
		 i

Praise for

Inside the Microsoft Build Engine: Using MSBuild
and Team Foundation Build, Second Edition

“Inside the Microsoft Build Engine: Using MSBuild and Team Foundation Build is a practical book
covering all the essentials of MSBuild and the Team Foundation Server build system. But what
makes the book extra valuable is its focus on real-life scenarios that often are hard to find a good,
working solution for. In fact there is information in the book you’re unlikely to find anywhere else.
With the second edition of the book, the authors fill the gaps again, this time by covering the
new TFS build workflow technology as well as MSBuild 4.0. It is an invaluable book that saves lots
of time whenever you work with any aspect of automated builds in Visual Studio and TFS. This is
a book I’ll make sure to have with me all the time!”
-Mathias Olausson, ALM Consultant, QWise/Callista, Sweden

“As an ALM Consultant I come across many teams that are struggling with their build tools and
processes. The second edition of Sayed and William’s book is the perfect answer for these teams.
Not only will it show you how to get your builds back on track, I challenge anyone not to be able
to use the information in this book to improve their existing builds. It includes updated content
focusing on the new Visual Studio 2010 release and is packed with practical examples you could start
using straight away. You simply must include it in your technical library.”
-Anthony Borton, Microsoft Visual Studio ALM MVP, Senior ALM trainer/consultant,
Enhance ALM Pty Ltd, Australia

“The first edition of Inside the Microsoft Build Engine was a brilliant look at the internals of MSBuild,
so it’s fantastic to see Sayed and William updating it with all the new features in MSBuild 4.0 and also
delving into the Team Foundation Server 2010 workflow based build process. It’s also a real pleasure
to see deployment with MSDeploy covered so that you can learn not only how to automate your
builds, but also how to automate your deployments. A great book. Go out and get a copy now.”
-Richard Banks, Visual Studio ALM MVP and Principal Consultant with Readify, Australia

“Did you know about the TaskFactory in MSBuild? If not, you’re not alone - but you will know
after reading this book. This book provides insights into the current technologies of the Microsoft
Build Engine. Starting with background information about MSBuild, it covers also the necessary
basics of Workflow Foundation which are applied during the description of advanced topics
of Team Foundation Build. The level of detail is targeted to experienced build masters having
a development background - even the overview is stuffed with new information, references, hints
and best practices about MSBuild. Samples are provided as step-by-step guidance easy to follow
inside Visual Studio. What I found astonishing is the practical focus of the samples such as web
project deployment. I could have used at least half of them in my development projects! Simply
put: A must read for all build experts that have to deal with MSBuild and the Team Foundation
Server build engine who are not only interested in solutions but also background information!”
-Sven Hubert, AIT TeamSystemPro Team, Consultant, MVP Visual Studio ALM – www.tfsblog.de

ii	 Praise for

“The reason that I only own one MSBuild/Team Build book is because there is no need for another.
This book covers both topics from soup to nuts and is written in a way that allows new users to ramp
up quickly. The real-world code examples used to illustrate the topics are useful in their own right.
The Second Edition covers all of the changes in MSBuild 4.0 and all of the newness that is Team Build
2010. This is my ‘go to’ guide, and the only book on these topics that I recommend to my clients.”
-Steve St Jean, Visual Studio ALM MVP, DevProcess (ALM) Consultant with Notion
Solutions, an Imaginet Company

“Whether you consider yourself experienced or you are taking your first steps in the build and
automation arena, this 2nd edition will prove a valuable read. Skilled MSBuild users will do well
to remind themselves of the intricacies of MSBuild and learn of the new 4.0 features whilst
novices are taken on a steady paced journey to quickly acquire the knowledge and confidence
in developing successful solutions. This edition brings additional value to our ever changing
profession in discussing MSDeploy and the new Windows Workflow 4.0 based Team Foundation
Build. Regardless of your experience, I wholeheartedly recommend this book.”
-Mike Fourie, Visual Studio ALM MVP and ALM Ranger, United Kingdom

“The first edition of this book had a perfect balance between a tutorial and a reference book.
I say this as I used the book first to kick start my MS Build knowledge and then as reference
whenever I needed information on some advanced topic. My main interest is Team Foundation
Server and I learned MS Build more from necessity than an urge, hence I was very curious to
see the 2nd edition. Sayed and William did not disappoint me - the four chapters on Team Build
cover all points needed to customize builds. As a bonus there are three whole chapters on web
deployment which is a recurrent request I hear during my consulting and presentations on TFS.
If I had to summarize my opinion in a single sentence, I would just say `Buy the book, you won’t
regret it’.”
-Tiago Pascoal, Visual Studio ALM MVP and Visual Studio ALM Ranger, Portugal

“Reliable and repeatable build processes are often the Achilles’ heel of development teams. Often
this is down to a lack of understanding of the underlying technologies and how they fit together.
No matter which Continuous Integration (CI) tool you may be using, this book provides the
fundamental information you need to establish solid build and deployment engineering practices
and demystifies the various Microsoft technologies used along the way. This book is the essential
reference for any team building software on the Microsoft.NET platform.”
-Stuart Preston, Visual Studio ALM Ranger and Chief Technology Officer at RippleRock

“Successfully deploying application is one of the big challenges in today’s modern software
development. As applications become more complex to develop, they also become more complex
to deploy. This well-written book provides us a deep-dive on how developers can improve
their productivity and accomplish the business needs using Microsoft deployment technology:
MSBuild, Web Deploy and Team Build. Microsoft provides us the right tools, and this book
provides us the information we need to extract real value from these tools.”
-Daniel Oliveira, MVP, Visual Studio ALM Ranger and ALM Consultant at TechResult

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Sayed Hashimi and William Bartholomew

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010940848
ISBN: 978-0-7356-4524-0

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Iram Nawaz
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Marc H. Young
Cover: Tom Draper Design

Body Part No. X17-29997

I would like to dedicate this book to my parents, Sayed A. Hashimi and Sohayla Hashimi, as well as my

college advisor, Dr. Ben Lok. My parents have, over the course of the years, sacrificed a lot to give us the

opportunity for us to be able to achieve our dreams. I can only hope that they are proud of the person

that I have become. When I first met Ben, I wanted to get into a research program that he had going.

Thankfully, he was willing to accept me. Ben helped show me how rewarding hard work can be, and he

has enabled me to succeed in my career. When I look back on influences in my life, who are not relatives,

he ranks at the top of my list. I am sure that I wouldn’t be where I am had it not been for him.

—Sayed Ibrahim Hashimi

To my mother, Rosanna O’Sullivan, and my father, Roy Bartholomew, for their unfaltering support in all

my endeavors.

—William Bartholomew

I would like to dedicate this book to my parents, Syama Mohana Rao Adharapurapu and Nalini

Adharapurapu, my brother, Raghavendra Adharapurapu, my sister, Raga Sudha Vijjapurapu, and my

wife, Deepti Ramakrishna.

—Pavan Adharapurapu

I dedicate this book to my wife, Samantha, and my daughters, Amelie and Madeline, as well as my

parents, Leonea and Craig. Their love has no boundaries and their support has made me believe that

I can accomplish anything.

—Jason Ward

		 vii

Contents at a Glance

Part I	 Overview
	 1	 MSBuild Quick Start . 3
	 2	 MSBuild Deep Dive, Part 1 . 23
	 3	 MSBuild Deep Dive, Part 2 . 53

Part II	 Customizing MSBuild
	 4	 Custom Tasks . 87
	 5	 Custom Loggers . 129

Part III	 Advanced MSBuild Topics
	 6	 Batching and Incremental Builds . . 163
	 7	 External Tools . 193

Part IV	MSBuild Cookbook
	 8	 Practical Applications, Part 1 . 223
	 9	 Practical Applications, Part 2 . 245

Part V	 MSBuild in Visual C++ 2010
	 10	 MSBuild in Visual C++ 2010, Part 1 . . 267
	 11	 MSBuild in Visual C++ 2010, Part 2 . . 289
	 12	 Extending Visual C++ 2010 . 317

Part VI	Team Foundation Build
	 13	 Team Build Quick Start . 347
	 14	 Team Build Deep Dive . . 395
	 15	 Workflow Foundation Quick Start . 423
	 16	 Process Template Customization . . 455

viii	 Contents at a Glance

Part VII	Web Development Tool
	 17	 Web Deployment Tool, Part 1 . 489
	 18	 Web Deployment Tool, Part 2 . 521
	 19	 Web Deployment Tool Practical Applications 545
	Appendix A  New Features in MSBuild 4.0

(available online) . 569
	Appendix B  Building Large Source Trees

(available online) . 579
	Appendix C  Upgrading from Team Foundation

Build 2008 (available online) . 585

		 ix

Table of Contents
Foreword . xix

Introduction . xxi

Part I	 Overview
	 1	 MSBuild Quick Start . 3

Project File Details . 3
Properties and Targets . 4
Items . 9
Item Metadata . . 11
Simple Conditions . 15
Default/Initial Targets . 17
MSBuild.exe Command-Line Usage . . 18
Extending the Build Process . 21

	 2	 MSBuild Deep Dive, Part 1 . 23
Properties . 24
Environment Variables . 26

Reserved Properties . 27
Command-Line Properties . 30
Dynamic Properties . 32

Items . 34
Copy Task . 36

Well-Known Item Metadata . 41
Custom Metadata . 44
Item Transformations . 47

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

x	 Table of Contents

	 3	 MSBuild Deep Dive, Part 2 . 53
Dynamic Properties and Items . 53

Dynamic Properties and Items: MSBuild 3.5 . 53
Property and Item Evaluation . . 60
Importing Files . 64
Extending the Build Process . 69
Property Functions and Item Functions . 77

Property Functions . 77
String Property Functions . 78
Static Property Functions . 79
MSBuild Property Functions . 80
Item Functions . 82

Part II	 Customizing MSBuild
	 4	 Custom Tasks . 87

Custom Task Requirements . 87
Creating Your First Task . 88
Task Input/Output . 91
Supported Task Input and Output Types . 95
Using Arrays with Task Inputs and Outputs . 97
Inline Tasks . 101
TaskFactory . 111
Extending ToolTask . . 116

ToolTask Methods . 118
ToolTask Properties . . 119

Debugging Tasks . . 124

	 5	 Custom Loggers . 129
Overview . 129
Console Logger . 130
File Logger . 132
ILogger Interface . 134
Creating Custom Loggers . 135
Extending the Logger Abstract Class . 140
Extending Existing Loggers . . 146
FileLoggerBase and XmlLogger . 151
Debugging Loggers . 157

	 Table of Contents	 xi

Part III	 Advanced MSBuild Topics
	 6	 Batching and Incremental Builds . . 163

Batching Overview . 163
Task Batching . . 166
Target Batching . 170
Combining Task and Target Batching . 172
Multi-batching . 175
Using Batching to Build Multiple Configurations . 177
Batching Using Multiple Expressions . 181
Batching Using Shared Metadata . 183
Incremental Building . 188

Partially Building Targets . . 190

	 7	 External Tools . 193
Exec Task . . 193
MSBuild Task . . 197
MSBuild and Visual Studio Known Error
Message Formats . 203

Creating Reusable Build Elements . 204
NUnit . . 206
FxCop . 215

Part IV	MSBuild Cookbook
	 8	 Practical Applications, Part 1 . 223

Setting the Assembly Version . 223
Building Multiple Projects . 225
Attaching Multiple File Loggers . 231

Creating a Logger Macro . . 232
Custom Before/After Build Steps in the Build Lab . 233
Handling Errors . 235
Replacing Values in Config Files . 237
Extending the Clean . 239

	 9	 Practical Applications, Part 2 . 245
Starting and Stopping Services . 245
Web Deployment Project Overview . 246
Zipping Output Files, Then Uploading to an FTP Site 252

xii	 Table of Contents

Compressing JavaScript Files . 254
Encrypting web.config . 256
Building Dependent Projects . 258
Deployment Using Web Deployment Projects . 260

Part V	 MSBuild in Visual C++ 2010
	 10	 MSBuild in Visual C++ 2010, Part 1 . . 267

The New .vcxproj Project File . 267
Anatomy of the Visual C++ Build Process . 269
Diagnostic Output . 271
Build Parallelism . 272

Configuring Project- and File-Level Build
Parallelism . 273

File Tracker–Based Incremental Build . 279
Incremental Build . 279
File Tracker . 279
Trust Visual C++ Incremental Build . 281
Troubleshooting . 281

Property Sheets . . 281
System Property Sheets and User Property

Sheets . . 284
Visual C++ Directories . 285

	 11	 MSBuild in Visual C++ 2010, Part 2 . . 289
Property Pages . 289

Reading and Writing Property Values . 289
Build Customizations . . 294
Platforms and Platform Toolsets . 297
Native and Managed Multi-targeting . 300

Native Multi-targeting . 300
How Does Native Multi-targeting Work? . 301
Managed Multi-targeting . 301

Default Visual C++ Tasks and Targets . 302
Default Visual C++ Tasks . 303
Default Visual C++ Targets . . 303
ImportBefore, ImportAfter, ForceImportBeforeCppTargets,
and ForceImportAfterCppTargets . 306

Default Visual C++ Property Sheets . 307

	 Table of Contents	 xiii

Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010 311
IDE Conversion . 311
Command-Line Conversion . . 314

Summary . 315

	 12	 Extending Visual C++ 2010 . 317
Build Events, Custom Build Steps, and the Custom

Build Tool . 317
Build Events . . 317
Custom Build Step . . 319
Custom Build Tool . . 322

Adding a Custom Target to the Build . . 324
Creating a New Property Page . 326

Troubleshooting . 331
Creating a Build Customization . . 332
Adding a New Platform and Platform Toolset . . 338
Deploying Your Extensions . 342

Part VI	Team Foundation Build
	 13	 Team Build Quick Start . 347

Introduction to Team Build . 347
Team Build Features . 347
High-Level Architecture . . 348

Preparing for Team Build . . 350
Team Build Deployment Topologies . . 350
What Makes a Good Build Machine? . . 351
Installing Team Build on the Team Foundation

Server . 352
Setting Up a Build Controller . 352
Setting Up a Build Agent . 355
Drop Folders . 359

Creating a Build Definition . 360
General . 360
Trigger . . 361
Workspace . 365
Build Defaults . 367
Process . 368
Retention Policy . 369

xiv	 Table of Contents

Working with Build Queues and History . 371
Visual Studio . 372
Working with Builds from the Command Line . 383

Team Build Security . 388
Service Accounts . 388
Permissions . 391

	 14	 Team Build Deep Dive . . 395
Process Templates . . 395
Default Template . . 396

Logging . . 396
Build Number . 397
Agent Reservation . 398
Clean . 399
Sync . 400
Label . 400
Compile and Test . . 401
Source Indexing and Symbol Publishing . 404
Associate Changesets and Work Items . 407
Copy Files to the Drop Location . 407
Revert Files and Check in Gated Changes . . 409
Create Work Items for Build Failure . . 409

Configuring the Team Build Service . 409
Changing Communications Ports . . 409
Requiring SSL . 410
Running Interactively . 411
Running Multiple Build Agents . 412
Build Controller Concurrency . 413

Team Build API . 414
Creating a Project . 414
Connecting to Team Project Collection . 415
Connecting to Team Build . 416
Working with Build Service Hosts . 416
Working with Build Definitions . 417
Working with Builds . 419

	 15	 Workflow Foundation Quick Start . 423
Introduction to Workflow Foundation . 423

Types of Workflows . 423

	 Table of Contents	 xv

Building a Simple Workflow Application . 424
Workflow Design . 426

Built-in Activities . 426
Working with Data . . 428
Exception Handling . 430
Custom Activities . 433

Workflow Extensions . . 437
Persistence . 437
Tracking . 437

Putting It All Together—Workflow Foundation Image Resizer Sample
Application . . 438
Overview . . 438
Building the Application . 438
Running the Application . 452
Debugging the Application . 452
Summary . 453

	 16	 Process Template Customization . . 455
Getting Started . 455

Creating a Process Template Library . 455
Creating a Custom Activity Library . 460

Process Parameters . . 461
Defining . 461
Metadata . 463
User Interface . 466
Supported Reasons . 468
Backward and Forward Compatibility . . 469

Team Build Activities . 469
AgentScope . 469
CheckInGatedChanges . 470
ConvertWorkspaceItem/ConvertWorkspaceItems 470
ExpandEnvironmentVariables . 470
FindMatchingFiles . 470
GetBuildAgent . 471
GetBuildDetail . 471
GetBuildDirectory . 471
GetBuildEnvironment . 471
GetTeamProjectCollection . . 471
InvokeForReason . 471

xvi	 Table of Contents

InvokeProcess . 471
MSBuild . . 472
SetBuildProperties . 472
SharedResourceScope . 473
UpdateBuildNumber . 473

Custom Activities . 473
BuildActivity Attribute . 473
Extensions . 474

Logging . . 475
Logging Verbosity . 475
Logging Activities . 476
Logging Programmatically . 477
Adding Hyperlinks . 478
Exceptions . 482

Deploying . . 482
Process Templates . . 482
Custom Assemblies . . 483
Downloading and Loading Dependent

Assemblies . . 485

Part VII	Web Development Tool
	 17	 Web Deployment Tool, Part 1 . 489

Web Deployment Tool Overview . 490
Working with Web Packages . 490

Package Creation . 492
Installing Packages . 494

msdeploy.exe Usage Options . 498
MSDeploy Providers . 500
MSDeploy Rules . 504
MSDeploy Parameters . 510

–declareParam . 513
–setParam . 515

MSDeploy Manifest Provider . 517

	 18	 Web Deployment Tool, Part 2 . 521
Web Publishing Pipeline Overview . 521
XML Document Transformations . 521

	 Table of Contents	 xvii

Web Publishing Pipeline Phases . . 530
Excluding Files . 533
Including Additional Files . 536
Database . 539

	 19	 Web Deployment Tool Practical Applications 545
Publishing Using MSBuild . 545
Parameterizing Packages . . 550
Using –setParamFile . 554
Using the MSDeploy Temp Agent . 556
Deploying Your Site from Team Build . 557
Deploying to Multiple Destinations Using Team Build 560
Excluding ACLs from the Package . 565
Synchronizing an Application to Another Server . 566

Index . 589

Appendix A  New Features in MSBuild 4.0
(available online) . 569

Appendix B  Building Large Source Trees
(available online) . 579

Appendix C  Upgrading from Team Foundation
Build 2008 (available online) . 585

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 xix

Foreword
Often when people think about build, they think just about the act of compiling some source
code – when I hit F5 in the IDE, it builds, right? Well yes, kind of. In a real production build
system, there is so much more to it than that. There are many kinds of builds – F5, desktop,
nightly, continuous, rolling, gated, buddy etc. The variety of build types is reflective of the
important role build plays in the software development process and the varied ways it
does so. Build is a key integration point in the process. It is where developers’ work comes
together; it is where developers hand off to test and where release hands off to operations.
No wonder there are so many requirements on it.

As I mentioned, build is about a lot more than compiling the code. It can include making sure
the right code is assembled, compiling, testing, version stamping, packaging, deployment
and more. Of course, because software systems are all different and organizations are
different, many of the activities need to be completely different. As a result, extensibility
plays a major role. In TFS 2010, we increased the extensibility options by including a build
workflow engine (based on the .NET Workflow Foundation) on top of the existing msbuild
capabilities. Unfortunately, as flexibility increases, so does the amount you need to know to
make sound decisions and fully automate your build workflow.

This book is a great resource to help you understand the variety of roles build plays in
software development and how you can leverage msbuild and TFS. It will show you how
to use “out of the box” solutions, provide guidance on when to customize, what the best
customization approaches are and details on and examples of how to actually do it. I think
it will be an invaluable resource to keep on your reference shelf.

Brian Harry

Technical Fellow

Team Foundation Server, Microsoft

		 xxi

Introduction
Build has historically been kind of like a black art, in the sense that there are just a few
people who know and understand build, and are passionate about it. But in today’s evolving
environment that is changing. Now more and more people are becoming interested in
build, and making it a part of their routine development activities. Today’s applications are
different from those that we were building five to ten years ago. Along with that the process
by which we write software is different as well. Nowadays it is not uncommon for a project
to have sophisticated build processes which include such things as code generation, code
analysis, unit testing, automated deployment, etc. To deal with these changes developers are
no longer shielded from the build process. Developers have to understand the build process
so that they can leverage it to meet their needs.

Back in 2005 Microsoft released MSBuild, which is the build engine used to build most Visual
Studio projects. That release was MSBuild 2.0. Since that release Microsoft has released two
major versions of MSBuild—MSBuild 3.5 and MSBuild 4.0. In MSBuild 3.5 Microsoft released
such goodness as multi-processor support, multi-targeting, items and properties being
defined inside of targets and a few other things which brought MSBuild to where it needed
to be. In MSBuild 4.0 there were a lot of really great features delivered. The feature which
stands out the most is the support for building Visual C++ projects. Starting with Visual
Studio 2010 your Visual C++ project files are in MSBuild format. Modifying MSBuild to be
able to support building Visual C++ projects was a big effort on Microsoft’s part, but they
understood that the value they were delivering to customers would be worth it. Along with
support for Visual C++ there were a number of significant feature add ons, such as support
for BeforeTargets/AfterTargets, inline tasks, property functions, item functions and a new
object model to name a few. During that same period Team Build has undergone a number
of big changes.

Team Foundation Build (or Team Build as it is more commonly known) is now in its third
version. Team Build 2005 and 2008 were entirely based on MSBuild using it for both build
orchestration as well as the build process itself. While this had the advantage of just needing
to learn one technology MSBuild wasn’t suited for tasks such as distributing builds across
multiple machines and performing complex branching logic. Team Build 2010 leverages the
formidable combination of Workflow Foundation (for build orchestration) and MSBuild (for
build processes) to provide a powerful, enterprise-capable, build automation tool. Team Build
2010 provides a custom Workflow Foundation service host that runs on the build servers
that allows the build process to be distributed across multiple machines. The Workflow
Foundation based process template can perform any complex branching and custom logic
that is supported by Workflow Foundation, including the ability to call MSBuild based
project files.

Table of Contents
Introduction

Who This Book Is For
Assumptions

Organization of This Book
System Requirements
Code Samples
Acknowledgements

Sayed Ibrahim Hashimi
William Bartholomew
Pavan Adharapurapu
Jason Ward

Errata and Book Support
We Want to Hear from You
Stay in Touch

xxii	 Introduction

A common companion to build is deployment. In many cases the same script which builds your
application is used to deploy it. This is why in this updated book we have a section, Part VII Web
Deployment Tool, in which we dedicate three chapters to the topic. MSDeploy is a tool which
was first released in 2009. It can be used to deploy websites, and other applications, to local
and remote servers. In this section we will show you how to leverage MSDeploy and the Web
Publishing Pipeline (WPP) in order to deploy your web applications. Two chapters are devoted
to the theory of both MSDeploy and the WPP. There is also a cookbook chapter which shows
real world examples of how to use these new technologies. Once you’ve automated your build
and deployment process for the first time you will wonder why you didn’t do that for all of your
projects.

Who This Book Is For
This book is written for anyone who uses, or is interested in using, MSBuild or Team Build.
If you are using Visual Studio to your applications then you are already using MSBuild.
Inside the Microsoft Build Engine is for all developers and build masters using Microsoft
technologies. If you are interested in learning more about how your applications are being
built and how you can customize this process then you need this book. If you are using
Team Build, or thinking of using it tomorrow, then this book is a must read. It will save you
countless hours.

This book will help the needs of enterprise teams as well as individuals. You should be
familiar with creating applications using Visual Studio. You are not required to be familiar
with the build process, as this book will start from the basics and build on that. Because one
of the most effective methods for learning is through examples, this book contains many
examples.

Assumptions
To get the most from this book, you should meet the following profile:

n	 You should be an familiar with Visual Studio
n	 You should have experience with the technologies you are interested in building
n	 You should have a solid grasp of XML.

Organization of This Book
Inside the Microsoft Build Engine is divided into seven parts:

Part I, “Overview,” describes all the fundamentals of creating and extending MSBuild project
files. Chapter 1, “MSBuild Quick Start,” is a brief chapter to get you started quickly with
MSBuild. If you are already familiar with MSBuild then you can skip this chapter; its content

	 Introduction	 xxiii

will be covered in more detail within chapters 2 and 3. Chapter 2, “MSBuild Deep Dive,
Part 1,” discusses such things as static properties, static items, targets, tasks, and msbuild
.exe usage. Chapter 3, “MSBuild Deep Dive, Part 2,” extends on Chapter 2 with dynamic
properties, dynamic items, how properties and items are evaluated, importing external files,
extending the build process, property functions, and item functions.

Part II, “Customizing MSBuild,” covers the two ways that MSBuild can be extended: custom
tasks and custom loggers. Chapter 4, “Custom Tasks,” covers all that you need to know to
create your own custom MSBuild tasks. Chapter 5, “Custom Loggers,” details how to create
custom loggers and how to attach them to your build process.

Part III, “Advanced MSBuild Topics,” discusses advanced MSBuild concepts. Chapter 6,
“Batching and Incremental Builds,” covers two very important topics, MSBuild batching
and supporting incremental building. Batching is the process of categorizing items and
processing them in batches. Incremental building enables MSBuild to detect when a target
is up-to-date and can be skipped. Incremental building can drastically reduce build times for
most developer builds. Chapter 7, “External Tools,” provides some guidelines for integrating
external tools into the build process. It also shows how NUnit and FXCop can be integrated in
the build process in a reusable fashion.

Part IV, “MSBuild Cookbook,” consists of two chapters that are devoted to real-world
examples. Chapter 8, “Practical Applications, Part 1,” contains several examples, including:
setting the assembly version, customizing the build process in build labs, handling errors, and
replacing values in configuration files. Chapter 9, “Practical Applications, Part 2,” covers more
examples, most of which are targeted toward developers who are building Web applications
using .NET. It includes Web Deployment Projects, starting and stopping services, zipping
output files, compressing Javascript file, and encrypting the web.config file.

Part V, “MSBuild in Visual C++ 2010” discusses how MSBuild powers various features
of Visual C++ in light of Visual C++ 2010’s switch to MSBuild for its build engine. Chapter 10,
“MSBuild in Visual C++ 2010, Part 1” introduces the reader to the new .vcxproj file format
for Visual C++ projects and illustrates the Visual C++ build process with a block diagram.
Then it continues describing its features such as Build Parallelism, Property Sheets, etc. and
how MSBuild enables these features. Of particular interest are the new File Tracker based
Incremental Build and movement of Visual C++ Directories settings to a property sheet from
the earlier Tools > Option page. Chapter 11, “MSBuild in Visual C++ 2010, Part 1” continues
the theme of Chapter 10 by describing more Visual C++ features and the underlying
MSBuild implementation. This includes Property Pages, Build Customizations, Platform and
Platform Toolsets, project upgrade, etc. It also includes a discussion of all the default tasks,
targets and property sheets that are shipped with Visual C++ 2010. Of particular interest
is the section on multi-targeting which explains the exciting new feature in Visual C++
2010 which allows building projects using older toolsets such as Visual C++ 2008 toolset.
We describe both how to use this feature as well as how this feature is implemented using

xxiv	 Introduction

MSBuild. Chapter 12, “Extending Visual C++ 2010” describes how you can extend the build
system in various ways by leveraging the underlying MSBuild engine. Discussed in this chapter
are authoring Build Events, Custom Build Steps, Custom Build Tool to customize Visual C++
build system in a simple way when the full power of MSBuild extensibility is not needed. This is
followed by a discussion of adding a custom target and creating a Build Customization which
allows you to use the full set of extensibility features offered by MSBuild. One of the important
topics in this chapter deals with adding support for a new Platform or a Platform Toolset. The
example of using the popular GCC toolset to build Visual C++ projects is used to drive home
the point that extending platforms and platform toolsets is easy and natural in Visual C++ 2010.

Part VI, “Team Foundation Build,” introduces Team Foundation Build (Team Build) in
Chapter 13, “Team Build Quick Start”. In this chapter we discuss the architectural components
of Team Foundation Build and walkthrough the installation process and the basics
of configuring it. In Chapter 14, “Team Build Deep Dive”, we examine the process templates
that ship with Team Build as well the Team Build API. Chapter 15, “Workflow Foundation
Quick Start”, introduces the basics of Workflow Foundation to enable customizing the build
process. Chapter 16, “Process Template Customization”, then leverages this knowledge and
explains how to create customized build processes.

Part VII, “Web Deployment Tool” first introduces the Web Deployment Tool (MSDeploy) in
Chapter 17 “Web Deployment Tool, Part 1”. In that chapter we discuss what MSDeploy is,
and how it can be used. We describe how MSDeploy can be used for “online deployment”
in which you deploy your application to the target in real time and we discuss “offline
deployments” in which you create a package which gets handed off to someone else for the
actual deployment. In Chapter 18 “Web Deployment Tool, Part 2” we introduce the Web
Publishing Pipeline (WPP). The WPP is the process which your web application follows to go
from build output to being deployed on your remote server. It’s all captured in a few MSBuild
scripts, so it is very customizable and extensible. In that chapter we cover how you can
customize and extend the WPP to suit your needs. Then in Chapter 19 “Web Deploy Practical
Applications” we show many different examples of how you can use MSDeploy and WPP to
deploy your packages. We cover such things as Publishing using MSBuild, parameterizing
packages, deploying with Team Build, and a few others.

For Appendices A, B, and C please go to http://aka.ms/645240/files.

System Requirements
The following list contains the minimum hardware and software requirements to run the
code samples provided with the book.

n	 .NET 4.0 Framework

n	 Visual Studio 2010 Express Edition or greater

n	 50 MB of available space on the installation drive

http://aka.ms/645240/files

	 Introduction	 xxv

For Team Build chapters:

n	 Visual Studio 2010 Professional

n	 Some functionality (such as Code Analysis) requires Visual Studio 2010 Premium or
Visual Studio 2010 Ultimate

n	 Access to a server running Team Foundation Server 2010

n	 Access to a build machine running Team Foundation Build 2010 (Chapter 13 walks you
through installing this)

n	 A trial Virtual PC with Microsoft Visual Studio 2010 and Team Foundation Server 2010
RTM is available from http://www.microsoft.com/downloads/en/details
.aspx?FamilyID=509c3ba1-4efc-42b5-b6d8-0232b2cbb26e

Code Samples
Download the sample code files from this book's page online:

	

Acknowledgements
The authors are happy to share the following acknowledgments.

Sayed Ibrahim Hashimi
Before I wrote my first book I thought that writing a book involved just a few people, but
now having written my third book I realize how many different people it takes to successfully
launch a book. Unfortunately with books most of the credit goes to the authors, but the
others involved deserve much more credit than they are naturally given. As an author, the
most we can do is thank them and mention their names here in the acknowledgements
section. When I reflect on the writing of this book there are a lot of names, but there is one
that stands out in particular, Dan Moseley. Dan is a part of the MSBuild team. He has gone
way above and beyond what I could have ever imagined. I’ve never seen someone peer
review a chapter as good, or as fast, as Dan has. Without Dan’s invaluable insight the book
would simply not be what it is today. In my whole career I’ve only encountered a few people
who are as passionate about what they do as Dan. I hope that I can be as passionate about
building products as he is.

http://aka.ms/645240/files

xxvi	 Introduction

Besides Dan I would like to first thank my co-authors and technical editor. William
Bartholomew, who wrote the Team Build chapters, is a wonderful guy to work with. He is
recognized as a Team Build expert, and I think his depth of knowledge shows in his work.
Pavan Adharapurapu wrote the chapters covering Visual C++. When we first started talking
about updating the book to cover MSBuild 4.0 to be honest I was a bit nervous. I was
nervous because I had not written any un-managed code in more than 5 years, and because
of that I knew that I could not write the content on Visual C++ and do it justice. Then we
found Pavan. Pavan helped build the Visual C++ project system, and he pours his heart into
everything that he does. Looking back I am confident that he was the best person to write
those chapters and I am thankful that he was willing. Also I’d like to thank Jason Ward, who
wrote a chapter on Workflow Foundation. Jason who has a great background in Workflow
Foundation as well as Team Build was an excellent candidate to write that chapter. I started
with the authors, but the technical editor, Marc Young deserves the same level of recognition.
This having been my third book I was familiar with what a technical editor is responsible for
doing. Their primary job is essentially to point out the fact that I don’t know what I’m talking
about, which Marc did very well. But Marc went beyond his responsibilities. Marc was the one
who suggested that we organize all the sample code based on the chapters. At first I didn’t
really think it was a good idea, but he volunteered to reorganize the content and even redo
a bunch of screen shots. I really don’t think he knew what he was volunteering for! Now that
it is over I wonder if he would volunteer again. I can honestly say that Marc was the best
technical editor that I’ve ever worked with. His attention to detail is incredible, to the point
that he was reverse engineering the code to validate some statements that I was making (and
some were wrong). Before this book I knew what a technical editor was supposed to be, and
now I know what a technical editor can be. Thanks to all of you guys!

As I mentioned at the beginning of this acknowledgement there are many others who
came together to help complete this book besides those of us writing it. I’d like to thank
Microsoft Press and everyone there who worked on it. I know there were some that were
involved that I didn’t even know of. I’d like to thank those that I do know of by name. Devon
Musgrave, who also worked with us on the first edition, is a great guy to work with. This book
really started with him. We were having dinner one night a while back and he said to me
something along the lines of “what do you think of updating the book?” I knew that it would
be a wonderful project and it was. Iram Nawaz who was the Project Editor of the book was
just fantastic. She made sure that we stayed on schedule (sorry for the times I was late J)
and was a great person to work with. The book wouldn’t have made it on time if it was not
for her. Along with these guys from Microsoft Press I would like to than the editors; Susan
McClung and Nicole Schlutt for their perseverance to correct my bad writing.

There are several people who work on either the MSBuild/MSDeploy/Visual Studio product
groups that I would like to thank as well. When the guys who built the technologies you
are writing about help you, it brings the book to a whole new level. I would like to thank
the following people for giving their valued assistance (in no particular order, and sorry if

	 Introduction	 xxvii

I missed anyone); Jay Shrestha, Chris Mann, Andrew Arnott, Vishal Joshi, Bilal Aslam, Faith
Allington, Ming Chen, Joe Davis and Owais Shaikh.

William Bartholomew
Firstly I’d like to thank my co-authors, Sayed, Pavan, and Jason, because without their
contributions this book would not be as broad as it is. From Microsoft Press I’d like to thank
Devon Musgrave, Ben Ryan, Iram Nawaz, Susan McClung, and the art team, for their efforts
in converting our ideas into a publishable book. Thanks must go to Marc Young for his
technical review efforts in ensuring that the procedures are easily followed, the samples
work, and the book makes sense. Finally, I’d like to thank the Team Build Team, in particular
Aaron Hallberg and Buck Hodges, for the tireless support.

Pavan Adharapurapu
A large number of people helped make this book happen. I would like to start off by
thanking Dan Moseley, my manager at Microsoft who encouraged me to write the book
and for providing thorough and detailed feedback for the chapters that I wrote. Brian Tyler,
the architect of my team provided encouragement and great feedback. Many people from
the Visual C and the project system teams here at Microsoft helped make the book a better
one by providing feedback on their areas of expertise. In alphabetical order they are: Olga
Arkhipova, Andrew Arnott, Ilya Biryukov, Felix Huang, Cliff Hudson, Renin John, Sara Joiner,
Marian Luparu, Chris Mann, Bogdan Mihalcea, Kieran Mockford, Amit Mohindra, Li Shao.
Any mistakes that remain are mine.

I would like to thank Devon Musgrave, Iram Nawaz, Susan McClung and Marc Young from
Microsoft Press for their guidance and patience.

Finally, I would like to thank my wonderful wife Deepti who provided great support and
understanding throughout the many weekends I spent locked up writing and revising the
book. Deepti, I promise to make it up to you.

Jason Ward
First of all, I’d like to thank William Bartholomew for giving me the opportunity to contribute
to this book. William displays an amazing amount of talent, passion and integrity in all his
work. I’m honored to have his friendship as well as the opportunity to work with him on
a daily basis.

I’d also like to thank Avi Pilosof and Rich Lowry for giving me the wonderful opportunity
to work at Microsoft. From the moment I met them it was clear that moving my family
half way around the world was the right thing to do. Their mentorship, passion, friendship

xxviii	 Introduction

and overarching goal of ‘doing the right thing’ has only further reinforced that working at
Microsoft was everything I had hoped it would be. They are the embodiment of all things
good at Microsoft.

Finally I’d like to thank the thousands of people working at Microsoft for producing the
wonderful applications and experiences that millions of people around the world use and
enjoy on a daily basis. It is truly an honor to work with you as we change the world.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
If you do find an error, please report it on our Microsoft Press site:

	 1.	 Go to www.microsoftpressstore.com.

	 2.	 In the Search box, enter the book’s ISBN or title.

	 3.	 Select your book from the search results.

	 4.	 On your book’s catalog page, find the Errata & Updates tab

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

www.microsoftpressstore.com

		 1

Part I

Overview
In this part:
Chapter 1: MSBuild Quick Start . 3
Chapter 2: MSBuild Deep Dive, Part 1 . 23
Chapter 3: MSBuild Deep Dive, Part 2 . 53

Part I

Overview

Chapter 1

MSBuild Quick Start
Project File Details
Properties and Targets
Items
Item Metadata
Simple Conditions
Default/Initial Targets
MSBuild.exe Command-Line Usage
Extending the Build Process

Chapter 2

MSBuild Deep Dive, Part 1
Properties
Environment Variables

Reserved Properties
Command-Line Properties
Dynamic Properties

Items
Copy Task

Well-Known Item Metadata
Custom Metadata
Item Transformations

Chapter 3

MSBuild Deep Dive, Part 2
Dynamic Properties and Items

Dynamic Properties and Items: MSBuild 3.5
Property and Item Evaluation
Importing Files
Extending the Build Process
Property Functions and Item Functions

Property Functions
String Property Functions
Static Property Functions
MSBuild Property Functions
Item Functions

Part II

Customizing MSBuild

Chapter 4

Custom Tasks
Custom Task Requirements
Creating Your First Task
Task Input/Output
Supported Task Input and Output Types
Using Arrays with Task Inputs and Outputs
Inline Tasks
TaskFactory
Extending ToolTask

ToolTask Methods
ToolTask Properties

Debugging Tasks

Chapter 5

Custom Loggers
Overview
Console Logger
File Logger
ILogger Interface
Creating Custom Loggers
Extending the Logger Abstract Class
Extending Existing Loggers
FileLoggerBase and XmlLogger
Debugging Loggers

Part III

Advanced MSBuild Topics

Chapter 6

Batching and Incremental Builds
Batching Overview
Task Batching
Target Batching
Combining Task and Target Batching
Multi-batching
Using Batching to Build Multiple Configurations
Batching Using Multiple Expressions
Batching Using Shared Metadata
Incremental Building

Partially Building Targets

		 3

Chapter 1

MSBuild Quick Start
When you are learning a new subject, it’s exciting to just dive right in and get your hands
dirty. The purpose of this chapter is to enable you to do just that. I’ll describe all the key
elements you need to know to get started using MSBuild. If you’re already familiar with
MSBuild, feel free to skip this chapter—all of the material presented here will be covered
in later areas in the book as well, with the exception of the msbuild.exe usage details.

The topics covered in this chapter include the structure of an MSBuild file, properties, targets,
items, and invoking MSBuild. Let’s get started.

Project File Details
An MSBuild file—typically called an “MSBuild project file”—is just an XML file. These XML
files are described by two XML Schema Definition (XSD) documents that are created by
Microsoft: Microsoft.Build.Commontypes.xsd and Microsoft.Build.Core.xsd. These files
are located in the %WINDIR%\Microsoft.NET\Framework\vNNNN\MSBuild folder, where
vNNNN is the version folder for the Microsoft .NET Framework 2.0, 3.5, or 4.0. If you have
a 64-bit machine, then you will find those files in the Framework64 folder as well. (In this
book, I’ll assume you are using .NET Framework 4.0 unless otherwise specified. As a side
note, a new version of MSBuild was not shipped with .NET Framework 3.0.) Microsoft
.Build.Commontypes.xsd describes the elements commonly found in Microsoft Visual
Studio-generated project files, and Microsoft.Build.Core.xsd describes all the fixed elements
in an MSBuild project file. The simplest MSBuild file would contain the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
</Project>

This XML fragment will identify that this is an MSBuild file. All your content will be placed
inside the Project element. Specifically, we will be declaring properties, items, targets, and a
few other things directly under the Project element. When building software applications,
you will always need to know two pieces of information: what is being built and what build
parameters are being used. Typically, files are being built, and these would be contained in
MSBuild items. Build parameters, like Configuration or OutputPath, are contained in MSBuild
properties. We’ll now discuss how to declare properties as well as targets, and following that
we’ll discuss items.

4	 Part I  Overview

Properties and Targets
MSBuild properties are simply key-value pairs. The key for the property is the name that you
will use to refer to the property. The value is its value. When you declare static properties,
they are always contained in a PropertyGroup element, which occurs directly within
the Project element. We will discuss dynamic properties (those declared and generated
dynamically inside targets) in the next chapter. The following snippet is a simple example
of declaring static properties:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

As previously stated, the PropertyGroup element, inside the Project element, will contain
all of our properties. The name of a property is the XML tag name of the element, and the
value of the property is the value inside the element. In this example, we have declared
two properties, AppServer and WebServer, with the values \\sayedApp and \\sayedWeb,
respectively. You can create as many PropertyGroup elements under the Project tag as you
want. The previous fragment could have been defined like this:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AppServer>\\sayedApp</AppServer>
 </PropertyGroup>
 <PropertyGroup>
 <WebServer>\\sayedWeb</WebServer>
 </PropertyGroup>
</Project>

The MSBuild engine will process all elements sequentially within each PropertyGroup in the
same manner. If you take a look at a project created by Visual Studio, you’ll notice that many
properties are declared. These properties have values that will be used throughout the build
process for that project. Here is a region from a sample project that I created:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{A71540FD-9949-4AC4-9927-A66B84F97769}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>

Chapter 7

External Tools
Exec Task
MSBuild Task
MSBuild and Visual Studio Known Error Message Formats
Creating Reusable Build Elements
NUnit
FxCop

Part IV

MSBuild Cookbook

Chapter 8

Practical Applications, Part 1
Setting the Assembly Version
Building Multiple Projects
Attaching Multiple File Loggers

Creating a Logger Macro
Custom Before/After Build Steps in the Build Lab
Handling Errors
Replacing Values in Config Files
Extending the Clean

Chapter 9

Practical Applications, Part 2
Starting and Stopping Services
Web Deployment Project Overview
Zipping Output Files, Then Uploading to an FTP Site
Compressing JavaScript Files
Encrypting web.config
Building Dependent Projects
Deployment Using Web Deployment Projects

Part V

MSBuild in Visual C++ 2010

Chapter 10

MSBuild in Visual C++ 2010, Part 1
The New .vcxproj Project File

	 Chapter 1  MSBuild Quick Start	 5

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>

</Project>

You can see that values for the output type, the name of the assembly, and many others
are defined in properties. Defining properties is great, but we also need to be able to utilize
them, which is performed inside targets. We will move on to discuss Target declarations.

MSBuild fundamentally has two execution elements: tasks and targets. A task is the smallest
unit of work in an MSBuild file, and a target is a sequential set of tasks. A task must always
be contained within a target. Here’s a sample that shows you the simplest MSBuild file that
contains a target:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 </Target>
</Project>

In this sample, we have created a new target named HelloWorld, but it doesn’t perform
any work at this point because it is empty. When MSBuild is installed, you are given many
tasks out of the box, such as Copy, Move, Exec, ResGen, and Csc. You can find a list of these
tasks at the MSBuild Task Reference (http://msdn2.microsoft.com/en-us/library/7z253716.
aspx). We will now use the Message task. This task is used to send a message to the logger(s)
that are listening to the build process. In many cases this means a message is sent to the
console executing the build. When you invoke a task in an MSBuild file, you can pass its input
parameters by inserting XML attributes with values. These attributes will vary from task to
task depending on what inputs the task is able to accept. From the documentation of the
Message task (http://msdn2.microsoft.com/en-us/library/6yy0yx8d.aspx) you can see that
it accepts a string parameter named Text. The following snippet shows you how to use the
Message task to send the classic message “Hello world!”

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>
</Project>

Now we will verify that this works as expected. To do this, place the previous snippet into
a file named HelloWorld.proj. Now open a Visual Studio command prompt, found in the
Visual Studio Tools folder in the Start menu for Visual Studio. When you open this prompt,

6	 Part I  Overview

the path to msbuild.exe is already on the path. The command you will be invoking to start
MSBuild is msbuild.exe. The basic usage for the command is as follows:

msbuild [INPUT_FILE] /t:[TARGETS_TO_EXECUTE]

So the command in our case would be

msbuild HelloWorld.proj /t:HelloWorld

This command says to execute the HelloWorld target, which is contained in the HelloWorld
.proj file. The result of this invocation is shown in Figure 1-1.

FIGURE 1-1  Result of HelloWorld target

Note  In this example, as well as all others in the book, we specify the /nologo switch. This
simply avoids printing the MSBuild version information to the console and saves space in the
book. Feel free to use it or not as you see fit.

We can see that the HelloWorld target is executed and that the message “Hello world!” is
displayed on the console. The Message task also accepts another parameter, Importance. The
possible values for this parameter are high, normal, or low. The Importance value may affect
how the loggers interpret the purpose of the message. If you want the message logged no
matter the verbosity, use the high importance level. We’re discussing properties, so let’s take
a look at how we can specify the text using a property. I’ve extended the HelloWorld.proj file
to include a few new items. The contents are shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="HelloWorld">
 <Message Text="Hello world!" />
 </Target>

 <PropertyGroup>
 <HelloMessage>Hello from property</HelloMessage>
 </PropertyGroup>
 <Target Name="HelloProperty">
 <Message Text="$(HelloMessage)" />
 </Target>
</Project>

I have added a new property, HelloMessage, with the value “Hello from property”, as well as
a new target, HelloProperty. The HelloProperty target passes the value of the property using

Anatomy of the Visual C++ Build Process
Diagnostic Output
Build Parallelism

Configuring Project- and File-Level Build Parallelism
File Tracker–Based Incremental Build

Incremental Build
File Tracker
Trust Visual C++ Incremental Build
Troubleshooting

Property Sheets
System Property Sheets and User Property Sheets

Visual C++ Directories

Chapter 11

MSBuild in Visual C++ 2010, Part 2
Property Pages

Reading and Writing Property Values
Build Customizations
Platforms and Platform Toolsets
Native and Managed Multi-targeting

Native Multi-targeting
How Does Native Multi-targeting Work?
Managed Multi-targeting

Default Visual C++ Tasks and Targets
Default Visual C++ Tasks
Default Visual C++ Targets
ImportBefore, ImportAfter, ForceImportBeforeCppTargets, and
ForceImportAfterCppTargets

Default Visual C++ Property Sheets
Migrating from Visual C++ 2008 and Earlier to Visual C++ 2010

IDE Conversion
Command-Line Conversion

Summary

Chapter 12

Extending Visual C++ 2010
Build Events, Custom Build Steps, and the Custom
Build Tool

Build Events
Custom Build Step
Custom Build Tool

Adding a Custom Target to the Build
Creating a New Property Page

Troubleshooting
Creating a Build Customization
Adding a New Platform and Platform Toolset
Deploying Your Extensions

	 Chapter 1  MSBuild Quick Start	 7

the $(PropertyName) syntax. This is the syntax you use to evaluate a property. We can see
this in action by executing the command msbuild HelloWorld.proj /t:HelloProperty.
The result is shown in Figure 1-2.

FIGURE 1-2  Result of HelloProperty target

As you can see, the value of the property was successfully passed to the Message
task. Now that we have discussed targets and basic property usage, let’s move on to
discuss how we can declare properties whose values are derived from other
properties.

To see how to declare a property by using the value of an existing property, take a look at
the project file, NestedProperties.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <DropLocation>
 \\sayedData\MSBuildExamples\Drops\$(Configuration)\$(Platform)\
 </DropLocation>
 </PropertyGroup>
 <Target Name="PrepareFilesForDrop">
 <Message Text="DropLocation : $(DropLocation)" />
 </Target>
</Project>

We can see here that three properties have been declared. On both the Configuration
and Platform properties, a Condition attribute appears. We’ll discuss this attribute later in
this chapter. The remaining property, DropLocation, is defined using the values of the two
previously declared items. The DropLocation property has three components: a constant
value and two values that are derived from the Configuration and Platform properties.
When the MSBuild engine sees the $(PropertyName) notation, it will replace that with the
value of the specified property. So the evaluated value for DropLocation would be
\\sayedData\MSBuildExamples\Drops\Debug\AnyCPU\. You can verify that by executing the
PrepareFilesForDrop target with msbuild.exe. The reference for properties can be found at
http://msdn.microsoft.com/en-us/library/ms171458.aspx.

When you use MSBuild, a handful of properties are available to you out of the box that
cannot be modified. These are known as reserved properties. Table 1-1 contains all the
reserved properties.

8	 Part I  Overview

TABLE 1-1  Reserved Properties
Name Description
MSBuildExtensionsPath The full path where MSBuild extensions are located. By

default, this is stored under %programfiles%\msbuild.

MSBuildExtensionsPath32 The full path where MSBuild 32-bit extensions are located. This
typically is located under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

MSBuildExtensionsPath64* The full path where MSBuild 64-bit extensions are located. This
typically is under the Program Files folder. For 32-bit machines,
this value will be empty.

MSBuildLastTaskResult* This value holds the return value from the previous task. It will
be true if the task completed successfully, and false otherwise.

MSBuildNodeCount The number of nodes (processes) that are being used to build the
projects. If the /m switch is not used, then this value will be 1.

MSBuildProgramFiles32* This points to the 32-bit Program Files folder.

MSBuildProjectDefaultTargets Contains the list of the default targets.

MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root directory.

MSBuildProjectExtension The extension of the project file, including the period.

MSBuildProjectFile The name of the project file, including the extension.

MSBuildProjectFullPath The full path to the project file.

MSBuildProjectName The name of the project file, without the extension.

MSBuildStartupDirectory The full path to the folder where the MSBuild process is invoked.

MSBuildThisFile* The name of the file, including the extension but excluding the
path, which contains the target that is currently executing.

MSBuildThisFileDirectory* This is the full path to the directory that contains the file that is
currently being executed.

MSBuildThisFileDirectoryNoRoot* The same as MSBuildThisFileDirectory, except with the root
removed.

MSBuildThisFileExtension* The extension of the file that is currently executing.

MSBuildThisFileFullPath* The full path to the file that is currently executing.

MSBuildThisFileName* The name of the file, excluding the extension and path, of the
currently executing file.

MSBuildToolsPath
(MSBuildBinPath)

The full path to the location where the MSBuild binaries are
located.
For MSBuild 2.0, this property is named MSBuildBinPath; in
MSBuild 3.5, it is deprecated.

MSBuildToolsVersion The version of the tools being used to build the project.
Possible values include 2.0, 3.5, and 4.0. The default value for
this is 2.0.

*  Denotes parameters new with MSBuild 4.0.

Part VI

Team Foundation Build

Chapter 13

Team Build Quick Start
Introduction to Team Build

Team Build Features
High-Level Architecture

Preparing for Team Build
Team Build Deployment Topologies
What Makes a Good Build Machine?
Installing Team Build on the Team Foundation Server
Setting Up a Build Controller
Setting Up a Build Agent
Drop Folders

Creating a Build Definition
General
Trigger
Workspace
Build Defaults
Process
Retention Policy

Working with Build Queues and History
Visual Studio
Working with Builds from the Command Line

Team Build Security
Service Accounts
Permissions

Chapter 14

Team Build Deep Dive
Process Templates
Default Template

Logging
Build Number
Agent Reservation
Clean
Sync
Label
Compile and Test
Source Indexing and Symbol Publishing

	 Chapter 1  MSBuild Quick Start	 9

You would use these properties just as you would properties that you have declared in
your own project file. To see an example of this, look at any Visual Studio–generated
project file. When you create a new C# project, you will find the import statement <Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> located near the
bottom. This import statement uses the MSBuildToolsPath reserved property to resolve the
full path to the Microsoft.CSharp.targets file and insert its content at this location. This is
the file that drives the build process for C# projects. We will discuss its content throughout
the remainder of this book. In Chapter 3, “MSBuild Deep Dive, Part 2,” we discuss specifically
how the Import statement is processed.

Items
Building applications usually means dealing with many files. Because of this, you use
a specific construct when referencing files in MSBuild: items. Items are usually file-based
references, but they can be used for other purposes as well. If you create a project
using Visual Studio, you may notice that you see many ItemGroup elements as well as
PropertyGroup elements. The ItemGroup element contains all the statically defined items.
Static item definitions are those declared as a direct child of the Project element. Dynamic
items, which we discuss in the next chapter, are those defined inside a target. When you
define a property, you are declaring a key-value pair, which is a one-to-one relationship.
When you declare items, one item can contain a list of many values. In terms of code,
a property is analogous to a variable and an item to an array. Take a look at how an item
is declared in the following snippet taken from the ItemsSimple.proj file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>
</Project>

In this file, there is an ItemGroup that has a subelement, SolutionFile. ItemGroup is the
element type that all statically declared items must be placed within. The name of the
subelement, SolutionFile in this case, is actually the item type of the item that is
created. The SolutionFile element has an attribute, Include. This determines what values
the item contains. Relating it back to an array, SolutionFile is the name of the variable that
references the array, and the Include attribute is used to populate the array’s values. The
Include attribute can contain the following types of values (or any combination thereof): one
distinct value, a list of values delimited with semicolons, or a value using wildcards. In this
sample, the Include attribute contains one value. When you need to evaluate the contents of
an item, you would use the @(ItemType) syntax. This is similar to the $(PropertyName) syntax
for properties. To see this in action, take a look at the PrintSolutionInfo target. This target

10	 Part I  Overview

passes the value of the item into the Message task to be printed to the console. You can see
the result of executing this target in Figure 1-3.

FIGURE 1-3  PrintSolutionInfo result

In this case, the item SolutionFile contains a single value, so it doesn’t seem very different
from a property because the single value was simply passed to the Message task. Let’s take
a look at an item with more than one value. This is an extended version of the ItemsSimple
.proj file shown earlier:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <SolutionFile Include="..\InsideMSBuild.sln" />
 </ItemGroup>
 <Target Name="PrintSolutionInfo">
 <Message Text="SolutionFile: @(SolutionFile)" />
 </Target>

 <ItemGroup>
 <Compile
 Include="Form1.cs;Form1.Designer.cs;Program.cs;Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <Target Name="PrintCompileInfo">
 <Message Text="Compile: @(Compile)" />
 </Target>
</Project>

In the modified version, I have created a new item, Compile, which includes four values that
are separated by semicolons. The PrintCompileInfo target passes these values to the Message
task. When you invoke the PrintCompileInfo target on the MSBuild file just shown, the result
will be Compile: Form1.cs;Form1.Designer.cs;Program.cs;Properties
\AssemblyInfo.cs. It may look like the Message task simply took the value in the Include
attribute and passed it to the Message task, but this is not the case. The Message task has
a single input parameter, Text, as discussed earlier. This parameter is a string property.
Because an item is a multivalued object, it cannot be passed directly into the Text property.
It first has to be converted into a string. MSBuild does this for you by separating each value
with a semicolon. In Chapter 2, I will discuss how you can customize this conversion process.

An item definition doesn’t have to be defined entirely by a single element. It can span multiple
elements. For example, the Compile item shown earlier could have been declared like this:

<ItemGroup>
 <Compile Include="Form1.cs" />

Associate Changesets and Work Items
Copy Files to the Drop Location
Revert Files and Check in Gated Changes
Create Work Items for Build Failure

Configuring the Team Build Service
Changing Communications Ports
Requiring SSL
Running Interactively
Running Multiple Build Agents
Build Controller Concurrency

Team Build API
Creating a Project
Connecting to Team Project Collection
Connecting to Team Build
Working with Build Service Hosts
Working with Build Definitions
Working with Builds

Chapter 15

Workflow Foundation Quick Start
Introduction to Workflow Foundation

Types of Workflows
Building a Simple Workflow Application

Workflow Design
Built-in Activities
Working with Data
Exception Handling
Custom Activities

Workflow Extensions
Persistence
Tracking

Putting It All Together—Workflow Foundation Image Resizer Sample Application
Overview
Building the Application
Running the Application
Debugging the Application
Summary

Chapter 16

Process Template Customization
Getting Started

Creating a Process Template Library
Creating a Custom Activity Library

	 Chapter 1  MSBuild Quick Start	 11

 <Compile Include="Form1.Designer.cs" />
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>

In this version, each file is placed into the Compile item individually. These Compile elements
could also have been contained in their own ItemGroup as well, as shown in the next snippet.

<ItemGroup>
 <Compile Include="Form1.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Form1.Designer.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Program.cs" />
</ItemGroup>
<ItemGroup>
 <Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>

The end result of these declarations would all be the same. You should note that an item is
an ordered list, so the order in which values are added to the item is preserved and may in
some context affect behavior based on usage. When a property declaration appears after
a previous one, the previous value is overwritten. Items act differently from this in that the
value of the item is simply appended to instead of being overwritten. We’ve now discussed
two of the three ways to create items. Let’s look at using wildcards to create items.

Many times, items refer to existing files. If this is the case, you can use wildcards to
automatically include files that meet the constraints of the wildcards. You can use three
wildcard elements with MSBuild: ?, *, and **. The ? descriptor is used to denote that exactly
one character can take its place. For example, the include declaration of b?t.cs could
include values such as bat.cs, bot.cs, bet.cs, b1t.cs, and so on. The * descriptor can be
replaced with zero or more characters (not including slashes), so the declaration b*t.cs
could include values such as bat.cs, bot.cs, best.cs, bt.cs, etc. The ** descriptor tells MSBuild
to search directories recursively for the pattern. In effect, “*” matches any characters except
for “/” while “**” matches any characters, including “/”. For example, Include=“src***.cs”
would include all files under the src folder (including subfolders) with the .cs extension.

Item Metadata
Another difference between properties and items is that items can have metadata associated
with them. When you create an item, each of its elements is a full-fledged .NET object, which
can have a set of values (metadata) associated with it. The metadata that is available on every
item, which is called well-known metadata, is summarized in Table 1-2.

12	 Part I  Overview

TABLE 1-2  Well-Known Metadata
Name Description
Identity The value that was specified in the Include attribute of the item after it was

evaluated.

FullPath Full path of the file.

RootDir The root directory to which the file belongs, such as C:\.

Filename The name of the file, not including the extension.

Extension The extension of the file, including the period.

RelativeDir Contains the path specified in the Include attribute, up to the final backslash (\).

Directory Directory of the item, without the root directory.

RecursiveDir This is the expanded directory path starting from the first ** of the include
declaration. If no ** is present, then this value is empty. If multiple ** are present,
then RecursiveDir will be the expanded value starting from the first **. This may
sound peculiar, but it is what makes recursive copying possible.

ModifiedTime The last time the file was modified.

CreatedTime The time the file was created.

AccessedTime The last time the file was accessed.

To access metadata values, you have to use this syntax:

@(ItemType->'%(MetadataName)')

ItemType is the name of the item, and MetadataName is the name of the metadata that you
are accessing. This is the most basic syntax. To examine what types of values the well-known
metadata returns, take a look at the file, WellKnownMetadata.proj, shown here:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <src Include="src\one.txt" />
 </ItemGroup>
 <Target Name="PrintWellKnownMetadata">

 <Message Text="===== Well known metadata ====="/>
 <!-- %40 = @ -->
 <!-- %25 = % -->
 <Message Text="%40(src->'%25(FullPath)'): @(src->'%(FullPath)')"/>
 <Message Text="%40(src->'%25(RootDir)'): @(src->'%(RootDir)')"/>
 <Message Text="%40(src->'%25(Filename)'): @(src->'%(Filename)')"/>
 <Message Text="%40(src->'%25(Extension)'): @(src->'%(Extension)')"/>
 <Message Text="%40(src->'%25(RelativeDir)'): @(src->'%(RelativeDir)')"/>
 <Message Text="%40(src->'%25(Directory)'): @(src->'%(Directory)')"/>
 <Message Text="%40(src->'%25(RecursiveDir)'): @(src->'%(RecursiveDir)')"/>
 <Message Text="%40(src->'%25(Identity)'): @(src->'%(Identity)')"/>
 <Message Text="%40(src->'%25(ModifiedTime)'): @(src->'%(ModifiedTime)')"/>
 <Message Text="%40(src->'%25(CreatedTime)'): @(src->'%(CreatedTime)')"/>
 <Message Text="%40(src->'%25(AccessedTime)'): @(src->'%(AccessedTime)')"/>

 </Target>
</Project>

Process Parameters
Defining
Metadata
User Interface
Supported Reasons
Backward and Forward Compatibility

Team Build Activities
AgentScope
CheckInGatedChanges
ConvertWorkspaceItem/ConvertWorkspaceItems
ExpandEnvironmentVariables
FindMatchingFiles
GetBuildAgent
GetBuildDetail
GetBuildDirectory
GetBuildEnvironment
GetTeamProjectCollection
InvokeForReason
InvokeProcess
MSBuild
SetBuildProperties
SharedResourceScope
UpdateBuildNumber

Custom Activities
BuildActivity Attribute
Extensions

Logging
Logging Verbosity
Logging Activities
Logging Programmatically
Adding Hyperlinks
Exceptions

Deploying
Process Templates
Custom Assemblies
Downloading and Loading Dependent Assemblies

	 Chapter 1  MSBuild Quick Start	 13

Note  In order to use reserved characters, such as the % and @, you have to escape them.
This is accomplished by the syntax %HV, where HV is the hex value of the character. This is
demonstrated here with %25 and %40.

Note  In this example, we have specified the ToolsVersion value to be 4.0. This determines
which version of the MSBuild tools will be used. Although not needed for this sample, we will be
specifying this version number from this point forward. The default value is 2.0.

This MSBuild file prints the values for the well-known metadata for the src item. The result of
executing the PrintWellKnownMetadata target is shown in Figure 1-4.

FIGURE 1-4  PrintWellKnownMetadata result

The figure gives you a better understanding of the well-known metadata’s usage. Keep in
mind that this demonstrates the usage of metadata in the case where the item contains only
a single value.

To see how things change when an item contains more than one value, let’s examine
MetadataExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <ItemGroup>
 <Compile Include="*.cs" />
 </ItemGroup>

 <Target Name="PrintCompileInfo">
 <Message Text="Compile fullpath: @(Compile->'%(FullPath)')" />
 </Target>
</Project>

In this project file we simply evaluate the FullPath metadata on the Compile item. From the
examples with this text, the directory containing this example contains four files: Class1.cs,
Class2.cs, Class3.c, and Class4.cs. These are the files that will be contained in the Compile
item. Take a look at the result of the PrintCompileInfo target in Figure 1-5.

14	 Part I  Overview

FIGURE 1-5  PrintCompileInfo result

You have to look carefully at this output to decipher the result. What is happening here
is that a single string is created by combining the full path of each file, separated by
a semicolon. The @(ItemType->'. . .%(). . .') syntax is an “Item Transformation.” We
will cover transformations in greater detail in Chapter 2. In the next section, we’ll discuss
conditions. Before we do that, take a minute to look at the project file for a simple Windows
application that was generated by Visual Studio. You should recognize many things.

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>8.0.50727</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{0F34CE5D-2AB0-49A9-8254-B21D1D2EFFA1}</ProjectGuid>
 <OutputType>WinExe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>WindowsApplication1</RootNamespace>
 <AssemblyName>WindowsApplication1</AssemblyName>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.Data" />
 <Reference Include="System.Deployment" />
 <Reference Include="System.Drawing" />
 <Reference Include="System.Windows.Forms" />
 <Reference Include="System.Xml" />
 </ItemGroup>

Part VII

Web Development Tool

Chapter 17

Web Deployment Tool, Part 1
Web Deployment Tool Overview
Working with Web Packages

Package Creation
Installing Packages

msdeploy.exe Usage Options
MSDeploy Providers
MSDeploy Rules
MSDeploy Parameters

–declareParam
–setParam

MSDeploy Manifest Provider

Chapter 18

Web Deployment Tool, Part 2
Web Publishing Pipeline Overview
XML Document Transformations
Web Publishing Pipeline Phases

Excluding Files
Including Additional Files
Database

Chapter 19

Web Deployment Tool Practical Applications
Publishing Using MSBuild
Parameterizing Packages
Using –setParamFile
Using the MSDeploy Temp Agent
Deploying Your Site from Team Build
Deploying to Multiple Destinations Using Team Build
Excluding ACLs from the Package
Synchronizing an Application to Another Server

Appendix A

New Features in MSBuild 4.0
Support for Visual C++

	 Chapter 1  MSBuild Quick Start	 15

 <ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
 <Compile Include="Form1.Designer.cs">
 <DependentUpon>Form1.cs</DependentUpon>
 </Compile>
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <EmbeddedResource Include="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 <Compile Include="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <None Include="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Include="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
 <!-- To modify your build process, add your task
inside one of the targets below and uncomment it.
 Other similar extension points exist,
see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

Simple Conditions
When you are building, you often have to make decisions based on conditions. MSBuild
allows almost every XML element to contain a conditional statement within it. The statement
would be declared in the Condition attribute. If this attribute evaluates to false, then the
element and all its child elements are ignored. In the sample Visual Studio project that was
shown at the end of the previous section, you will find the statement <Configuration
Condition=“ '$(Configuration)' == '' ”>Debug</Configuration>. In this declaration,
the condition is checking to see if the property is empty. If so, then it will be defined;
otherwise, the statement will be skipped. This is a method to provide a default overridable
value for a property. Table 1-3 describes a few common types of conditional operators.

16	 Part I  Overview

TABLE 1-3  Simple Conditional Operators
Symbol Description
== Checks for equality; returns true if both have the same value.

!= Checks for inequality; returns true if both do not have the same value.

Exists Checks for the existence of a file. Returns true if the provided file exists.

!Exists Checks for the nonexistence of a file. Returns true if the file provided is not found.

Because you can add a conditional attribute to any MSBuild element (excluding the Otherwise
element), this means that we can decide to include entries in items as necessary. For example,
when building ASP.NET applications, in some scenarios, you might want to include files that
will assist debugging. Take a look at the MSBuild file, ConditionExample01.proj:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">
 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>
 <ItemGroup>
 <Content Include="script.js"/>
 <Content Include="script.debug.js" Condition="$(Configuration)=='Debug'" />
 </ItemGroup>

 <Target Name="PrintContent">
 <Message Text="Configuration: $(Configuration)" />
 <Message Text="Content: @(Content)" />
 </Target>
</Project>

If we execute the command msbuild ConditionExample01.proj /t:PrintContent, the
result would be what is shown in Figure 1-6.

FIGURE 1-6  PrintContent target result

As you can see, because the Configuration value was not set to Debug, the script.debug.js file
was not included in the Content item. Now we will examine the usage of the Exists function.
To do this, take a look at the target _CheckForCompileOutputs, taken from the Microsoft
.Common.targets file, a file included with MSBuild that contains most of the rules for building
VB and C# projects:

<Target
 Name="_CheckForCompileOutputs">

New Command-Line Switches
New Reserved Properties
BeforeTargets and AfterTargets
ImportGroup
Import Wildcard
Solution Import Files
Property Functions
Item Functions
Inline Tasks
Cancellable Builds
YieldDuringToolExecution
New Object Model
Debugger

Appendix B

Building Large Source Trees

Appendix C

Upgrading from Team Foundation Build 2008
Upgrade Process
Upgrade Template

About the Author

	 Chapter 1  MSBuild Quick Start	 17

 <!--Record the main compile outputs.-->
 <ItemGroup>
 <FileWrites
 Include="@(IntermediateAssembly)"
 Condition="Exists('@(IntermediateAssembly)')" />
 </ItemGroup>

 <!-- Record the .xml if one was produced. -->
 <PropertyGroup>
 <_DocumentationFileProduced
 Condition="!Exists('@(DocFileItem)')">false</_DocumentationFileProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(DocFileItem)"
 Condition="'$(_DocumentationFileProduced)'=='true'" />
 </ItemGroup>

 <!-- Record the .pdb if one was produced. -->
 <PropertyGroup>
 <_DebugSymbolsProduced
 Condition="!Exists('@(_DebugSymbolsIntermediatePath)')">false
 </_DebugSymbolsProduced>
 </PropertyGroup>

 <ItemGroup>
 <FileWrites
 Include="@(_DebugSymbolsIntermediatePath)"
 Condition="'$(_DebugSymbolsProduced)'=='true'" />
 </ItemGroup>
</Target>

From the first FileWrites item definition, the condition is defined as Exists
(@(IntermediateAssembly)). This will determine whether the file referenced by the
IntermediateAssembly item exists on disk. If it doesn’t, then the declaration task is
skipped. This was a brief overview of conditional statements, but it should be enough to
get you started. Let’s move on to learn a bit more about targets.

Default/Initial Targets
When you create an MSBuild file, you will typically create it such that a target, or a set of
targets, will be executed most of the time. In this scenario, these targets can be specified
as default targets. These targets will be executed if a target is not specifically chosen to be
executed. Without the declaration of a default target, the first defined target in the logical
project file, after all imports have been resolved, is treated as the default target. A logical
project file is one with all Import statements processed. Using default target(s) is how Visual

18	 Part I  Overview

Studio builds your managed project. If you take a look at Visual Studio–generated project
files, you will notice that the Build target is specified as the default target:

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
...
</Project>

As mentioned previously, you can have either one target or many targets be your default
target(s). If the declaration contains more than one, the target names need to be separated
by a semicolon. When you use a command such as msbuild ProjectFile.proj, because
you have not specified a target to execute, the default target(s) will be executed. It’s
important to note that the list of DefaultTargets will be preserved, not modified, through
an Import, provided that a project previously processed hasn’t had a DefaultTargets list.
This is one difference between DefaultTargets and InitialTargets. Values for InitialTargets are
aggregated for all imports because each file may have its own initialization checks.

These targets listed in InitialTargets will always be executed even if the project file is
imported by other project files. Similar to default targets, the initial targets list
is declared as an attribute on the Project element with the name InitialTargets. If
you take a look at the Microsoft.Common.targets file, you will notice that the
target _CheckForInvalidConfigurationAndPlatform is declared as the initial target. This target
will perform a couple sanity checks before allowing the build to continue. I would strongly
encourage the use of default targets. InitialTargets should be used to verify initial conditions
before the build starts and raises an error or warning if applicable. Next, we will discuss the
command-line usage of the msbuild.exe command.

MSBuild.exe Command-Line Usage
In this section, we’ll discuss the most important options when invoking msbuild.exe. When
you invoke the msbuild.exe executable, you can pass many parameters to customize the
process. We’ll first take a look at the options that are available with MSBuild 2.0, and then
we’ll discuss what differences exist for MSBuild 3.5 and MSBuild 4.0. Table 1-4 summarizes
the parameters you can pass to msbuild.exe. Many commands include a short version that
can be used; these versions are listed in the table within parentheses.

TABLE 1-4  MSBuild.exe Command-Line Switches
Switch Description
/help (/?) Displays the usage information for msbuild.exe.

/nologo Suppresses the copyright and startup banner.

/version (/ver) Displays version information.

@file Used to pick up response file(s) for parameters.

	 Chapter 1  MSBuild Quick Start	 19

Switch Description
/noautoresponse (/noautoresp) Used to suppress automatically, including msbuild.rsp as a

response file.

/target (/t) Used to specify which target(s) should be built. If specifying more
than one target, they should each be separated by a semicolon.
Commas are valid separators, but semicolons are the ones most
commonly used.

/property:<n>=<v> (/p) Used to specify properties. If providing more than one property,
they should each be separated by a semicolon. Property values
should be specified in the format: name=value. These values
would supersede any static property definitions. Commas are
valid separators, but semicolons are the ones most
commonly used.

/verbosity (/v) Sets the verbosity of the build. The options are quiet (q), minimal
(m), normal (n), detailed (d), and diagnostic (diag). This is passed
to each logger, and the logger is able to make its own decision
about how to interpret it.

/validate (/val) Used to ensure that the project file is in the correct format
before the build is started.

/logger (/l) Attaches the specified logger to the build. This switch can be
provided multiple times to attach any number of loggers. Also,
you can pass parameters to the loggers with this switch.

/consoleloggerparameters (/clp) Used to pass parameters to the console logger.

/noconsolelogger (/noconlog) Used to suppress the usage of the console logger, which is
otherwise always attached.

/filelogger (/fl) Attaches a file logger to the build.

/fileloggerparameters (/flp) Passes parameters to the file logger. If you want to attach
multiple file loggers, you do so by specifying additional
parameters in the switches /flp1, /flp2, /flp3, and so on.

/distributedFileLogger (/dl) Used to attach a distributed logger. This is an advanced switch
that you will most likely not use and that could have been
excluded altogether.

/maxcpucount (/m) Sets the maximum number of processes that should be used by
msbuild.exe to build the project.

/ignoreprojectextensions
(/ignore)

Instructs MSBuild to ignore the extensions passed.

/toolsversion (/tv) Specifies the version of the .NET Framework tools that should be
used to build the project.

/nodeReuse (/nr) Used to specify whether nodes should be reused or not.
Typically, there should be no need to specify this; the default value
is optimal.

20	 Part I  Overview

Switch Description
/preprocess (/pp)* This will output the complete logical file to either the console or

to a specified file. To have the result written out to the file, use the
syntax /pp:file.
Usually, this file will build just as if you were building the original
project (there are exceptions though, such as $(MSBuildThisFile)).
The real purpose of this is to help diagnose a problem with the
build by avoiding the need to jump between many different
files. For example, if a particular property is getting overwritten
somewhere, it is much easier to search for it in the single
“preprocessed” file than it is to search for it in the many
imported files.

/detailedSummary (/ds)* It displays information about how the projects were scheduled to
different CPUs. You can use this to help figure out how to make
the build faster. For example, you can use this to determine which
project was stalling other projects.

*  Denotes parameters new with MSBuild 4.0.

From Table 1-4, the most commonly used parameters are target, property, and logger.
You might also be interested in using the FileLogger switch. To give you an example, I will
use an MSBuild file that we discussed earlier, the ConditionExample01.proj file. Take a look
at the following command that will attach the file logger to the build process: msbuild
ConditionExample01.proj /fl. Because we didn’t specify the name of the log file to be
written to, the default, msbuild.log, will be used. Using this same project file, let’s see how
to override the Configuration value. From that file, the Configuration value would be set to
Release, but we can override it from the command line with the following statement:
msbuild ConditionExample01.proj /p:Configuration=Debug /t:PrintContent. In
this command, we are using the /p (property) switch to provide a property value to the build
engine, and we are specifying to execute the PrintContent target. The result is shown in
Figure 1-7.

FIGURE 1-7  Specifying a property from the command line

The messages on the console show that the value for Configuration was indeed Debug,
and as expected, the debug JavaScript file was included in the Content item. Now that
you know the basic usage of the msbuild.exe command, we’ll move on to the last topic:
extending the build process.

	 Chapter 1  MSBuild Quick Start	 21

Extending the Build Process
With versions of Visual Studio prior to 2005, the build was mostly a black box. The process by
which Visual Studio built your applications was internal to the Visual Studio product itself. The
only way you could customize the process was to use execute commands for pre- and post-build
events. With this, you were able to embed a series of commands to be executed. You were not
able to change how Visual Studio built your applications. With the advent of MSBuild, Visual
Studio has externalized the build process and you now have complete control over it. Since
MSBuild is delivered with the .NET Framework, Visual Studio is not required to build applications.
Because of this, we can create build servers that do not need to have Visual Studio installed. We’ll
examine this by showing how to augment the build process. Throughout the rest of this book, we
will describe how to extend the build process in more detail.

The pre- and post-build events mentioned earlier are still available, but you now have other
options. The three main ways to add a pre- or post-build action are:

n	 Pre- and post-build events
n	 Override BeforeBuild/AfterBuild target
n	 Extend the BuildDependsOn list

The pre- and post-build events are the same as described previously. This is a good approach
for backward compatibility and ease of use. Configuring this using Visual Studio doesn’t require
knowledge of MSBuild. Figure 1-8 shows the Build Events tab on the ProjectProperties page.

Here, you can see the two locations for the pre- and post-build events toward the center of
the image. The dialog that is displayed is the post-build event command editor. This helps you
construct the command. You define the command here, and MSBuild executes it for you at the
appropriate time using the Exec task (http://msdn2.microsoft.com/en-us/library/x8zx72cd.aspx).
Typically, these events are used to copy or move files around before or after the build.

Using the pre- and post-build event works fairly well if you want to execute a set of
commands. If you need more control over what is occurring, you will want to manually
modify the project file itself. When you create a new project using Visual Studio, the project
file generated is an MSBuild file, which is an XML file. You can use any editor you choose, but
if you use Visual Studio, you will have IntelliSense when you are editing it! With your solution
loaded in Visual Studio, you can right-click the project, select Unload Project, right-click
the project again, and select Edit. If you take a look at the project file, you will notice this
statement toward the bottom of the file.

<!-- To modify your build process, add your task inside one
 of the targets below and uncomment it.
 Other similar extension points exist, see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->

22	 Part I  Overview

FIGURE 1-8  Build Events tab

From the previous snippet, we can see that there are predefined targets designed to handle
these types of customizations. We can simply follow the directions from the project file, by
defining the BeforeBuild or AfterBuild target. You will want to make sure that these definitions
are after the Import element for the Microsoft.*.targets file, where * represents the language
of the project you are editing. For example, you could insert the following AfterBuild target:

<Target Name="AfterBuild">
 <Message Text="Build has completed!" />
</Target>

When the build has finished, this target will be executed and the message ‘Build has
completed!’ will be passed to the loggers. We will cover the third option, extending the
BuildDependsOn list, in Chapter 3.

In this chapter, we have covered many features of MSBuild, including properties, items,
targets, and tasks. Now you should have all that you need to get started customizing your
build process. From this point on, the remainder of the book will work on filling in the details
that were left out here so that you can become an MSBuild expert!

		 23

Chapter 2

MSBuild Deep Dive, Part 1
In the previous chapter, we gave a brief overview of all the key elements in MSBuild. In this
chapter and the next, we’ll examine most of those ideas in more detail. We’ll discuss properties,
items, targets, tasks, transformations, and much more. After you have completed this chapter,
you will have a solid grasp of how to create and modify MSBuild files to suit your needs. After
the next chapter, we’ll explore ways to extend MSBuild as well as some advanced topics.

What is MSBuild? MSBuild is a general-purpose build system created by Microsoft and is
used to build most Microsoft Visual Studio projects. MSBuild is shipped with the Microsoft
.NET Framework. What this means is that you do not need to have Visual Studio installed in
order to build your applications. This is very beneficial because you don’t need to purchase
licenses of Visual Studio for dedicated build machines, and it makes configuring build
machines easier. Another benefit is that MSBuild will be installed on many machines. If .NET
Framework 2.0 or later is available on a machine, so is a version of MSBuild. The following
terms have been used to identify an MSBuild file: MSBuild file, MSBuild project file, MSBuild
targets file, MSBuild script, etc. When you create an MSBuild file, you should follow these
conventions for specifying the extension of the file:

n	 .proj  A project file

n	 .targets  A file that contains shared targets, which are imported into other files

n	 .props  Default settings for a build process

n	 .tasks  A file that contains UsingTask declarations

An MSBuild file is just an XML file. You can use any editor you choose to create and edit
MSBuild files. The preferred editor is Visual Studio, because it provides IntelliSense on the
MSBuild files as you are editing them. This IntelliSense will greatly decrease the amount
of time required to write an MSBuild file. The IntelliSense is driven by a few XML Schema
Definition (XSD) files. These XSD files, which are all in Visual Studio’s XML directory, are
Microsoft.Build.xsd, Microsoft.Build.Core.xsd, and Microsoft.Build.Commontypes.xsd. The
Microsoft.Build.xsd file imports the other two files, and provides an extension point for
task developers to include their own files. The Microsoft.Build.Core.xsd file describes all the
fundamental elements that an MSBuild file can contain.

Microsoft.Build.Commonttypes.xsd defines all known elements; this is mainly used to
describe the elements that Visual Studio–generated project files can contain. The XSD that
is used is not 100 percent complete, but in most cases you will not notice that. Now that
we have discussed what it takes to edit an MSBuild file, let’s discuss properties in detail. If
you are not familiar with invoking msbuild.exe from the command line, take a look back at
Chapter 1, “MSBuild Quick Start”; this is not covered again here.

Table of Contents

24	 Part I  Overview

Properties
MSBuild has two main constructs for representing data: properties and items. A property is a
key-value pair. Each property can have exactly one value. An item list differs from a property
in that it can have many values. In programming terms, a property is similar to a scalar
variable, and an item list is similar to an array variable, whose order is preserved. Properties
are declared inside the Project element in a PropertyGroup element. We’ll now take a look at
how properties are declared. The following file, Properties01.proj, demonstrates declaration
and usage of a property.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

</Project>

As stated previously, we needed a PropertyGroup element, and the Configuration
property was defined inside of that. By doing this we have created a new property named
Configuration and given it the value Debug. When you create properties, you are not limited
to defining only one property per PropertyGroup element. You can define any number of
properties inside a single PropertyGroup element. In the target PrintConfig, the Message task
is invoked in order to print the value of the Configuration property. If you are not familiar
with what a target is, refer back to Chapter 1, “MSBuild Quick Start.” You can execute that
target with the command msbuild.exe Properties01.proj /t:PrintConfig. The results
of this command are shown in Figure 2-1.

FIGURE 2-1  PrintConfig target results

From the result in Figure 2-1, we can see that the correct value for the Configuration
property was printed as expected. As properties are declared, their values are recorded in
a top-to-bottom order. What this means is that if a property is defined, and then defined
again, the last value will be the one that is applied. Take a look at a modified version of the
previous example; this one is contained in the Properties02.proj file.

	 Chapter 2  MSBuild Deep Dive, Part 1	 25

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)" />
 </Target>

</Project>

In this example, we have declared the Configuration property once again, after the existing
declaration, and specified that it have the value Release. Because the new value is declared
after the previous one, we would expect the new value to hold. If you execute the PrintConfig
target on this file, you will see that this is indeed the case. Properties in MSBuild can be
declared any number of times. This is not an erroneous condition, and there is no way to
detect this. Now we will look at another version of the previous file, a slightly modified one.
Take a look at the contents of the following Properties03.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <Configuration>Debug</Configuration>
 </PropertyGroup>

 <PropertyGroup>
 <Configuration>Release</Configuration>
 </PropertyGroup>

 <Target Name="PrintConfig">
 <Message Text="Config: $(Configuration)"/>
 </Target>

 <PropertyGroup>
 <Configuration>CustomRelease</Configuration>
 </PropertyGroup>

</Project>

This example is a little different in the sense that there is a value for Configuration declared
after the PrintConfig target. That value is CustomRelease. So if we execute the PrintConfig
target, what should be the result, Release or CustomRelease? We can execute msbuild.exe
Properties03.proj /t:PrintConfig to find out. The results of this command are shown in
Figure 2-2.

26	 Part I  Overview

FIGURE 2-2  PrintConfig result for Properties03.proj

As can be seen from the results in Figure 2-2, the value for Configuration that was printed
was CustomRelease! How is this possible? It was defined after the PrintConfig target! This is
because MSBuild processes the entire file for properties and items before any targets are
executed. You can imagine all the properties being in a dictionary, and as the project file is
processed, its values are placed in the dictionary. Property names are not case sensitive, so
Configuration and CoNfiguratION would refer to the same property. After the entire file,
including imported files, is processed, all the final values for statically declared properties and
items have been resolved. Once all the properties and items have been resolved, targets are
allowed to execute. We’ll take a closer look at this process in the section entitled “Property
and Item Evaluation,” in Chapter 3, “MSBuild Deep Dive, Part 2.”

Note  We will discuss importing files in Chapter 3.

Environment Variables
We have described the basic usage of properties. Now we’ll discuss a few other related
topics. When you are building your applications, sometimes you might need to extract values
from environment variables. This is a lot simpler than you might imagine if you use MSBuild.
You can access values, just as you would properties, for environment variables. For example,
take a look at the following project file, Properties04.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <Target Name="PrintEnvVar">
 <Message Text="Temp: $(Temp)" />
 <Message Text="Windir: $(windir)" />
 <Message Text="VS100COMNTOOLS: $(VS100COMNTOOLS)" />
 </Target>

</Project>

In this example, we can see that no properties have been declared and no other files are
imported. Inside the target, PrintEnvVar, we can see that we have made a few messages to print
the values of some properties. These values are being pulled from the environment variables.
When you use the $(PropertyName) syntax to retrieve a value, MSBuild will first look to see if

	 Chapter 2  MSBuild Deep Dive, Part 1	 27

there is a corresponding property. If there is, its value is returned. If there isn’t, then it will look at
the environment variables for a variable with the provided name. If such a variable exists, its value
is returned. If you execute the command msbuild.exe Properties04.proj /t:PrintEnvVar
you should see a result similar to that shown in Figure 2-3.

FIGURE 2-3  Environment variable usage

As demonstrated in Figure 2-3, the values for the appropriate environment variables were
printed as expected.

Note  When MSBuild starts (that is, when msbuild.exe starts or when Visual Studio starts), all the
environment variables and their values are captured at that time. So if a value for an environment
variable changes after that, it will not be reflected in the build. Also, you should be aware that
each project is isolated from environment variable changes and changes to the current directory
that are made by other projects.

If you don’t have Visual Studio 2010 installed on the machine running this file, then the value
may be empty for the VS100COMNTOOLS property. As we just saw, you can get the value for
an environment variable by using the property notation. Assigning a value to a property that
has the same name as an environment variable has no effect on the environment variable
itself. The $(PropertyName) notation can get a value from an environment variable, but it will
never assign values to environment variables. Let’s move on to discuss reserved properties.

Reserved Properties
There are a fixed number of reserved properties. These are properties that are globally
available to every MSBuild script and that can never be overwritten. These properties are
provided to users by the MSBuild engine itself, and many of them are very useful. These are
summarized in Table 2-1.

TABLE 2-1  Reserved Properties
Name Description
MSBuildProjectDirectory The full path to the directory where the project file is located.

MSBuildProjectDirectoryNoRoot The full path to the directory where the project file is located,
excluding the root (for example, c:\).

28	 Part I  Overview

Name Description
MSBuildProjectFile The name of the project file, including the extension.

MSBuildProjectExtension The extension of the project file, including the period.

MSBuildProjectFullPath The full path to the project file.

MSBuildProjectName The name of the project file, without the extension.

MSBuildProjectDefaultTargets Contains a list of the default targets.

MSBuildExtensionsPath The full path to where MSBuild extensions are located. This is
typically under the Program Files folder. Note that now this
always points to the 32-bit location.

MSBuildExtensionsPath32 The full path to where MSBuild 32 bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be the same as MSBuildExtensionsPath.

MSBuildExtensionsPath64 * The full path to where MSBuild 64-bit extensions are located.
This is typically under the Program Files folder. For 32-bit
machines, this value will be empty.

MSBuildNodeCount The maximum number of nodes (processes) that are being used
to build the project. If the /m switch is not used, then this value
will be 1. If you use the /m switch without specifying a number
of nodes, then the default is the number of CPUs available.

MSBuildStartupDirectory The full path to the folder where the MSBuild process was
invoked.

MSBuildToolsPath
(MSBuildBinPath)

The full path to the location where the MSBuild binaries are
located.
In MSBuild 2.0, this property is named MSBuildBinPath and
is deprecated in MSBuild 3.5 and later. MSBuildBinPath and
MSBuildToolsPath have the same value, but you should use only
MSBuildToolsPath.

MSBuildToolsVersion The version of the tools being used to build the project. Possible
values include 2.0, 3.5, and 4.0. The default value is 2.0.

MSBuildLastTaskResult * This contains true if the last executed task was a success
(task returned true) and false if it ended in a failure. If a
task fails, typically the build stops unless you specified
ContinueOnError="true".

MSBuildProgramFiles32 * This contains the path to the 32-bit Program Files folder.
To get the value for the default Program Files folder, use
$(ProgramFiles).

MSBuildThisFile * Contains the file name, including the extension, of the
file that contains the property usage. This differs from
MSBuildProjectFile in that MSBuildProjectFile always refers to
the file that was invoked, not any imported file name.

MSBuildThisFileDirectory * The path of the folder of the file that uses the property. This is
useful if you need to define any items whose location you know
relative to the targets file.

	 Chapter 2  MSBuild Deep Dive, Part 1	 29

Name Description
MSBuildThisFileDirectoryNoRoot * Same as MSBuildThisFileDirectory without the root (for

example, InsideMSBuild\Ch02 instead of C:\InsideMSBuild\
Ch02).

MSBuildThisFileExtension * The extension of the file referenced by MSBuildThisFile.

MSBuildThisFileFullPath * The full path to the file that contains the usage of the property.

MSBuildThisFileName * The name of the file, excluding the extension, to the file that
contains usage of the property.

MSBuildOverrideTasksPath * MSBuild 4.0 introduces override tasks, which are tasks that force
themselves to be used instead of any other defined task with
the same name, and this property points to a file that contains
the overrides. The override tasks feature is used internally to
help MSBuild 4.0 work well with other versions of MSBuild.

*  denotes parameters new with MSBuild 4.0.

Note  You are allowed to override the values for MSBuildExtensionsPath, as well as the 32- and
64-bit variants. This is useful in case you check shared tasks into source control and want to use
those files.

You would use these properties in the same way as you would any other properties. In order
to understand what types of values these properties are set to, I have created the following
sample file, ReservedProperties01.proj, to print out all these values.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">
 <Target Name="PrintReservedProperties">
 <Message Text="MSBuildProjectDirectory: $(MSBuildProjectDirectory)" />
 <Message Text="MSBuildProjectDirectoryNoRoot: $(MSBuildProjectDirectoryNoRoot)" />
 <Message Text="MSBuildProjectFile: $(MSBuildProjectFile)" />
 <Message Text="MSBuildProjectExtension: $(MSBuildProjectExtension)" />
 <Message Text="MSBuildProjectFullPath: $(MSBuildProjectFullPath)" />
 <Message Text="MSBuildProjectName: $(MSBuildProjectName)" />
 <Message Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
 <Message Text="MSBuildProjectDefaultTargets: $(MSBuildProjectDefaultTargets)" />
 <Message Text="MSBuildExtensionsPath: $(MSBuildExtensionsPath)" />
 <Message Text="MSBuildExtensionsPath32: $(MSBuildExtensionsPath32)" />
 <Message Text="MSBuildExtensionsPath64: $(MSBuildExtensionsPath64)" />
 <Message Text="MSBuildNodeCount: $(MSBuildNodeCount)" />
 <Message Text="MSBuildStartupDirectory: $(MSBuildStartupDirectory)" />
 <Message Text="MSBuildToolsPath: $(MSBuildToolsPath)" />
 <Message Text="MSBuildToolsVersion: $(MSBuildToolsVersion)" />
 <Message Text="MSBuildLastTaskResult: $(MSBuildLastTaskResult)" />
 <Message Text="MSBuildProgramFiles32: $(MSBuildProgramFiles32)" />
 <Message Text="MSBuildThisFile: $(MSBuildThisFile)" />
 <Message Text="MSBuildThisFileDirectory: $(MSBuildThisFileDirectory)" />
 <Message Text="MSBuildThisFileDirectoryNoRoot: $(MSBuildThisFileDirectoryNoRoot)" />
 <Message Text="MSBuildThisFileExtension: $(MSBuildThisFileExtension)" />
 <Message Text="MSBuildThisFileFullPath: $(MSBuildThisFileFullPath)" />

30	 Part I  Overview

 <Message Text="MSBuildThisFileName: $(MSBuildThisFileName)" />
 <Message Text="MSBuildOverrideTasksPath: $(MSBuildOverrideTasksPath)" />
 </Target>
</Project>

If you execute this build file using the command msbuild.exe ReservedProperties01
.proj /t:PrintReservedProperties, you would see the results shown in Figure 2-4.

FIGURE 2-4  Reserved properties

Most of these values are straightforward. You should note that the values relating to the
MSBuild file, with the exception of those starting with MSBuildThis, are always qualified
relative to the MSBuild file that is invoking the entire process. This becomes clear when you
use the Import element to import additional MSBuild files. For the MSBuildThis properties,
those values always refer to the file that contains the element. We will take a look at
importing external files in the next chapter.

Command-Line Properties
You can also provide properties through the command line. As stated in Chapter 1, we can
use the /property switch (short version /p) to achieve this. We will see how this works now.
When you use the /p switch, you must specify the values in the format /p:<n>=<v>, where
<n> is the name of the property and <v> is its value. You can provide multiple values by
separating the pairs by a semicolon or a comma. We will demonstrate a simple case with the
following project file, Properties05.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

	 Chapter 2  MSBuild Deep Dive, Part 1	 31

 <Target Name="PrintInfo">
 <Message Text="AssemblyName: $(AssemblyName)" />
 <Message Text ="OutputPath: $(OutputPath)" />
 </Target>

</Project>

Because there are no values for AssemblyName or OutputPath, it would be pointless to
execute this MSBuild file. If we pass them in through the command line, you can see their
values. If you specify values for AssemblyName and OutputPath with the command
msbuild.exe Properties05.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu

.Common;OutputPath="deploy\Release\\", then the result would be what is shown in
Figure 2-5.

FIGURE 2-5  PrintInfo result for Properties05.proj

From Figure 2-5, we can see that the values for the properties that were provided at the
command line were successfully passed through. Note in this example that we passed
the OutputPath contained in quotes and the end is marked with \\ because \” is an
escaped quote mark (“). In this case, the quotes are optional, but if you are passing values
containing spaces, then they are required. When you provide a value for a property through
the command line, it takes precedence over all other static property declarations. To
demonstrate this, take a look at a different version of this file, Properties06.proj, with the
values defined.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <PropertyGroup>
 <AssemblyName>assemblyName</AssemblyName>
 </PropertyGroup>

 <Target Name="PrintInfo">
 <Message Text="AssemblyName: $(AssemblyName)" />
 <Message Text ="OutputPath: $(OutputPath)" />
 </Target>

 <PropertyGroup>
 <OutputPath>outputPath</OutputPath>
 </PropertyGroup>

</Project>

32	 Part I  Overview

In this file, we have specified a value for both AssemblyName and OutputPath. To show that
the location of the property with respect to targets doesn’t affect the result, I have placed
one value at the beginning of the file and the other at the end. If you execute the command
msbuild.exe Properties06.proj /t:PrintInfo /p:AssemblyName=Sedo.Namhu

.Common;OutputPath="deploy\Release\\", the result would be the same as that shown in
Figure 2-5. Command-line properties are special properties and have some special behavior
that you should be aware of:

n	 Command-line properties cannot have their values changed (except through dynamic
properties, which is covered in the next section).

n	 The values get passed to all projects through the MSBuild task.

n	 Their values take precedence over all other property type values, including
environment variables and toolset properties. The MSBuild toolset defines what version
of the MSBuild tools will be used. For example, you can use v2.0, v3.5, or v4.0.

Thus far, we have covered pretty much everything you need to know about static properties.
Now we’ll move on to discuss dynamic properties.

Dynamic Properties
When you create properties in your build scripts, static properties will be good enough most
of the time. But there are many times when you need to either create new properties or
to modify the values of existing properties during the build within targets. These types of
properties can be called dynamic properties. Let’s take a look at how we can create and use
these properties.

In MSBuild 2.0, there was only one way to create dynamic properties, and that was using
the CreateProperty task. In MSBuild 3.5 and 4.0, there is a much cleaner approach that you
should use, which we cover right after our discussion on the CreateProperty task. Before we
discuss how we can use CreateProperty, we have to discuss how to get a value from a task
out to the MSBuild file calling it. When a task exposes a value to MSBuild, this is known as
an Output property. MSBuild files can extract output values from tasks using the Output
element. The Output element must be placed inside the tags of the task to extract the value.
A task can see only those items and properties passed into it explicitly. This is by design and
makes it easier to maintain and reuse tasks. To demonstrate this, take a look at the following
project file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <Target Name="PrintProperty">
 <Message Text="AssemblyName: $(AssemblyName)" />

 <CreateProperty Value="Sedodream.Build.Tasks">

	 Chapter 2  MSBuild Deep Dive, Part 1	 33

 <Output TaskParameter="Value" PropertyName="AssemblyName" />
 </CreateProperty>

 <Message Text="AssemblyName: $(AssemblyName)" />
 </Target>

</Project>

In this file, the PrintProperty target first prints the value for AssemblyName, which hasn’t
been defined so it should be empty. Then the CreateProperty task is used to define the
AssemblyName property. Let’s take a close look at this so we can fully understand the
invocations. The statement <CreateProperty Value="Sedodream.Build.Tasks"> invokes
CreateProperty and initializes the property named Value to Sedodream.Build.Tasks. The
inner statement, <Output TaskParameter=”Value” PropertyName=”AssemblyName” />,
populates the MSBuild property AssemblyName with the value for the .NET property
Value. The Output element must declare a TaskParameter, which is the name of the task’s
.NET property to output, and can either contain a value of PropertyName or ItemName,
depending on whether it is supposed to output a property or item, respectively. In this case,
we are emitting a property so we use the value PropertyName. Looking back at the example
shown previously, we would expect that after the CreateProperty task executes, the property
AssemblyName will be set to Sedodream.Build.Tasks. The result of the PrintProperty target
is shown in Figure 2-6.

FIGURE 2-6  PrintProperty results

From the results shown in Figure 2-6, we can see that the value for AssemblyName was set,
as expected, by the CreateProperty task. In this example, we are creating a property that
did not exist previously, but the CreateProperty task also can modify the value for existing
properties. If you use the task to output a value to a property that already exists, then it will
be overwritten. This is true unless a property is reserved. Command-line parameters cannot
be overwritten by statically declared properties, only by properties within targets.

If you are using MSBuild 3.5 or 4.0, you can use the CreateProperty task, but there is a
cleaner method. You can place PropertyGroup declarations directly inside of targets. With
this new approach, you can create static and dynamic properties in the same manner.
The cleaner version of the previous example is shown as follows. This is contained in the
Properties08.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

34	 Part I  Overview

 <Target Name="PrintProperty">
 <Message Text="AssemblyName: $(AssemblyName)" />

 <PropertyGroup>
 <AssemblyName>Sedodream.Build.Tasks</AssemblyName>
 </PropertyGroup>

 <Message Text="AssemblyName: $(AssemblyName)" />
 </Target>

</Project>

The results of the preceding project file are identical to the example shown in Properties07
.proj, but the syntax is much clearer. This is the preferred approach to creating dynamic
properties. This syntax is not supported by MSBuild 2.0, so be sure not to use it in such files.
Now that we have thoroughly covered properties, we’ll move on to discuss items in detail.

Items
When software is being built, files and directories are used heavily. Because of the usage and
importance of files and directories, MSBuild has a specific construct to support these. This
construct is items. In the previous section, we covered properties. As stated previously, in
programming terms, properties can be considered a regular scalar variable. This is because
a property has a unique name and a single value. An item can be thought of as an array.
This is because an item has a single name but can have multiple values. Properties use
PropertyGroup to declare properties; similarly, items use an ItemGroup element. Take a look
at the following very simple example from Items01.proj.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

As stated previously, statically declared items will be inside an ItemGroup element. The value
for the Include attribute determines what values get assigned to the item. Of the few types of
values that can be assigned to the Include attribute, we’ll start with the simplest. The simplest
value for Include is a text value. In the previous sample, one item, SourceFiles, is declared. The
SourceFiles item is set to include one file, which is located at src\one.txt. To get the value of

	 Chapter 2  MSBuild Deep Dive, Part 1	 35

an item, you use the @(ItemType) syntax. In the Print target this is used on the SourceFiles
item. The result of the Print target is shown in Figure 2-7.

FIGURE 2-7  Print target result for Items01.proj

From the result shown in Figure 2-7, you can see that the file was assigned to the SourceFiles
item as expected. From this example, an item seems to behave exactly as a property; this
is because we assigned only a single value to the item. The behavior changes when there
are more values assigned to the item. The following example is a modified version of the
previous example. This modified version is contained in the Items02.proj file.

<Project xmlns=http://schemas.microsoft.com/developer/msbuild/2003
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt" />
 <SourceFiles Include="src\two.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

In this version, the SourceFiles item type is declared twice. When more than one item
declaration is encountered, the values are appended to each other instead of overwritten
like properties. Alternatively, you could have declared the SourceFiles item on a single line by
placing both values inside the Include attribute, separated by a semicolon. So the previous
sample would be equivalent to the following one. With respect to item declarations, ordering
is significant and preserved.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src\one.txt;src\two.txt" />
 </ItemGroup>

 <Target Name="Print">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

36	 Part I  Overview

If you execute the Print target on this file, the result will be what is shown in Figure 2-8.

FIGURE 2-8  Print target results for Items02.proj

In this version, we have supplied two values into the SourceFiles item. If you look at the
documentation for the Message task, you will notice that the Text property is a string.
Fundamentally, there are two types of values in MSBuild: single-valued values and
multi-valued values. These are known as scalar values and vector values, respectively.
Properties are scalar values, and items are vector values. What happens when we have a
vector value that we need to pass to a task that is accepting only scalar values? MSBuild
will first flatten the item before sending it to the task. The value that is passed to the Text
property on the Message can be only a single-valued parameter, not a multi-valued one.
The @(ItemType) operator flattens the SourceFiles item for us, before it is sent into the task.
When using @(ItemType), if there is only one value inside the item, that value is used. If there
is more than one value contained by the item, then all values are combined, separated by a
semicolon by default. Flattening an item is the most basic example of an item transformation.
We’ll discuss this topic, and using custom separators, in more detail in the section entitled
“Item Transformations,” later in this chapter. For now, let’s move on to see how items are
more commonly used.

Note  MSBuild doesn’t recognize file types by extension as some other build tools do. Also, be
aware that item lists do not have to point to files; they can be any type of list-based value. We
will see examples of this throughout this book.

Copy Task
A very common scenario for builds is copying a set of files from one place to another.
How can we achieve this with MSBuild? There are several ways to do this, which we will
demonstrate in this chapter. Before we discuss how to copy the files, we’ll first take a close
look at the Include statement of an item. I have created some sample files shown in the
following tree, which we will use for the remainder of the chapter.

C:\InsideMSBuild\Ch02
¦
¦ . . .
¦
+---src

	 Chapter 2  MSBuild Deep Dive, Part 1	 37

 ¦ one.txt
 ¦ two.txt
 ¦ three.txt
 ¦ four
 ¦
 +---sub
 sub_one.txt
 sub_two.txt
 sub_three.txt
 sub_four.txt

Previously, I said that three types of values can be contained in the Include declaration of
an item:

	 1.	 A single value

	 2.	 Multiple values separated by a “;“

	 3.	 Declared using wildcards

We have shown how 1 and 2 work, so now we’ll discuss 3—using wildcards to declare items.
These wildcards always resolve values to items on disk. There are three wildcard declarations:
*, **, and ?. You may already be familiar with these from usage in other tools, but we will
quickly review them once again here. The * descriptor is used to declare that either zero
or more characters can be used in its place. The ** descriptor is used to search directories
recursively, and the ? is a placeholder for only one character. Effectively, the “*” descriptor
matches any characters except for “/” while “**” descriptor matches any characters, including
“/”. For example, if file.*proj used this declaration, the following values would meet the
criteria: file.csproj, file.vbproj, file.vdproj, file.vcproj, file.proj, file.mproj, file.1proj, etc. In contrast,
file.?proj will allow only one character to replace the ? character. Therefore, from the previous
list of matching names, only file.mproj and file.1proj meet those criteria. We will examine the
** descriptor shortly in an example. Take a look at the snippet from the following Copy01
.proj file.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"
 ToolsVersion="4.0">

 <ItemGroup>
 <SourceFiles Include="src*" />
 </ItemGroup>

 <Target Name="PrintFiles">
 <Message Text="SourceFiles: @(SourceFiles)" />
 </Target>

</Project>

In this example, we have used the * syntax to populate the SourceFiles item. Using this
syntax, we would expect all the files in the src\ folder to be placed into the item. In order to
verify this, you can execute the PrintFiles target. If you were to do this, the result would be

