM objects	 112

Lesson summary	 120

Lesson review 	 121

Practice exercises . 121

Exercise 1: Create a calculator webpage	 121

Exercise 2: Add the QUnit testing framework	 123

Suggested practice exercises . 133

Answers. 134

Chapter 4	 Getting started with CSS3	 137
Lesson 1: Introducing CSS3. 137

Defining and applying a style	 139

viii Contents

Adding comments within a style sheet	 139

Creating an inline style	 140

Creating an embedded style	 140

Creating an external style sheet	 141

Lesson summary	 144

Lesson review	 145

Lesson 2: Understanding selectors, specificity, and cascading. 145

Defining selectors	 146

Understanding the browser’s built-in styles	 159

Extending browser styles with user styles	 159

Working with important styles	 159

How do styles cascade?	 160

Using specificity	 161

Understanding inheritance	 162

Lesson summary	 163

Lesson review	 164

Lesson 3: Working with CSS properties. 165

Working with CSS colors	 166

Working with text	 173

Working with the CSS box model	 175

Setting the border, padding, and margin properties	 176

Positioning <div> elements	 178

Using the float property	 186

Using the clear property	 189

Using the box-sizing property	 190

Centering content in the browser window	 193

Lesson summary	 193

Lesson review	 194

Practice exercises . 194

Exercise 1: Add a style sheet to the calculator project	 195

Exercise 2: Clean up the web calculator	 197

Suggested practice exercises . 201

Answers. 202

ixContents

Chapter 5	 More HTML5	 205
Lesson 1: Thinking HTML5 semantics. 205

Why semantic markup?	 206

Browser support for HTML5	 206

Creating semantic HTML5 documents	 207

Creating an HTML5 layout container	 207

Controlling format by using the <div> element 	 213

Adding thematic breaks	 213

Annotating content	 213

Working with lists	 221

Lesson summary	 228

Lesson review	 229

Lesson 2: Working with tables . 229

Table misuse	 230

Creating a basic table	 230

Adding header cells	 231

Styling the table headers	 232

Declaring the header, footer, and table body	 233

Creating irregular tables	 238

Adding a caption to a table	 241

Styling columns	 241

Lesson summary	 242

Lesson review	 243

Practice exercises . 243

Exercise 1: Add a page layout to the calculator project	 244

Exercise 2: Add styles to the calculator layout	 246

Exercise 3: Cleaning up the web calculator	 252

Suggested practice exercises . 257

Answers. 258

Chapter 6	 Essential JavaScript and jQuery	 261
Lesson 1: Creating JavaScript objects. 262

Using object-oriented terminology	 262

x Contents

Understanding the JavaScript object-oriented caveat	 263

Using the JavaScript object literal pattern	 263

Creating dynamic objects by using the factory pattern	 265

Creating a class	 266

Using the prototype property	 271

Debating the prototype/private compromise	 274

Implementing namespaces	 276

Implementing inheritance	 278

Lesson summary	 283

Lesson review	 284

Lesson 2: Working with jQuery. 285

Introducing jQuery	 285

Getting started with jQuery	 286

Using jQuery	 287

Enabling JavaScript and jQuery IntelliSense	 291

Creating a jQuery wrapper for a DOM element reference	 294

Adding event listeners	 295

Triggering event handlers	 295

Initializing code when the browser is ready	 295

Lesson summary	 296

Lesson review	 296

Practice exercises . 297

Exercise 1: Create a calculator object	 297

Suggested practice exercises . 307

Answers. 308

Chapter 7	 Working with forms	 311
Lesson 1: Understanding forms. 311

Understanding web communications	 312

Submitting form data to the web server	 316

Sending data when submitting a form	 316

Using the <label> element	 318

Specifying the parent forms	 319

Triggering the form submission	 319

xiContents

Serializing the form	 321

Using the autofocus attribute	 321

Using data submission constraints	 322

Using POST or GET	 322

Lesson summary	 323

Lesson review	 324

Lesson 2: Form validation. 324

Required validation	 325

Validating URL input	 327

Validating numbers and ranges	 329

Styling the validations	 330

Lesson summary	 330

Lesson review	 330

Practice exercises . 331

Exercise 1: Create a Contact Us form	 331

Exercise 2: Add validation to the Contact Us form	 335

Suggested practice exercises . 337

Answers. 338

Chapter 8	 Websites and services	 341
Lesson 1: Getting started with Node.js. 341

Installing Node.js	 342

Creating Hello World from Node.js	 342

Creating a Node.js module	 344

Creating a Node.js package	 345

Fast forward to express	 354

Starting with express	 354

Lesson summary	 363

Lesson review	 363

Lesson 2: Working with web services . 364

Introducing web services	 364

Creating a RESTful web service by using Node.js	 366

Using AJAX to call a web service	 368

Cross-origin resource sharing	 380

xii Contents

Lesson summary	 381

Lesson review	 382

Practice exercises . 382

Exercise 1: Create a website to receive data	 382

Exercise 2: Create a web service to receive data	 386

Suggested practice exercises . 390

Answers. 391

Chapter 9	 Asynchronous operations	 393
Lesson 1: Asynchronous operations using jQuery and WinJS 393

Using a promise object	 394

Creating jQuery promise objects by using $.Deferred()	 395

Handling failure	 397

Handling completion cleanup	 397

Subscribing to a completed promise object	 398

Chaining promises by using the pipe method	 398

Parallel execution using $.when().then()	 400

Updating progress	 400

Conditional asynchronous calls	 401

Lesson summary	 402

Lesson review	 403

Lesson 2: Working with web workers . 404

Web worker details	 404

Lesson summary	 405

Lesson review	 406

Practice exercises . 406

Exercise 1: Implement asynchronous code execution	 406

Suggested practice exercises . 412

Answers. 413

Chapter 10	 WebSocket communications	 415
Lesson 1: Communicating by using WebSocket. 415

Understanding the WebSocket protocol	 416

Defining the WebSocket API	 416

xiiiContents

Implementing the WebSocket object	 417

Dealing with timeouts	 420

Handling connection disconnects	 422

Dealing with web farms	 422

Using WebSocket libraries	 423

Lesson summary	 424

Lesson review	 424

Practice exercises . 425

Exercise 1: Create a chat server	 425

Exercise 2: Create the chat client	 429

Suggested practice exercises . 435

Answers. 436

Chapter 11	 HTML5 supports multimedia	 437
Lesson 1: Playing video. 437

Video formats	 438

Implementing the <video> element	 438

Setting the source	 439

Configuring the <video> element	 441

Accessing tracks	 441

Lesson summary	 442

Lesson review	 443

Lesson 2: Playing audio. 443

Audio formats	 444

The <audio> element	 444

Setting the source	 445

Configuring the <audio> element	 445

Lesson summary	 446

Lesson review	 446

Lesson 3: Using the HTMLMediaElement object. 447

Understanding the HTMLMediaElement methods	 447

Using HTMLMediaElement properties	 447

Subscribing to HTMLMediaElement events	 449

Using media control	 450

xiv Contents

Lesson summary	 451

Lesson review	 451

Practice exercises . 452

Exercise 1: Create a webpage that displays video	 452

Suggested practice exercises . 455

Answers. 456

Chapter 12	 Drawing with HTML5	 459
Lesson 1: Drawing by using the <canvas> element. 460

The <canvas> element reference	 460

CanvasRenderingContext2D context object reference	 460

Implementing the canvas	 462

Drawing rectangles	 463

Configuring the drawing state	 465

Saving and restoring the drawing state	 474

Drawing by using paths	 475

Drawing text	 488

Drawing with images	 490

Lesson summary	 494

Lesson review	 495

Lesson 2: Using scalable vector graphics. 495

Using the <svg> element	 496

Displaying SVG files by using the element	 499

Lesson summary	 501

Lesson review	 502

Practice exercises . 502

Exercise 1: Create a webpage by using a canvas	 502

Suggested practice exercises . 505

Answers. 506

Chapter 13	 Drag and drop	 507
Lesson 1: Dragging and dropping. 507

Dragging	 509

Understanding drag events	 510

xvContents

Dropping	 511

Using the DataTransfer object	 513

Lesson summary	 516

Lesson review	 516

Lesson 2: Dragging and dropping files. 517

Using the FileList and File objects	 517

Lesson summary	 521

Lesson review	 521

Practice exercises . 522

Exercise 1: Create a number scramble game	 522

Exercise 2: Add drag and drop to the game	 526

Exercise 3: Add scramble and winner check	 530

Suggested practice exercises . 535

Answers. 536

Chapter 14	 Making your HTML location-aware	 539
Lesson 1: Basic positioning. 540

Geolocation object reference	 540

Retrieving the current position	 541

Handling errors	 543

Addressing privacy	 544

Specifying options	 544

Lesson summary	 545

Lesson review	 546

Lesson 2: Monitored positioning. 546

Where are you now? How about now?	 546

Calculating distance between samples	 548

Lesson summary	 549

Lesson review	 549

Practice exercises . 550

Exercise 1: Map your current positions	 550

Suggested practice exercises . 553

Answers. 554

xvi Contents

Chapter 15	 Local data with web storage	 555
Lesson 1: Introducing web storage. 555

Understanding cookies	 556

Using the jQuery cookie plug-in	 556

Working with cookie limitations	 557

Alternatives to cookies prior to HTML5	 557

Understanding HTML5 storage	 558

Exploring localStorage	 560

Using short-term persistence with sessionStorage	 562

Anticipating potential performance pitfalls	 563

Lesson summary	 564

Lesson review	 564

Lesson 2: Handling storage events . 565

Sending notifications only to other windows	 566

Using the StorageEvent object reference	 566

Subscribing to events	 567

Using events with sessionStorage	 568

Lesson summary	 568

Lesson review	 568

Practice exercises . 569

Exercise 1: Create a contact book by using localStorage	 569

Suggested practice exercises . 578

Answers. 579

Lesson 1	 579

Lesson 2	 580

Chapter 16	 Offline web applications	 581
Lesson 1: Working with Web SQL . 582

Considering the questionable longevity of Web SQL	 582

Creating and opening the database	 582

Performing schema updates	 583

Using transactions	 584

xviiContents

Lesson summary	 588

Lesson review	 589

Lesson 2: Working with IndexedDB. 589

Using browser-specific code	 590

Creating and opening the database	 590

Using object stores	 591

Using transactions	 593

Inserting a new record	 594

Updating an existing record	 594

Deleting a record	 595

Retrieving a record	 595

Understanding cursors	 596

Dropping a database	 599

Lesson summary	 599

Lesson review	 600

Lesson 3: Working with the FileSystem API. 600

Assessing browser support	 601

Opening the file system	 601

Creating and opening a file	 602

Writing to a file	 602

Reading a file	 603

Deleting a file	 604

Creating and opening a directory	 604

Writing a file to a directory	 605

Deleting a directory	 605

Lesson summary	 606

Lesson review	 606

Lesson 4: Working with the offline application HTTP cache. 607

Browser support	 608

The cache manifest file	 608

Updating the cache	 609

Understanding events	 610

xviii Contents

Lesson summary	 610

Lesson review	 611

Practice exercises . 611

Exercise 1: Modify a contact book to use IndexedDB	 611

Suggested practice exercises . 616

Answers. 617

Index	 621

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xix

Introduction

This training guide is designed for information technology (IT) professionals who develop
or plan to develop HTML documents such as webpages or Windows Store applications. It

is assumed that, before you begin using this guide, you are familiar with web development
and common Internet technologies.

This book covers some of the topics and skills that are the subject of the Microsoft cer-
tification exam 70-480. If you are using this book to complement your study materials, you
might find this information useful. Note that this book is designed to help you in the job role;
it might not cover all exam topics. If you are preparing for the exam, you should use addi-
tional study materials to help bolster your real-world experience. For your reference, a map-
ping of the topics in this book to the exam objectives is included in the back of the book.

By using this training guide, you will learn how to do the following.

■■ Create a project using Visual Studio Express 2012 for Web.

■■ Create a project using Blend for Visual Studio 2012.

■■ Create a project using Visual Studio Express 2012 for Windows 8.

■■ Create an HTML document using semantic markup.

■■ Implement JavaScript functionality with your HTML documents.

■■ Use test-driven development techniques for writing JavaScript code.

■■ Create Cascading Style Sheets (CSS) that visually format your HTML document.

■■ Create HTML tables.

■■ Create JavaScript objects.

■■ Use jQuery to simplify JavaScript programming.

■■ Create HTML forms with validation.

■■ Create a Node.js website and web service.

■■ Call web services from JavaScript.

■■ Perform asynchronous JavaScript operations.

■■ Perform WebSocket communications.

■■ Play audio and video on a webpage.

■■ Draw with an HTML5 canvas.

■■ Use SVG image files.

■■ Perform drag and drop operations.

■■ Make your HTML location aware.

■■ Persist data on the browser client.

xx Introduction

Backward compatibility and cross-browser compatibility
This book does not attempt to cover every difference between every version of every
browser. Such a comprehensive discussion could easily yield a library of books.

Most of the code in this book is written using Internet Explorer 10, which is installed with
Windows 8. In addition, many but not all the code examples were tested using the following
browsers.

■■ Firefox 17.0.1

■■ Google Chrome 23.0.1271.97 m

■■ Opera 12.11

■■ Apple Safari 5.1.7

In most cases, if the other browsers were not compatible, there is a note stating so. This is
especially true in the last chapters because web storage is still relatively new, and the require-
ments are still fluid.

The best way to see which features are available among browsers is to visit a website that
is updated when new browser versions are released and HTML5 features are updated. The
website http://caniuse.com is particularly good.

System requirements
The following are the minimum system requirements your computer needs to meet to com-
plete the practice exercises in this book.

■■ Windows 8 or newer. If you want to develop Windows Store applications, you need
Windows 8 on your development computer.

Hardware requirements
This section presents the hardware requirements for using Visual Studio 2012.

■■ 1.6 GHz or faster processor

■■ 1 GB of RAM (more is always recommended)

■■ 10 GB (NTFS) of available hard disk space

■■ 5400 RPM hard drive

■■ DirectX 9–capable video card running at 1024 × 768 or higher display resolution.

■■ Internet connectivity

xxiIntroduction

Software requirements
The following software is required to complete the practice exercises.

■■ Visual Studio 2012 Professional, Visual Studio 2012 Premium, or Visual Studio 2012
Ultimate. You must pay for these versions, but in lieu of one of these versions, you can
install the following free express versions.

■■ Visual Studio Express 2012 for Web. Available from http://www.microsoft.com
/visualstudio/eng/downloads#d-express-web.

■■ Visual Studio Express 2012 for Windows 8. This installation also installs Blend for
Visual Studio 2012. Available from http://www.microsoft.com/visualstudio/eng
/downloads#d-express-web.

Practice exercises
This book features practices exercises to reinforce the topics you’ve learned. These
exercises are organized by chapter, and you can download them from http://aka.ms
/TGProgHTML5/files.

Acknowledgments
Thanks go to the following people for making this book a reality.

■■ To Carol Dillingham for your constructive feedback throughout the entire process of
writing this book. Thanks for also having patience while the winter holiday months
were passing, and my desire and ability to write was constantly interrupted.

■■ To Devon Musgrave for providing me the opportunity to write this book.

■■ To Kerin Forsyth for your hard work in making this book consistent with other
Microsoft Press books and helping me with the delivery of this book.

■■ To Pierce Bizzaca for your technical reviewing skills.

To all the other editors and artists who played a role in getting my book to the public,
thank you for your hard work and thanks for making this book venture a positive experience
for me.

Errata and book support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at Oreilly.com:

http://aka.ms/TGProgHTML5/errata

http://aka.ms/TGProgHTML5/files
http://aka.ms/TGProgHTML5/files

xxii Introduction

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, send an email to Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
preceding addresses.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter at http://twitter.com/MicrosoftPress.

		 	 1

C H A P T E R 1

Getting started with Visual
Studio 2012 and Blend for
Visual Studio 2012

Welcome to the world of HTML5, CSS3, and JavaScript! These technologies, commonly
referred to as simply HTML5, can be used to develop applications for Windows and

the web.

This chapter introduces you to the primary tools you need, Microsoft Visual Studio 2012
and Blend for Visual Studio 2012, which are used in the book’s lessons. Visual Studio 2012
provides exciting new features. The chapters that follow introduce you to many features in
Visual Studio 2012 and Blend.

Lessons in this chapter:
■■ Lesson 1: Visual Studio 2012  2

■■ Lesson 2: Blend for Visual Studio 2012  13

Before you begin

To complete this book, you must have some understanding of web development. This
chapter requires the hardware and software listed in the “System requirements” section in
the book’s Introduction.

REAL WORLD  A CAREER OPPORTUNITY

You’re looking for a career in computer programming, but you don’t know what technol-
ogy to pursue. You want to learn a technology you can use at many companies to make
yourself more marketable and to give you the flexibility to move between companies.
What technology would you choose to give you this flexibility?

The Internet has exploded. Nearly every company has a website, so why not learn the
web technologies?

	 2	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

HTML, CSS, and JavaScript are three closely coupled core web technologies that you can
learn to increase your marketability and give you flexibility to choose the company for
which you want to work. This is the beginning of your path toward your future career.
Learn these technologies well, and you can expand into other programming technologies
such as Silverlight, Flash, C#, and Visual Basic.

Lesson 1: Visual Studio 2012

Visual Studio 2012 is a highly useful tool for application development. Depending on the
edition of Visual Studio you have, it can provide you with an integrated development environ-
ment (IDE) you can use for the entire project life cycle.

After this lesson, you will be able to:
■■ Identify the available versions of Visual Studio 2012 and the features of each.

■■ Start a project by using Visual Studio Express 2012 for Web.

■■ Start a project by using Visual Studio Express 2012 for Windows 8.

Estimated lesson time: 40 minutes

Visual Studio 2012 editions
The following is a list with short descriptions of the editions of Visual Studio that Microsoft
offers.

■■ Visual Studio Test Professional 2012  Provides team collaboration tools but not a
full development IDE. This is ideal for testers, business analysts, product managers, and
other stakeholders, but this is not an ideal edition for developers.

■■ Visual Studio Professional 2012  Provides a unified development experience that
enables developers to create multitier applications across the web, the cloud, and
devices. This is an ideal edition for a lone developer or a small team of developers who
will be developing a wide range of web, Windows, phone, and cloud applications.

■■ Visual Studio Premium 2012  Provides an integrated application lifecycle manage-
ment (ALM) solution and software development functions to deliver compelling appli-
cations for a unified team of developers, testers, and business analysts.

■■ Visual Studio Ultimate 2012  Provides a comprehensive ALM offering for organiza-
tions developing, distributing, and operating a wide range of highly scalable software
applications and services.

■■ Visual Studio Team Foundation Server Express 2012  Provides the collaboration
hub at the center of the ALM solution that enables small teams of up to five developers

	 Lesson 1: Visual Studio 2012	 CHAPTER 1	 3

to be more agile, collaborate more effectively, and deliver better software more
quickly. Includes source code control, work item tracking, and build automation for
software projects to deliver predictable results. This is free.

■■ Visual Studio Express 2012 for Web  Provides the tools and resources to build and
test HTML5, CSS3, ASP.NET, and JavaScript code and to deploy it on web servers or to
the cloud by using Windows Azure. Best of all, it’s free.

■■ Visual Studio Express 2012 for Windows 8  Provides the core tools required to
build Windows Store apps, using XAML and your choice of .NET language or HTML5,
CSS3, and JavaScript. This is also free.

If you use Visual Studio Express 2012 for Web, you can work on web projects only, and you
must choose a .NET language to start with, such as Visual Basic or C#. If you use Visual Studio
Express 2012 for Windows 8, you can work on Windows Store applications only, but you can
start with a JavaScript project, and you don’t need to set up a website to create small applica-
tions. Blend for Visual Studio 2012 also provides the ability to create Windows Store applica-
tions with a JavaScript project.

The Visual Studio Express 2012 products are available free on the Microsoft website. You
should download and install both Visual Studio Express 2012 for Windows 8 and Visual Studio
Express 2012 for Web.

Visual Studio 2012 support for HTML5
Visual Studio .NET 2012 contains a new HTML editor that provides full support for HTML5
elements and snippets. Here is a list of some of the Visual Studio 2012 features that will make
your development experience more enjoyable and productive. The new features will be dem-
onstrated and explained later in this book when appropriate.

■■ Testing  You can easily test your webpage, application, or site with a variety of brows-
ers. Beside the Start Debugging button in Visual Studio 2012, you will find a list of all
installed browsers. Just select the desired browser from the list when you are ready
to test.

■■ Finding the source of rendered markup  By using the new Page Inspector feature,
you can quickly find the source of rendered markup. The Page Inspector renders a
webpage directly within the Visual Studio IDE, so you can choose a rendered element,
and Page Inspector will open the file in which the markup was generated and highlight
the source.

■■ Improved IntelliSense  Quickly find snippets and code elements. In the HTML and
CSS editors, IntelliSense filters the display list as you enter text. This feature shows
strings that match the typed text in their beginning, middle, or end. It also matches
against initial letters. For example, “bw” will match “border-width.”

■■ Reusable Markup  You can easily create reusable markup by selecting the markup
and extracting it to a user control.

	 4	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

■■ Automatic Renaming  When you rename an opening or closing HTML tag, the cor-
responding tag is renamed automatically.

CSS3 support
Visual Studio .NET 2012 provides a new CSS editor that offers full support for CSS3, including
support for cascading style sheets (CSS), hacks, and snippets for vendor-specific extensions
to CSS.

■■ Expandable Sections  Use the CSS editor to expand and collapse sections by clicking
the plus or minus sign that is displayed to the left of each style entry.

■■ Hierarchical Indentation  The CSS editor displays nested styles in a hierarchical fash-
ion, which makes it much easier to read and understand the styles.

■■ Add Comments  You can easily comment and uncomment blocks.

■■ Color Selector  The CSS editor now has a color selector like the HTML editor.

JavaScript support
Visual Studio 2012 provides many new features to make the JavaScript developer experi-
ence more enjoyable and productive. The following is a list of some of the new features and
enhancements.

■■ Standards-based  Visual Studio 2012 incorporates the JavaScript features of
ECMAScript 5 and the HTML5 document object model (DOM).

■■ Improved IntelliSense  You can receive improved IntelliSense information for func-
tions and variables by using new elements supported in triple-slash (///) code com-
ments. New elements include <var> and <signature>. You can also view function
signatures on the right side of the statement completion list.

■■ Improved editor  JavaScript Editor implements smart indenting, brace matching, and
outlining as you write code. For example, if you position your cursor to the left of an
open curly brace, the open and closed curly braces are highlighted. This works with
curly braces, square brackets, angle brackets, and parentheses.

■■ Go To Definition  To locate function definitions in source code, you just right-click a
function and then click Go To Definition. You can also put the cursor in the function,
and then press the F12 key to open the JavaScript source file at the location in the file
where the function is defined. (This feature isn’t supported for generated files.)

■■ IntelliSense from JavaScript comments  The new IntelliSense extensibility mecha-
nism automatically provides IntelliSense when you use standard JavaScript comment
tags (//).

■■ Breakpoints  You now have more flexibility when setting a breakpoint. When a single
line contains multiple statements, you can now break on a single statement.

	 Lesson 1: Visual Studio 2012	 CHAPTER 1	 5

■■ Reference Groups  You can control which objects are available in global scope by
using Reference Groups. Reference Groups is configured on the menu bar by navigat-
ing to Tools | Options | Text Editor | JavaScript | IntelliSense | References.

■■ Drag-and-drop references  You can drag JavaScript files that have the .js extension
from Solution Explorer to the JavaScript code editor, where they are added as refer-
ences for Visual Studio to use to provide IntelliSense. When adding references by drag-
ging and dropping, they are put at the top of the page in the code editor.

Exploring Visual Studio Express 2012 for Windows 8
When you start Visual Studio Express 2012 for Windows 8, the Start Page screen is displayed.
Figure 1-1 shows the Start Page screen, which contains helpful information and links to learn-
ing and development resources. On the left side of the Start page are links to create a new
project or open a new project. After you create at least one project, you’ll see shortcut links
to open any of your recent projects.

FIGURE 1-1  Visual Studio Express 2012 for Windows 8 Start page

In addition to clicking the New Project link on the Start page, you can start a new project
by clicking File and choosing New Project. Figure 1-2 shows the New Project screen, which
displays a list of starting templates from which you can choose to start on your new appli-
cation quickly. You can think of a template as a project on which someone completed the

	 6	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

mundane tasks that would be common to all applications of that type and then saved as a
framework that you can use to get started.

On the left side of the New Project screen, you can select from recent project templates
that you’ve used or from the complete list of installed templates, or you can go online to
select a template. You’ll find that the installed templates are divided according to program-
ming language. Figure 1-2 shows the templates that are installed for JavaScript.

FIGURE 1-2  The New Project screen with the JavaScript project templates

NOTE  INCLUDED TEMPLATES

In Visual Studio Express 2012 for Windows 8, all the included templates are for creating
Windows 8 Windows Store applications. In Visual Studio Express 2012 for Web, all included
templates are for creating web applications. Remember that you can use HTML5, CSS3, and
JavaScript in Windows Store applications and web applications.

The following are short descriptions of each template.

■■ Blank App  This template isn’t quite empty. It provides a single-page project for a
Windows app, but it has no predefined controls on the page.

■■ Grid App  This template provides an application that contains multiple pages and
enables you to navigate among groups of items.

■■ Split App  This template creates a two-page project in which the first page contains
a group of items, and the second page contains an item list with details of the selected
item to the right of the list.

	 Lesson 1: Visual Studio 2012	 CHAPTER 1	 7

■■ Fixed Layout App  This template provides a single page with a fixed aspect ratio
layout that scales to fit the screen.

■■ Navigation App  This template provides a single-page application containing con-
trols for navigation.

Selecting a template causes a copy of the template to be opened in the Solution Explorer
window. By default, the Solution Explorer window is on the right side, although windows can
be dragged to any location on the screen. Solution Explorer contains a tree representation of
all projects that are loaded into the current solution.

Under the Solution Explorer window is the Properties window, which is context-sensitive
and contains the properties of the currently selected item. The properties are visible in this
window, and most are also configurable.

On the left side of the screen is the toolbox. By default, the toolbox is a tab that you can
point to to open the window. The toolbox is also context-sensitive, so different tools are avail-
able based on what is being displayed in the center window.

Quick check
■■ You want to create a Windows Store application. Which edition of Visual

Studio 2012 will you use, and is there an operating system requirement for your
system to develop Windows Store application applications?

Quick check answer
■■ You must use Visual Studio Express 2012 for Windows 8 and have Windows 8

installed to develop Windows Store applications.

Examining the Blank App template
When the Blank App template is selected, a new solution containing one project is created.
The new project won’t be totally blank. As shown in Figure 1-3, there are several files and
folders in this new project. At the outset, default.js was created, and it’s currently displayed in
the JavaScript editor window.

The default.js file is in the js folder, which is where you can add your own JavaScript files.
This default.js file currently contains a small amount of code, which Chapter 3, “Getting
started with JavaScript,” revisits in more detail. Here is a general overview of what it does.
The use of function on the third line creates a naming scope for variables and functions in
your application. In the middle of the code are TODO comments that provide a place to put
your own code to be executed when the application is launched or reactivated after being
suspended or when the application is being suspended.

	 8	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

FIGURE 1-3  Blank App template with preliminary coding

Blank App also contains other files that you will want to explore. If you open the
default.html file, you’ll see the following HTML.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>App1</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- App1 references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
</head>
<body>
 <p>Content goes here</p>
</body>
</html>

The first line contains <!DOCTYPE html>, which is a declaration to the web browser that
describes the version of HTML in which the page is written. It’s not an HTML element; it’s a

	 Lesson 1: Visual Studio 2012	 CHAPTER 1	 9

special instruction. In HTML5, this special instruction must be the first thing the browser reads
on the page. This instruction is not mandatory, but it is considered a best practice to have it.

Next is the <html> element that consists of the starting tag at the top and ending tag,
</html>, at the bottom. This is considered the root element of the page, and all other ele-
ments are contained within the html element.

Inside the html element are the head and body elements. The head element typically
contains metadata and page-related instructions. The body element contains content that
will be displayed to the user. In this example, the head element contains a meta element that
describes the character set being used (utf-8), a title that will be displayed in the browser title
bar, links tags that reference CSS files, and script tags that reference JavaScript files. These
references are instructions to the browser to load these files when the page loads. The body
element contains a paragraph element with the message “Content goes here.” This message
appears when the application is executed.

The References folder contains a folder called Windows Library for JavaScript 1.0, which
contains subdirectories that Microsoft provides and maintains. You should not modify files
in this directory structure, but you should explore the files in this folder structure and learn
as much as possible about these files. Of particular importance is the css folder that contains
the ui-dark.css and ui-light.css files. These files set the primary theme for your application to
either a light or dark theme.

MORE INFO  LIGHT AND DARK BACKGROUNDS

The default.html file has a reference to the ui-dark.css file. If you run the application, the
application displays the “Content goes here” message on a screen that has a dark back-
ground. If you change the reference to the ui-light.css file, you’ll see a light background.

The css folder contains cascading style sheets for your application. Currently, the
default.html file references a single file called default.css. The CSS file contains instructions for
presenting your HTML file and will be covered in more detail in Chapter 4, “Getting started
with CSS3.”

The images folder contains blank images that are set to the best size for presentation to
the user. You would typically edit these files as part of your finished application.

In the root directory of your application is a file with a .pfx extension that provides a secu-
rity key for deployment and an appmanifest file that contains deployment metadata.

Exploring Visual Studio Express 2012 for Web
When you start Visual Studio Express 2012 for Web, the same Start Page screen is displayed
as shown in Figure 1-1 and described in the previous section. In the installed templates,
you’ll find that they are divided according to .NET programming language, Visual Basic and
Visual C#. Figure 1-4 shows the templates that are installed for Visual Basic.

	10	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

FIGURE 1-4  The New Project screen with Visual Basic and Visual C# project templates

Your new project might differ based on the software installed on your computer. For
example, the template shown here is the Get Windows Azure SDK For .NET template that was
installed when the Azure SDK was installed.

All these templates are for web-related applications; none of them can be used to cre-
ate a Windows 8 application. Note that none of the templates support the use of JavaScript
as a server-side language, but you can select a Visual Basic or C# web project template and
use client-side (on the browser) JavaScript. Remember that you can use HTML5, CSS3, and
JavaScript as client-side technologies with any of the web application templates.

Under one of the languages, you can click the Web node to see a list of available web
application templates. You can select a template called ASP.NET Empty Web Application to
begin with a nearly empty startup project.

Examining ASP.NET Empty Web Application
After selecting ASP.NET Empty Web Application, a copy of the template is opened in the
Solution Explorer window on the upper right, as shown in Figure 1-5. This window contains
a node for the project (WebApplication1); a node that references the project settings, called
My Project; and a node that references the project’s configuration file, called Web.config. This
project is almost empty. If you press F5 to build and run the web application, it won’t run. You
must add a webpage to the project first.

	 Lesson 1: Visual Studio 2012	 CHAPTER 1	 11

FIGURE 1-5  Almost empty ASP.NET Empty Web Application

By default, the Solution Explorer window is on the right side. Under the Solution Explorer
window is the Properties window. The Properties window is context-sensitive and contains the
properties of the currently selected item. The properties are visible in this window, and most
are also configurable.

On the left side of the screen is the toolbox. By default, the toolbox is a tab that you can
point to to open the window. The toolbox is also context-sensitive, so different tools are avail-
able based on what is being displayed in the center window.

You can add a webpage to the project by right-clicking the project node
(WebApplication1) and then navigating to Add | New Item | HTML Page. If you name the
page default.html, the web server automatically delivers the page to a browser that navi-
gates to your website but doesn’t specify the name of a webpage to retrieve. After adding
the webpage, you can enter some text, such as a Hello World message, into the body of the
webpage. When you press F5, you see the message in the browser.

Lesson summary
■■ The free editions of Visual Studio 2012 are the Express editions: Visual Studio

Express 2012 for Web and Visual Studio Express 2012 for Windows 8. You can use the
Express editions to work with HTML5, CSS3, and JavaScript.

■■ Use Visual Studio Express 2012 for Web to develop web applications. Use Visual Studio
Express 2012 for Windows 8 to develop Windows 8 applications.

	12	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

■■ Visual Studio Express 2012 for Windows 8 comes with Blend for Visual Studio 2012.

■■ Blend for Visual Studio 2012 drives the user interface design and must be run on
Windows 8 to develop Windows 8 applications.

■■ You can change the style sheet reference from a dark theme to a light theme by
changing the ui-dark.css reference in the default.html file to ui-light.css.

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1.	 You would like to create a web application by using HTML5, JavaScript, and CSS3.
Which of the following Visual Studio 2012 editions can you use? (Choose all that apply.)

A.	 Visual Studio Professional 2012

B.	 Visual Studio Premium 2012

C.	 Visual Studio Ultimate 2012

D.	 Visual Studio Express 2012 for Web

E.	 Visual Studio Express 2012 for Windows 8

2.	 You would like to create a Windows 8 application by using HTML5, JavaScript, and
CSS3. Which of the following Visual Studio 2012 editions can you use? (Choose all
that apply.)

A.	 Visual Studio Professional 2012

B.	 Visual Studio Premium 2012

C.	 Visual Studio Ultimate 2012

D.	 Visual Studio Express 2012 for Web

E.	 Visual Studio Express 2012 for Windows 8

3.	 You would like to create web applications and Windows 8 Windows Store applications
by using HTML5, JavaScript, and CSS3, but while you’re learning, you don’t want to buy
Visual Studio 2012. Which of the following Visual Studio 2012 editions can you use for
free to accomplish your goal?

A.	 Visual Studio Professional 2012

B.	 Visual Studio Premium 2012

C.	 Visual Studio Ultimate 2012

D.	 Visual Studio Express 2012 for Web and Visual Studio Express 2012 for Windows 8

	 Lesson 2: Blend for Visual Studio 2012	 CHAPTER 1	 13

Lesson 2: Blend for Visual Studio 2012

Blend is included with Visual Studio 2012 Express for Windows 8 and helps you design your
user interface. Blend is a design complement for Visual Studio and does for design what
Visual Studio does for code. The following are some key features of Blend.

■■ Visual design  Edit HTML, CSS, and Windows Store controls in a “what you see is
what you get” (WYSIWYG) environment. What you see in Blend is what users will see in
Windows 8.

■■ Interactive mode  Design your app by changing states and setting styles. You don’t
need to compile and run continuously. Blend provides the ability to use interactive
mode so the developer can run the application on the design surface until the desired
state is reached. The developer can pause the application and then style the applica-
tion for the new state.

■■ App building  Windows Store controls can be dragged and dropped onto the design
surface. After that, just set the properties and styles.

■■ Powerful code generation  Blend takes care of all the syntax by generating concise,
reliable, predictable code when you add a style or element to your application.

■■ Debugging  Blend offers visual debugging of HTML and CSS. It has a virtual rule
called Winning Properties that shows you how an element obtained its effective style
from the CSS inheritance and cascade.

After this lesson, you will be able to:
■■ Identify the key features of Blend.

■■ Start a project by using Blend.

Estimated lesson time: 25 minutes

Exploring Blend
Blend is an exciting tool for designers and developers who will be using HTML5, CSS3, and
JavaScript to develop Windows 8 applications. Blend also supports the creation of Windows 8
Windows Store applications by using XAML with your choice of .NET programming language.
Figure 1-6 shows the New Project screen, which has the same new project templates as Visual
Studio Express 2012 for Windows 8.

	14	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

NOTE  RUN CONSTRAINT FOR BLEND

Blend for Visual Studio 2012 must be run on Windows 8 to develop Windows 8 applica-
tions. If you run Blend for Visual Studio 2012 on Windows 7, you will not be able to develop
Windows 8 applications.

FIGURE 1-6  The Blend New Project screen with the JavaScript project templates

Selecting Blank App creates the same Blank App that was discussed in the previous sec-
tion. Note the screen layout. Figure 1-7 shows the Blend screen layout. On the left is the Tools
panel, where you can point to each icon to see a tooltip that displays the name of the com-
mand. Just to the right of the Tools panel is a column with two windows, one over the other.
These windows have tabs that can be selected to show more information. The upper-left
window contains the following tabs.

■■ Projects  Contains a tree-based representation of your solution, which can contain
many projects, each project containing resources such as files and folders.

■■ Assets  Contains a library of resources such as HTML elements, JavaScript controls,
and media that you will use within your application.

■■ Style Rules  Contains a list of cascading style sheets that are referenced in your
project.

Under Style Rules is the Live DOM window, which shows a dynamic representation of your
HTML page.

	 Lesson 2: Blend for Visual Studio 2012	 CHAPTER 1	 15

FIGURE 1-7  The Blend screen layout

In the middle of the screen is your primary workspace, the artboard. At the top of the
artboard is a tabbed list of documents that are open. By default, this window displays the ren-
dered page. Note that there are buttons in the upper-right corner that can be used to change
the view.

The bottom center displays the default.html and the default.css sources. This makes it easy
for you to change the files and see the rendered output. Also, as you use the other windows
to modify the rendered page, you see the changes reflected in these files.

Key
Terms

	16	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

The rightmost window contains the following two tabs.

■■ HTML Attributes  Displays the properties for the currently selected HTML element.
You can view or change these settings.

■■ CSS Properties  Displays the style settings for the currently selected HTML element.
You can set these properties.

Quick check
■■ You want to be able to design your app by changing states and setting styles.

Which mode provides this feature?

Quick check answer
■■ Interactive mode. You can run the application on the design surface until the

desired state is reached. You can pause the application and then style the appli-
cation for the new state.

Projects panel
The Projects panel provides a file and folder view of the projects in your solution, as shown in
Figure 1-8. You can use this panel to open files for editing by double-clicking the file. You can
also right-click any file or folder to see options such as Copy, Delete, and Rename.

FIGURE 1-8  The Projects panel

Notice the different icons for the solution, project, references, folders, and files and note
that the default.html file is underlined to indicate that it is the startup file when you run the
application. At the top of the Projects panel is a Search Projects text box in which you can
type the name of a file or folder you want to find. In the project is a virtual folder called

	 Lesson 2: Blend for Visual Studio 2012	 CHAPTER 1	 17

References. This is where you add references to CSS and JavaScript. The project also contains
the package.manifest file, which contains all the settings for the project, including the setting
for the Start page.

Assets panel
The Assets panel lists all the HTML elements, controls, and media that you can add to an
HTML page that is open in the artboard, as shown in Figure 1-9. Although the Assets panel
lists all the available controls in your Blend project, the most recently used controls appear in
the Tools panel.

FIGURE 1-9  The Assets panel shown when building a Windows Store application with HTML

Open the Assets panel either by clicking the Assets icon at the bottom of the Tools panel
or by clicking Assets in the Windows menu.

Device panel
Use the Device panel to configure your display so that you can visualize your application
accurately on a variety of displays, as shown in Figure 1-10. You can select the following dis-
play options for your application.

■■ View  The rendering mode when the application is run. Choices are landscape, filled,
snapped, and portrait.

	18	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

■■ Display  The display size and resolution at which to render. Use this to simulate ren-
dering on larger or smaller screens to see whether your application renders properly.

■■ Show chrome  When selected, shows a simulated tablet screen around the edge of
the application.

■■ Override scaling  When selected, emulates the built-in display scaling of the device.

■■ Deploy target  The device to which to deploy when the application is run.

FIGURE 1-10  The Device panel

Style Rules panel
The Style Rules panel, shown in Figure 1-11, lists all the style sheets attached to the current
document. Within each style sheet is a list of all the defined styles. In addition, the Style Rules
panel contains a text box in which you can enter search criteria when locating a style.

FIGURE 1-11  The Style Rules panel containing a list of attached style sheets

	 Lesson 2: Blend for Visual Studio 2012	 CHAPTER 1	 19

You can click the plus signs on the right side of the panel to add a new style rule at that
location. The yellow line indicates where new styles will be created if a location is not speci-
fied. Style rules that are dimmed are defined but not used in the current document.

Live DOM panel
The Live DOM panel displays the structure of the current document as a hierarchical repre-
sentation, as shown in Figure 1-12. With the Live DOM panel, you can select elements and
adjust their style rules. The Live DOM view provides automatic updating as the state of the
app changes.

FIGURE 1-12  The Live DOM panel displaying a hierarchical representation of the current document

The Live DOM panel displays nodes by using their ID if an ID is assigned or by using the
tag name if no ID is assigned. You can control the visibility of any node by clicking the eye
icon on the right side of the panel. This can be helpful when you have layers of elements
stacked on top of each other.

As with Visual Studio, you can press F5 to run the application. Blend has many features that
you can learn about by using the built-in help.

Lesson summary
■■ The interactive mode enables you to run the application to build to the desired state

and then pause the application and set the styles of the application based on the cur-
rent state.

■■ The Assets panel contains a list of all available assets in the project.

■■ The Projects panel contains a file and folder view of the projects in the current
solution.

■■ The Style Rules panel contains a list of all style sheets attached to the current
document.

	20	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

■■ The Device panel enables you to run the application by using simulations of different
screen sizes and orientations.

■■ The Live DOM panel enables you to select an element and apply style rules to it.

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1.	 You would like to create a Windows 8 application by using Blend and HTML5,
JavaScript, and CSS3. Which feature of Blend enables you to pause an application when
it reaches a desired state so you can set the style rules for the page and its controls
while in this state? (Choose all that apply.)

A.	 Assets panel

B.	 Projects panel

C.	 Visual Design

D.	 Interactive mode

2.	 On which panel can you see a hierarchically structured view of the DOM?

A.	 Live DOM

B.	 Projects

C.	 Assets

D.	 Device

3.	 Which panel can you use to access a list of the HTML elements, controls, and media
that can be added to an HTML page that is open in the artboard?

A.	 Projects

B.	 Assets

C.	 Device

D.	 Live DOM

Practice exercises

If you encounter a problem completing any of these exercises, the completed projects can be
installed from the Practice Exercises folder that is provided with the companion content.

	 Practice exercises	 CHAPTER 1	 21

Exercise 1: Hello World with Visual Studio Express 2012 for
Windows 8
In this exercise, you create a simple HTML5 and JavaScript Hello World application by using
Visual Studio Express 2012 for Windows 8. This practice, like all Hello World applications, is
intended to get you started by creating a minimal application. In later exercises, you get more
exposure to Visual Studio. In this exercise, you use HTML5 to display “Hello Visual Studio for
Windows 8” on the screen.

1.	 If you haven’t installed Visual Studio Express 2012 for Windows 8, do so now. You can
download this from the Microsoft website.

2.	 Start Visual Studio. Click File and choose New Project to display the New Project dialog
box. Navigate to Installed | Templates | JavaScript | Windows Store. Select Blank App.

3.	 Set the name of your application to HelloVisualStudioForWin8.

4.	 Select a location for your application.

5.	 Set the solution name to HelloVisualStudioForWin8Solution.

6.	 Be sure to keep the Create Directory For Solution check box selected.

7.	 Click OK to create your new project.

8.	 When the application is created, the default.js file is displayed with some template
code.

This code is covered later, and there is no need to alter it now.

9.	 Open the default.html file.

It contains HTML from the template.

10.	 To see the default content, press F5 to start debugging the application.

You should see a black screen and, in the upper-left corner, a message stating,
“Content goes here.”

11.	 Switch back to Visual Studio by pressing Alt+Tab.

The title bar says (Running).

12.	 Press Shift+F5 to stop debugging.

Shift+F5 works only when Visual Studio has the focus; it does not work when the run-
ning application has the focus.

13.	 In the default.html file, replace the “Content goes here” message with Hello Visual
Studio for Windows 8.

14.	 Replace the reference to ui-dark.css with ui-light.css.

Your HTML should look like the following.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>HelloWorldForWin8</title>

	22	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-light.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- HelloWorld references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
</head>
<body>
 <p>Hello Visual Studio for Windows 8</p>
</body>
</html>

15.	 Press F5 to start debugging.

The screen is white because you now reference the ui-light.css file instead of
the ui-dark.css file. The screen also displays Hello Visual Studio For Windows 8.
Congratulations—you have written your first Windows 8 application by using HTML5
technologies!

Exercise 2: Hello World with Visual Studio Express 2012
for Web
In this exercise, you create a simple HTML5 and JavaScript Hello World application by using
Visual Studio Express 2012 for Web. This practice, like all Hello World applications, is intended
to get you started by creating a minimal application. In later exercises, you get more exposure
to Visual Studio. In this exercise, you create a new project in Visual Studio Express 2012 for
Web and use HTML5 to display “Hello Visual Studio for Web” on the screen.

NOTE  NO SERVER CODE IN THIS EXERCISE

You will not be writing any server code in this exercise, so it doesn’t matter whether you
select Visual Basic or Visual C# when starting the new project.

1.	 If you haven’t installed Visual Studio Express 2012 for Web, do so now. You can down-
load this from the Microsoft website.

2.	 Start Visual Studio. Click File and choose New Project to display the New Project dialog
box. Navigate to Installed | Templates | Visual Basic | Web. Select the ASP.NET Web
Form Application.

3.	 Set the name of your application to HelloVisualStudioForWeb.

4.	 Select a location for your application.

5.	 Set the solution name to HelloVisualStudioForWeb Solution.

6.	 Be sure to keep the Create Directory For Solution check box selected.

7.	 Click OK to create your new project.

	 Practice exercises	 CHAPTER 1	 23

8.	 When the application is created, the default.aspx page will be displayed with some
template code.

9.	 In the Solution Explorer window, build the project by right-clicking the project node
and choosing Build.

10.	 To see this template’s default content, press F5 to start debugging the application.

You should see a fancy screen with information on how to get started plus other useful
information.

11.	 Switch back to Visual Studio by pressing Alt+Tab.

The title bar says (Running).

12.	 Press Shift+F5 to stop debugging.

Note that Shift+F5 works only when Visual Studio has the focus. Shift+F5 does not
work when the running application has the focus.

13.	 Delete the default.aspx file by right-clicking this file in the Solution Explorer window,
choosing Delete, and then clicking OK.

14.	 In the Solution Explorer window, add a default.html file by right-clicking the project
node. Click Add and then choose HTML. Name the page default.html.

15.	 In the default.html file, place the text Hello Visual Studio for Web between the
<body> and </body> tags.

16.	 In the default.html file, place the text HelloVisualStudioForWeb between the <title>
and </title> tags.

Your HTML should look like the following.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>HelloVisualStudioForWeb</title>
</head>
<body>
 Hello Visual Studio for Web
</body>
</html>

17.	 In the Solution Explorer window, set the default.html file as the startup file by right-
clicking the default.html file and choosing Set As Start Page.

18.	 Press F5 to start debugging.

The screen now displays Hello Visual Studio For Web. Congratulations—you have writ-
ten your first web application using HTML5 technologies!

	24	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

Exercise 3: Hello World with Blend
In this exercise, you create a simple HTML5 and JavaScript Hello World application by using
Blend. This practice, like all Hello World applications, is intended to get you started by creat-
ing a minimal application. In later exercises, you get more exposure to Blend. In this exercise,
you create a new project in Blend and use HTML5 to display “Hello World” on the screen.

1.	 If you haven’t installed Blend, do so now. Remember that Blend is installed automati-
cally when you install Visual Studio Express 2012 for Windows 8. You can download
this from the Microsoft website.

2.	 To start Blend, click New Project to display the New Project dialog box. Select the
HTML (Windows Store) category in the left pane and select Blank App in the right
pane.

3.	 Set the name of your application to HelloBlend.

4.	 Select a location for your application.

5.	 Click OK to create your new project.

When the application is created, the default.html file is displayed.

6.	 To see the default content, press F5 to start debugging the application.

You should see a black screen and, in the upper-left corner, a message stating,
“Content goes here.”

7.	 Close the running application by pressing Alt+F4.

8.	 If Blend is not displayed, return to Blend by pressing Alt+Tab.

9.	 In the default.html file, double-click the “Content Goes Here” message and replace the
text with Hello from Blend.

You see the change in the default.html source view window at the bottom of the
screen.

10.	 Replace the reference to ui-dark.css with ui-light.css.

Your HTML should look like the following.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>HelloBlend</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-light.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- HelloBlend references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
</head>
<body>

	 Suggested practice exercises	 CHAPTER 1	 25

 <p>Hello from Blend</p>
</body>
</html>

11.	 Press F5 to start the application.

Notice that the screen is white because you now reference the ui-light.css file instead
of the ui-dark.css file. The screen now displays Hello From Blend. Congratulations—you
have written a Windows 8 application by using HTML5 technologies with Blend!

Suggested practice exercises

The following additional exercises are designed to give you more opportunities to practice
what you’ve learned and to help you successfully master the lessons presented in this chapter.

■■ Exercise 1  Learn more about Visual Studio Express 2012 for Web by creating new
projects from each of the included project templates. After creating each project, try
adding Hello World and run the application to see how the project looks and behaves.

■■ Exercise 2  Learn more about Visual Studio Express 2012 for Windows 8 by creating
new projects from each of the included project templates. After creating each proj-
ect, try adding Hello World and run the application to see how the project looks and
behaves.

■■ Exercise 3  Learn more about Blend by creating new projects from each of the
included project templates. After creating each project, try adding Hello World and
run the application to see how the project looks and behaves.

	26	 CHAPTER 1	 Getting started with Visual Studio 2012 and Blend for Visual Studio 2012

Answers

This section contains the answers to the lesson review questions in this chapter.

Lesson 1
1.	 Correct answers: A, B, C, and D

A.	 Correct: Visual Studio Professional 2012 provides web templates for creating web
applications.

B.	 Correct: Visual Studio Premium 2012 provides web templates for creating web
applications.

C.	 Correct: Visual Studio Ultimate 2012 provides web templates for creating web
applications.

D.	 Correct: Visual Studio Express 2012 for Web provides web templates for creating
web applications only.

E.	 Incorrect: Visual Studio Express 2012 for Windows 8 provides templates for build-
ing Windows 8 applications only.

2.	 Correct answers: A, B, C, and E

A.	 Correct: Visual Studio Professional 2012 provides web templates for creating
Windows 8 applications.

B.	 Correct: Visual Studio Premium 2012 provides web templates for creating
Windows 8 applications.

C.	 Correct: Visual Studio Ultimate 2012 provides web templates for creating
Windows 8 applications.

D.	 Incorrect: Visual Studio Express 2012 for Web provides web templates for creating
web applications only.

E.	 Correct: Visual Studio Express 2012 for Windows 8 provides templates for building
Windows 8 applications only.

3.	 Correct answer: D

A.	 Incorrect: Visual Studio Professional 2012 enables you to create web and
Windows 8 applications, but it is not free.

B.	 Incorrect: Visual Studio Premium 2012 enables you to create web and Windows 8
applications, but it is not free.

C.	 Incorrect: Visual Studio Ultimate 2012 enables you to create web and Windows 8
applications, but it is not free.

D.	 Correct: Visual Studio Express 2012 for Web provides web templates for creating
web applications, and Visual Studio Express 2012 for Windows 8 provides tem-
plates for creating Windows 8 applications. Both are free.

	 Answers	 CHAPTER 1	 27

Lesson 2
1.	 Correct answers: C and D

A.	 Incorrect: The Assets panel enables you to access a list of the HTML elements, con-
trols, and media that can be added to an HTML page that is open in the artboard.

B.	 Incorrect: The Projects panel provides a file and folder view of the projects in the
current solution.

C.	 Correct: With Visual Design, what you see in Blend is what users will see in
Windows 8.

D.	 Correct: Interactive mode enables you to run the application on the design surface
until the desired state is reached. You can pause the application and then style the
application for the new state.

2.	 Correct answer: A

A.	 Correct: Live DOM displays the structure of the current document as a hierarchi-
cal representation. You can use the Live DOM panel to select elements and adjust
their style rules.

B.	 Incorrect: The Projects panel provides a file and folder view of the projects in your
solution.

C.	 Incorrect: The Assets panel lists all the HTML elements, controls, and media that
you can add to an HTML page that is open in the artboard.

D.	 Incorrect: The Device panel enables you to configure your display so that you can
visualize your application accurately on a variety of displays.

3.	 Correct answer: B

A.	 Incorrect: The Projects panel provides a file and folder view of the projects in your
solution.

B.	 Correct: The Assets panel lists all the HTML elements, controls, and media that you
can add to an HTML page that is open in the artboard.

C.	 Incorrect: The Device panel enables you to configure your display so that you can
visualize your application accurately on a variety of displays.

D.	 Incorrect: The Live DOM panel displays the structure of the current document as
a hierarchical representation. You can use the Live DOM panel to select elements
and adjust their style rules.

		 	 29

C H A P T E R 2

Getting started with HTML5

Welcome to the world of HTML5, JavaScript, and CSS3! This chapter gets you started
with HTML5. The next chapter does the same with JavaScript, and the following chap-

ter familiarizes you with CSS3.

Now that you’ve installed Visual Studio 2012 and Blend, you’re ready to build your
knowledge foundation by learning some basic HTML. This chapter presents a great deal of
HTML content. Although much of the content in this chapter exists in previous releases of
HTML, all content in this chapter is part of the HTML5 specification.

Lessons in this chapter:
■■ Lesson 1: Introducing HTML5  29

■■ Lesson 2: Embedding content  44

Before you begin

To complete this book, you must have some understanding of web development. This
chapter requires the hardware and software listed in the “System requirements” section in
the book’s Introduction.

Lesson 1: Introducing HTML5

Chapter 1, “Getting Started with Visual Studio 2012 and Blend for Visual Studio 2012,”
presented a very brief overview of the Visual Studio editions and Blend. This was necessary
to introduce you to the tools that will be used in this book. This lesson presents a rather
detailed overview of HTML5 and covers many of the fundamentals of HTML that existed
prior to HTML5 but are still part of the HTML5 specification.

	30	 CHAPTER 2	 Getting started with HTML5

After this lesson, you will be able to:
■■ Understand the history of HTML5.

■■ Create an HTML5 document and add elements and attributes to it.

■■ Add comments to an HTML5 document.

■■ Use special characters in your HTML document.

Estimated lesson time: 30 minutes

Understanding HTML, XHTML, and HTML5
HTML is an acronym for Hypertext Markup Language, which is the language we have used to
create webpages since the first webpages arrived on the web. HTML roots are from an older
markup language that was used in document publishing, called SGML (Standard Generalized
Markup Language). Like SGML, HTML uses tags to provide formatting features such as
this is bold, which would cause the text within the starting b tag and ending b tag to
render as bolded text. Notice the difference between the first and second tag; the second tag
has a slash (/) to indicate that it’s an ending tag. Many but not all HTML tags have a matching
end tag. HTML tags such as
 and did not have ending tags because the
 just
rendered a line break, and the tag just rendered an image.

One interesting aspect of HTML and its relationship with browsers was that browsers were
designed to be backward compatible and forward compatible. Creating a browser that is
backward compatible is relatively easy because the problem domain is known, but how is
forward compatibility accomplished? Browsers were created to ignore tags that they didn’t
recognize. For example, if a browser came across a <xyz> tag that it didn’t recognize, it
would skip over the tag as though it didn’t exist.

Although HTML served its purpose for quite some time, people wanted more. Another
evolving technology, called XML (eXtensible Markup Language), was becoming popular. XML
looks a lot like HTML because both languages use tags. However, there are several big dif-
ferences. First, XML always requires matching end tags for every tag, although you can use
a shortcut notation to denote a starting tag and ending tag together. Another difference is
that HTML has a very specific set of tag names, and each of these tags denotes a formatting
feature that is to be applied to the rendered webpage. XML doesn’t have a defined set of tag
names, so you create your own tag names, and the tags can represent anything. XML tags are
typically metadata tags: tags that describe the data that is within the tag. Although there are
many other differences, one other large difference is that XML uses XML Schema Definition
(XSD) technology, which validates the format of an XML document to ensure that all aspects
of a document are valid before processing the XML document. HTML’s lack of rigid structure
prevented the creation of a technology such as XSD that could validate HTML documents.

The World Wide Web Consortium, also known as W3C (http://ww.w3c.org), is respon-
sible for developing open standards for the web. The W3C introduced XHTML to solve the

Key
Terms

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 31

problems in HTML, which was up to version 4. XHTML is an XML-based specification that
tightened the HTML specification to make HTML adhere to the XML rules that describe a
well-formed document, such as having a matching end tag for each starting tag. This meant
that XHTML documents could be validated by using XSD files and could be edited by using
XML tools.

Although XHTML solved some problems, other problems still needed a solution. There was
a need for an increasing amount of multimedia on the web. Companies wanted the flashiest
(pun intended) website. Cascading Style Sheets (CSS) provided support for adding styles such
as colors and fonts consistently across a website, but companies wanted more. They wanted
their webpages to be highly interactive, with video and animations. Browsers added program-
mable support by providing JavaScript, but early versions of JavaScript were slow and difficult
to program. The browsers became extensible by providing an application programming
interface (API) that would allow third parties to create plug-ins that could run in the browser’s
environment. One such plug-in is Flash, which has a very large installed base. Flash provides a
development environment that can be used to create a rich user experience. Although third-
party plug-ins solved the immediate need for technology to create flashy websites, there was
still a need for tighter integration of multimedia with the browser, especially on small devices.

HTML5 does not originate from XHTML; HTML5 originates from HTML 4.01. As a rule,
however, applying XHTML rules to your HTML5 will make your webpage more compliant
with a wider variety of browsers and webpage readers, generators, and validators. This book
attempts to be most compliant with the most technologies.

HTML5 represents a reinvented HTML, CSS, and JavaScript in a way that solves the need
for rich, interactive websites that can play audio and video and support animations from
within the browser without the need for plug-ins. HTML5 contains most of the tags from
HTML 4.01, but many of the tags have been redefined to be semantic tags.

Introducing semantic markup
HTML5 stresses separating structure, presentation, and behavior, a good practice to adhere
to. Semantic is defined as the study of meaning of linguistic expressions. In the context of
HTML, that means that tags provide meaning to the content in the HTML document. Tags do
not provide presentation; they provide meaning.

HTML tags provide a meaningful structure, but do not provide presentation. Remember
that separation is accomplished by providing structure in your HTML5 document, maintaining
presentation in your CSS3 style sheet, and maintaining behavior in your JavaScript file.

How can you maintain separation when tags such as (bold) and <i> (italic) exist?
After all, these tags have presentation in their definitions. The W3C now defines the tag
as “a span of text offset from its surrounding content without conveying any extra empha-
sis or importance, and for which the conventional typographic presentation is bold text; for
example, keywords in a document abstract, or product names in a review.” The W3C now
defines the <i> tag as “a span of text offset from its surrounding content without conveying
any extra emphasis or importance, and for which the conventional typographic presentation

Key
Terms

	32	 CHAPTER 2	 Getting started with HTML5

is italic text; for example, a taxonomic designation, a technical term, an idiomatic phrase from
another language, a thought, or a ship name.” Do these tags need to render as bold and
italic? Not at all, and the new definitions of these tags attempt to specify this.

Chapter 5, “More HTML5,” revisits the notion of semantic markup. For now, remember that
your HTML tags should be used to provide structure, not presentation. Presentation is the
cascading style sheet’s job.

Working with elements
An element is composed of a beginning tag, an ending tag, and the content between the
tags. Consider the following HTML fragment.

<div>
 The quick brown fox jumps over the lazy dog
</div>

In this sample, the <div> tag is just the beginning tag on the first line. The <div> element
is the complete sample, which includes content that also contains a element. The
element consists of the beginning tag, the content, which is the word “fox,” and the end-
ing tag.

The <div> element creates a section in your document. It’s common to use <div> ele-
ments to denote a section to which you will attach a style. You’ll see many uses of the <div>
element in this book and on most websites.

HTML tag names are not case sensitive. If you’re working on an older webpage, you might
notice that it was written using uppercase tag names. Browsers will treat a tag and a
tag the same.

To comply with as many standards as possible, consider using lowercase tag names for any
webpages you create by convention because the W3C recommends lowercase tag names in
HTML 4.01 and requires lowercase tag names in XHTML. Although HTML5 does not mandate
lowercase tag names, lowercase tag names are recommended.

Element reference
HTML5 has more than 100 defined elements that you can use to create rich webpages and
applications. The W3C defines the following list of these elements with a brief description.
Note that brevity is a substitute for 100 percent accuracy in these descriptions.

■■ <a>  Hyperlink

■■ <abbr>  Abbreviation

■■ <address>  Contact information

■■ <area>  Image map region

■■ <article>  Independent section

■■ <aside>  Auxiliary section

■■ <audio>  Audio stream

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 33

■■   Bold text

■■ <base>  Document base URI

■■ <bb>  Browser button

■■ <bdo>  Bi-directional text override

■■ <blockquote>  Long quotation

■■ <body>  Main content

■■
  Line break

■■ <button>  Push button control

■■ <canvas>  Bitmap canvas

■■ <caption>  Table caption

■■ <cite>  Citation

■■ <code>  Code fragment

■■ <col>  Table column

■■ <colgroup>  Table column group

■■ <command>  Command that a user can invoke

■■ <datagrid>  Interactive tree, list, or tabular data

■■ <datalist>  Predefined control values

■■ <dd>  Definition description

■■   Deletion

■■ <details>  Additional information

■■ <dfn>  Defining instance of a term

■■ <dialog>  Conversation

■■ <div>  Generic division

■■ <dl>  Description list

■■ <dt>  Description term

■■   Stress emphasis

■■ <embed>  Embedded application

■■ <fieldset>  Form control group

■■ <figure>  A figure with a caption

■■ <footer>  Section footer

■■ <form>  Form

■■ <h1>  Heading level 1

■■ <h2>  Heading level 2

■■ <h3>  Heading level 3

■■ <h4>  Heading level 4

	34	 CHAPTER 2	 Getting started with HTML5

■■ <h5>  Heading level 5

■■ <h6>  Heading level 6

■■ <head>  Document head

■■ <header>  Section header

■■ <hr>  Separator

■■ <html>  Document root

■■ <i>  Italic text

■■ <iframe>  Inline frame

■■   Image

■■ <input>  Form control

■■ <ins>  Insertion

■■ <kbd>  User input

■■ <label>  Form control label

■■ <legend>  Explanatory title or caption

■■   List item

■■ <link>  Link to resources

■■ <map>  Client-side image map

■■ <mark>  Marked or highlighted text

■■ <menu>  Command menu

■■ <meta>  Metadata

■■ <meter>  Scalar measurement

■■ <nav>  Navigation

■■ <noscript>  Alternative content for no script support

■■ <object>  Generic embedded resource

■■   Ordered list

■■ <optgroup>  Option group

■■ <option>  Selection choice

■■ <output>  Output control

■■ <p>  Paragraph

■■ <param>  Plug-in parameter

■■ <pre>  Preformatted text

■■ <progress>  Progress of a task

■■ <q>  Inline quotation

■■ <rp>  Ruby parenthesis

■■ <rt>  Ruby text

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 35

■■ <ruby>  Ruby annotation

■■ <samp>  Sample output

■■ <script>  Linked or embedded script

■■ <section>  Document section

■■ <select>  Selection control

■■ <small>  Small print

■■ <source>  Media resource

■■   Generic inline container

■■   Strong importance

■■ <style>  Embedded style sheet

■■ <sub>  Subscript

■■ <sup>  Superscript

■■ <table>  Table

■■ <tbody>  Table body

■■ <td>  Table cell

■■ <textarea>  Multiline text control

■■ <tfoot>  Table footer

■■ <th>  Table header cell

■■ <thead>  Table head

■■ <time>  Date and/or time

■■ <title>  Document title

■■ <tr>  Table row

■■   Unordered list

■■ <var>  Variable

■■ <video>  Video or movie

■■ <wbr>  Optionally break up a large word at this element

Many of these elements are discussed in more detail later in this book.

Adding attributes to elements
The begin tag can contain additional data in the form of an attribute. An attribute is a
name=”value” pair in which name is unique within the tag and value is always enclosed within
either single quotes or double quotes. You can add many attributes to the begin tag. You can
also alternate using single quotes and double quotes, which is especially beneficial when you
need to embed single or double quotes within the value of the attribute. You can also have
Boolean attributes that contain the attribute name but no value.

Key
Terms

	36	 CHAPTER 2	 Getting started with HTML5

Here is an example of an element that has attributes.

<div id="main" class='mainContent'></div>

In this example, id and class are attributes. The id attribute uniquely identifies an element
within an HTML document. The class attribute specifies a named CSS style that should be
applied to the element.

Working with Boolean attributes
Some attributes are Boolean attributes, which means that the mere presence of the attribute
indicates that an option is set.

Some examples of Boolean attributes are as follows.

■■ checked  Used with the check box and option button to indicate selection

■■ selected  Used to indicate which option is selected in a drop-down or select list

■■ disabled  Used to disable input, text area, button, select, option, or opt group

■■ readonly  Used to prevent the user from typing data into a text box, password, or
text area

There are different ways to indicate a Boolean attribute. One way is to use the minimized
form, by which you just add the attribute name into the starting tag but don’t provide a
value. Here is an example of minimized form when setting a check box to selected.

<input type="checkbox" name="fruit" value="Apple" checked />

Another way to indicate a Boolean attribute is to use quoted form, in which you provide
either an empty value or the name of the attribute as its value. Here are examples of both.

<input type="checkbox" name="fruit" value="Apple" checked='' />
<input type="checkbox" name="fruit" value="Apple" checked='checked' />

The latter seems redundant but is usually considered to be the preferred way to represent
the Boolean attribute. If you use jQuery, which is a third-party JavaScript toolset, you’ll find
that it works best with that redundant example.

Quick check
■■ You are using a <button> element, and you want it to be disabled until some

criteria is met. What is the best way to disable the <button> element when the
page is loaded?

Quick check answer
■■ Write the <button> element using quoted syntax and assign the attribute name

to the attribute as follows.

<button type='button' id='myButton' disabled='disabled'>Button</button>

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 37

HTML5 global attribute reference
HTML5 defines a set of named attributes that can be applied to any HTML5 element. These
elements are called global attributes, and each has a very specific meaning, as follows.

■■ accesskey  Enables you to either specify a shortcut key to which to jump or to set
focus to an element. As a rule, you shouldn’t use this because it can cause problems
with other technologies.

■■ class  Used with CSS to specify one or more class names for an element.

■■ contenteditable  Specifies that the content within the tag can be edited.

■■ contextmenu  User can right-click an element to display a menu. At the time of this
writing, no browser supports this attribute.

■■ dir  Enables you to specify left-to-right or right-to-left text direction for the content
in an element.

■■ draggable  Specifies whether an element is draggable.

■■ dropzone  Enables you to specify the behavior of the dragged data when it’s
dropped. Data can be copied, moved, or linked.

■■ hidden  Specifies that an element is not relevant.

■■ id  Specifies a unique id for an element.

■■ lang  Specifies the language (English, French, German, and so on) of the element’s
content.

■■ spellcheck  Used with the lang attribute to enable you to indicate whether the ele-
ment is to have its spelling and grammar checked.

■■ style  Specifies an inline CSS style for the element.

■■ tabindex  Sets the tabbing order of the element.

■■ title  Provides extra information about the element.

You’ll see many examples of these global attributes in this book.

Working with self-closing tags
You can represent any element that contains no content as a self-closing tag. A self-closing
tag is a beginning tag and an ending tag in one. You end the starting tag with a space, slash,
and greater-than symbol. For example, the
 element cannot have any content, so here is
the beginning and ending tag in one:
.

In XML, any empty element can be written with a self-closing tag, but in HTML5, this can
cause problems in different browsers. The rule of thumb is to use self-closing tags for tags
that cannot have content, such as the
 tag. Empty elements that are capable of hav-
ing content but currently don’t have content should have separate end tags. An example is
<div></div>; there is no content, but the beginning and ending tags still exist.

Key
Terms

	38	 CHAPTER 2	 Getting started with HTML5

NOTE  USE THE <SCRIPT> ELEMENT CAREFULLY

When using the <script> element to reference an external JavaScript file, the element will
not have content when used in this context, but you must always include a separate end
tag as follows.

<script src="/Scripts/MyCode.js"></script>

A symptom of incorrect usage of the <script> element is when the browser renders a blank
screen, but you can view the source, and all its content is there.

Quick Check
■■ You want to use the <script> element to include a JavaScript file named MyCode.

js in the scripts folder. What is the proper syntax?

Quick Check Answer:
■■ <script src="/Scripts/MyCode.js"></script>

Working with void elements
Most but not all elements can have content, and the content can include elements with
content. Elements are not required to have content, but some elements cannot have content.
These are called void elements. For example, the
 tag represents a line break and cannot
have any content.

The following is a list of void elements in HTML5.

■■ <area>  Defines a hyperlink area with some text in an image map

■■ <base>  Specifies the document’s base URL or target for all relative URLs in the
document

■■
  Represents a line break

■■ <col>  Defines the properties of one or more columns within a <colgroup> element

■■ <command>  Defines a command that can be invoked by a user

■■ <hr>  Specifies a thematic change in content

■■   Defines an image

■■ <input>  Defines a typed data field that allows the user to edit the data

■■ <link>  Defines a relationship between a document and an external resource such as
a cascading style sheet

■■ <keygen>  Defines a key-pair generator control for forms that is used to encrypt data
that will be passed to the server

■■ <meta>  Defines metadata that describes the HTML document

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 39

■■ <param>  Defines a parameter for an object

■■ <source>  Defines a multimedia resource for a <video> or <audio> element

■■ <wbr>  Optionally breaks up a large word at this element

In earlier versions of HTML, you just used the
 tag with no ending tag to indicate that
you wanted to start a new line on the webpage. With XHTML, this was a problem because all
beginning tags are required to have matching end tags. HTML5 allows you to use a beginning
tag with no end tag, but a better solution is to use self-closing tags.

Adding expando attributes
Expando attributes are attributes that you define. Expando attributes are also known as
author-defined attributes or simply as custom attributes. Any time you want to attach data
to an HTML tag, you can just create an attribute with the name of your choice and assign
the data. However, the name you create might conflict with either an existing W3C-defined
attribute name or a future W3C-defined attribute name. To ensure that you have no existing
or future naming conflict, assign a name that is prefixed with “data-“.

Quick check
■■ You have a webpage with a element that contains the customer’s name.

Along with the name, you want to include the customer number on the
element, but you don’t want to display the customer number. How can you
write the element for a customer called Contoso Ltd with customer
number 123?

Quick check answer
■■ Use an expando attribute to hold the customer number as follows.

Contoso Ltd

Adding comments
You can add comments to your HTML source by using the following syntax.

<!--comment here -->

Comments are not displayed on the rendered browser page but are sent to the browser.
Comments can help document your source.

No spaces are allowed between the <! characters and the -- characters at the beginning
of the comment, but spaces are allowed between the -- characters and the > character at the
end of the comment tag. This seemingly weird behavior means that you cannot have back-
to-back dashes (--) in your comment because this combination causes HTML syntax errors.
In addition, you cannot end a comment with three dashes, such as <!-- and then it hap-
pened---> because this also generates a syntax error.

Key
Terms

	40	 CHAPTER 2	 Getting started with HTML5

Adding conditional comments
Only Internet Explorer recognizes conditional comments, which enable you to add a browser-
specific source that executes if the browser is Internet Explorer but is treated as a comment
by other browsers. You can add conditional comments to your HTML document by using the
following syntax.

<!--[if lte IE 7]> <html class="no-js ie6" lang="en"> <![endif]-->
<!--[if lt IE 7]> <html class="no-js ie6" lang="en"> <![endif]-->
<!--[if IE 8]> <html class="no-js ie8" lang="en"> <![endif]-->
<!--[if gt IE 8]> <html class="no-js" lang="en"> <![endif]-->
<!--[if gte IE 9]> <html class="no-js" lang="en"> <![endif]-->
<!--[if !IE]> --> This is not Internet Explorer!
 <!-- <![endif]-->

The first conditional comment checks whether the browser is Internet Explorer and the
version is earlier than or equal to 7. The next conditional comment checks whether the
browser is Internet Explorer and the version is earlier than 7. The next conditional comment
checks whether the browser is Internet Explorer and the version is 8. The next conditional
comment checks whether the browser is Internet Explorer and the version is later than 8, fol-
lowed by a check to see whether the browser is Internet Explorer and the version is later than
or equal to 9. The last line checks whether the browser is not Internet Explorer. Note that the
syntax of the last line is different from the others.

Creating an HTML document
Now that you’ve seen the various elements and attributes, it’s time to group them in a mean-
ingful way to create an HTML document. The HTML document contains an outer structure,
metadata, and some content.

Basic document structure
Every HTML document should have a basic structure that consists of a <!DOCTYPE html>
declaration, which historically has indicated the version of HTML to the browser. In HTML5,
this indicates to the browser that it should be in no-quirks mode. No-quirks mode causes the
browser to operate in an HTML5-compliant manner. Next is the root <html> element, which
contains the <head> element and the <body> element.

The <head> element contains hidden information such as metadata that describes the
HTML document and instructions. The following is an example of metadata in the <head>
element.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>title here</title>
 </head>
 <body>
 content here

Key
Terms

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 41

 </body>
</html>

In this example, the <meta> element describes the character set as utf-8, which is an effi-
cient form of unicode in which the English language characters (ASCII) require only a single
byte to be represented, and in which other languages can have characters that are repre-
sented with up to 4 bytes. This is the most common character set used in HTML and XML
documents.

This example also contains a <title> element, which is important because it serves the fol-
lowing purposes.

■■ Displays in the browser toolbar

■■ Provides the default name for the page when it is added to favorites

■■ Displays the title when a search engine displays the page in the search results

The <body> tag contains the displayable contents.

Using special characters (HTML entities)
You might want to display the < and > characters on your webpage, but you’ve seen that the
less-than and greater-than characters define tags. These characters can be displayed in your
content by using either the entity name or entity number as follows.

&entity_name;

or

&#entity_number;

There are many HTML entities, but Table 1-1 lists the most common HTML entities you will
use in your HTML document.

TABLE 1-1  Reference to common entities

Display Entity Name Entity Number Description

& & & Ampersand

> > > Greater-than sign

< < < Less-than sign

“ " " Double quotation

© © © Copyright

® ® ® Registered trademark

™ ™ ™ Trademark

 $#160; Nonbreaking space

Key
Terms

	42	 CHAPTER 2	 Getting started with HTML5

NONBREAKING SPACE
If you try to embed a series of spaces into your HTML document, the browser normalizes
contiguous white-space characters (such as spaces, tabs, and line breaks) and renders only a
single space. This is usually a desirable feature because it enables you to format your HTML
source content in a manner that is most readable in source mode while eliminating white-
space in the rendered output.

When you want to display several spaces, you can use the nonbreaking space character.
Nonbreaking space is also known as nonbreak space, nonbreakable space, and hard space. In
addition to preventing the collapse of contiguous whitespace, the nonbreaking space prevents
the automatic line break between words that you want to keep together on the same line.

Consider an HTML document in which you want to display 10 mph, where there is a
space between the number 10 and the mph. You want to ensure that mph will not be sepa-
rated from the number 10 by being moved to the next line. In your HTML document, use
10 mph to keep the number 10 and mph together.

Lesson summary
■■ An element is composed of a starting tag, inner content, and an ending tag.

■■ Browsers ignore tags that are not recognized.

■■ HTML5 originates from HTML 4.01, not from XHTML.

■■ The W3C is responsible for developing open standards for the web.

■■ HTML elements provide structure, CSS style sheets provide presentation, and
JavaScript provides behavior.

■■ Use lowercase tag names.

■■ Attribute values should always be quoted using either single quotes or double quotes.

■■ Boolean attributes are attributes whose mere presence on the starting tag indicates
that the option is set.

■■ HTML5 defines global attributes, which are the set of attributes that can appear on any
HTML5 element.

■■ Self-closing tags are tags whose beginning and ending tags are together to create an
element with no content. Self-closing tags should be used only with elements that can-
not have content.

■■ Void elements cannot have content. They should be created by using self-closing tags.

■■ Expando attributes are attributes that you define and are also known as author-
defined attributes or custom attributes. Prefix these attributes with “data-“.

■■ You can use conditional comments to add a browser-specific source that will work with
Internet Explorer but be treated as a comment by other browsers.

Key
Terms

	 Lesson 1: Introducing HTML5	 CHAPTER 2	 43

■■ HTML entities are special characters and can be embedded in your HTML document
by using the ampersand (&), the entity name, and a semicolon (;). You can also use the
ampersand (&), the hash symbol (#), the entity number, and the semicolon (;).

■■ Nonbreaking spaces can be used to render several contiguous spaces. You can also use
nonbreaking spaces to keep two words from being separated by a line break.

■■ The id attribute specifies a unique identifier for an element.

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to create an expando attribute on several <h3> tags that display vehicles for
sale. The expando attribute will store the VIN (vehicle identification number) of the
vehicle for sale. Which of the following is the most appropriate example of creating the
expando attribute?

A.	 <h3 vin=’current VIN here’>1965 VW Beetle</h3>

B.	 <h3 id=’current VIN here’>1965 VW Beetle</h3>

C.	 <h3 data-vin=’current VIN here’>1965 VW Beetle</h3>

D.	 <h3 datavin=’current VIN here’>1965 VW Beetle</h3>

2.	 Which technology is HTML5 preceded by and derived from?

A.	 HTML 4.01

B.	 SGML

C.	 XHTML 1.0

D.	 XML

3.	 How should you start each HTML5 document?

A.	 <html>

B.	 <head>

C.	 <title>

D.	 <!DOCTYPE html>

4.	 You want to use the disabled Boolean attribute on a text box. How can you accomplish
this? (Choose all that apply.)

A.	 <input name=’firstName’ type=’text’ disabled />

B.	 <input name=’firstName’ type=’text’ disabled=’’ />

C.	 <input name=’firstName’ type=’text’ disabled=’true’ />

D.	 <input name=’firstName’ type=’text’ disabled=’disabled’ />

	44	 CHAPTER 2	 Getting started with HTML5

Lesson 2: Embedding content

Soon, you will want to embed content in your HTML document. The content might be from
an existing webpage, or you might embed images in your HTML document. You might also
embed Adobe Flash applications. You can embed many interesting elements, and this lesson
covers many of the ways to embed content.

After this lesson, you will be able to:
■■ Embed HTML documents in another HTML document by using inline frames.

■■ Create hyperlinks to remote or local HTML documents.

■■ Add images and image maps to the current HTML5 document.

■■ Embed plug-in content.

Estimated lesson time: 30 minutes

Embedding HTML by using inline frames
You can use the <iframe> element to embed an inline frame that contains an HTML docu-
ment within the current HTML document. This can be useful when you want to create reuse
functionality on your site; for example, when you want to create a common header that will
show on all pages of your website. This can also be useful when you want to include an HTML
page from another website on your page.

The <iframe> element creates a nested browser context into which another HTML
document can be loaded. Loading an HTML document creates a browsing context for that
document. The document that contains an <iframe> is contained within the parent browser
context, where the document that is loaded into the <iframe> element is within the nested
browser context.

You can navigate nested browsing contexts by using the following properties of the win-
dow object.

■■ window.top  A WindowProxy object representing the top-level browsing context

■■ window.parent  A WindowProxy object representing the parent browsing context

■■ window.frameElement  An element that represents the browsing context container
but returns null if there isn’t one

The <iframe> element has a src (source) attribute and a name attribute. The src attribute
can be set to the absolute or relative URL of the HTML document that you want to include, as
shown in the following sample.

<iframe src="menu.html"></iframe>

The name attribute sets the browsing context name, which is useful when you need to
reference the <iframe> element, possibly as the target of a hyperlink, as described in the

	 Lesson 2: Embedding content	 CHAPTER 2	 45

“Working with hyperlinks” section that follows. A valid browsing context name is any string
with at least one character that does not start with an underscore because the underscore is
used for these special key names: _blank, _self, _parent, and _top.

Sandboxing embedded content
Sandboxing is a means for preventing malware and annoyances such as pop-ups from being
introduced when the content is embedded on your HTML page. The <iframe> element pro-
vides the sandbox attribute for this purpose.

The sandbox attribute places a set of extra restrictions on any content hosted by the
iframe. When the sandbox attribute is set, the content is treated as being from a unique and
potentially dangerous origin. Forms and scripts are disabled, and links are prevented from
targeting other browsing contexts. Consider the following example.

<iframe sandbox src="http://someOtherDomain.net/content">
</iframe>

In the example, the source is referencing potentially hostile content in a different domain.
This content will be affected by all the normal cross-site restrictions. In addition, the content
will have scripting, plug-ins, and forms disabled. The content cannot navigate any frames or
windows other than itself.

The restrictions can be overridden by space-separating any of the following.

■■ allow-forms  Enables forms

■■ allow-same-origin  Allows the content to be treated as being from the same origin
instead of forcing it into a unique origin

■■ allow-scripts  Enables scripts except pop-ups

■■ allow-top-navigation  Allows the content to navigate its top-level browsing context

In the following example, allow-same-origin, allow-forms, and allow-scripts are enabled.
On the surface, it might seem that the sandbox is not providing any protection, but the sand-
box still disabling plug-ins and pop-ups.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
 src="http://otherContent.com/content.html"></iframe>

Seamless content embedding
The <iframe> tag has a seamless attribute that indicates that the source content is to appear
as though it’s part of the containing document. This means that the <iframe> element will
not have borders and scrollbars. The seamless attribute is a Boolean attribute, so its presence
on the <iframe> tag indicates that you want this option, but there are three ways to set a
Boolean attribute. Here are three ways to specify seamless embedding of content.

<iframe seamless="seamless" src="http://otherContent.com/content.html"></iframe>
<iframe seamless="" src="http://otherContent.com/content.html"></iframe>
<iframe seamless src="http://otherContent.com/content.html"></iframe>

Key
Terms

	46	 CHAPTER 2	 Getting started with HTML5

At the time of this writing, the seamless attribute is not supported on any browsers, but its
intent is to blend the external content into the current HTML document so the HTML page
does not look like it has embedded content. The alternative is to use CSS to obtain a similar
presentation.

Working with hyperlinks
The <a> element creates a link to an external HTML document (external link) or jumps to
a location in the current HTML document (internal link). The content of the <a> element is
displayed in the browser with the following default appearance.

■■ Unvisited link  Underlined and blue

■■ Visited link  Underlined and purple

■■ Active link  Underlined and red

The <a> element has the href attribute, which you usually use to specify the link destina-
tion. If the link is external, the href can be populated with either a relative or absolute URL as
follows.

Expense Report Page
Sales Report Page

If the link is internal, the href will contain the hash (#) symbol followed by the id of the tag
that you want to jump to. If you use only the hash symbol, clicking the link takes you to the
top of the HTML document. Here are two examples.

Top
Go To Billing Address

Specifying the hyperlink target
When you’re on a webpage and you click a hyperlink to an external resource, the exter-
nal resource opens in the current browser window. If the external link is to a page on your
website, this behavior probably makes sense. If the external link is to a different website, you
might want to open a new browser window. By using the target attribute, you can control the
link behavior by assigning one of the following.

■■ _blank  Open in a new browser window

■■ _parent  Open in the parent frame or window

■■ _self  Open in the current window or frame (default)

■■ _top  Open in the topmost frame, thus replacing the contents of the window

■■ <iframe_name>  Open in the <iframe> element with matching name attribute

When you have a menu with hyperlinks that shows on every page, you might want to
create an <iframe> element with its name attribute set to content and then set the target

	 Lesson 2: Embedding content	 CHAPTER 2	 47

of all menu links to be content so the pages load into the <iframe> element as shown in the
following example.

Main Menu

Calendar

Human Resources

Expenses

Commissions

<iframe name="content"></iframe>

Sending email with hyperlinks
You can use mailto protocol to send email messages. The mailto URL accepts the following
parameters: subject, cc, bcc, and body. The parameters can be entered in any order by adding
a question mark (?) after the email address and separating the parameters with the amper-
sand (&). Some examples of an email hyperlink are as follows.

<!-- basic mailto -->
Contact Sales

<!-- add the name, notice that email is wrapped with < and > -->
<a href="mailto:Joe<sales@contoso.com>">Contact Joe in Sales

<!-- multiple recipients comma separated -->
Contact Sales and Service

<!-- add carbon copy -->
Contact Sales cc Service

<!-- add blind carbon copy -->
Contact Sales

<!-- basic mailto with message -->
Contact Sales with call me message

<!-- basic mailto with multi line message -->
Contact Sales with multi line
message

<!-- basic mailto with subject and message -->
Contact Sales with hi
subject
 and call me message

Adding images to your HTML document
When you want to embed an image in your HTML document, use the element. The
 element does not have an ending tag; it’s a void element. The element has
required attributes of src (abbreviation for source) and alt (abbreviation for alternate). Use the

