

XAML Developer
Reference

Mamta Dalal
Ashish Ghoda

Copyright © 2011 by Mamta Dalal and Ashish Ghoda
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5896-7

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquistions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Vikas Sahni

Copyeditor: Becka McKay

Indexer: Denise Getz

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

To Nimish and to my mother, for being my inspiration and
strength.

—MaMta Dalal

I dedicate this book to my grandparents (Nayansukhray and
Kumud Ghoda, Mahavir and Sarla Majmudar), parents (Jitendra
and Varsha Ghoda), sister (Kruti Vaishnav), and lovely family
(Pratixa, Gyan, and Anand Ghoda) whose blessings, sacrifice,
continuous support, and encouragement enabled me to achieve
the dream.

—ashish GhoDa

Contents at a Glance

Introduction xiii

PART I XAML BAsICs

ChApteR 1 Introducing XAML 3

ChApteR 2 Object elements and Attributes 19

ChApteR 3 XAML properties and events 49

PART II EnhAnCIng UsER EXPERIEnCE

ChApteR 4 Markup extensions and Other Features 87

ChApteR 5 Resources, Styles, and triggers 101

PART III XAML UsER InTERfACE ConTRoLs

ChApteR 6 Layout and positioning System 129

ChApteR 7 Form and Functional Controls 171

PART IV ConTEnT InTEgRATIon AnD AnIMATIon

ChApteR 8 Data Binding 213

ChApteR 9 Media, Graphics, and Animation 245

PART V APPEnDIXEs

AppenDIX A Major namespaces and Classes 289

AppenDIX B XAML editors and tools 299

Index 303

 vii

Contents

Introduction . xiii

PART I XAML BAsICs

Chapter 1 Introducing XAML 3
Windows Presentation Foundation (WPF) . 4

XAML—A Declarative Language for .NET Applications 4

XAML Is Part of the Microsoft Open Specification Program (OSP) . . 6

XAML Structure . 6

Dynamic User Interface . 7

Decouple Control Style Definitions . 8

Customized Design of XAML Controls . 9

Integration with Code-Behind to Control Behavior 9

Inline Code .12

Silverlight .13

The Microsoft .NET Framework .14

Design-Time Components .15

Runtime Cross-Platform Components .16

Summary. 17

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Chapter 2 object Elements and Attributes 19
XAML Is XML .20

Root Element .22

XAML Namespaces .23

Default User Interface Element .27

Introducing the XAML Presentation Framework .28

WPF and Silverlight Presentation Framework28

Defining User Interfaces with XAML .30

XAML User Interface Controls . 41

Layout and Positioning Controls .42

Form Controls .42

Functional Controls .43

Data Handling and Information Management Controls45

Image and Media Controls .45

Graphics and Animation Controls .46

Summary. .47

Chapter 3 XAML Properties and Events 49
XAML Properties .49

XAML Events .68

The Syntax .68

The EventSetter and EventTrigger Classes .81

Summary. .83

PART II EnhAnCIng UsER EXPERIEnCE

Chapter 4 Markup Extensions and other features 87
Markup Extensions .88

Built-In XAML Markup Extensions .89

XAML Markup Extensions Used in WPF and Silverlight94

Escape Sequences .95

Custom Markup Extensions .95

 ix

Type Converters versus Markup Extensions .98

XAML Services .99

Security in XAML .99

Summary. .100

Chapter 5 Resources, styles, and Triggers 101
Resources .101

Types of Resources .102

Static Resources .102

Defining Static Resources Using XAML .102

Defining Static Resources Programmatically104

Dynamic Resources .105

When to Use Which Resource .106

How Static and Dynamic Resources Work .106

Defining ResourceDictionary Files .107

Merged Resource Dictionaries .108

Scope and Hierarchy of Resources .109

Styles .111

Defining Styles .112

Implicit Styles .115

Inheriting Styles .116

The Silverlight Toolkit Styles .117

Styles vs. Control Templates .117

More on Styles .117

The generic.xaml File .119

Triggers .120

Troubleshooting Resources, Styles, and Triggers .126

Summary. .126

x Contents

PART III XAML UsER InTERfACE ConTRoLs

Chapter 6 Layout and Positioning system 129
The Layout System .130

XAML Layout and Positioning Controls .135

Common Sizing and Positioning Properties. .160

Summary. .170

Chapter 7 form and functional Controls 171
Action Controls .172

The ButtonBase Class .172

Text Editing Controls .182

The TextBoxBase Class .182

Functional Controls to Improve Usability .194

Functional Controls to Control and Monitor Behavior205

The RangeBase Class .205

Summary. .210

PART IV ConTEnT InTEgRATIon AnD AnIMATIon

Chapter 8 Data Binding 213
Data Sources .213

Data Binding .215

Setting the Binding Source .216

MultiBinding .221

Binding to Data from a Database .221

Binding Modes .227

Example of Two-Way Binding with TextBox 227

Source Updates. .228

Data Templating, Conversion, and Validation .228

Data Templating .230

Data Conversion .231

Data Validation .233

 Contents xi

Creating and Binding to an ObservableCollection .234

Collection Views .235

Sorting and Grouping Using a CollectionView 235

Hierarchical Binding .238

Using HierarchicalDataTemplate . 238

Using ObservableCollection for Hierarchical Binding241

Binding to XML Data .243

Summary. .244

Chapter 9 Media, graphics, and Animation 245
Media .245

Images .245

Audio and Video .246

Graphics .249

Ellipse .250

Rectangle .251

Rounded Rectangle .251

Polygon .251

Polyline .251

Path .253

Geometries .256

Brushes .256

Transforms .259

3-D Graphics .261

 3-D Graphics in WPF. .261

Defining Shapes .263

3-D Graphics in Silverlight .268

Pixel Shaders .271

Animations and Storyboards .275

Summary. .285

xii Contents

PART V APPEnDIXEs

Appendix A Major namespaces and Classes 289
Commonly Used Namespaces and Classes in WPF289

Commonly Used Namespaces and Classes in Silverlight 293

Appendix B XAML Editors and Tools 299
Editors .299

Kaxaml .299

XAML Cruncher .299

XamlPad .300

XamlPadX .300

Tools .300

Index 303

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

XAML is ubiquitous today. Whether with Silverlight, WPF, WF, various XPS formats, or
XML-based formats, XAML is being used in a whole lot of Microsoft platform-based

technologies. Though based on XML, XAML is unlike most other markup languages,
because it is strongly linked to CLR assemblies through its objects.

Microsoft originally intended XAML to be a new and much more malleable and
adaptable user interface (UI) description language for the .NET Framework through a
technology named Windows Presentation Foundation (formerly called WinFX). From
that specific beginning, XAML has not only outgrown that original goal, but achieved
far more.

Recently, WPF has begun to supersede Windows Forms as the preferred
 development target. XAML’s support for rich web interfaces, media streaming, and
 data-driven Line-of-Business (LOB) applications has made Silverlight a popular
 application platform in the web development community. The upcoming version of the
Windows operating system, Windows 8, also includes extensive support for XAML.

This book introduces you to XAML and explains its syntax and constructs. It then
explores various concepts, including XAML elements, properties, data binding, and so
forth. Although the book does not provide exhaustive coverage of every XAML feature,
it does offer essential guidance in using the key XAML functionality; you’ll gain a strong
foundation for designing rich and powerful user interfaces and applications using either
WPF or Silverlight.

Beyond the explanatory content, each chapter includes procedural examples and
downloadable sample projects that you can explore and expand for your own projects.

Who should Read This Book

This book is aimed at proficient developers using the .NET platform, who understand
the core concepts of XAML. It is especially useful for programmers looking to work with
new or existing WPF or Silverlight applications. Although most readers will have some
experience with XAML, the book is also suitable for those who are new to XAML but
wish to learn XAML development.

xiv Introduction

Assumptions
This book expects that you have at least a minimal understanding of .NET-based WPF
and Silverlight development with C# or Visual Basic. The book also assumes that you
have a basic knowledge of SQL Server and XML.

If you have not yet gained familiarity with Silverlight or WPF, you might consider
reading the following books:

■■ Ashish Ghoda’s Introducing Silverlight 4 (Apress, 2010), or Laurence Moroney’s
Microsoft Silverlight 4 Step by Step (Microsoft Press, 2010)

■■ Adam Nathan’s WPF 4 Unleashed (Sams, 2010)

Who should not Read This Book

If you are completely unfamiliar with WPF and Silverlight, or if you’re not comfortable
reading and writing C# or Visual Basic code, this book is not for you. This book does not
include a detailed explanation of the Model-View-ViewModel (MVVM) pattern; if you’re
looking for that information, take a look at:

■■ Raffaele Garofalo’s Building Enterprise Applications with Windows Presentation
 Foundation and the Model View ViewModel Pattern (Microsoft Press, 2011)

■■ Gary Hall’s Pro WPF and Silverlight MVVM: Effective Application Development
with Model-View-ViewModel (Expert’s Voice in WPF) (Apress, 2010)

This book also does not cover XAML for Windows 8—the timing of this edition
of book precluded including that information with any reasonable hope of accuracy.
However, based on our current level of information, the majority of the basic XAML
concepts should remain the same for the future Windows 8 platform.

organization of This Book

This book is divided into four sections, each of which focuses on a different aspect or
set of features within XAML.

■■ Part I, “XAML Basics,” introduces the .NET Framework and provides a quick
overview of XAML fundamental concepts and classes, including object elements,
attributes, properties, and events.

 Introduction xv

■■ Part II, “Enhancing User Experience,” describes the various language features
such as markup extensions, resources, and styles.

■■ Part III, “XAML User Interface Controls,” describes the layout system and various
XAML controls.

■■ Part IV, ”Content Integration and Animation,” delves into data binding, media,
graphics, and animation.

Finding Your Best Starting point in this Book
The different sections of the XAML Developer Reference cover a wide range of
 technologies associated with the Microsoft .NET Framework library and design and
development tools. Depending on your needs and your existing understanding of the
Microsoft .NET Framework, WPF, Silverlight, data binding, and design and development
tools, you may wish to focus on specific areas of the book.

If you are follow these steps

New to XAML development Focus on Parts I and III, or read through the entire book in chapter
sequence.
To get an overview of different XAML controls used in various
 samples throughout this book, read Chapters 6 and 7, which intro-
duce layout and form and functional XAML controls.

Familiar with XAML Briefly skim Parts I and III if you need a refresher on the core
 concepts.
To get an overview of different XAML controls used in various
 samples throughout this book, read Chapters 6 and 7, which intro-
duce layout and form and functional XAML controls.
Read up on markup extensions, styles, and other features in Parts II
and IV.

Most of the book’s chapters include hands-on samples that let you try out the
 concepts covered in that chapter. No matter which chapters or parts you choose to
focus on, be sure to download and install the sample applications on your system.

Conventions and features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ In most cases, the book includes examples that are XAML markup–based.
Although you will see some minimal C# code to show the connection of the
XAML to the code-behind code, the exercises rarely delve deeply into any
 code-behind.

xvi Introduction

■■ Boxed elements with labels such as “Note” provide additional information or
 alternative methods for completing a step successfully.

■■ Text that you need to type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys
at the same time. For example, “Alt+Tab” means that you hold down the Alt key
while you press the Tab key.

■■ A vertical bar between two or more menu items (such as File | Close), means that
you should select the first menu or menu item, then the next, and so on.

system Requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ One of the following: Windows Vista with Service Pack 2 (except Starter edition),
Windows XP with Service Pack 3 (except Starter edition), or Windows 7.

■■ Microsoft .NET Framework 4.0 or 3.5 SP1 (4.0 is recommended)

■■ Silverlight 4 SDK, toolkit, and run time (including developer run time)

■■ SQL Server 2008 Express edition or higher (2008 or R2 release), with SQL Server
Management Studio 2008 Express or higher (included with Visual Studio;
 Express editions require separate download)

■■ Visual Studio 2010, any edition (multiple downloads may be required if using
 Express edition products)

■■ Microsoft Expression Blend 4

■■ Computer that has a 1.6 GHz or faster processor (2 GHz or above recommended)

■■ Minimum 1 GB (32-bit) or 2 GB (64-bit) RAM (Add 512 MB if running in a virtual
machine or SQL Server Express editions, more for advanced SQL Server editions)

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9–capable video card running at 1024 x 768 or higher-resolution display

 Introduction xvii

■■ DVD-ROM drive (if installing Visual Studio and Expression Blend from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010 and SQL Server 2008 products.

Code samples

Most of the chapters in this book include projects or code snippets that let you
 interactively try out the new material discussed in the main text. You can download all
the sample code from this link:

http://www.microsoftpressstore.com/title/9780735658967

Follow the instructions to download the XAML_Developer_Reference_samples.zip
file.

note In addition to the code samples, your system should have Visual Studio
2010 and SQL Server 2008 installed. The following instructions use SQL Server
Management Studio 2008 to set up the sample database used with the
 practice examples. If available, install the latest service packs for each product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1. Unzip the XAML_Developer_Reference_samples.zip file that you downloaded
from the book’s website. (Name a specific directory along with directions to
 create it, if necessary.)

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the Accept option, and then click Next.

note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the XAML_Developer_Reference_
samples.zip file.

3. Attach the Northwind sample database to your instance of SQL Server 2008.

http://www.microsoftpressstore.com/title/9780735658967

xviii Introduction

Using the Code Samples
The folder created by the Setup.exe program contains three subfolders:

■■ Chapters Example projects referenced in each chapter appear in this folder.
Each chapter appears as subfolder with chapter number. Each chapter folder
may include one or more sample projects related to that chapter. The chapter
may contain separate projects for WPF and Silverlight. Follow the instructions
given in the chapter to run the project. Some of the chapters may include one or
more XAML file for individual samples. Some of these projects are incomplete,
and will not run without following the steps indicated in the associated chapter.

■■ Snippets Fragmented or partial code snippets that are included in the chapter
are included in text files. These can be copied and pasted into existing projects
or applications and then executed.

■■ Sample Database This folder contains the SQL script used to build the sample
 database. The instructions for creating this database appear earlier in this
 Introduction.

To access the example project of a particular chapter, browse to the appropriate
chapter folder in the Chapters folder, and open the project file.

Acknowledgments

Mamta Dalal:

This book is the culmination of the efforts of a number of people. Therefore, I’d like
to thank the editorial and copyedit team of Microsoft and O’Reilly—in particular, our
editor Russell Jones, without whom this book would not have been possible. I am also
 grateful to Kristen Borg, our production editor at O’Reilly; and Diane Kohnen and her
amazing copyediting team. I would also like to thank my coauthor Ashish Ghoda for
his valuable collaboration and strong support. Vikas Sahni, our technical reviewer, also
deserves a strong vote of thanks for his feedback, which went a long way toward mak-
ing this book better. I thank my parents for having believed in me and for encouraging
me to nurture my skills.

I would also like to take this opportunity to thank the awesome .NET, WPF, and
 Silverlight communities at the MSDN forums and at Stackoverflow.com. The latter in
 particular has been a tremendous source of enlightenment for me. Thank you to Jeff
 Atwood and Joel Spolsky for having created this wonderful site.

 Introduction xix

Finally, I thank my husband, Nimish, for his constant encouragement, understanding,
love, and support.

Ashish ghoda:

Working with the Microsoft Press and O’Reilly teams and my coauthor for this book
was a great experience. The support, positive attitude, and constructive feedback from
the Microsoft Press editorial and production teams and from our technical reviewer—
Vikas Sahni—made this project run smoothly.

My special thanks goes to Russell Jones—senior editor of Microsoft Press division—
for giving me the opportunity to help write this book and for remaining confident that
we could finish the book in the given time frame, despite some unexpected personal
 challenges faced by both Mamta and myself.

It’s challenging when the authors of a work are located in different countries. Mamta
Dalal, coauthor of this book, deserves full credit for her cooperation and efforts to keep
the content in sync while working remotely.

With blessings from God and encouragement from my grandparents, parents,
and in-laws, I was able to accomplish this task successfully. My wife, Pratixa, and two
 God-gifted sons, Gyan and Anand, have continued their support so that I could finish a
fourth consecutive book. I thank my family for their cooperation and encouragement
and for their faith in me during this difficult endeavor.

Errata & Book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735658967

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
 addresses above.

mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735658967

xx Introduction

We Want to hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
 valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

Part 1

XAML Basics

ChAPTER 1 Introducing XAML . 3

ChAPTER 2 Object Elements and Attributes19

ChAPTER 3 XAML Properties and Events49

 3

C h A P T E R 1

Introducing XAML

In this chapter:

■■ Windows Presentation Foundation (WPF)

■■ XAML—A Declarative Language for .NET Applications

■■ Silverlight

■■ The Microsoft .NET Framework

■■ Summary

Object-oriented and service-oriented programming models (along with language- and
 environment-independent features) lie at the core of the .NET Framework architecture. Since the
release of .NET Framework 3.0, Microsoft has added several important components to support the
unified programming and deployment model:

■■ A presentation layer Windows Presentation Foundation (WPF)

■■ A messaging and communication services layer Windows Communication Foundation
(WCF)

■■ Workflow management Windows Workflow Foundation (WF)

You use the Windows Presentation Foundation (WPF) framework libraries along with the
 XML-based eXtensible Application Markup Language (XAML) declarative markup language to define
and develop next-generation, abstracted, dynamic, rich, and interactive user interface layers that
provide data-integration capabilities and comprehensive support for multimedia, graphics, animation,
and documents.

The eXtensible Application Markup Language (XAML, pronounced zammel)—a declarative
 XML-based markup language—is at the center of the declarative user interface (UI) WPF framework.
It is a language for describing an abstracted—externalized and decoupled—user interface layer. The
current .NET Framework has extended XAML as its core user interface definition language to define
user interfaces not only for WPF and Silverlight applications, but also for the custom activity libraries
of WF 4.0–based workflows.

4 pARt 1 XAML Basics

Windows Presentation foundation (WPf)

WPF supports the development of rich and interactive Windows desktop applications that can pro-
vide sophisticated and realistic user experiences. WPF is built upon a very different architecture than
 Windows Forms. The key architectural differences are:

■■ WPF introduces a new user interface XML-based declarative markup language—XAML—
that can support layout, styles, resources, and control templates to simplify and standardize
 management of the visual appearance of the user interface. XAML also supports properties
and events that developers can handle in code-behind code to control its behavior.

■■ WPF provides a new presentation framework that integrates XAML for user interface design.
The framework supports a unified programming model that includes data binding capabilities
to develop data-driven applications as well as media integration, 2-D and 3-D vector graphics,
document integration, text, and typography.

■■ WPF provides a set of .NET Framework libraries for the presentation core that are mainly
derived from the System.Windows namespace. These libraries handle integration of the
 XAML-based user interface with the managed code-behind, including enhanced properties
and events integration, such as dependency properties and routed events (topics you’ll explore
later in this book).

■■ The new Media Integration Layer (MIL) provides a rendering engine for WPF applications built
upon Direct3D. The tight integration with DirectX means that WPF has high-performance
rendering of the visual interface that can take advantage of hardware acceleration using
the graphics processing units (GPUs) that most modern computers have, which reduces the
load on the central processing unit (CPU). This is a very different approach than that taken
in Window Forms applications, where the .NET Framework uses the User32 DLL to render
 standard Window Forms user interface elements and uses older Graphics Device Interface
(GDI) to render graphics. Figure 1-1 illustrates the differences between the visual interface
rendering approaches for WPF and Windows Forms applications.

More Info Visit MSDN at http://msdn.microsoft.com/en-us/library/ms750441.aspx to get
more details on the WPF architecture.

XAML—A Declarative Language for .nET Applications

As mentioned earlier, XAML is at the center of the declarative user interface (UI) WPF framework
because it implements the abstracted user interface layer. XAML is becoming a core UI definition
language for .NET Framework–based applications. Using XAML, you can define and develop user
interfaces for WPF and Silverlight applications and custom workflow activities for WF version 4.0.

http://msdn.microsoft.com/en-us/library/ms750441.aspx

 ChAPTER 1 Introducing XAML 5

You define and implement these user interfaces using a set of XAML controls provided as part of
the WPF framework. These XAML controls are derived from a set of WPF presentation framework
classes that can be hosted in either a window (WPF applications) or a page (Silverlight applications) to
render the defined user interface at runtime using a XAML parser.

Windows Forms

WPF

Presentation Framework−XAML

Presentation Core

Rendering
Graphics

Rendering All Visual
Interface Components

Media Integration Library (MIL)

Direct 3D

Operating System

User32

GDI

Device Drivers

Rendering
Standard UI
Elements

Common Language Runtime (CLR)

fIgURE 1-1 Rendering WPF and Windows Forms applications.

Caution Not all XAML controls are interoperable between WPF, Silverlight, and WF
 applications. In addition, the XAML parsers for each platform are also different. You will
need to use and set appropriate WPF, Silverlight, and WF platform specific–XAML controls
and compile applications using the corresponding platform.

6 pARt 1 XAML Basics

XAML Is Part of the Microsoft Open Specification Program (OSP)
You are probably aware that XAML is currently a Microsoft domain-specific language. To provide
 transparency and simplify the development of XAML applications by the broader developer community,
Microsoft published the technical specification of XAML Object Mapping for WPF and Silverlight in March
2008, under its Open Specification Promise (OSP) program. Microsoft is committed to maintaining those
specifications.

The XAML technical specification documentation provides details on XAML’s data model for types,
object hierarchies, and the techniques for mapping between XML and the object hierarchy data model.
It also documents the WPF and Silverlight vocabulary of types that can be used with XAML specifications.
Developers can use the WPF and Silverlight XAML technical specification documentation in conjunction
with publicly available standard specifications, computer language design, and implementation art to fully
understand and take advantage of XAML.

More Info Visit MSDN at http://msdn.microsoft.com/en-us/library/dd361847.aspx to
 download the various releases of XAML Object Mapping, and the WPF and Silverlight
 technical specification documentation.

XAML Structure
Figure 1-2 provides a quick overview of defining a button. In the example, the button width is set to
100, the button background color is set to LightGray, and the content (the button label) is set to “I am
a Button“ in XAML. The example also shows an identical Button object created in C#, with its related
properties set in code.

I am a Button

XAML C#

<Button Width="100">I am a Button
 <Button.Background>
 LightGray
 </Button.Background>
</Button>

Button b1 = new Button();
b1.Width = 100;
b1.Content = "I am a Button";
b1.Background = new
 SolidColorBrush(Colors.LightGray);

fIgURE 1-2 Defining a Button object and its properties in XAML and in C# code-behind.

A XAML file has a .xaml file extension. As shown in Figure 1-2, any XAML file consists of XML-like
structured information that defines the relationships among various XAML controls. At runtime,
these controls render as an object tree to create the user interface. In other words, XAML itself is
an abstraction—it simply describes objects. This abstraction lets XAML serve as the UI description

http://msdn.microsoft.com/en-us/library/dd361847.aspx

 ChAPTER 1 Introducing XAML 7

language for several different .NET application types (WPF, Silverlight, and WF). The properties
you define within the XAML elements (such as the Width, Content, and Background properties of
the Button control in Figure 1-2) control the look and feel of the particular user interface object
represented by that XAML element. You can also determine how or whether a control binds with
data. When you bind a control, it can display information (often from a database) unavailable at
design time, and obtained only at runtime.

More Info See Chapter 2, “Object Elements and Attributes,” for more details on XAML
syntax, XAML object elements, and attributes.

Dynamic User Interface
As shown in Figure 1-3, the key difference and advantage of using XAML—compared to building the user
interface by creating and adding the controls in code-behind—is that XAML provides a declarative and
separately compiled and rendered way of describing the user interface. User interface controls defined
in code are described at design time and executed at runtime. In contrast, controls defined in XAML are
stored separately from compiled code in .xaml files. At runtime, the XAML file is loaded and parsed by a
XAML parser, and the user interface is then rendered dynamically. Thus if you change the user interface
within a XAML file and redeploy it, the updated XAML content will be parsed and rendered; any changes
in the user interface definition will be reflected in the user interface.

XAML’s capability to develop an externalized and loosely coupled user interface enables developers
to develop and modify the user interface without affecting the underlying program code and without
recompiling the project for each UI change, which can significantly reduce the overall effort required for
application development and testing.

I am a Button

I am a Button

XAML

C#
Compile (Design-time)
and Execute (Runtime)

Load, Parse,
Render and Display
At Runtime<Button Width="100">I am a Button

 <Button.Background>
 LightGray
 </Button.Background>
</Button>

Button b1 = new Button();
b1.Width = 100;
b1.Content = "I am a Button";
b1.Background = new
 SolidColorBrush(Colors.LightGray);

fIgURE 1-3 Defining a Button object with its properties in XAML and using C# in code-behind.

8 pARt 1 XAML Basics

When working with XAML, remember that the WPF XAML parser is full-featured, whereas the
Silverlight XAML parser ships with a more limited feature set. As mentioned earlier, not all XAML
controls are interoperable between WPF, Silverlight, and WF applications. You will need to use the
appropriate WPF, Silverlight, and WF platform–specific XAML controls and compile applications using
the specific platform to which you want to deliver.

More Info Visit MSDN at http://msdn.microsoft.com/en-us/library/cc917841.aspx for more
details on the differences between WPF and the Silverlight XAML parser.

Decouple Control Style Definitions
Applications should maintain consistency throughout to give users a predictable experience, including
using the same color set, fonts, font sizes, and styles. Typically, ensuring this consistency can become quite
challenging when you are using multiple controls of similar types in single or multiple XAML files within
the same application, or across multiple applications. However, the WPF and Silverlight platforms help, be-
cause it provides the capability to easily externalize and decouple style sheets, which XAML elements can
then reference from within XAML files to help maintain a consistent user experience. The approach and
 capability is similar to the Cascading Style Sheets (CSS) approach used in standard HTML web applications.

Figure 1-4 demonstrates how you can define a style within a XAML file as a resource or as an
 external resource file, and apply that style to a Button control.

<Style x:Key="ButtonStyle5" TargetType="Button">
 <Setter Property="Foreground" Value="Black"/>
 <Setter Property="Background" Value="Green"/>
 <Setter Property="FontStyle" Value="Italic"/>
 <Setter Property="FontFamily" Value="Verdana"/>
 <Setter Property="FontSize" Value="16"/>
</Style>

Defining a Style

Applying a Style

<Button Style="{StaticResource ButtonStyle5}"
 Width="115" Content="Button"/>

Button

fIgURE 1-4 Defining and applying styles to XAML controls.

More Info See Chapter 5, "Resources, Styles, and Triggers," for more details on styles and
resources for XAML.

http://msdn.microsoft.com/en-us/library/cc917841.aspx

 ChAPTER 1 Introducing XAML 9

Customized Design of XAML Controls
One of the biggest advantages of WPF’s separation of the visual appearance of controls defined in XAML
from business logic implemented mainly in code is that a designer not only controls the common styles
of controls but can also alter the default look and feel of the control. For example, you might change
the default look and feel of a button to make it look like a star! In WPF you can use a ControlTemplate to
 define the visual structure and behavior of a control without affecting its functionality.

Each control can exist in a number of possible states, such as disabled, having the input focus, a state
where the mouse is hovering over it, and so on. A control template lets you define what a control looks
like in each of these states. Sometimes this is referred to as changing the look and feel of the control,
 because changing the visual appearance of each state alters how a user sees and experiences a control.

Figure 1-5 demonstrates how you can define a control template to change the appearance of a
Button control to make it look like an ellipse.

Defining a ControlTemplate

<ControlTemplate x:Key="ButtonControlTemplate1" TargetType="Button">
 <Grid>
 <Ellipse Margin="8,0,0,0" Stroke="#FF000000">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,1">
 <GradientStop Color="#FF4292F2"/>
 <GradientStop Color="#FFC9EDF7" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <TextBlock Margin="48,19,19,14" Text="Button" TextWrapping="Wrap"/>
 </Grid>
</ControlTemplate>

Applying a ControlTemplate

<Button Margin="50" Height="56" Width="119" Content="Button"
 Template="{StaticResource ButtonControlTemplate1}"/>

Button

fIgURE 1-5 Defining and applying a control template to XAML controls.

Integration with Code-Behind to Control Behavior
In general, markup languages such as HTML are mainly limited to defining the look and feel of the
user interface; most markup languages cannot define the behavior of the user interface by controlling
user interactions and defining various application actions. The typical way to implement some level of
business logic within an HTML file is to use a scripting language such as JavaScript or VBScript.

10 pARt 1 XAML Basics

In contrast to HTML, XAML was specifically developed for use with .NET Framework components. It
can use the .NET Framework platform and the Microsoft design and development tools and extend its
capabilities because it’s not limited simply to defining the user interface. It also enables interaction by
integrating XAML controls with managed code such as C# and VB .NET, and even dynamic languages
such as Ruby and Python.

More Info See the article “Creating Interactive Bing Maps with Silverlight and IronRuby,” at
http://msdn.microsoft.com/en-us/magazine/ee291739.aspx for an example of how IronRuby
dynamic language integrates events of XAML objects to implement required business logic.

Each XAML file for WPF, Silverlight, or WF project has a corresponding code-behind file, which
Microsoft development tools such as Visual Studio or Expression Blend create for you automatically.
However, a third file type is associated with the XAML file. Figure 1-6 illustrates the full class imple-
mentation for the MainWindow XAML file of a standard WPF project created using either Visual
Studio or Expression Blend.

MainWindow.xaml

WPF XAML File

As part of build process
(or in Visual Studio

upon saving the XAML
file), a code-behind file
is generated based on

XAML

Code-behind files
create the WPF

MainWindow class

MainWindow Class

MainWindow.xaml.cs

MainWindow.g.i.cs

fIgURE 1-6 Full class implementation of XAML.

note As defined on MSDN, “code-behind is a term used to describe the code that is joined
with markup-defined objects, when a XAML page is markup-compiled.” See http://msdn.
microsoft.com/en-us/library/aa970568.aspx to get more information on the code-behind
capabilities of XAML.

If you create a WPF application project by selecting WPF Application template in Visual Studio, you
will get a default MainWindow.xaml file. If you expand the MainWindow.xaml file in the Visual Studio
Solution Explorer, you will see an associated code-behind file named either MainWindow.xaml.cs file
(when you create a C# WPF project) or MainWindow.xaml.vb (when you create a Visual Basic WPF
project). This code-behind class is usually used to manage events and as a gateway to integrate with
other application components and services to implement the business logic.

http://msdn.microsoft.com/en-us/magazine/ee291739.aspx
http://msdn.microsoft.com/en-us/library/aa970568.aspx
http://msdn.microsoft.com/en-us/library/aa970568.aspx

 ChAPTER 1 Introducing XAML 11

Now, open this code-behind file in the code editor. Locate the class constructor and right-click the
InitializeComponent() method. Select the Go To Definition option from the shortcut menu. You will
see that the InitializeComponent definition code opens a MainWindow.g.i.cs file. MainWindow.g.i.cs is
a generated file based on the XAML defined in the MainWindow.xaml file. Any objects in the XAML
file that have an x:Name cause the creation of a class member in the generated file.

The following code snippet demonstrates the default MainWindow.xaml.cs file of the WPF application
and the InitializeComponent() method (in bold font) within the class constructor:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

XAML defines the language features x:Class, x:Subclass, and x:ClassModifier directives, which (as you
will explore more deeply in Chapter 2) enable integration of the XAML markup file with the code-behind
 partial class. You must derive the partial class defined in the root element of the XAML markup file using
the x:Class attribute. This class usually gets defined automatically by Visual Studio, using the naming
convention <XAMLFileName.xaml>.cs or <XAMLFileName.xaml>.vb, depending on which .NET language
you’re using. The following code snippet shows the definition of the x:Class attribute (in bold font) defined
in the Window root element of the MainWindow.xaml file of the WPF application.

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 </Grid>
</Window>

12 pARt 1 XAML Basics

note Because XAML is a declarative language, it can contain data binding, state management,
triggers, and so on as part of the UI definition. That means that design patterns such as the
Model-View-Controller (MVC) and Model-View-Presenter (MVP) that were developed for
service-oriented applications are not the best-fitting patterns for WPF-based applications.
Instead, a new design pattern called the Model-View-View-Model (MVVM) pattern has
been developed to define the user interface layer for XAML-based applications. Although
MVVM was largely derived from the concept of MVC and MVP patterns, it differs by defining a
view model that represents both a data model and behavior for views, and allows views to
bind to the view model declaratively within XAML. Visit http://msdn.microsoft.com/en-us/
magazine/dd419663.aspx to get an overview of how you can develop WPF applications using
the MVVM design pattern. Also see http://weblogs.asp.net/dwahlin/archive/2009/12/08/
getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx to get an overview
on how to develop Silverlight applications using MVVM.

Inline Code
The WPF XAML namespace also supports an additional x:Code directive element that can contain
inline programming code (in C# or Visual Basic) to implement business logic directly within the XAML
file. Programming code within the x:Code element must be entered inside a <[CDATA[…]]> segment
so that it will be processed as code rather than as XML by the XAML parser.

The following example implements the Click event of a Button control within the XAML file as
inline code (in bold font). The code is written in C#, and is defined right next to the definition of the
Button control, but within an x:Code element:

<Button Name="button1" Click="button1_click">Click Me!</Button>
<x:Code>
 <![CDATA[
 void button1_click(object sender, RoutedEventArgs e)
 {
 button1.Content = "Inline Code Works!!";
 }
]]>
</x:Code>

Warning Despite the existence of the <x:code> element, inline coding within XAML is not
 considered a best practice, and its use is not recommended except in special circumstances. It’s
 defnitely not the best way to implement complex business logic. Inline code has some limitations
that make implementing reusable code across a project considerably more challenging. In
 addition, it’s more difficult to code, maintain, and support complex business logic in inline code.

The inline code must be defined within the XAML file. The scope of inline code is limited to the scope
of the partial class created for that particular XAML instance.

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://weblogs.asp.net/dwahlin/archive/2009/12/08/getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx
http://weblogs.asp.net/dwahlin/archive/2009/12/08/getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx

 ChAPTER 1 Introducing XAML 13

You cannot use using (C#) or Imports (VB.NET) statements. Instead, you must fully qualify
 references to code entities outside the partial class.

The <x:Code> element must be an immediate child element of the root element of the XAML
 production. Moreover, although XAML itself has the advantage of abstracting the user interface
 definition of the application from the implementation of the business logic, inline code does not pro-
vide that abstraction, because it’s defined directly within the XAML file.

Caution The x:Code directive (and thus inline coding) is supported only by the WPF
XAML parser—it is not supported by the Silverlight XAML parser. Therefore, you cannot
 implement inline coding in Silverlight applications. The Silverlight XAML parser also does
not guarantee preservation of CDATA segment content.

silverlight

Silverlight is an extension of the .NET Framework–based technology platform to develop
 cross-browser, cross-platform, and cross-device Rich Internet Applications (RIAs). RIAs are web
 applications that have features and functionality similar to traditional desktop applications, including
rich and interactive user interfaces.

You can deploy Silverlight applications as plug-ins (in both in-browser and out-of-browser modes) that
run in a sandboxed environment. Silverlight is built upon lightweight components of the .NET Framework
that are a subset of the full WPF libraries. Silverlight applications do not require users to perform a
full install of the .NET Framework; instead, users need to install only a small Silverlight plug-in on their
 Windows or Mac (Intel processer–based) computers, or Windows Phone 7 mobile devices.

note To install the latest version of Silverlight and get the latest information on Silverlight,
visit Microsoft’s official Silverlight website at http://www.silverlight.net/getstarted/.

Like WPF Windows applications, the declarative XAML markup language used by Silverlight is at the
center of the declarative user interface (UI) framework. You can use the same Microsoft development tools
(Visual Studio and Expression Blend) to define Silverlight user interfaces in XAML and you can implement
business logic using standard .NET languages. However, there is a significant difference between the set of
XAML controls available for WPF and those available for Silverlight. In addition, the Silverlight platform has
limited .NET Framework libraries and its XAML parser as compared to the full WPF platform.

The initial versions of Silverlight (Silverlight 1.0 and 2.0 versions) were mainly targeted toward
building media applications, so it focused on media integration, vector graphics, and animation. Later
versions (Silverlight 3 and Silverlight 4) enhanced and streamlined Silverlight’s media applications
capabilities, and extended the product focus to implementing data-driven enterprise line of business
(LoB) applications. Silverlight 5 version extended the LoB applications capabilities and added support
for mobile applications development, as well as support for gaming and 3-D animations.

http://www.silverlight.net/getstarted/

