

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Andrew Brust, Leonard Lobel, and Stephen Forte

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935426

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, BizTalk, Excel, Expression Blend, IntelliSense, Internet Explorer, MS, MSDN, MSN,
Outlook, PerformancePoint, PivotChart, PivotTable, ProClarity, SharePoint, Silverlight, SQL Server, Virtual Earth, Visio,
Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Live, Windows Mobile, Windows Server, Windows
Server System, and Windows Vista are either registered trademarks or trademarks of the Microsoft group of companies.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Kathleen Atkins
Editorial Production: Waypoint Press
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-12263

To my partner, Mark, and our children, Adam, Jacqueline, and Joshua, for
 standing by me through every one of life’s turns.

—Leonard Lobel

To my wife, Lauren, and my sons, Sean and Miles. Thank you for your love,
your support, and your accommodation of the unreasonable.

—Andrew Brust

To Kathleen, thanks for your support and making me run marathons, which
are more painful than book writing and building beta machines.

—Stephen Forte

 v

Contents at a Glance

Part I Core Fundamentals

 1 Overview . 3

 2 T-SQL Enhancements . 13

 3 Exploring SQL CLR . 111

 4 Server Management . 161

 5 Security in SQL Server 2008 . 189

Part II Beyond Relational

 6 XML and the Relational Database . 231

 7 Hierarchical Dataand the Relational Database 281

 8 Using FILESTREAM for Unstructured Data Storage 307

 9 Geospatial Data Types . 341

Part III Reach Technologies

 10 The Microsoft Data Access Machine . 377

 11 The Many Facets of .NET Data Binding . 419

 12 Transactions . 449

 13 Developing Occasionally Connected Systems 491

Part IV Business Intelligence

 14 Data Warehousing . 563

 15 Basic OLAP . 611

 16 Advanced OLAP . 639

 17 OLAP Queries, Tools, and Application Development 717

 18 Expanding Your Business Intelligence with Data Mining 793

 19 Reporting Services . 879

 vii

Table of Contents

Acknowledgments .xxi

Introduction . xxv

Part I Core Fundamentals

 1 Overview . 3

Just How Big Is It?. 3

A Book for Developers . 5

A Book by Developers . 6

A Book to Show You the Way. 6

Core Technologies . 7

Beyond Relational . 8

Reaching Out . 9

Business Intelligence Strategies . 10

Summary . 12

 2 T-SQL Enhancements . 13

Common Table Expressions . 14

Creating Recursive Queries with CTEs . 18

The PIVOT and UNPIVOT Operators. 21

Using UNPIVOT . 22

Dynamically Pivoting Columns . 23

The APPLY Operator . 25

TOP Enhancements . 26

Ranking Functions . 28

The ROW_NUMBER Function . 28

The RANK Function . 32

The DENSE_RANK and NTILE Functions . 34

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

viii Table of Contents

Using All the Ranking Functions Together . 36

Ranking over Groups Using PARTITION BY . 37

Exception Handling in Transactions . 40

The varchar(max) Data Type. 42

The WAITFOR Statement . 43

DDL Triggers . 43

SNAPSHOT Isolation . 45

Table-Valued Parameters . 45

More than Just Another Temporary Table Solution. 46

Working with a Multiple-Row Set . 48

Using TVPs for Bulk Inserts and Updates. 49

Working with a Single Row of Data . 51

Creating Dictionary-Style TVPs . 54

Passing TVPs Using ADO.NET . 56

TVP Limitations . 59

New Date and Time Data Types . 59

Separation of Dates and Times . 59

More Portable Dates and Times . 60

Time Zone Awareness . 61

Date and Time Accuracy, Storage, and Format. 62

New and Changed Functions. 65

The MERGE Statement . 68

Defining the Merge Source and Target . 70

The WHEN MATCHED Clause . 71

The WHEN NOT MATCHED BY TARGET Clause . 72

Using MERGE for Table Replication . 73

The WHEN NOT MATCHED BY SOURCE Clause . 74

MERGE Output . 76

Choosing a Join Method. 78

MERGE DML Behavior . 79

Doing the “Upsert” . 81

The INSERT OVER DML Syntax. 90

Extending OUTPUT…INTO . 90

Consuming CHANGES. 94

The GROUPING SETS Operator . 97

Rolling Up by Level . 99

Rolling Up All Level Combinations . 101

Returning Just the Top Level . 103

 Table of Contents ix

Mixing and Matching . 104

Handling NULL Values. 105

New T-SQL Shorthand Syntax . 109

Summary . 110

 3 Exploring SQL CLR . 111

Getting Started: Enabling CLR Integration. 112

Visual Studio/SQL Server Integration . 113

SQL Server Projects in Visual Studio . 114

Automated Deployment. 117

SQL CLR Code Attributes . 117

Your First SQL CLR Stored Procedure . 118

CLR Stored Procedures and Server-Side Data Access . 120

Piping Data with SqlDataRecord and SqlMetaData 123

Deployment . 125

Deploying Your Assembly . 125

Deploying Your Stored Procedures. 127

Testing Your Stored Procedures . 129

CLR Functions . 131

CLR Triggers . 136

CLR Aggregates . 140

SQL CLR Types. 145

Security . 150

Examining and Managing SQL CLR Types in a Database 152

Best Practices for SQL CLR Usage . 159

Summary . 160

 4 Server Management . 161

What Is SMO? . 161

What About SQL-DMO? . 162

Latest Features in SMO . 166

Working with SMO in Microsoft Visual Studio . 167

Iterating Through Available Servers . 169

Retrieving Server Settings . 171

Creating Backup-and-Restore Applications . 175

Performing Programmatic DBCC Functions with SMO 181

Policy-Based Management. 183

A Simple Policy . 184

Summary . 188

x Table of Contents

 5 Security in SQL Server 2008 . 189

Four Themes of the Security Framework . 189

Secure by Design . 189

Secure by Default. 190

Secure by Deployment . 190

Secure Communications . 190

SQL Server 2008 Security Overview . 191

SQL Server Logins . 192

Database Users. 193

The guest User Account . 194

Authentication and Authorization. 195

How Clients Establish a Connection . 195

Password Policies . 197

User-Schema Separation. 198

Execution Context . 200

Encryption Support in SQL Server. 203

Encrypting Data on the Move . 204

Encrypting Data at Rest . 206

Transparent Data Encryption in SQL Server 2008. 211

Creating Keys and Certificates . 211

Enabling TDE. 213

Querying TDE Views . 213

Backing Up the Certificate . 214

Restoring an Encrypted Database. 215

SQL Server Audit . 216

Creating an Audit Object . 216

Auditing Options . 217

Recording Audits to the File System. 219

Recording Audits to the Windows Event Log . 220

Auditing Server Events . 220

Auditing Database Events. 221

Viewing Audited Events . 222

Querying Audit Catalog Views . 224

How Hackers Attack SQL Server . 225

Direct Connection to the Internet. 225

Weak System Administrator Account Passwords 226

SQL Server Browser Service . 226

 Table of Contents xi

SQL Injection. 226

Intelligent Observation . 227

Summary . 228

Part II Beyond Relational

 6 XML and the Relational Database . 231

XML in SQL Server 2000 . 233

XML in SQL Server 2008—the xml Data Type. 234

Working with the xml Data Type as a Variable . 234

Working with XML in Tables. 235

XML Schemas . 237

XML Indexes . 244

FOR XML Commands. 247

FOR XML RAW . 248

FOR XML AUTO . 248

FOR XML EXPLICIT . 250

FOR XML Enhancements. 253

OPENXML Enhancements in SQL Server 2008 . 261

XML Bulk Load . 262

Querying XML Data Using XQuery . 263

Understanding XQuery Expressions and XPath . 263

SQL Server 2008 XQuery in Action . 266

SQL Server XQuery Extensions . 275

XML DML. 276

Converting a Column to XML . 278

Summary . 280

 7 Hierarchical Data and the Relational Database 281

The hierarchyid Data Type . 282

Creating a Hierarchical Table . 283

The GetLevel Method . 284

Populating the Hierarchy . 285

The GetRoot Method. 286

The GetDescendant Method . 286

The ToString Method. 288

The GetAncestor Method . 293

xii Table of Contents

Hierarchical Table Indexing Strategies . 296

Depth-First Indexing . 297

Breadth-First Indexing . 298

Querying Hierarchical Tables . 299

The IsDescendantOf Method . 299

Reordering Nodes Within the Hierarchy . 301

The GetReparentedValue Method . 301

Transplanting Subtrees . 303

More hierarchyid Methods . 305

Summary . 306

 8 Using FILESTREAM for Unstructured Data Storage 307

BLOBs in the Database . 307

BLOBs in the File System . 309

What’s in an Attribute? . 309

Enabling FILESTREAM . 310

Enabling FILESTREAM for the Machine . 311

Enabling FILESTREAM for the Server Instance . 312

Creating a FILESTREAM-Enabled Database. 313

Creating a Table with FILESTREAM Columns. 315

The OpenSqlFilestream Native Client API. 318

File-Streaming in .NET. 319

Understanding FILESTREAM Data Access . 321

The Payoff . 331

Creating a Streaming HTTP Service . 333

Building the WPF Client . 338

Summary . 340

 9 Geospatial Data Types . 341

SQL Server 2008 Spaces Out . 341

Spatial Models . 342

Planar (Flat-Earth) Model . 342

Geodetic (Round-Earth) Model . 343

Spatial Data Types .344

Defining Space with Well-Known Text .344

Working with geometry. 345

The Parse Method . 346

The STIntersects Method . 347

 Table of Contents xiii

The ToString Method. 349

The STIntersection Method. 350

The STDimension Method . 350

Working with geography. 351

On Your Mark … . 352

The STArea and STLength Methods . 355

Spatial Reference IDs. 355

Building Out the EventLibrary Database . 355

Creating the Event Media Client Application . 357

The STDistance Method . 363

Integrating geography with Microsoft Virtual Earth 364

Summary . 374

Part III Reach Technologies

 10 The Microsoft Data Access Machine . 377

ADO.NET and Typed DataSets . 378

Typed DataSet Basics. 378

TableAdapter Objects . 380

Connection String Management. 381

Using the TableAdapter Configuration Wizard. 382

More on Queries and Parameters . 385

DBDirect Methods and Connected Use of Typed DataSet Objects . . . 387

“Pure” ADO.NET: Working in Code . 387

Querying 101 . 388

LINQ: A New Syntactic Approach to Data Access. 392

LINQ to DataSet . 392

LINQ Syntax, Deconstructed . 393

LINQ to SQL and the ADO.NET Entity Framework: ORM Comes to .NET. . . . 395

Why Not Stick with ADO.NET? . 396

Building an L2S Model . 397

The Entity Framework: Doing ORM the ADO.NET Way 402

XML Behind the Scenes. 405

Querying the L2S and EF Models . 406

Adding Custom Validation Code. 410

Web Services for Data: Using ADO.NET Data Services Against EF Models . . 411

Creating the Service . 412

xiv Table of Contents

Testing the Service. 414

Building the User Interface. 414

Data as a Hosted Service: SQL Server Data Services . 415

Summary: So Many Tools, So Little Time . 417

 11 The Many Facets of .NET Data Binding . 419

Windows Forms Data Binding: The Gold Standard . 420

Getting Ready. 420

Generating the UI . 421

Examining the Output. 423

Converting to LINQ to SQL . 424

Converting to Entity Framework . 425

Converting to ADO.NET Data Services. 426

Data Binding on the Web with ASP.NET. 427

L2S and EF Are Easy. 428

Beyond Mere Grids . 429

Data Binding Using Markup. 430

Using AJAX for Easy Data Access . 430

ASP.NET Dynamic Data . 435

Data Binding for Windows Presentation Foundation . 438

Design Time Quandary . 439

Examining the XAML. 441

Grand Finale: Silverlight. 445

Summary . 447

 12 Transactions . 449

What Is a Transaction?. 450

Understanding the ACID Properties . 450

Local Transaction Support in SQL Server 2008 . 453

Autocommit Transaction Mode. 453

Explicit Transaction Mode . 453

Implicit Transaction Mode . 456

Batch-Scoped Transaction Mode . 457

Using Local Transactions in ADO.NET . 459

Transaction Terminology. 461

Isolation Levels . 462

Isolation Levels in SQL Server 2008 . 462

Isolation Levels in ADO.NET. 467

 Table of Contents xv

Distributed Transactions . 468

Distributed Transaction Terminology . 469

Rules and Methods of Enlistment . 470

Distributed Transactions in SQL Server 2008 . 472

Distributed Transactions in the .NET Framework 473

Writing Your Own Resource Manager . 477

Using a Resource Manager in a Successful Transaction 481

Transactions in SQL CLR (CLR Integration) . 485

Putting It All Together . 489

Summary . 490

 13 Developing Occasionally Connected Systems 491

Comparing Sync Services with Merge Replication . 492

Components of an Occasionally Connected System . 493

Merge Replication . 494

Getting Familiar with Merge Replication . 494

Creating an Occasionally Connected Application with
Merge Replication . 496

Configuring Merge Replication .499

Creating a Mobile Application Using Microsoft Visual Studio 2008 . . . 520

Sync Services for ADO.NET. 533

Sync Services Object Model. 534

Capturing Changes for Synchronization . 538

Creating an Application Using Sync Services . 543

Additional Considerations . 557

Summary . 560

Part IV Business Intelligence

 14 Data Warehousing . 563

Data Warehousing Defined . 563

The Importance of Data Warehousing . 564

What Preceded Data Warehousing. 566

Lack of Integration Across the Enterprise . 567

Little or No Standardized Reference Data . 568

Lack of History . 568

Data Not Optimized for Analysis. 568

As a Result… . 569

Data Warehouse Design . 570

xvi Table of Contents

The Top-Down Approach of Inmon . 572

The Bottom-Up Approach of Kimball . 574

What Data Warehousing Is Not . 580

OLAP . 580

Data Mining . 581

Business Intelligence . 582

Dashboards and Scorecards. 583

Performance Management . 585

Practical Advice About Data Warehousing . 585

Anticipating and Rewarding Operational Process Change. 586

Rewarding Giving Up Control . 586

A Prototype Might Not Work to Sell the Vision . 586

Surrogate Key Issues . 587

Currency Conversion Issues . 587

Events vs. Snapshots . 588

SQL Server 2008 and Data Warehousing. 589

T-SQL MERGE Statement . 589

Change Data Capture . 592

Partitioned Table Parallelism . 600

Star-Join Query Optimization . 603

SPARSE Columns . 604

Data Compression and Backup Compression . 605

Learning More . 610

Summary . 610

 15 Basic OLAP . 611

Wherefore BI? . 611

OLAP 101. 613

OLAP Vocabulary . 614

Dimensions, Axes, Stars, and Snowflakes. 615

Building Your First Cube . 617

Preparing Star Schema Objects . 617

A Tool by Any Other Name . 618

Creating the Project. 619

Adding a Data Source View . 621

Creating a Cube with the Cube Wizard . 625

Using the Cube Designer . 626

Using the Dimension Wizard . 629

 Table of Contents xvii

Using the Dimension Designer . 632

Working with the Properties Window and Solution Explorer 634

Processing the Cube . 635

Running Queries. 636

Summary . 637

 16 Advanced OLAP . 639

What We’ll Cover in This Chapter .640

MDX in Context .640

And Now a Word from Our Sponsor… .640

Advanced Dimensions and Measures . 641

Keys and Names. 641

Changing the All Member .644

Adding a Named Query to a Data Source View. 645

Parent/Child Dimensions . 647

Member Grouping. 651

User Table Time Dimensions, Attribute Relationships,
Best Practice Alerts, and Dimension/Attribute Typing 652

Server Time Dimensions . 660

Fact Dimensions . 661

Role-Playing Dimensions . 664

Advanced Measures . 665

Calculations . 667

Calculated Members . 668

Named Sets. 673

More on Script View . 674

Key Performance Indicators . 677

KPI Visualization: Status and Trend . 678

A Concrete KPI . 679

Testing KPIs in Browser View . 681

KPI Queries in Management Studio . 683

Other BI Tricks in Management Studio . 688

Actions . 689

Actions Simply Defined. 690

Designing Actions . 690

Testing Actions . 692

Partitions, Storage Settings, and Proactive Caching . 693

Editing and Creating Partitions . 694

xviii Table of Contents

Partition Storage Options. 696

Proactive Caching . 697

Additional Features and Tips . 699

Aggregations. 700

Algorithmic Aggregation Design . 700

Usage-Based Aggregation Design . 701

Manual Aggregation Design (and Modification) 702

Aggregation Design Management . 704

Aggregation Design and Management Studio. 705

Perspectives. 705

Translations . 707

Roles . 712

Summary . 715

 17 OLAP Queries, Tools, and Application Development 717

Using Excel . 719

Connecting to Analysis Services . 719

Building the PivotTable . 723

Exploring PivotTable Data . 725

Scorecards . 727

Creating and Configuring Charts . 729

In-Formula Querying of Cubes . 732

Visual Studio Tools for Office and Excel Add-Ins 737

Excel Services . 738

Beyond Excel: Custom OLAP Development with .NET. 743

MDX and Analysis Services APIs . 744

Moving to MDX . 744

Management Studio as an MDX Client . 745

OLAP Development with ADO MD.NET. 758

Using Analysis Management Objects . 769

XMLA at Your (Analysis) Service . 771

Analysis Services CLR Support: Server-Side ADO MD.NET 782

Summary . 792

 18 Expanding Your Business Intelligence with Data Mining 793

Why Mine Your Data? . 793

SQL Server 2008 Data Mining Enhancements. 797

Getting Started . 798

Preparing Your Source Data. 798

 Table of Contents xix

Creating an Analysis Services Project .800

Using the Data Mining Wizard and Data Mining Structure Designer. 802

Creating a Mining Structure. .804

Creating a Mining Model . 805

Editing and Adding Mining Models . 810

Deploying and Processing Data Mining Objects 816

Viewing Mining Models . 818

Validating and Comparing Mining Models . 827

Nested Tables . 830

Using Data Mining Extensions . 836

Data Mining Modeling Using DMX . 837

Data Mining Predictions Using DMX . 848

DMX Templates . 856

Data Mining Applied . 856

Data Mining and API Programming . 857

Using the Windows Forms Model Content Browser Controls 858

Executing Prediction Queries with ADO MD.NET 860

Model Content Queries . 860

ADO MD.NET and ASP.NET . 861

Using the Data Mining Web Controls. 862

Developing Managed Stored Procedures . 863

XMLA and Data Mining . 865

Data Mining Add-ins for Excel 2007. 866

Summary . 877

 19 Reporting Services . 879

Using the Report Designer . 880

Creating a Basic Report. 883

Applying Report Formatting . 887

Adding a Report Group . 890

Working with Parameters . 892

Writing Custom Report Code . 897

Creating an OLAP Report .900

Creating a Report with a Matrix Data Region. 906

Tablix Explained . 910

Adding a Chart Data Region . 915

Making a Report Interactive . 917

Delivering Reports . 919

Deploying to the Report Server . 919

xx Table of Contents

Accessing Reports Programmatically . 928

Administering Reporting Services . 937

Using Reporting Services Configuration Manager. 937

Using Report Manager and Management Studio 940

Integrating with SharePoint . 949

Summary . 951

 Index . 953

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

 xxi

Acknowledgments

Working on this book has truly been the most rewarding experience of my professional
 career thus far, and I need to thank a great many people who have made it possible.

I first met Andrew Brust about 10 years ago, and we’ve enjoyed a close working relationship
and growing friendship for the past 7 of those. I can’t count the number of times Andrew has
opened doors for me with project, writing, and speaking opportunities—and now, of course,
this book. Andrew introduced me to Stephen Forte back in 2004, and after 30 years in the
industry, I’ve learned to find new appreciation for the art of software development through
Stephen’s enthusiastic (that is, wacky and wild) personality. Andrew and Stephen both made
this project significantly easier by producing the original edition of this book—an excellent
treatment of Microsoft SQL Server 2005 that set the starting point for this new 2008 edition.
It’s been an absolute thrill and honor that they invited me to join them this time around and
to assume the role of lead author for the new edition. Thanks to you both for entrusting me
with that responsibility, as well as for your own hard work on this edition.

We could never have produced a book so broad and deep in scope without the additional
aid of the other guest authors. Elsie Pan, Paul Delcogliano, Mark Frawley, and Jeff Bolton
each did an outstanding job writing brand-new chapters, and Elsie also revised material from
the last edition. Heartfelt thanks go out as well to Kenn Scribner, who performed an incred-
ibly detail-oriented tech review of the entire book, and especially for helping out with updat-
ing important material at the bottom of the ninth with two men out and three men on. I’m
very grateful for their contributions and professionalism, and I feel privileged to have worked
with each of them. I’d also like to thank Jay Rabin, and all the wonderful folks at twentysix
New York, for their continuous stream of support and encouragement throughout this whole
project.

I was very lucky to have worked closely with Kathleen Atkins, Sally Stickney, and Ken Jones
of Microsoft Press; Steve Sagman from Waypoint Press; and copy editor Jennifer Harris. Their
superb editorial contributions, project planning, and overall guidance were vital to the pro-
duction of this book. Double thanks go to Sally, who was always available to me (weekends
too) for much-needed guidance as I entered the world of book writing. And the assistance
provided by a number of people from various Microsoft product teams helped tackle the
challenge of writing about new software as it evolved through several beta releases. So thank
you to Steve Lasker, for support with Compact and Sync Services, and to Roger Doherty and
Isaac Kunen for support with the “beyond relational” features. In particular, Roger inspired
several of the FILESTREAM and geospatial demos found in those chapters. George Sobhy was
also a great help with geospatial—he even arranged for a shared desktop demo between
New York and Cairo (and thanks to Stephen Forte too, for the introduction).

xxii Acknowledgments

This would all be moot, of course, without the love and support of my family. Almost all
of my spare time over the past year was spent working on this project in one form or
 another—researching and writing new material, editing the whole book, and coordinat-
ing its production—which at times transformed me into an absentee partner and father. I
owe an enormous debt of gratitude to my wonderful partner, Mark, and my awesome kids,
Adam, Jacqueline, and Josh, for putting up with it all. So thanks, gang, I’m back home now!
And thanks most of all to dear Mom, bless her soul, for always encouraging me to write with
“ expression” since the first grade.

—Leonard Lobel

Writing a book is hard, especially for the people in the authors’ lives who lend heroic
 support. Revising a book is hard too, especially for the people in the authors’ lives who lend
that support again.

With that in mind, I’d like to thank my wife, Lauren (who endured this project while at the
same time earning her master’s degree and being an amazing mom to our two boys). And
I thank our boys as well: Miles (who, though only four years old, is nonetheless a veteran of
both editions of this book) and Sean (who, at age 18 months, has endured yet another thing
that his older brother experienced first). All three have tolerated my intolerable absences
from their events and their lives. Each one has my gratitude for the patience and understand-
ing shown to me.

I’d also like to thank everyone at twentysix New York, especially Jay Rabin, for granting me a
period of calm, with unprecedented duration, to get the work on this edition done.

Finally, but certainly not least of all, I’d like to thank Leonard Lobel for “taking the wheel”
on this edition of the book. Had he not done so, we simply would not have this edition of
the book. Lenni is prone to thanking me for exposing him to opportunity. What he fails to
understand is that by repeatedly succeeding, he makes me look good simply for having the
good taste to recommend him.

—Andrew Brust

 Acknowledgments xxiii

It’s nice to have your name on the cover of a book, but without help from various people,
this book never would have happened. I’ll start with Andrew and Lenni, my wonderful co-
authors, both easy to work with, dedicated, and also very patient with me. The folks at
Microsoft Press were all great to work with and had considerable energy and flexibility.

I would not have been able to take on this project if I did not have the support of the folks at
Telerik, Triton Works, and Dash Soft, three companies that I work very closely with. I would
like to give special thanks to the leaders of those firms, Vassil Terziev, Mark Storen, and
Remon “FGD” Zakaria, for their understanding and support when deadlines for the book
loomed.

We have also had tons of great reviewers. I was blessed to have folks like Kimberly Tripp,
Peter DeBetta, and Roman Rehak help out with reading my chapters, as well as Kevin Collins,
Remi Caron, Joel Semeniuk, Eileen Rumwell, Steve Lasker, Kirk Haselden, Ted Lee, Sergei
Ivanov, Richard Campbell, Goksin Bakir, Malek Kemmou, Jason Gideon, Julie Lerman, Bill
Ramos, Tom Halligan, and finally Jack Prilook—who looked at my manuscript 13 times.

I started this book on the first day of classes of my second year of my MBA education. Some
days I had to choose whether to write on Policy-Based Management or macroeconomic
trends in China and India. I’d like to thank all my group members at EMBA 26, most especially
Dr. Ian Miller, Rosa Alvarado, Jason Nocco, Dmitriy Malinovskiy, and Cyrus Kazi. As fate would
have it, I type these words on my last day of school. How fitting to finish a book and an MBA
in the same weekend.

—Stephen Forte

 xxv

Introduction

Welcome, developer!

The book you are holding, much like Microsoft SQL Server 2008 itself, builds on a great
“ previous release.” SQL Server 2005 was—architecturally speaking—a groundbreaking
 upgrade from earlier versions of the product, and the 2005 edition of this book was a new
printed resource that provided comprehensive coverage of the revamped platform. This
new edition includes thoroughly updated coverage of the most important topics from the
past edition, plus brand-new coverage of all the new exciting and powerful features for
developers in SQL Server 2008. As with the 2005 edition, we set out to produce the best
book for developers who need to program SQL Server 2008 in the many ways that it can be
programmed.

To best understand our approach, we ask that you consider likening SQL Server 2008 to, of
all things, a Sunday newspaper. A Sunday newspaper is made up of multiple sections, each
of which is written separately and appeals to a distinct audience. The sections do have overlap-
ping content and share some readership, of course, but most people don’t read the whole
paper, and they don’t need to. Meanwhile, the entire paper is considered a single publication,
and those who read it think of themselves as readers of the paper rather than of one or more
of its sections. Likewise, SQL Server has many pieces to it: few people will use them all, and
people will need to learn about them gradually, over time, as their business needs dictate.

Our book reflects this reality and in many ways replicates the structure of a Sunday newspaper.
For one thing, a great number of authors have been involved in producing the book, drawing
on their expertise in their chapters’ specific subject matter. For another, the context of certain
chapters differs markedly from those of other chapters. Some chapters cover specific subject
matter deeply. Others cover a broader range of material, and do so at a higher level. That’s
an approach we didn’t anticipate when we authored the 2005 edition of this book. But it’s
the approach we found most effective by the time we finished it, and one which we continue
to follow in this new edition for SQL Server 2008. We have found that it makes an otherwise
overwhelming set of technologies much more approachable and makes the learning process
much more modular.

Make no mistake, though—the overall vision for the book is a cohesive one: to explore the
numerous programmability points of SQL Server 2008 and, in so doing, provide widespread
coverage of the great majority of the product’s features, in a voice that caters to developers’
interests. Whether you read every chapter in the book or just some of them and whether you
read the book in or out of order, our goal has been to provide you with practical information,
numerous useful samples, and a combination of high-level coverage and detailed discussion,
depending on how deep we thought developers would want to go.

xxvi Introduction

Just as the Sunday newspaper doesn’t cover everything that’s going on in the world, this
book won’t teach you everything about SQL Server. For example, we don’t cover high-
availability/fault tolerance features such as replication, clustering, or mirroring. We don’t
discuss query plans and optimization, nor do we investigate SQL Server Profiler, SQL Trace,
or the Database Engine Tuning Advisor. Some features covered in the 2005 edition have not
changed significantly in SQL Server 2008, such as native XML Web Services, Service Broker,
Integration Services, and cross-tier debugging. These topics are also not covered, in order to
make room for new SQL Server 2008 features. (The 2005 edition chapters that cover those
topics are available for you to download from this book’s companion Web site, which we ex-
plain toward the end of this introduction.)

We discovered as we wrote the book that covering everything in the product would result
in a book unwieldy in size and unapproachable in style. We hope we struck the right bal-
ance, providing a digestible amount of information with enough developer detail and enough
 pointers to other material to help you become a seasoned SQL Server professional.

Who This Book Is For

Now that we have established what the book does and does not cover, we’d like to clarify just
who we believe will be most interested in it and best served by it. In a nutshell, this book is
for .NET and SQL Server developers who work with databases and data access, at the busi-
ness logic/middle-tier layer as well as the application level.

In our perhaps self-centered view of the development world, we think this actually describes
most .NET developers, but clearly some developers are more interested in database program-
ming in general, and SQL Server specifically, than others, and it is this more interested group
we want to reach.

We assume that you have basic, working knowledge of .NET programming on the client and
Transact-SQL (T-SQL) on the server, although SQL experience on any platform can easily sub-
stitute. We also assume that you are comfortable with the basics of creating tables, views, and
stored procedures on the server. On the client tools side, we assume that you are familiar with
the prior generation of SQL Server and .NET development tools. If you’ve already been work-
ing with SQL Server Management Studio in SQL Server 2005, you’ll feel right at home with the
2008 version, which has been extended to support new server features (and now even includes
IntelliSense for T-SQL!). If you’re still running SQL Server 2000 or earlier, you’ll definitely appreci-
ate SQL Server Management Studio as a vast improvement over the two primary tools that pre-
ceded it—Enterprise Manager and Query Analyzer. SQL Server Management Studio essentially
represents the fusion of those two tools, packaged in a modern user interface (UI) shell very
similar to that provided by Microsoft Visual Studio—complete with customizable menus and
toolbars, floatable and dockable panes, solutions, and projects. The primary tool for .NET devel-

 Introduction xxvii

opment is, of course, Visual Studio 2008, and experience with any version will also be beneficial
for you to have.

Having said all that, we have a fairly liberal policy regarding these prerequisites. For example,
if you’ve only dabbled with SQL and .NET, that’s OK, as long as you’re willing to try and pick
up on things as you read along. Most of our code samples are not that complex. However,
our explanations do assume some basic knowledge on your part, and you might need to do
a little research if you lack the experience.

Note For the sake of consistency, all the .NET code in this book is written in C#. (The only
 exceptions to this rule will be found in Chapter 19 for Reporting Services, since only Visual Basic
.NET is supported for scripting report expressions and deployments.) However, this book is in
no way C#-oriented, and there is certainly nothing C#-specific in the .NET code provided. As
we just stated, the code samples are not very complex, and if you are more experienced with
Visual Basic .NET than you are with C#, you should have no trouble translating the C# code
to Visual Basic .NET on the fly as you read it.

In addition to covering the SQL Server core relational engine, its latest breed of “beyond
 relational” capabilities, and its ancillary services, this book also provides in-depth coverage of
SQL Server’s business intelligence (BI) features, including Reporting Services, and the online
analytical processing (OLAP) and data mining components of Analysis Services. Although
ours is not a BI book per se, it is a database developer’s book, and we feel strongly that all
these features should be understood by mainstream database developers. BI is really one
of the cornerstone features of SQL Server 2008, so the time is right for traditional database
 developers to “cross over” to the world of BI.

Realizing that these technologies, especially OLAP and data mining, will be new territory for
many readers, we assume no knowledge of them on your part. Any reader who meets the
prerequisites already discussed should feel comfortable reading about these BI features and,
more than likely, feel ready and excited to start working with BI after reading the BI-focused
chapters.

How This Book Is Organized

This book is broken down into four parts. Each part follows a specific SQL Server “theme,” if
you will.

Part I begins with an overview that gives you a succinct breakdown of the chapters in all four
parts of the book. Then it dives right in to core SQL Server technologies. We explore the
many powerful enhancements made to Transact-SQL (T-SQL), both in SQL Server 2005 and
2008 (in that order). We also introduce you to SQL Server’s .NET Common Language Runtime
(CLR) integration features, which cut across our discussions of data types and server-side

xxviii Introduction

programming. You’ll learn how to programmatically administer the server using Server
Management Objects (SMO), which were introduced in SQL Server 2005, and how to use the
new administrative framework called Policy-Based Management (PBM) in SQL Server 2008.
Then we tackle security. After quickly covering basic SQL Server security concepts, we show
how to encrypt your data both while in transit (traveling across the network) and at rest (on
disk). We’ll also teach the latest security features in SQL Server 2008, including Transparent
Data Encryption (TDE) and SQL Server Audit, which you will find extremely useful in today’s
world of regulatory compliance.

Part II is dedicated to the SQL Server 2008 “beyond relational” release theme, which is all
about working with semistructured and unstructured data. This is a concept that broadens
our traditional view of relational databases by getting us to think more “outside the box” in
terms of all the different types of data that SQL Server can be used to manage, query, and
manipulate. We begin with a chapter on XML support (which was spearheaded in SQL Server
2005), and provide detailed coverage that includes the recent XML enhancements made in
SQL Server 2008. All the remaining chapters in Part II cover nonrelational features that are
brand new in SQL Server 2008. These include hierarchical tables, native file streaming, and
geospatial capabilities. These features are designed to enrich the native database engine by
bringing unprecedented intelligence and programming convenience down to the database
level.

In Part III, we move away from the server and discuss concepts relating to actual database
software development, be it in the middle tier or at the application level. This includes data
access using “traditional” ADO.NET, language-integrated query (LINQ), the ADO.NET Entity
Framework, and the latest innovations, ADO.NET Data Services and SQL Server Data Services.
After you succeed in accessing your data, you’ll need to deliver that data to your users, and
that means data binding. We’ll dig in to data binding for Microsoft Windows and ASP.NET
Web applications, as well as the newest UI platforms, Windows Presentation Foundation
(WPF) and Silverlight. We also cover transactions and various other topics relevant to ex-
tending your databases’ reach with technologies such as merge replication, Sync Services for
ADO.NET, and mobile database application development with SQL Server Compact 3.5.

Part IV is our BI section. In it, we provide efficient, practical coverage of SQL Server Analysis
Services and Reporting Services. We are particularly proud of this section because we as-
sume virtually no BI or OLAP knowledge on your part and yet provide truly deep coverage
of SQL Server BI concepts, features, and programming. We have a chapter dedicated to the
topic of data warehousing. In it, you’ll see how to use a new SQL Server 2008 feature called
Change Data Capture (CDC) to facilitate incremental updating of large data warehouses.
Furthermore, we cover all the new important BI features in SQL Server 2008, expanded to
include the latest data mining add-ins for Microsoft Office Excel 2007. The Reporting Services
chapter has been written from scratch for the completely reworked and enhanced Report
Designer, and also teaches you the many ways that Reporting Services can be programmed
and managed.

 Introduction xxix

Together, the four parts of the book provide you with a broad inventory of a slew of SQL
Server 2008 developer-relevant features and the conceptual material necessary to un-
derstand them. We don’t cover everything in SQL Server 2008, but we will arm you with
a significant amount of core knowledge and give you the frame of reference necessary to
research the product further and learn even more. Where appropriate, we refer you to SQL
Server Books Online, which is the complete documentation library for SQL Server 2008 (avail-
able from the Start Menu under Programs, Microsoft SQL Server 2008, Documentation And
Tutorials).

Code Samples and the Book’s Companion Web Site

All the code samples discussed in this book can be downloaded from the book’s companion
Web site at the following address:

http://www.microsoft.com/mspress/companion/9780735625990/

Important This book and its sample code were written for, and tested against, the Release
Candidate (RC0) version of SQL Server 2008 Developer edition, released in June 2008. If and
when we discover any incompatibilities with the Release To Manufacturer (RTM) version, or any
further service packs that are later released, our intent is to update the sample code and post
errata notes on the book’s companion Web site, available at http://www.microsoft.com/mspress/
companion/9780735625990/. Please monitor that site for new code updates and errata postings.

In addition to all the code samples, the book’s companion Web site also contains several
chapters from the 2005 edition of this book that were not updated for the 2008 edition.
These include the chapters on native XML Web Services and Service Broker, which are fea-
tures that have not been widely adopted since they were introduced in SQL Server 2005 but
that continue to be supported in SQL Server 2008. The 2005 edition chapters covering SQL
Server Management Studio (the primary graphical tool you’ll use for most of your database
development work), SQL Server 2005 Express edition, Integration Services, and debugging
are posted on the companion Web site as well. With the inclusion of all the new SQL Server
2008 coverage, space constraints simply did not permit us to include these topics (which
have not changed significantly in SQL Server 2008) in this new edition. And while we provide
completely new coverage on the latest data binding techniques, the 2005 edition covers
ADO.NET programming techniques against then-new SQL Server features, and so it is posted
on the companion Web site as well. This book’s chapter on OLAP Application development
has also been revised to include Excel 2007 coverage, and the 2005 edition is available on
the companion Web site for those developers who are still working with Excel 2003 against
Analysis Service OLAP cubes.

xxx Introduction

Because this is a developer book, we often include one or more Visual Studio projects as
part of the sample code, in addition to SQL Server Management Studio projects containing
T-SQL or Analysis Services script files. Within the companion materials parent folder is a child
folder for each chapter. Each chapter’s folder, in turn, contains either or both of the following
two folders: SSMS and VS. The former contains a SQL Server Management Studio solution
(.ssmssln file), the latter contains a Visual Studio solution (.sln file). Some chapters might have
multiple Visual Studio solutions. After you’ve installed the companion files, double-click a
solution file to open the sample scripts or code in the appropriate integrated development
environment (IDE).

Because most of the code is explained in the text, you might prefer to create it from scratch
rather than open the finished version supplied in the companion sample code. However, the
finished version will still prove useful if you make a small error along the way or if you want
to run the code quickly before reading through the narrative that describes it.

Some of the SQL Server Management Studio projects contain embedded connections that
are configured to point to a default instance of SQL Server running on your local machine.
Similarly, some of the Visual Studio source code contains connections or default connection
strings (sometimes in code, sometimes in settings or configuration files, and other times in
the Text property of controls on the forms in the sample projects) that are configured like-
wise. If you have SQL Server 2008 installed as the default instance on your local machine with
Windows-integrated security and the AdventureWorks2008 sample database, the majority
of the sample code should run without modification. If not, you’ll need to modify the server
name, instance name, or user credentials accordingly to suit your environment. You’ll also
need to install AdventureWorks2008 if you have not already done so. (Download instructions
for all the sample databases are given in the sections ahead.)

A number of chapters rely on various popular sample databases available for SQL Server.
These include the Northwind and just-mentioned AdventureWorks2008 sample transactional
databases, the AdventureWorksDW2008 sample data warehouse database, and the Adventure
Works DW 2008 Analysis Services sample database. None of our examples use the pubs data-
base, which has been around since long before SQL Server 2000.

Using the Sample Northwind Database

You can use the version of Northwind that came with SQL Server 2000, if you have it, and
attach it to your SQL Server 2008 server. Microsoft has also published a Windows Installer
file (.msi) that will install the Northwind sample database on your server (even the older
pubs sample database is included). The installer provides both the primary database file and
the log file that can be directly attached, as well as T-SQL scripts, which can be executed

 Introduction xxxi

to create the databases from scratch. At press time, the download page for the Northwind
installer file is http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-
46a0-8da2-eebc53a68034&DisplayLang=en. An Internet shortcut to this URL is included with
this chapter’s sample code. If the link does not work for you, try running a Web search on
“Northwind and pubs Sample Databases for SQL Server 2000.”

Using the Sample AdventureWorks2008 Databases

As of SQL Server 2005, and updated for SQL Server 2008, Microsoft provides the
AdventureWorks family of databases. You can download these sample databases from
CodePlex, which is Microsoft’s open source Web site (in fact, all of Microsoft’s official product
code samples are hosted on CodePlex). This book uses the AdventureWorks2008 relational
online transaction processing (OLTP) database, the AdventureWorksDW2008 relational data
warehouse database, and the AdventureWorksAS2008 Analysis Services database. The latest
version of these sample databases are designed for use only with SQL Server 2008 and will
not work with SQL Server 2005. (The older AdventureWorks databases for SQL Server 2005
are still available on CodePlex at the time of this writing, however.)

At press time, the download location for all sample AdventureWorks2008 databases is
http://www.codeplex.com/MSFTDBProdSamples. Click the Releases tab on this page to select
any of the sample databases for downloading to your machine. An Internet shortcut to this
URL is included on the book’s companion Web site. If the link does not work for you, try run-
ning a Web search on “SQL Server 2008 product sample databases.”

The AdventureWorks2008 OLTP database uses the new FILESTREAM feature in SQL Server
2008, and therefore requires that FILESTREAM be enabled for the instance on which
AdventureWorks2008 is installed. Chapter 8 is devoted to FILESTREAM, and you should
refer to the “Enabling FILESTREAM” section in that chapter, which shows how to enable
FILESTREAM in order to support AdventureWorks2008.

Important The samples for this book are based on the 32-bit version of the sample
AdventureWorks2008 databases, which is almost—but not exactly—identical to the 64-bit
 version. If you are using the 64-bit version of these sample databases, some of your query
 results might vary slightly from those shown in the book’s examples.

xxxii Introduction

System Requirements

To follow along with the book’s text and run its code samples successfully, we recommend
that you install the Developer edition of SQL Server 2008, which is available to a great num-
ber of developers through Microsoft’s MSDN Premium subscription, on your PC. You will also
need Visual Studio 2008; we recommend that you use the Professional edition or one of the
Team edition releases, each of which is also available with the corresponding edition of the
MSDN Premium subscription product.

Important To cover the widest range of features, this book is based on the Developer edition
of SQL Server 2008. The Developer edition possesses the same feature set as the Enterprise edi-
tion of the product, although Developer edition licensing terms preclude production use. Both
editions are high-end platforms that offer a superset of the features available in other editions
(Standard, Workgroup, Web, and Express). We believe that it is in the best interest of developers
for us to cover the full range of developer features in SQL Server 2008, including those available
only in the Enterprise and Developer editions.

Most programmability features covered in this book are available in every edition of SQL Server
2008. One notable exception is the lack of Analysis Services support in the Workgroup, Web,
and Express editions. Users of production editions other than the Enterprise edition should con-
sult the SQL Server 2008 Features Comparison page at http://msdn.microsoft.com/en-us/library/
cc645993.aspx for a comprehensive list of features available in each edition, in order to under-
stand which features covered in the book are available to them in production.

To run these editions of SQL Server and Visual Studio, and thus the samples in this book,
you’ll need the following 32-bit hardware and software. (The 64-bit hardware and software
requirements are not listed here but are very similar.)

 600-MHz Pentium III–compatible or faster processor (1-GHz minimum, but 2GHz or
faster processor recommended).

 Microsoft Windows 2000 Server with Service Pack (SP) 4 or later; Windows 2000
Professional Edition with SP4 or later; Windows XP with SP2 or later; Windows Server
2003 (any edition) with SP1 or later; Windows Small Business Server 2003 with SP1 or
later; or Windows Server 2008 (any edition).

 For SQL Server 2008, at least 512 MB of RAM (1 GB or more recommended).

 For Visual Studio 2008, 192 MB (256 MB recommended).

 For SQL Server 2008, approximately 1460 MB of available hard disk space for the
recommended installation. Approximately 200 MB of additional available hard disk
space for SQL Server Books Online.

 For Visual Studio 2008, maximum of 20 GB of available space required on installation
drive. This includes space for the installation of the full set of MSDN documentation.

 Introduction xxxiii

 Internet connection required to download the code samples for each chapter from the
companion Web site. A few of the code samples require an Internet connection to run
as well.

 CD-ROM or DVD-ROM drive recommended.

 Super VGA (1024 × 768) or higher resolution video adapter and monitor
recommended.

 Microsoft Mouse or compatible pointing device recommended.

 Microsoft Internet Explorer 6.0 SP1 or later. Microsoft Internet Explorer 7.0
recommended.

 For SQL Server Reporting Services, Microsoft Internet Information Services (IIS) 6.0 or
later and ASP.NET 2.0 or later.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge Base
article.

Microsoft Press provides support for books and companion content at the following Web
site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content,
or questions that are not answered by visiting the preceding sites, please send them to
Microsoft Press via e-mail to:

mspinput@microsoft.com

Or send them via postal mail to

Microsoft Press
Attn: Programming Microsoft SQL Server 2008 Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
preceding addresses.

Programming Microsoft® SQL Server™ 2008

 1

Part I

Core Fundamentals

In this part:

Chapter 1 Overview . 3

Chapter 2 T-SQL Enhancements. 13

Chapter 3 Exploring SQL CLR . 111

Chapter 4 Server Management . 161

Chapter 5 Security in SQL Server 2008 . 189

 3

Chapter 1

Overview

—Leonard Lobel

This is a book about Microsoft SQL Server 2008, written specifically with the developer
in mind.

Microsoft’s latest release of SQL Server improves upon its predecessors—SQL Server 2005
and earlier—in every key area, just as you would expect of any new version. There are many
enhancements and new features in the product that yield important benefits across the
board. Collectively, of course, these product enhancements and new features continue to
bolster SQL Server’s competitive position as an industry-strength database platform capable
of handling the most demanding workloads. In this book, our particular focus is on program-
mability for database development—a space in which the product continues to advance in
new and powerful ways with the release of SQL Server 2008, the most programmable version
of SQL Server to date.

Features like clustering, mirroring, and the ability to add new RAM and CPUs on the fly with
zero downtime—just to name a few—are certainly important in any serious enterprise-level
system. But to reiterate, this is a database book that targets developers, not administrators
(although we do have an entire chapter dedicated to programmatically administering SQL
Server). Reliability, availability, and scalability features that contribute toward making
SQL Server a rock-solid platform are quite impressive and significant in their own right, but
they are not particularly programmable and so they are not covered in this book.

If you’re a developer, however, then welcome! This book is just for you. Whether you’re pro-
gramming against SQL Server 2008 natively at the database tier or further up the stack using
.NET, this book shows you the way. Within these chapters, you’ll find detailed coverage of the
newest and most important SQL Server programming features. Together, we’ll explore the
plethora of ways in which SQL Server 2008 can be programmed—empowering you to rapidly
develop rich database applications for your end users, while having fun in the process.

Just How Big Is It?

With each version of SQL Server, we tend to ask the same set of questions about the new
release. Is it big? How many features have been added, what are they, and how relevant are
they to my needs? What previous barriers have been removed? Has the product at its core
changed radically since the last version? What’s no longer supported? After probing like this
for a while, we typically arrive at the ultimate question: Should I upgrade?

4 Part I Core Fundamentals

Let’s be clear about this. SQL Server 2008 is not the watershed release that its predecessor
SQL Server 2005 was roughly three years ago. At that time, SQL Server 2005 really redefined
the product beyond just a relational database engine—which was already quite matured in
SQL Server 2000 nearly six years prior. In SQL Server 2000 (and earlier versions), the relational
database engine was the product. New advances beyond the relational database engine—in
particular, business intelligence (BI) services for extraction, transformation, and loading (ETL)
and for reporting and analysis—began appearing as early as 1999 and continued to steadily
emerge after the arrival of SQL Server 2000. These capabilities were integrated into the prod-
uct sporadically as a patchwork of add-ons, wizards, and management consoles. Over time,
the result was a relational database system loosely bundled with a collection of value-added
features supported by a somewhat inconsistent toolset.

Microsoft changed all that with SQL Server 2005, by giving the platform a complete struc-
tural overhaul that revolutionized the product. Disruptive change in the software industry—
resulting from the distributed nature of a growing Internet for business-to-business (B2B)
integration, as well as a growing market for BI, including online analytical processing (OLAP),
data mining, and reporting—was the driving force behind the product’s radical makeover.
As of SQL Server 2005, the relational database engine no longer takes center stage. Rather, it
is positioned alongside a series of core services that together comprise the overall product.
The result is a broader, richer, and more consistent set of features and services that are built
into—rather than bolted onto—the platform.

SQL Server 2008, in turn, represents a natural evolution of this model, building on and ex-
tending this new and improved architecture established in SQL Server 2005. Thus, upgrading
from SQL Server 2000 (or earlier) to either 2005 or 2008 are both “leaps forward” in terms of
platform architecture, whereas upgrading from 2005 to 2008 is more of an incremental step
in that regard. By that comparison, the 2008 release isn’t really all “that big.”

On the flip side, SQL Server 2008 can definitely be viewed as a major product release in its
own right. Microsoft has loaded SQL Server 2008 with many exciting new features that bring
unprecedented intelligence, convenience, and programming power down to the database
level. SQL Server 2008 builds on the Common Language Runtime (CLR) integration intro-
duced in SQL Server 2005 to usher in a new breed of native data types based on rich CLR
user-defined types (UDTs), enabling hierarchical and geospatial capabilities in the database.

Many significant enhancements to Transact-SQL (T-SQL) have been added as well. Backup
compression, data compression, and Change Data Capture (CDC) help us cope with rapidly
growing data warehouses. New security features such as Transparent Data Encryption (TDE)
and SQL Server Audit make it easier to meet the demands of increasingly stringent require-
ments for regulatory compliance. We also get native streaming capabilities between the
database and the file system for enhanced binary large object (BLOB) storage and a new syn-
chronization model for replication between occasionally connected client systems. There are
also new BI features for analysis and reporting. Consider as well improvements in reliability,

 Chapter 1 Overview 5

availability, and scalability, and one could arguably maintain that SQL Server 2008 is in fact
quite a big release. Our job isn’t to convince you one way or the other—it’s simply to help
you understand and program the features you need to get the most out of Microsoft SQL
Server 2008.

Note Recent survey polls continue to indicate that many sites are still running SQL Server 2000.
To aid in the upgrade process for these sites, Microsoft supports a direct migration path from
SQL Server 2000 to SQL Server 2008 (that is, without requiring an intermediate upgrade to SQL
Server 2005 along the way).

Important Notification Services, which was available for SQL Server 2000 as a separate add-on
and then later integrated into the core product in SQL Server 2005, has been discontinued in SQL
Server 2008. (This is the only SQL Server 2005 component dropped by Microsoft in SQL Server
2008.)

According to Microsoft, Notification Services will continue to be supported as part of the SQL
Server 2005 product support life cycle. Moving forward however, support for key notification
scenarios will be incorporated into SQL Server Reporting Services. Some notification require-
ments are already addressed by existing Reporting Services features, such as standard and
data driven subscriptions (discussed in Chapter 19). Features to support additional notification
 scenarios can be expected in future releases.

A Book for Developers

If you’ve gotten this far, we’ve already established that you’re a developer (or, at least, that’s
one of the hats you wear). In tailoring the content of this book, there are a few other assump-
tions that we make about you as well.

First, we expect that you’re already knowledgeable in relational database concepts—whether
that experience is with SQL Server or non-Microsoft platforms. As such, you already know
about tables, views, primary and foreign key relationships, stored procedures, functions, and
triggers. These essentials are assumed knowledge and are not covered in this book. Similarly,
we don’t discuss proper relational design with respect to the rules of data normalization,
strategic indexing practices, and other relational fundamentals. We also assume that you
have at least basic familiarity with SQL statement syntax—again, either T-SQL in SQL Server
or SQL dialects in other platforms.

With that baseline established, what do we assume that you want to learn about? Well, that
would be just about everything else that a developer could want to learn about Microsoft
SQL Server 2008! It starts with the most powerful extensions to T-SQL and the relational
database engine. We also assume that you’re thirsty for knowledge in wider spaces beyond

6 Part I Core Fundamentals

relational technologies, such as unstructured and semistructured data, client data access,
 security, and BI with data warehousing, analysis, and reporting.

As we began explaining, SQL Server 2005 was actually the groundbreaking release that rede-
fined the product by incorporating a litany of features and services into the platform, while
earlier versions had traditionally been focused on just the relational database engine. With
respect to that fact, this book includes updated coverage of SQL Server 2005 enhancements
as well as the very latest new features in SQL Server 2008. This makes it an ideal resource
whether you are upgrading to SQL Server 2008 from any earlier version of SQL Server or
from another relational database platform.

A Book by Developers

We, the authors and coauthors of this book, are first and foremost developers just like
you. All of us have built careers in the pursuit of writing code that powers our applications,
 especially database applications. We’ve committed ourselves to building quality solutions
that work with data and deliver that data in the most compelling ways to our businesses,
partners, and customers. And, we love SQL Server!

Like SQL Server 2008 itself, this book builds on a previous edition written for SQL Server
2005, and it is the cumulative result of many years of work put in by many authors. We
were fortunate enough to have a product manager from the Microsoft SQL Server product
team contribute to the chapter on security. Our chapters on data mining, data warehousing,
 reporting, replication, and transactions were written by experts on those subjects as well.

Our approach has been to add value to the product’s documentation by providing a devel-
oper-oriented investigation of the new and improved features and services in SQL Server
2008. As such, this book features an abundance of sample code, including a library of Visual
Studio and SQL Server Management Studio sample projects that you can download from the
book’s companion Web site. (See the Introduction for details on downloading and using the
sample code.)

A Book to Show You the Way

This book was carefully organized to present a potentially overwhelming array of new
developer-oriented SQL Server 2008 features in the most coherent manner possible. To
best achieve that, the chapters have been categorized into four primary sections, which are
 summarized at a high level in this overview.

 Chapter 1 Overview 7

Core Technologies

In Part I, we focus on core SQL Server technologies. These include enhancements to T-SQL,
extended programmability with SQL CLR code in .NET languages such as Microsoft Visual
Basic .NET and C#, server management, and security.

In Chapter 2, we explore the significant enhancements made to Transact-SQL (T-SQL)—which
still remains the best programming tool for exploiting many new and old SQL Server features
alike. We start with SQL Server 2005 enhancements, covering the ins and outs of writing re-
cursive queries with common table expressions (CTEs) and examining scalar functions that
provide the basis of ranking. We then go on to learn about exception handling and data
 definition language (DDL) triggers.

Then the chapter digs into the powerful extensions to T-SQL added in SQL Server 2008.
Table-valued parameters (TVPs) allow entire result sets to be passed between stored pro-
cedures and functions on the server, as well as between client and server using Microsoft
ADO.NET. New date and time features are then explored, including separate data types for
dates and times, time zone awareness, and improvements in date and time range, storage,
and precision. We then show many ways to use MERGE, a new data manipulation language
(DML) statement that encapsulates all the individual operations typically involved in any
merge scenario. From there, you’ll learn about INSERT OVER DML, which enhances our abil-
ity to capture change data from the OUTPUT clause of any DML statement. Last, we look at
GROUPING SETS, an extension to the traditional GROUP BY clause that increases our options
for slicing and dicing data in aggregation queries.

Chapter 3 provides thorough coverage of SQL CLR programming—which lets you run com-
piled .NET code on SQL Server—as well as guidance on when and where you should put it
to use. We go beyond mere stored procedures, triggers, and functions to explain and dem-
onstrate the creation of CLR types and aggregates—entities that cannot be created at all in
T-SQL. We also cover the different methods of creating SQL CLR objects in Microsoft Visual
Studio 2008 and how to manage their deployment, both from Visual Studio and from T-SQL
scripts in SQL Server Management Studio and elsewhere.

In Chapter 4, we show you how to conduct administrative tasks programmatically, using
Server Management Objects (SMO) introduced in SQL Server 2005. You’ll learn how to
use SMO to perform database backups and restores, execute Database Consistency Check
(DBCC) runs, and more, all from your own code. We’ll also learn about the Policy-Based
Management (PBM) feature, new in SQL Server 2008, which helps developers work with
 administrators to ensure that development and production machines comply with the same
configuration defined through custom policies.

Chapter 5 discusses SQL Server security at length and examines your choices for keeping data
safe and secure from prying eyes. We begin with the basic security concepts concerning log-
ins, users, roles, authentication, and authorization. You then go on to learn about key-based

8 Part I Core Fundamentals

encryption support added in SQL Server 2005, which protects your data both while in transit
and at rest. Important new security features added in SQL Server 2008 are then examined,
which include Transparent Data Encryption (TDE) and SQL Server Audit. TDE allows you to
encrypt entire databases in the background without special coding requirements. With SQL
Server Audit, virtually any action taken by any user can be recorded for auditing in either the
file system or the Windows event log. The chapter concludes by providing crucial guidance
for adhering to best practices and avoiding common security pitfalls.

Beyond Relational

With the release of SQL Server 2008, Microsoft continues to redefine how we think of and
use nonrelational data in the relational database world. One of the key release themes in SQL
Server 2008 is “beyond relational,” and by the time you complete Part II, you’ll understand
and appreciate the major strides Microsoft has made in this arena.

SQL Server 2005 embraced semistructured data by introducing the xml data type and a lot
of rich XML support to go along with it. That innovation was an immeasurable improvement
over the use of plain varchar or text columns to hold strings of XML (which was common
practice in earlier versions of SQL Server), and thus revolutionized the storage of XML in the
relational database. It empowered the development of database applications that work with
hierarchical XML data natively—within the environment of the relational database system—
something not previously possible using ordinary string columns. In Chapter 6, we cover the
xml data type, XQuery extensions to T-SQL, server-side XML Schema Definition (XSD) collec-
tions, XML column indexing, XML enhancements in SQL Server 2008, and many other XML
features available in SQL Server.

But native XML support was only the first step in a venture that Microsoft has pursued much
more aggressively in SQL Server 2008, with new features added for handling a wider variety
of nonrelational types, including unstructured data and spatial types. In the rest of Part II, we
explore these new features and show how you can use them to build modern applications
that demand unified services for storing and manipulating structured, semistructured, and
unstructured data in the database.

As of SQL Server 2008, XML is no longer our only option for working with hierarchical data in
the database. In Chapter 7, we explore the new hierarchyid data type that enables you to cast
a hierarchical structure over any relational table. This data type is implemented as a “system
CLR” type, which is nothing more really than a SQL CLR user-defined type (UDT), just like the
ones we learned how to create for ourselves in Chapter 3 (except that you don’t need to en-
able SQL CLR on the server in order to use hierarchyid). The value stored in a hierarchyid data
type encodes the complete path of any given node in the tree structure, from the root down
to the specific ordinal position among other sibling nodes sharing the same parent. Using
methods provided by this new type, you can now efficiently build, query, and manipulate
tree-structured data in your relational tables.

 Chapter 1 Overview 9

In Chapter 8, you’ll learn all about the new FILESTREAM feature in SQL Server 2008, which
greatly enhances the storage of unstructured BLOB data in the database—an increasingly
common scenario given the accelerating data explosion of our times. Previously, we’ve had to
choose between storing BLOB data in the database using varbinary(max) columns or outside
the database as unstructured binary streams (typically, as files in the file system). Neither ap-
proach is without significant drawbacks—which is where FILESTREAM comes in. This highly
efficient abstraction layer allows you to logically treat BLOB data as an integral part of the
database, while SQL Server 2008 stores the BLOB data physically separate from the data-
base in the NTFS file system behind the scenes. It will even seamlessly integrate database
transactions with NTFS file system transactions against your BLOB data. Following the walk-
throughs in this chapter, you’ll learn how to leverage this powerful new feature from your
.NET applications by building Windows, Web, and Windows Presentation Foundation (WPF)
 applications that use FILESTREAM for BLOB data storage.

Chapter 9 explores the new geometry and geography data types. These new system CLR
types in SQL Server 2008 provide geospatial capabilities at the database level that make
it easy for you to integrate location-awareness into your applications. Respectively, geom-
etry and geography support spatial computations against the two basic geospatial surface
models: planar (flat) and geodetic (round-earth). With geographical data (represented by
coordinates) stored in these data types, you can easily determine intersections and calculate
length, area, and distance measurements against that data. This chapter first quickly covers
the basics and then provides walkthroughs in which we build several geospatial database ap-
plications, including one that integrates with Microsoft Virtual Earth. While this is a vast topic
that could fill its own book, our chapter covers the fundamentals you’ll need for working with
geospatial data.

Reaching Out

After we’ve covered so much material about what you can do on the server and in your
 database, we move to Part III of the book, where we cover technologies and techniques more
relevant to building applications that work with your databases and extend their reach.

We start with Chapter 10, which first covers Microsoft ADO.NET and the data access features
of Microsoft Visual Studio, including typed DataSet objects. After this core coverage of ADO.
NET, we provide an overview of new data access technologies, including the concepts and
syntax of language-integrated query (LINQ). We’ll look at LINQ To SQL and ADO.NET Entity
Framework Object Relational Mapping (ORM) technologies, ADO.NET Data Services, and SQL
Server Data Services.

In Chapter 11, we cover data binding, in droves. We start with Windows Forms using Visual
Studio drag-and-drop binding. Next we look at ASP.NET data binding using designers, code,
and markup techniques. We then move on to using ASP.NET Asynchronous JavaScript and

10 Part I Core Fundamentals

XML (AJAX) for data presentation, and we introduce the new ASP.NET Dynamic Data feature
set. We finish with data binding in WPF and Silverlight 2.0, showing you how they compare
to each other and to the other data binding models too. Regardless of your application type,
we’ll help you manage your data with ease.

No matter how you write and package your code—whether it be in T-SQL or a .NET lan-
guage; exposed as a conventional stored procedure, function, or Web service; or deployed
to the client or the server—you must keep your data consistent to ensure its integrity. The
key to consistency is transactions, and as with other SQL Server programmability features,
transactions can be managed from a variety of places. If you’re writing T-SQL code or you’re
writing client code using the ADO.NET SqlClient provider or System.Transactions, you need to
be aware of the various transaction isolation levels supported by SQL Server, the appropriate
scope of your transactions, and best practices for writing transactional code. In Chapter 12,
we get you there.

We couldn’t round out the reach story without covering merge replication and synchro-
nization between distributed database environments. We start Chapter 13 with a walk-
through for creating a synchronized client/server database application using conventional
SQL Server Merge Replication. We then examine a new feature in SQL Server 2008 called
Change Tracking, designed to work in tandem with the new Sync Services for ADO.NET—
features that together enhance SQL Server Compact 3.5 applications running on an ever-
increasing number of Windows-based mobile devices. These devices are used not just by
consumers, but also by the mobile workforce—people who need ready access to their data
no matter where they are, in both wireless online and offline settings. Mobile applications
frequently alternate between connected and disconnected states. You’ll learn how Merge
Replication and Change Tracking with Sync Services for ADO.NET make it possible to
implement mobile client and Windows desktop applications that work in offline mode, and
seamlessly synchronize their data whenever a connection to the server is made available.

Business Intelligence Strategies

In Part IV of this book, we help you take your broad-based but tactical database man-
agement and programming knowledge and extend it to the realm of strategic analysis.
Specifically, we teach you how to build a true data warehouse and then capitalize on your
data warehouse through OLAP, data mining, and reporting.

In Chapter 14, we show you the ropes of data warehousing and explain how to use several
new important SQL Server 2008 features designed specifically to help you work better with
the data warehouses that will back your business intelligence (BI). The chapter begins by
providing some important background, design guidance, and practical advice for building
data warehouses. We then move on to provide hands-on coverage of new and improved
SQL Server features that facilitate the process. These include applied use of the MERGE
statement (which we also cover in Chapter 2), Change Data Capture (CDC), data and backup

 Chapter 1 Overview 11

 compression, and more—all of which are new in SQL Server 2008. CDC allows you to capture
change data on CDC-enabled tables without resorting to triggers or code changes. This in
turn facilitates the ETL processes that bring large data warehouses up-to-date incrementally.
And as data warehouses continue to grow larger than ever before, data and backup com-
pression are vital and welcome indeed. Other new and advanced data warehousing features
covered in this chapter include partitioned table parallelism, star-join query optimization,
and sparse columns.

In the remaining chapters, we show you how to use these transformed data repositories
as the basis for sophisticated SQL Server Analysis Services databases that support cutting-
edge BI features. Many books on SQL Server exclude coverage of Analysis Services on the
grounds that it is a “specialized” subject, but we respectfully disagree with that notion. The
very premise of SQL Server 2008 Analysis Services and its unified dimensional model para-
digm is the mainstream appeal and accessibility of BI. We show you how easy BI program-
ming can be and how powerfully it complements conventional relational databases and
conventional database programming.

In Chapter 15, we take you through the basics of designing OLAP cubes using the Analysis
Services project designers in Visual Studio. We show you how to build, deploy, and query
OLAP cubes that support actionable, drill-down analysis of your data. We kept this chapter
fairly short to provide a sort of “quick start” approach to BI for busy developers.

In Chapter 16, we take the basic cube we built in Chapter 15 and use Visual Studio designers
to implement an array of new OLAP features brought to you by Analysis Services 2008. By
the end of the chapter, your cube will have a number of the features underlying Microsoft’s
unified dimensional model. The chapter is long, but you can read it at your own pace, imme-
diately mastering new features as you read each section.

In Chapter 17, we provide comprehensive coverage of a host of OLAP application develop-
ment techniques. We cover the creation of OLAP user interfaces (UIs) in Microsoft Office
Excel 2007, using PivotTables, charts, and new in-cell CUBE formulas. We then cover how
to publish these assets to Web dashboards using Excel Services, a component of Microsoft
Office SharePoint Server.

We provide a basic tutorial on multidimensional expression language (MDX) queries and
show you how to run MDX queries from the SQL Server Management Studio MDX query
window. We also show you how to run MDX queries from your own applications through
application programming interface (API)–level programming with ADO MD.NET. We
cover management of Analysis Services databases, both interactively using SQL Server
Management Studio and programmatically using Analysis Management Objects (AMO). We
introduce you to the Web Services–based XML for Analysis (XMLA) standard on which both
ADO MD.NET and AMO are built, showing you how to create XMLA scripts in Management
Studio and manipulate XMLA programmatically in .NET code. We also introduce you to
Analysis Services’ own .NET CLR integration, and show you how to create managed stored
procedures in .NET using AMO and server-side ADO MD.NET.

12 Part I Core Fundamentals

Chapter 18 is all about data mining, and it provides a self-contained, end-to-end treatment
of the topic, including the newest data mining features added in SQL Server 2008. We start
with a conceptual introduction, and then we provide a tutorial on designing, training, brows-
ing, and deploying your mining structures and models in Visual Studio. We then switch to
SQL Server Management Studio, showing you how to manage your mining structures and
models interactively, using the graphical user interface (GUI) tools provided, and programmati-
cally, through SQL Data Mining Extensions (DMX) scripts. We then head back to .NET pro-
gramming, showing you how to embed the Analysis Services Data Mining Model Browsers
into your applications; how to use DMX, ADO.NET, and data binding together to build com-
pelling Windows Forms and ASP.NET data mining applications; and how to use server-side
ADO MD.NET to build DMX stored procedures. We finish by showing you how to leverage
the powerful new data mining add-ins for Excel 2007.

Chapter 19 covers Reporting Services, which has been enhanced significantly in SQL Server
2008. We start with a tutorial on the new Report Designer in Visual Studio 2008 and then
show you how to use Reporting Services to quickly and easily build sophisticated reports
against both relational and OLAP databases. You’ll see how to create full-scale reporting
information systems that expose all the information in the feature-packed databases you’ve
learned to build, maintain, extend, and develop against in the rest of the book. We’ll show
you how to deliver reports with the flexible layouts users want by using the new tablix data
region (a hybrid of table and matrix) in your reports. Next we give you an overview of the
report server configuration and administration tools, and we teach you how to deploy the
 reports for your users and how to embed reports into your Windows Forms and ASP.NET
 client applications. We also show you how to use the management and execution Web
Services exposed by Reporting Services to programmatically integrate reporting and report
administration into your custom applications and deployment scripts.

Summary

In this opening chapter, we compared the Microsoft SQL Server 2008 release with earlier
product versions, and we discussed the wide range of programmability features at our dis-
posal. In the process, we outlined the various chapters and how they are organized, accom-
panied with an overview of the extensive SQL Server 2008 product feature set for developers
that you’ll learn about throughout the rest of this book. Given the broad range of capabilities
in that feature set, by no means does this book need to be read in any particular order. Read
it from start to finish if you want, or jump right to the chapters that are most relevant for
your needs. Either way, you’ll find the practical guidance and information you need to get
your job done.

 13

Chapter 2

T-SQL Enhancements

—Stephen Forte and Leonard Lobel

By now, you must have heard that you can write Microsoft SQL Server stored procedures in
any language that uses the common language runtime (CLR), such as Microsoft Visual C# or
Microsoft Visual Basic .NET. This is great news if you’ve never mastered Transact-SQL (T-SQL),
right? We hate to be the bearer of bad news, but CLR stored procedures are not a cure-all
for your SQL Server programming challenges. As you’ll see in Chapter 3, writing a stored
procedure in a language that uses the CLR is useful for a number of database programming
dilemmas—for instance, CLR stored procedures are often a good replacement for extended
stored procedures in earlier versions of SQL Server. For almost everything else, you will want
to use T-SQL.

In fact, reports of T-SQL’s death have been greatly exaggerated. In most cases, using T-SQL
for your queries and stored procedures is more efficient than writing CLR stored procedures.

Given that T-SQL is alive and well, let’s look at how it has changed since SQL Server 2000.
T-SQL has been improved in many ways. In this chapter, we’ll begin by exploring the most
notable changes in T-SQL introduced in SQL Server 2005, including the following:

 Common table expressions (CTEs)

 The PIVOT and UNPIVOT operators

 The APPLY operator

 Enhancements to the TOP parameter

 Ranking functions

 Exception handling using TRY and CATCH blocks

 The varchar(max) data type

 The WAITFOR statement

 Data definition language (DDL) triggers

 The SNAPSHOT isolation level

We’ll continue with an in-depth look at these significant T-SQL features, which are new in
SQL Server 2008:

 Table-valued parameters (TVPs)

 New date and time data types

14 Part I Core Fundamentals

 The MERGE statement

 The INSERT OVER DML syntax

 The GROUPING SETS operator

 New T-SQL shorthand syntax

 T-SQL provides several important “beyond relational” data types as well, such as the xml,
hierarchyid, varbinary(max) FILESTREAM, geography, and geometry data types. Chapters 6
though 9 in Part II provide in-depth coverage of these special SQL Server 2008 data types.

 Common Table Expressions

 A common table expression (CTE) closely resembles a nonpersistent view. It is a temporary
named result set that you defi ne in your query and that will be used by the FROM clause of
the query. Each CTE is defi ned only once (but can be referred to as many times as necessary
while still in scope) and lives for as long as the query lives. You can use CTEs to perform re-
cursive operations. Here is the syntax to create a CTE:

 WITH <name of your CTE>(<column names>)

AS

(

<actual query>

)

SELECT * FROM <name of your CTE>

 Note Many of our examples in this chapter use the AdventureWorks2008 sample database. To
run these examples, you will need to download and install the sample database on your machine.
The book’s Introduction provides details and instructions for obtaining the AdventureWorks2008
sample database.

 An example of a simple CTE using AdventureWorks2008 is shown in Listing 2-1.

 LISTING 2-1 A simple CTE

 USE AdventureWorks2008

GO

WITH AllMRContacts

AS

(

 SELECT * FROM Person.Person WHERE Title = 'Mr.'

)

SELECT LastName + ', ' + FirstName AS Contact

 FROM AllMRContacts

 ORDER BY LastName

USE AdventureWorks2008

GO

WITH AllMRContacts

AS

(

 SELECT * FROM Person.Person WHERE Title = 'Mr.'

)

SELECT LastName + ', ' + FirstName AS Contact

 FROM AllMRContacts

 ORDER BY LastName

 Chapter 2 T-SQL Enhancements 15

 The results are shown here:

 Contact

Abbas, Syed

Achong, Gustavo

Adams, Jay

Adams, Ben

Adina, Ronald

Agcaoili, Samuel

 ...

 The following example gets a count of all the sales a salesperson made in the
AdventureWorks2008 orders system as a CTE and then executes a simple inner join with the
SalesPerson table to return more information about the salesperson, such as his or her quota.
This demonstrates how a CTE is joined to your calling query. You can do this without a CTE,
but think about all the times you have created a temp table or a throwaway view and joined
back to it—now you can use a CTE instead and keep the complexity of aggregating in the
CTE only, thereby simplifying your code. The code is shown in Listing 2-2.

 LISTING 2-2 CTE-to-query join

 WITH OrderCountCTE(SalesPersonID, OrderCount)

AS

(

 SELECT SalesPersonID, COUNT(*)

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

 GROUP BY SalesPersonID

)

SELECT

 sp.BusinessEntityID,

 FirstName + ' ' + LastName as SalesPerson,

 oc.OrderCount,

 sp.SalesYTD

 FROM Sales.vSalesPerson AS sp

 INNER JOIN OrderCountCTE AS oc ON oc.SalesPersonID = sp.BusinessEntityID

 ORDER BY oc.OrderCount DESC

 The results look like this:

 BusinessEntityID SalesPerson OrderCount SalesYTD

----------------- ------------------------ ----------- --------------

277 Jillian Carson 473 3857163.6332

275 Michael Blythe 450 4557045.0459

279 Tsvi Reiter 429 2811012.7151

276 Linda Mitchell 418 5200475.2313

289 Jae Pak 348 5015682.3752

282 José Saraiva 271 3189356.2465

281 Shu Ito 242 3018725.4858

278 Garrett Vargas 234 1764938.9859

WITH OrderCountCTE(SalesPersonID, OrderCount)

AS

(

 SELECT SalesPersonID, COUNT(*)

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

 GROUP BY SalesPersonID

)

SELECT

 sp.BusinessEntityID,

 FirstName + ' ' + LastName as SalesPerson,

 oc.OrderCount,

 sp.SalesYTD

 FROM Sales.vSalesPerson AS sp

 INNER JOIN OrderCountCTE AS oc ON oc.SalesPersonID = sp.BusinessEntityID

 ORDER BY oc.OrderCount DESC

16 Part I Core Fundamentals

283 David Campbell 189 3587378.4257

290 Ranjit Varkey Chudukatil 175 3827950.238

284 Tete Mensa-Annan 140 1931620.1835

288 Rachel Valdez 130 2241204.0424

286 Lynn Tsoflias 109 1758385.926

280 Pamela Ansman-Wolfe 95 0.00

274 Stephen Jiang 48 677558.4653

287 Amy Alberts 39 636440.251

285 Syed Abbas 16 219088.8836

 :

 CTEs can also eliminate self-joins in some of your queries. Take a look at the example
in Listing 2-3. We will create a table named Products and insert duplicates into the
ProductName column.

 LISTING 2-3 Inserting duplicates into the AdventureWorks2008 ProductName column

CREATE TABLE Products

 (ProductID int NOT NULL,

 ProductName varchar(25),

 Price money NULL,

 CONSTRAINT PK_Products PRIMARY KEY NONCLUSTERED (ProductID)

)

GO

INSERT INTO Products VALUES (1, 'Widgets', 25)

INSERT INTO Products VALUES (2, 'Gadgets', 50)

INSERT INTO Products VALUES (3, 'Thingies', 75)

INSERT INTO Products VALUES (4, 'Whoozits', 90)

INSERT INTO Products VALUES (5, 'Whatzits', 5)

INSERT INTO Products VALUES (6, 'Gizmos', 15)

INSERT INTO Products VALUES (7, 'Widgets', 24)

INSERT INTO Products VALUES (8, 'Gizmos', 36)

INSERT INTO Products VALUES (9, 'Gizmos', 36)

One common problem found in databases is having duplicate product names with different
product IDs. If you run a duplicate-fi nding query, that query will return all the records (the
duplicates and the good values). This increases the diffi culty of automatically deleting dupli-
cates. If you want to fi nd the ProductName duplicates without also including the fi rst instance
of the name in the table, you can use a self-join, as shown in Listing 2-4.

LISTING 2-4 Self-join without CTE

SELECT * FROM Products WHERE ProductID NOT IN

(SELECT MIN(ProductID) FROM Products AS P

 WHERE Products.ProductName = P.ProductName)

CREATE TABLE Products

 (ProductID int NOT NULL,

 ProductName varchar(25),

 Price money NULL,

 CONSTRAINT PK_Products PRIMARY KEY NONCLUSTERED (ProductID)

)

GO

INSERT INTO Products VALUES (1, 'Widgets', 25)

INSERT INTO Products VALUES (2, 'Gadgets', 50)

INSERT INTO Products VALUES (3, 'Thingies', 75)

INSERT INTO Products VALUES (4, 'Whoozits', 90)

INSERT INTO Products VALUES (5, 'Whatzits', 5)

INSERT INTO Products VALUES (6, 'Gizmos', 15)

INSERT INTO Products VALUES (7, 'Widgets', 24)

INSERT INTO Products VALUES (8, 'Gizmos', 36)

INSERT INTO Products VALUES (9, 'Gizmos', 36)

SELECT * FROM Products WHERE ProductID NOT IN

(SELECT MIN(ProductID) FROM Products AS P

 WHERE Products.ProductName = P.ProductName)

 Chapter 2 T-SQL Enhancements 17

 The self-join returns data like this:

 ProductID ProductName Price

--------- ----------- -----------

8 Gizmos 36.00

9 Gizmos 36.00

7 Widgets 24.00

 You can also rewrite your query using a CTE to eliminate the confusing-looking self-join and
get the same results. This technique does not offer a performance gain over self-joins; it is
just a convenience for code maintainability. The preceding self-join example is rewritten in
Listing 2-5 as a CTE and yields the same results; notice that we are joining our CTE with the
Products table.

 LISTING 2-5 Self-join as a CTE

 WITH MinProductRecords AS

(

 SELECT MIN(ProductID) AS ProductID, ProductName

 FROM Products

 GROUP BY ProductName

 HAVING COUNT(*) > 1

)

SELECT P.*

 FROM Products AS P

 INNER JOIN MinProductRecords AS MP

 ON P.ProductName = MP.ProductName AND P.ProductID > MP.ProductID

 After you investigate your duplicates using the preceding CTE, you might want to delete
the duplicate data. You might also want to update any foreign keys in related tables to use
the original ProductID value. If your duplicate data does not have any related child rows in
another table, or if you have updated them to the correct ProductID, you can delete the du-
plicate data by just rewriting the CTE, as shown in Listing 2-6, replacing the SELECT * with a
DELETE.

 LISTING 2-6 Deleting duplicates in a CTE

 WITH MinProductRecords AS

(

 SELECT MIN(ProductID) AS ProductID, ProductName

 FROM Products

 GROUP BY ProductName

 HAVING COUNT(*) > 1

)

DELETE Products

 FROM Products AS P

 INNER JOIN MinProductRecords AS MP

 ON P.ProductName = MP.ProductName AND P.ProductID > MP.ProductID

WITH MinProductRecords AS

(

 SELECT MIN(ProductID) AS ProductID, ProductName

 FROM Products

 GROUP BY ProductName

 HAVING COUNT(*) > 1

)

SELECT P.*

 FROM Products AS P

 INNER JOIN MinProductRecords AS MP

 ON P.ProductName = MP.ProductName AND P.ProductID > MP.ProductID

WITH MinProductRecords AS

(

 SELECT MIN(ProductID) AS ProductID, ProductName

 FROM Products

 GROUP BY ProductName

 HAVING COUNT(*) > 1

)

DELETE Products

 FROM Products AS P

 INNER JOIN MinProductRecords AS MP

 ON P.ProductName = MP.ProductName AND P.ProductID > MP.ProductID

18 Part I Core Fundamentals

 Creating Recursive Queries with CTEs

 The true power of CTEs emerges when you use them recursively to perform hierarchical
queries on tree-structured data. In fact, this was a major reason that Microsoft built CTEs,
in addition to ANSI SQL-92 compliance. A recursive CTE is constructed from a minimum of
two queries. The fi rst, the anchor member, is a nonrecursive query; the second, the recursive
member, is the recursive query. Within your CTE’s parentheses (after the AS clause), you de-
fi ne queries that are independent or refer back to the same CTE. The anchor and recursive
members are separated by a UNION ALL statement. Anchor members are invoked only once;
recursive members are invoked repeatedly until the query returns no rows. You can append
multiple anchor members to one another using a UNION or UNION ALL operator, depending
on whether you want to eliminate duplicates. (You must append recursive members using a
UNION ALL operator.) Here is the syntax:

WITH SimpleRecursive(field names)

AS

(

 <Select Statement for the Anchor Member>

 UNION ALL

 <Select Statement for the Recursive Member>

)

SELECT * FROM SimpleRecursive

The example in Listing 2-7 demonstrates this feature. We’ll create a table of employees and
a self-referencing fi eld back to EmployeeID named ReportsTo. We’ll then write a query that
returns all the employees who report to Stephen (EmployeeID=2) and all the employees who
report to Stephen’s subordinates.

LISTING 2-7 Example table for recursive CTE queries

CREATE TABLE EmployeeTree

 (EmployeeID int PRIMARY KEY,

 EmployeeName nvarchar(50),

 ReportsTo int)

GO

--insert some data, build a reporting tree

INSERT INTO EmployeeTree VALUES(1, 'Richard', NULL)

INSERT INTO EmployeeTree VALUES(2, 'Stephen', 1)

INSERT INTO EmployeeTree VALUES(3, 'Clemens', 2)

INSERT INTO EmployeeTree VALUES(4, 'Malek', 2)

INSERT INTO EmployeeTree VALUES(5, 'Goksin', 4)

INSERT INTO EmployeeTree VALUES(6, 'Kimberly', 1)

INSERT INTO EmployeeTree VALUES(7, 'Ramesh', 5)

Listing 2-8 shows the recursive query to determine which employees report to Stephen.

CREATE TABLE EmployeeTree

 (EmployeeID int PRIMARY KEY,

 EmployeeName nvarchar(50),

 ReportsTo int)

GO

--insert some data, build a reporting tree

INSERT INTO EmployeeTree VALUES(1, 'Richard', NULL)

INSERT INTO EmployeeTree VALUES(2, 'Stephen', 1)

INSERT INTO EmployeeTree VALUES(3, 'Clemens', 2)

INSERT INTO EmployeeTree VALUES(4, 'Malek', 2)

INSERT INTO EmployeeTree VALUES(5, 'Goksin', 4)

INSERT INTO EmployeeTree VALUES(6, 'Kimberly', 1)

INSERT INTO EmployeeTree VALUES(7, 'Ramesh', 5)

 Chapter 2 T-SQL Enhancements 19

 LISTING 2-8 Recursive CTE query

 WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive AS sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

 Here are the results:

 Employee Boss

----------- ------------

Stephen Richard

Clemens Stephen

Malek Stephen

Goksin Malek

Ramesh Goskin

 This recursion starts where EmployeeID = 2 (the anchor member or the fi rst SELECT). It picks
up that record and then, using the recursive member (the SELECT after the UNION ALL),
picks up all the records that report to Stephen and that record’s children. (Goksin reports to
Malek, and Malek reports to Stephen.) Each subsequent recursion tries to fi nd more children
that have as parents the employees found by the previous recursion. Eventually, the recursion
returns no results, and that is what causes the recursion to stop (the reason why Kimberly
is not returned). If the anchor member is changed to EmployeeID = 1, Kimberly will also be
returned in the results.

 By design, the recursive member keeps looking for children and can cycle on indefi nitely. If
you suspect many cycles will occur and want to limit the number of recursive invocations, you
can specify the MAXRECURSION option right after the outer query using the OPTION clause.

 OPTION(MAXRECURSION 25)

 This option causes SQL Server to raise an error when the CTE exceeds the specifi ed limit.
By default, the limit is 100 (if you’ve omitted the option). To specify no option, you must
set MAXRECURSION to 0. You can also run the same query to fi nd direct reports and sub-
ordinates only one level deep (including direct reports Clemens and Malek and Malek’s
 subordinate Goksin but skipping Ramesh, who is three levels deep), as shown in Listing 2-9.

WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive AS sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

20 Part I Core Fundamentals

 LISTING 2-9 Recursive query with MAXRECURSION

 WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive AS sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

OPTION(MAXRECURSION 2)

 Here are the results:

 Employee Boss

---------- ------------

Stephen Richard

Clemens Stephen

Malek Stephen

Goksin Malek

 You will also see that the query raises the following error message:

Msg 530, Level 16, State 1, Line 2

The statement terminated. The maximum recursion 2 has been exhausted

before statement completion.

One way to avoid the exception is to use a generated column to keep track of the level you
are on and include that in the WHERE clause instead of using MAXRECURSION. The revised
example in Listing 2-10 returns the same data as the preceding example but without the
error.

LISTING 2-10 Controlling recursion without MAXRECURSION

WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo, SubLevel)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo, 0

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo, SubLevel + 1

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

 WHERE SubLevel <= 2

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive AS sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

OPTION(MAXRECURSION 2)

WITH SimpleRecursive(EmployeeID, EmployeeName, ReportsTo, SubLevel)

AS

(

 SELECT EmployeeID, EmployeeName, ReportsTo, 0

 FROM EmployeeTree WHERE EmployeeID = 2

 UNION ALL

 SELECT p.EmployeeID, p.EmployeeName, p.ReportsTo, SubLevel + 1

 FROM EmployeeTree AS P

 INNER JOIN SimpleRecursive A ON A.EmployeeID = P.ReportsTo

 WHERE SubLevel <= 2

)

SELECT sr.EmployeeName AS Employee, et.EmployeeName AS Boss

 FROM SimpleRecursive sr

 INNER JOIN EmployeeTree AS et ON sr.ReportsTo = et.EmployeeID

 Chapter 2 T-SQL Enhancements 21

 Note SQL Server 2008 introduces a new hierarchyid data type that can implement a more ro-
bust tree structure over a recursive self-joining table than the example we’ve shown here. The
hierarchyid data type is covered in Chapter 7.

 The PIVOT and UNPIVOT Operators

 Let’s face it—users usually want to see data in tabular format, which is a bit of a challenge
given that data in SQL Server is most often stored in a highly relational form. PIVOT is a
T-SQL operator that you can specify in your FROM clause to rotate rows into columns and
create a traditional crosstab query.

 Using PIVOT is easy. In your SELECT statement, you specify the values you want to pivot on.
The following example in the AdventureWorks2008 database uses the order years (calculated
using the DatePart function) as the columns. The FROM clause looks normal except for the
PIVOT statement. This statement creates the value you want to show in the rows of the newly
created columns. This example uses the aggregate SUM of TotalDue (a calculated fi eld in the
FROM clause). Then we use the FOR operator to list the values we want to pivot on in the
OrderYear column. The example is shown in Listing 2-11.

 LISTING 2-11 Creating tabular results with the PIVOT operator

 SELECT

 CustomerID,

 [2001] AS Y2001, [2002] AS Y2002, [2003] AS Y2003, [2004] AS Y2004

 FROM

 (

 SELECT CustomerID, DATEPART(yyyy, OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS piv

PIVOT

(

 SUM(TotalDue) FOR OrderYear IN([2001], [2002], [2003], [2004])

) AS child

ORDER BY CustomerID

 Here are the results:

 CustomerID Y2001 Y2002 Y2003 Y2004

----------- ---------- ----------- ------------ ------------

1 40732.6067 72366.1284 NULL NULL

2 NULL1 5653.6715 12118.0275 4962.2705

3 39752.8421 168393.7021 219434.4265 51925.3549

4 NULL 263025.3113 373484.299 143525.6018

5 NULL 33370.6901 60206.9999 20641.1106

6 NULL NULL 668.4861 2979.3473

SELECT

 CustomerID,

 [2001] AS Y2001, [2002] AS Y2002, [2003] AS Y2003, [2004] AS Y2004

 FROM

 (

 SELECT CustomerID, DATEPART(yyyy, OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS piv

PIVOT

(

 SUM(TotalDue) FOR OrderYear IN([2001], [2002], [2003], [2004])

) AS child

ORDER BY CustomerID

22 Part I Core Fundamentals

7 NULL 6651.036 3718.7804 NULL

8 NULL NULL 19439.2466 10900.0347

9 NULL 320.6283 11401.5975 5282.8652

10 NULL 96701.7401 291472.2172 204525.9634

...

 That’s all there is to it. Of course, this example is simplifi ed to show you the concept; other,
more sophisticated, aggregates are possible, and you can even use CTEs in the FROM clause.
In any case, using PIVOT is simple.

Using UNPIVOT

You can use the UNPIVOT operator to normalize data that is already pivoted. For example,
suppose you obtain pivoted data that shows, for each vendor, the number of orders placed
by each employee. The code in Listing 2-12 creates such a table.

LISTING 2-12 Example table containing pivoted data

CREATE TABLE VendorEmployee

 (VendorID int,

 Emp1Orders int,

 Emp2Orders int,

 Emp3Orders int,

 Emp4Orders int,

 Emp5Orders int)

GO

INSERT INTO VendorEmployee VALUES(1, 4, 3, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(2, 4, 1, 5, 5, 5)

INSERT INTO VendorEmployee VALUES(3, 4, 3, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(4, 4, 2, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(5, 5, 1, 5, 5, 5)

Our table looks like this:

VendorID Emp1Orders Emp2Orders Emp3Orders Emp4Orders Emp5Orders

----------- ----------- ----------- ----------- ----------- -----------

1 4 3 5 4 4

2 4 1 5 5 5

3 4 3 5 4 4

4 4 2 5 4 4

5 5 1 5 5 5

You might want to unpivot the data to display columns for vendor ID, employee, and number
of orders. Listing 2-13 shows how to use the UNPIVOT operator to achieve this goal.

CREATE TABLE VendorEmployee

 (VendorID int,

 Emp1Orders int,

 Emp2Orders int,

 Emp3Orders int,

 Emp4Orders int,

 Emp5Orders int)

GO

INSERT INTO VendorEmployee VALUES(1, 4, 3, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(2, 4, 1, 5, 5, 5)

INSERT INTO VendorEmployee VALUES(3, 4, 3, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(4, 4, 2, 5, 4, 4)

INSERT INTO VendorEmployee VALUES(5, 5, 1, 5, 5, 5)

 Chapter 2 T-SQL Enhancements 23

 LISTING 2-13 Using the UNPIVOT operator

 SELECT VendorId, Employee, Orders AS NumberOfOrders

 FROM

 (SELECT VendorId, Emp1Orders, Emp2Orders, Emp3Orders, Emp4Orders, Emp5Orders

 FROM VendorEmployee

) AS p

UNPIVOT

(

 Orders FOR Employee IN

 (Emp1Orders, Emp2Orders, Emp3Orders, Emp4Orders, Emp5Orders)

) AS unpvt

 Here are the results:

 VendorID Employee NumberOfOrders

--------- ------------ ----------------------

1 Emp1Orders 4

1 Emp2Orders 3

1 Emp3Orders 5

1 Emp4Orders 4

1 Emp5Orders 4

2 Emp1Orders 4

...

 Dynamically Pivoting Columns

 The problem with PIVOT is the same problem with CASE and other methods: you have to
specify the columns. Consider the code in Listing 2-14.

 LISTING 2-14 Statically driven PIVOT

 SELECT *

 FROM (SELECT CustomerID, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader) AS header

PIVOT

(

 SUM(TotalDue) FOR orderyear IN([2002],[2003],[2004])

) AS piv

 The results show us a nice crosstab query with the years displayed as columns:

 CustomerID 2002 2003 2004

----------- ---------- ---------- -----------

14324 NULL 2264.2536 3394.9247

22814 NULL 5.514 NULL

11407 NULL 59.659 NULL

28387 NULL NULL 645.2869

19897 NULL NULL 659.6408

15675 2699.9018 2682.9953 2580.1529

24165 NULL 2699.9018 666.8565

...

SELECT VendorId, Employee, Orders AS NumberOfOrders

 FROM

 (SELECT VendorId, Emp1Orders, Emp2Orders, Emp3Orders, Emp4Orders, Emp5Orders

 FROM VendorEmployee

) AS p

UNPIVOT

(

 Orders FOR Employee IN

 (Emp1Orders, Emp2Orders, Emp3Orders, Emp4Orders, Emp5Orders)

) AS unpvt

SELECT *

 FROM (SELECT CustomerID, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader) AS header

PIVOT

(

 SUM(TotalDue) FOR orderyear IN([2002],[2003],[2004])

) AS piv

24 Part I Core Fundamentals

 Because this data goes only up to 2004, what happens when you add 2005 to the data?
Do you want to go into all your queries and add the current year to the IN clause? We can
accommodate new years in the data by dynamically building the IN clause and then pro-
grammatically writing the entire SQL statement. Once you have dynamically written the SQL
statement, you can execute it using sp_executesql, as shown in Listing 2-15. Since all we have
to do is generate dynamically the IN clause, creating a dynamic PIVOT in SQL Server is much
easier than creating a dynamic CASE statement. The results are exactly the same as those
shown following Listing 2-14, except that as new yearly data is added to the table, the query
dynamically adds the column for it. Remember that your reporting engine will most likely not
accommodate the new dynamic columns, but data-bound controls will.

LISTING 2-15 Dynamically driven PIVOT

 DECLARE @tblOrderDate AS TABLE(y int NOT NULL PRIMARY KEY)

INSERT INTO @tblOrderDate

 SELECT DISTINCT YEAR(OrderDate) FROM Sales.SalesOrderHeader

DECLARE @cols AS nvarchar(max)

DECLARE @years AS int

SET @years = (SELECT MIN(y) FROM @tblOrderDate)

SET @cols = N''

WHILE @years IS NOT NULL BEGIN

 SET @cols = @cols + N',[' + CAST(@years AS nvarchar(max)) + N']'

 SET @years = (SELECT MIN(y) FROM @tblOrderDate WHERE y > @years)

END

SET @cols = SUBSTRING(@cols, 2, LEN(@cols))

DECLARE @sql AS nvarchar(max)

SET @sql = '

 SELECT *

 FROM

 (SELECT CustomerId, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS a

 PIVOT

 (

 SUM(TotalDue) FOR OrderYear IN(' + @cols + N')

) AS b

'

PRINT @sql -- for debugging

EXEC sp_executesql @sql

 You can accomplish the same results using the newer CTE syntax instead of using the table
variable, as shown in Listing 2-16.

DECLARE @tblOrderDate AS TABLE(y int NOT NULL PRIMARY KEY)

INSERT INTO @tblOrderDate

 SELECT DISTINCT YEAR(OrderDate) FROM Sales.SalesOrderHeader

DECLARE @cols AS nvarchar(max)

DECLARE @years AS int

SET @years = (SELECT MIN(y) FROM @tblOrderDate)

SET @cols = N''

WHILE @years IS NOT NULL BEGIN

 SET @cols = @cols + N',[' + CAST(@years AS nvarchar(max)) + N']'

 SET @years = (SELECT MIN(y) FROM @tblOrderDate WHERE y > @years)

END

SET @cols = SUBSTRING(@cols, 2, LEN(@cols))

DECLARE @sql AS nvarchar(max)

SET @sql = '

 SELECT *

 FROM

 (SELECT CustomerId, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS a

 PIVOT

 (

 SUM(TotalDue) FOR OrderYear IN(' + @cols + N')

) AS b

'

PRINT @sql -- for debugging

EXEC sp_executesql @sql

 Chapter 2 T-SQL Enhancements 25

 LISTING 2-16 Dynamically driven PIVOT using a CTE

 DECLARE @cols AS nvarchar(MAX)

WITH YearsCTE AS

 (SELECT DISTINCT YEAR(OrderDate) as [Year] FROM Sales.SalesOrderHeader)

SELECT @cols = ISNULL(@cols + ',[', '[') + CAST([YEAR] AS nvarchar(10)) + ']'

 FROM YearsCTE

 ORDER BY [YEAR]

-- Construct the full T-SQL statement and execute it dynamically.

DECLARE @sql AS nvarchar(MAX)

SET @sql = '

 SELECT *

 FROM

 (SELECT CustomerId, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS a

 PIVOT

 (

 SUM(TotalDue) FOR OrderYear IN(' + @cols + N')

) AS b

'

PRINT @sql -- for debugging

EXEC sp_executesql @sql

 The APPLY Operator

 APPLY is an operator that you specify in the FROM clause of a query. It enables you to invoke
a table-valued function (TVF) for each row of an outer table. The fl exibility of APPLY is evi-
dent when you use the outer table’s columns as your function’s arguments. The APPLY opera-
tor has two forms: CROSS APPLY and OUTER APPLY. CROSS APPLY doesn’t return the outer
table’s row if the TVF returns an empty set for it; the OUTER APPLY returns a row with NULL
values instead of the function’s columns.

 To see how APPLY works, we’ll fi rst create a TVF that returns a table. Listing 2-17 shows a sim-
ple function that returns as a table the top n rows for a customer from the SalesOrderHeader
table.

 LISTING 2-17 Returning a table

 CREATE FUNCTION fnGetCustomerOrders(@CustomerID int, @TopRecords bigint)

RETURNS TABLE

 AS RETURN

 SELECT TOP (@TopRecords) *

 FROM Sales.SalesOrderHeader

 WHERE CustomerID = @CustomerID

 ORDER BY OrderDate DESC

DECLARE @cols AS nvarchar(MAX)

WITH YearsCTE AS

 (SELECT DISTINCT YEAR(OrderDate) as [Year] FROM Sales.SalesOrderHeader)

SELECT @cols = ISNULL(@cols + ',[', '[') + CAST([YEAR] AS nvarchar(10)) + ']'

 FROM YearsCTE

 ORDER BY [YEAR]

-- Construct the full T-SQL statement and execute it dynamically.

DECLARE @sql AS nvarchar(MAX)

SET @sql = '

 SELECT *

 FROM

 (SELECT CustomerId, YEAR(OrderDate) AS OrderYear, TotalDue

 FROM Sales.SalesOrderHeader

) AS a

 PIVOT

 (

 SUM(TotalDue) FOR OrderYear IN(' + @cols + N')

) AS b

'

PRINT @sql -- for debugging

EXEC sp_executesql @sql

CREATE FUNCTION fnGetCustomerOrders(@CustomerID int, @TopRecords bigint)

RETURNS TABLE

 AS RETURN

 SELECT TOP (@TopRecords) *

 FROM Sales.SalesOrderHeader

 WHERE CustomerID = @CustomerID

 ORDER BY OrderDate DESC

26 Part I Core Fundamentals

 After creating the fnGetCustomerOrders TVF, we call it from the query, as shown in
Listing 2-18.

 LISTING 2-18 Executing a query with APPLY

 SELECT * FROM Sales.Customer cust

 CROSS APPLY fnGetCustomerOrders(CustomerID, 100)

This query returns all the records from the Customers table and then, as additional fi elds, the
records from the Orders table (by way of the fnGetCustomerOrders function) that match for
the customer ID because that’s what’s being passed in dynamically as the fi rst argument to
fnGetCustomerOrders. Because we passed the value 100 for the second parameter, rows for
up to the fi rst 100 orders per customer are generated and returned by this query.

 TOP Enhancements

 In SQL Server 2000 and earlier versions, TOP allows you to limit the number of rows returned
as a number or a percentage in SELECT queries. As of SQL Server 2005, you can use TOP
in DELETE, UPDATE, and INSERT queries and can also specify the number (or percentage)
of rows by using variables or any valid numeric returning expression (such as a subquery).
The main reason for allowing TOP with DELETE, UPDATE, and INSERT was to replace the SET
ROWCOUNT option, which SQL Server traditionally didn’t optimize very well.

 You can specify the TOP limit as a literal number or an expression. If you’re using an expres-
sion, you must enclose it in parentheses. The expression should be of the bigint data type
when you are not using the PERCENT option and a fl oat value in the range 0 through 100
when you are using the PERCENT option. You might fi nd it useful to create an expression for
TOP and make it a parameter that you pass in to a stored procedure, as shown in Listing 2-19.

 LISTING 2-19 Using TOP enhancements in a stored procedure

 CREATE PROCEDURE uspReturnTopOrders(@NumberOfRows bigint)

AS

 SELECT TOP (@NumberOfRows) SalesOrderID

 FROM Sales.SalesOrderHeader

 ORDER BY SalesOrderID

 Executing the stored procedure is easy. Just pass in the number of records you want (in this
case, 100), as shown here:

 EXEC uspReturnTopOrders @NumberOfRows = 100

SELECT * FROM Sales.Customer cust

CROSS APPLY fnGetCustomerOrders(CustomerID, 100)

CREATE PROCEDURE uspReturnTopOrders(@NumberOfRows bigint)

AS

 SELECT TOP (@NumberOfRows) SalesOrderID

 FROM Sales.SalesOrderHeader

 ORDER BY SalesOrderID

 Chapter 2 T-SQL Enhancements 27

Here are the results:

SalesOrderID

43659

43660

43661

43662

43663

 :

(100 row(s) affected)

Using a subquery can be powerful when you’re doing things on the fly. The follow-
ing example shows how to get the TOP n orders based on how many rows are in the
SalesPerson table:

SELECT TOP (SELECT COUNT(*) FROM Sales.SalesPerson)

 SalesOrderID, RevisionNumber, OrderDate

 FROM Sales.SalesOrderHeader

 ORDER BY SalesOrderID

Because there are 17 rows in the SalesPerson table, the query returns only the top 17 rows
from the SalesOrderHeader table:

SalesOrderID Revision NumberOrderDate

------------- --------- --------------------------

43659 1 2001-07-01 00:00:00.000

43660 1 2001-07-01 00:00:00.000

43661 1 2001-07-01 00:00:00.000

43662 1 2001-07-01 00:00:00.000

43663 1 2001-07-01 00:00:00.000

43664 1 2001-07-01 00:00:00.000

43665 1 2001-07-01 00:00:00.000

43666 1 2001-07-01 00:00:00.000

43667 1 2001-07-01 00:00:00.000

43668 1 2001-07-01 00:00:00.000

43669 1 2001-07-01 00:00:00.000

43670 1 2001-07-01 00:00:00.000

43671 1 2001-07-01 00:00:00.000

43672 1 2001-07-01 00:00:00.000

43673 1 2001-07-01 00:00:00.000

43674 1 2001-07-01 00:00:00.000

43675 1 2001-07-01 00:00:00.000

(17 row(s) affected)

Using the PERCENT option is just as easy. Just add the PERCENT keyword, and make sure that
your variable is a float. In Listing 2-20, we’re asking for the top 10 percent, so we’ll get back
3,147 records because the AdventureWorks2008 SalesOrderHeader table has approximately
31,465 records in it.

28 Part I Core Fundamentals

 LISTING 2-20 Returning TOP percentages

 DECLARE @NumberOfRows AS float

SET @NumberOfRows = 10

SELECT TOP (@NumberOfRows) PERCENT *

 FROM Sales.SalesOrderHeader

 ORDER BY OrderDate

 Ranking Functions

 Databases hold data. Users sometimes want to perform simple calculations or algorithms on
that data to rank the results in a specifi c order—like gold, silver, and bronze medals in the
Olympics or the top 10 customers by region. Starting with SQL Server 2005, functionality is
provided for using ranking expressions with your result set. You can select a number of rank-
ing algorithms, which are then applied to a column that you specify and applied in the scope
of the executing query. If the data changes, your ranking algorithm will return different data
the next time it is run. This comes in handy in Microsoft .NET Framework applications for
paging and sorting in a grid, as well as in many other scenarios.

 The ROW_NUMBER Function

 The most basic ranking function is ROW_NUMBER. It returns a column as an expression that
contains the row’s number in the result set. This number is used only in the context of the
result set; if the result changes, the ROW_NUMBER changes. The ROW_NUMBER expression
takes an ORDER BY statement with the column you want to use for the row count and the
OVER operator, which links the ORDER BY to the specifi c ranking function you are using. The
ORDER BY in the OVER clause replaces an ORDER BY at the end of the SQL statement.

 The simple example in Listing 2-21 gives a row number to each row in the result set, ordering
by SalesOrderID.

 LISTING 2-21 Row number ranking

 SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber

 FROM Sales.SalesOrderHeader

DECLARE @NumberOfRows AS float

SET @NumberOfRows = 10

SELECT TOP (@NumberOfRows) PERCENT *

 FROM Sales.SalesOrderHeader

 ORDER BY OrderDate

SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber

 FROM Sales.SalesOrderHeader

 Chapter 2 T-SQL Enhancements 29

The results are shown here:

SalesOrderID CustomerID RowNumber

--------------- ------------- ---------------

43659 676 1

43660 117 2

43661 442 3

43662 227 4

43663 510 5

43664 397 6

43665 146 7

43666 511 8

43667 646 9

 :

ORDER BY Options

The ranking functions order your result set by the fields specified in the ORDER BY statement
contained in the OVER clause. Alternatively, you can include an additional ORDER BY state-
ment in your result set; this optional statement is distinct from the ORDER BY clause in the
OVER expression. SQL Server allows this, but if you choose this option, the ROW_NUMBER
function’s results are displayed in the order in which they are determined in the additional
ORDER BY statement, not by the ORDER BY statement contained within the OVER clause.
The results can, therefore, be confusing. To illustrate, if we provide an additional ORDER BY
CustomerID clause to the very same query we just ran, we get these “jumbled” results:

SalesOrderID CustomerID RowNumber

--------------- ------------- --------------

43860 1 202

44501 1 843

45283 1 1625

46042 1 2384

46976 2 3318

47997 2 4339

49054 2 5396

50216 2 6558

51728 2 8070

57044 2 13386

63198 2 19540

69488 2 25830

65310 3 21652

71889 3 28231

53616 3 9958

 :

As you can see, if you expect the results to be sorted by the OVER clause’s ORDER BY
statement, you’d expect results ranked by SalesOrderID, when in fact they’re ordered by
CustomerID.

30 Part I Core Fundamentals

 If you choose the ROW_NUMBER function to run against a nonunique column that contains
multiple copies of the same value (also known as “ties,” such as the same amount of items
sold and the same time in a race), ROW_NUMBER breaks the tie and still produces a running
count so that no rows have the same number. In Listing 2-22, for example, CustomerID can
repeat, which will generate several ties; SQL Server simply increases the running count for
each row, regardless of how many ties exist.

 LISTING 2-22 Row number ranking with ties

 SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNumber

 FROM Sales.SalesOrderHeader

 The results are shown here:

 SalesOrderID CustomerID RowNumber

--------------- -------------- -----------------

43860 1 1

44501 1 2

45283 1 3

46042 1 4

46976 2 5

47997 2 6

49054 2 7

50216 2 8

51728 2 9

57044 2 10

63198 2 11

69488 2 12

44124 3 13

 :

 Grouping and Filtering with ROW_NUMBER

 When you want to include a GROUP BY function in your query, ranking functions do not
work. The easy way around this limitation is to create your GROUP BY in a CTE and then per-
form your ranking on the results, as shown in Listing 2-23.

 LISTING 2-23 Grouping by row number

 WITH CustomerSum

AS

(

 SELECT CustomerID, SUM(TotalDue) AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNumber

 FROM Sales.SalesOrderHeader

WITH CustomerSum

AS

(

 SELECT CustomerID, SUM(TotalDue) AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

 Chapter 2 T-SQL Enhancements 31

--this appends a row number to the end of the result set

SELECT

 *,

 ROW_NUMBER() OVER (ORDER BY TotalAmt DESC) AS RowNumber

 FROM CustomerSum

 Here are the results:

 CustomerID TotalAmt RowNumber

------------- --------------- ---------------

678 1179857.4657 1

697 1179475.8399 2

170 1134747.4413 3

328 1084439.0265 4

514 1074154.3035 5

155 1045197.0498 6

72 1005539.7181 7

 :

 To fi lter by a ROW_NUMBER, you have to put the ROW_NUMBER function in a CTE, as shown
in Listing 2-24.

 LISTING 2-24 Filtering by row number

 WITH NumberedRows AS

(

 SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber

 FROM Sales.SalesOrderHeader

)

SELECT * FROM NumberedRows

 WHERE RowNumber BETWEEN 100 AND 200

 Here are the results:

 SalesOrderID CustomerID RowNumber

--------------- ------------- --------------

43759 13257 100

43760 16352 101

43761 16493 102

 :

43857 533 199

43858 36 200

WITH NumberedRows AS

(

 SELECT

 SalesOrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY SalesOrderID) AS RowNumber

 FROM Sales.SalesOrderHeader

)

SELECT * FROM NumberedRows

 WHERE RowNumber BETWEEN 100 AND 200

--this appends a row number to the end of the result set

SELECT

 *,

 ROW_NUMBER() OVER (ORDER BY TotalAmt DESC) AS RowNumber

 FROM CustomerSum

32 Part I Core Fundamentals

 The RANK Function

 The ranking function you will probably use the most is RANK, which ranks the data in the
ORDER BY clause in the order you specify. RANK is syntactically exactly like ROW_NUMBER
but with true ranking results. It works just like in the Olympics, when two people tie for the
gold medal—the next rank is bronze. For example, with the RANK function, if four rows are
tied with the value 1, the next row value for the rank column will be 5. Consider the code in
Listing 2-25.

 LISTING 2-25 The RANK function

 SELECT

 SalesOrderID,

 CustomerID,

 RANK() OVER (ORDER BY CustomerID) AS Rank

 FROM Sales.SalesOrderHeader

Here are the results:

 SalesOrderID CustomerID Rank

--------------- ------------- ----------------

43860 1 1

44501 1 1

45283 1 1

46042 1 1

46976 2 5

47997 2 5

49054 2 5

50216 2 5

51728 2 5

57044 2 5

63198 2 5

69488 2 5

44124 3 13

 :

Just as with the other ranking functions, RANK needs the aid of a CTE to work with aggre-
gates. Consider this query that ranks the customers from highest to lowest by total sales. We
have to use a CTE to perform the aggregate fi rst and then rank over the newly created ag-
gregate expression, as shown in Listing 2-26.

SELECT

 SalesOrderID,

 CustomerID,

RANK() OVER (ORDER BY CustomerID) AS Rank

 FROM Sales.SalesOrderHeader

 Chapter 2 T-SQL Enhancements 33

 LISTING 2-26 Ranked aggregates

 WITH CustomerSum AS

(

 SELECT CustomerID, SUM(TotalDue) AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT

 *,

 RANK() OVER (ORDER BY TotalAmt DESC) AS Rank

 FROM CustomerSum

 The results are shown here. Notice that customer 678 is in fi rst place:

 CustomerID TotalAmt Rank

----------- --------------------- --------------------

678 1179857.4657 1

697 1179475.8399 2

170 1134747.4413 3

328 1084439.0265 4

514 1074154.3035 5

 :

 As stated earlier, it is important to remember that the ranking functions provided by SQL
Server are valid only for the scope of the running query. If the underlying data changes and
then you run the same query again, you will get different results. In Listing 2-27, for example,
let’s modify a record from customer 697. By changing one of the detail rows for an order
placed by customer 697 and increasing the order quantity, we place customer 697 as our top
customer.

 LISTING 2-27 Changing RANK results with underlying data changes

 UPDATE Sales.SalesOrderDetail

 SET OrderQty = 50 -- the original value was 2

 WHERE SalesOrderDetailID = 535

 Now rerun the same query. Notice that customer 697 has now surpassed customer 678 as the
top customer:

 CustomerID TotalAmt Rank

----------- --------------------- --------------------

697 1272595.5474 1

678 1179857.4657 2

170 1134747.4413 3

328 1084439.0265 4

514 1074154.3035 5

 :

WITH CustomerSum AS

(

 SELECT CustomerID, SUM(TotalDue) AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT

 *,

 RANK() OVER (ORDER BY TotalAmt DESC) AS Rank

 FROM CustomerSum

UPDATE Sales.SalesOrderDetail

 SET OrderQty = 50 -- the original value was 2

 WHERE SalesOrderDetailID = 535

34 Part I Core Fundamentals

 The DENSE_RANK and NTILE Functions

 The last two ranking functions we will cover are DENSE_RANK and NTILE. DENSE_RANK
works exactly like RANK except that it increments only on distinct rank changes—in other
words, unlike in the Olympics, it awards a silver medal when there are two gold medals.
Listing 2-28 shows an example.

 LISTING 2-28 Ranking with DENSE_RANK

 SELECT

 SalesOrderID,

 CustomerID,

 DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank

 FROM Sales.SalesOrderHeader

 WHERE CustomerID > 100

 The results are shown here:

 SalesOrderID CustomerID DenseRank

------------ ----------- --------------------

46950 101 1

47979 101 1

49048 101 1

50200 101 1

51700 101 1

57022 101 1

63138 101 1

69400 101 1

43855 102 2

44498 102 2

45280 102 2

46038 102 2

46951 102 2

47978 102 2

49103 102 2

50199 102 2

51733 103 3

57058 103 3

 :

 The following example shows the difference between RANK and DENSE_RANK. We will
round the customers’ sales to the nearest hundred (because managers always like to look at
whole numbers in their reports!) and look at the difference when we run into a tie. The code
is shown in Listing 2-29.

SELECT

 SalesOrderID,

 CustomerID,

DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank

 FROM Sales.SalesOrderHeader

 WHERE CustomerID > 100

 Chapter 2 T-SQL Enhancements 35

 LISTING 2-29 RANK versus DENSE_RANK

 WITH CustomerSum AS

(

 SELECT

 CustomerID,

 ROUND(CONVERT(int, SUM(TotalDue)) / 100, 8) * 100 AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT *,

 RANK() OVER (ORDER BY TotalAmt DESC) AS Rank,

 DENSE_RANK() OVER (ORDER BY TotalAmt DESC) AS DenseRank

 FROM CustomerSum

 And here are the results:

 CustomerID TotalAmt Rank DenseRank

----------- ----------- ------- --------------------

697 1272500 1 1

678 1179800 2 2

170 1134700 3 3

328 1084400 4 4

 :

87 213300 170 170

667 210600 171 171

196 207700 172 172

451 206100 173 173

672 206100 173 173

27 205200 175 174

687 205200 175 174

163 204000 177 175

102 203900 178 176

 :

 Notice that customers 451 and 672 are tied, with the same total sales amount. They are
ranked 173 by both the RANK and the DENSE_RANK functions. What happens next is where
the difference between the two functions comes into play. Customers 27 and 687 are tied
for the next position, and they are both assigned 175 by RANK and 174 by DENSE_RANK.
Customer 163 is the next nontie, and it is assigned 177 by RANK and 175 by DENSE_RANK.

 NTILE divides the returned rows into approximately evenly sized groups, the number of
which you specify as a parameter to the function. It assigns each member of a group the
same number in the result set. A perfect example of this is the percentile ranking in a college
examination or a road race. Listing 2-30 shows an example of using NTILE.

WITH CustomerSum AS

(

 SELECT

 CustomerID,

 ROUND(CONVERT(int, SUM(TotalDue)) / 100, 8) * 100 AS TotalAmt

 FROM Sales.SalesOrderHeader

 GROUP BY CustomerID

)

SELECT *,

 RANK() OVER (ORDER BY TotalAmt DESC) AS Rank,

 DENSE_RANK() OVER (ORDER BY TotalAmt DESC) AS DenseRank

 FROM CustomerSum

36 Part I Core Fundamentals

 LISTING 2-30 Ranking with NTILE

 SELECT

 SalesOrderID,

 CustomerID,

 NTILE(10000) OVER (ORDER BY CustomerID) AS NTile

 FROM Sales.SalesOrderHeader

The results are shown here:

SalesOrderID CustomerID NTile

--------------- ------------- ---------------

43860 1 1

44501 1 1

45283 1 1

46042 1 1

46976 2 2

47997 2 2

49054 2 2

50216 2 2

51728 2 3

57044 2 3

63198 2 3

69488 2 3

44124 3 4

 :

45024 29475 9998

45199 29476 9998

60449 29477 9998

60955 29478 9999

49617 29479 9999

62341 29480 9999

45427 29481 10000

49746 29482 10000

49665 29483 10000

(31465 row(s) affected)

Using All the Ranking Functions Together

So far, we have looked at the ranking functions in isolation. The ranking functions are just
regular SQL Server expressions, so you can have as many of them as you want in a single
SELECT statement. We’ll look at one last example in Listing 2-31 that brings these all together
into one SQL statement and shows the differences between the four ranking functions.

SELECT

 SalesOrderID,

 CustomerID,

NTILE(10000) OVER (ORDER BY CustomerID) AS NTile

 FROM Sales.SalesOrderHeader

 Chapter 2 T-SQL Enhancements 37

 LISTING 2-31 Contrasting SQL Server ranking functions

 SELECT

 SalesOrderID AS OrderID,

 CustomerID,

 ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNumber,

 RANK() OVER (ORDER BY CustomerID) AS Rank,

 DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank,

 NTILE(10000) OVER (ORDER BY CustomerID) AS NTile

 FROM Sales.SalesOrderHeader

 The results are shown here:

 OrderID CustomerID RowNumber Rank DenseRank NTile

-------- ------------- --------- ------- --------- --------

43860 1 1 1 1 1

44501 1 2 1 1 1

45283 1 3 1 1 1

46042 1 4 1 1 1

46976 2 5 5 2 2

47997 2 6 5 2 2

49054 2 7 5 2 2

50216 2 8 5 2 2

51728 2 9 5 2 3

57044 2 10 5 2 3

63198 2 11 5 2 3

69488 2 12 5 2 3

44124 3 13 13 3 4

44791 3 14 13 3 4

 :

 Ranking over Groups Using PARTITION BY

 The ranking functions can also be combined with windowing functions. A windowing function
divides a result set into equal partitions based on the values of your PARTITION BY statement
in conjunction with the OVER clause in your ranking function. This is like applying a GROUP
BY to your ranking function—you get a separate ranking for each partition. The example in
Listing 2-32 uses ROW_NUMBER with PARTITION BY to count the number of orders by order
date by salesperson. We do this by using PARTITION BY SalesPersonID ORDER BY OrderDate.
You can do this with any of the four ranking functions.

 LISTING 2-32 Ranking over groups with PARTITION BY

 SELECT

 SalesOrderID,

 SalesPersonID,

 OrderDate,

 ROW_NUMBER() OVER (PARTITION BY SalesPersonID ORDER BY OrderDate) AS OrderRank

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

SELECT

 SalesOrderID AS OrderID,

 CustomerID,

ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNumber,

RANK() OVER (ORDER BY CustomerID) AS Rank,

DENSE_RANK() OVER (ORDER BY CustomerID) AS DenseRank,

 NTILE(10000) OVER (ORDER BY CustomerID) AS NTile

 FROM Sales.SalesOrderHeader

SELECT

 SalesOrderID,

 SalesPersonID,

 OrderDate,

 ROW_NUMBER() OVER (PARTITION BY SalesPersonID ORDER BY OrderDate) AS OrderRank

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

38 Part I Core Fundamentals

 The results are shown here. You might fi nd that the order of your rows varies slightly from
the results shown.

 SalesOrderID SalesPersonID OrderDate OrderRank

--------------- ---------------- ------------ --------------

 :

43659 279 2001-07-01 00:00:00.000 1

43660 279 2001-07-01 00:00:00.000 2

43681 279 2001-07-01 00:00:00.000 3

43684 279 2001-07-01 00:00:00.000 4

43685 279 2001-07-01 00:00:00.000 5

43694 279 2001-07-01 00:00:00.000 6

43695 279 2001-07-01 00:00:00.000 7

43696 279 2001-07-01 00:00:00.000 8

43845 279 2001-08-01 00:00:00.000 9

43861 279 2001-08-01 00:00:00.000 10

 :

48079 287 2002-11-01 00:00:00.000 1

48064 287 2002-11-01 00:00:00.000 2

48057 287 2002-11-01 00:00:00.000 3

47998 287 2002-11-01 00:00:00.000 4

48001 287 2002-11-01 00:00:00.000 5

48014 287 2002-11-01 00:00:00.000 6

47982 287 2002-11-01 00:00:00.000 7

47992 287 2002-11-01 00:00:00.000 8

48390 287 2002-12-01 00:00:00.000 9

48308 287 2002-12-01 00:00:00.000 10

 :

Let’s partition our ranking function by country, as shown in Listing 2-33. We’ll create a CTE to
aggregate the sales by customer and by country. Then we’ll apply the ranking function over
the TotalAmt fi eld and the CustomerID fi eld, partitioned by the CountryName fi eld.

LISTING 2-33 Aggregates with PARTITION BY

 WITH CTETerritory AS

(

 SELECT

 cr.Name AS CountryName,

 CustomerID,

 SUM(TotalDue) AS TotalAmt

 FROM

 Sales.SalesOrderHeader AS soh

 INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID

 INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.

CountryRegionCode

 GROUP BY

 cr.Name, CustomerID

)

SELECT

 *,

 RANK() OVER(PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank

 FROM CTETerritory

WITH CTETerritory AS

(

 SELECT

 cr.Name AS CountryName,

 CustomerID,

 SUM(TotalDue) AS TotalAmt

 FROM

 Sales.SalesOrderHeader AS soh

 INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID

 INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.

CountryRegionCode

 GROUP BY

 cr.Name, CustomerID

)

SELECT

 *,

RANK() OVER(PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank

 FROM CTETerritory

 Chapter 2 T-SQL Enhancements 39

 The results look like this:

 CountryName CustomerID TotalAmt Rank

-------------- ------------- ----------- --------------

Australia 29083 4.409 1

Australia 29061 4.409 2

Australia 29290 5.514 3

Australia 29287 5.514 4

Australia 28924 5.514 5

 :

Canada 29267 5.514 1

Canada 29230 5.514 2

Canada 28248 5.514 3

Canada 27628 5.514 4

Canada 27414 5.514 5

 :

France 24538 4.409 1

France 24535 4.409 2

France 23623 4.409 3

France 23611 4.409 4

France 20961 4.409 5

 :

 PARTITION BY supports other SQL Server aggregate functions, including MIN and MAX as
well as your own scalar functions. You can apply your aggregate function in the same way
that you apply the ranking functions, with a PARTITION BY statement. Let’s apply this tech-
nique to the current sample by adding a column to our result set using the AVG function, as
shown in Listing 2-34. We will get the same results but with an additional column showing
the average by country.

 LISTING 2-34 Using AVG with PARTITION BY

 WITH CTETerritory AS

(

 SELECT

 cr.Name AS CountryName,

 CustomerID,

 SUM(TotalDue) AS TotalAmt

 FROM

 Sales.SalesOrderHeader AS soh

 INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID

 INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.

CountryRegionCode

 GROUP BY

 cr.Name, CustomerID

)

SELECT

 *,

 RANK() OVER (PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank,

 AVG(TotalAmt) OVER(PARTITION BY CountryName) AS Average

 FROM CTETerritory

WITH CTETerritory AS

(

 SELECT

 cr.Name AS CountryName,

 CustomerID,

 SUM(TotalDue) AS TotalAmt

 FROM

 Sales.SalesOrderHeader AS soh

 INNER JOIN Sales.SalesTerritory AS ter ON soh.TerritoryID = ter.TerritoryID

 INNER JOIN Person.CountryRegion AS cr ON cr.CountryRegionCode = ter.

CountryRegionCode

 GROUP BY

 cr.Name, CustomerID

)

SELECT

 *,

 RANK() OVER (PARTITION BY CountryName ORDER BY TotalAmt, CustomerID DESC) AS Rank,

AVG(TotalAmt) OVER(PARTITION BY CountryName) AS Average

 FROM CTETerritory

40 Part I Core Fundamentals

 Here are the results:

 CountryName CustomerID TotalAmt Rank Average

-------------- ------------- ----------- ------- ------------------

Australia 29083 4.409 1 3364.8318

Australia 29061 4.409 2 3364.8318

Australia 29290 5.514 3 3364.8318

 :

Canada 29267 5.514 1 12824.756

Canada 29230 5.514 2 12824.756

Canada 28248 5.514 3 12824.756

 :

 Exception Handling in Transactions

 SQL Server offers major improvements in error handling inside T-SQL transactions. As of SQL
Server 2005, you can catch T-SQL and transaction abort errors using the TRY/CATCH model
without any loss of the transaction context. The only types of errors that the TRY/CATCH con-
struct can’t handle are those that cause the termination of your session (usually errors with
severity 21 and above, such as hardware errors). The syntax is shown here:

 BEGIN TRY

 --sql statements

END TRY

BEGIN CATCH

 --sql statements for catching your errors

END CATCH

 If an error within an explicit transaction occurs inside a TRY block, control is passed to the
CATCH block that immediately follows. If no error occurs, the CATCH block is completely
skipped.

 You can investigate the type of error that was raised and react accordingly. To do so, you can
use the ERROR_xxx functions to return error information in the CATCH block, as shown in
Listing 2-35.

 LISTING 2-35 T-SQL exception handling example

 BEGIN TRY

 SELECT 5/0

END TRY

BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrNumber,

 ERROR_SEVERITY() AS ErrSeverity,

 ERROR_STATE() AS ErrState,

 ERROR_PROCEDURE() AS ErrProc,

 ERROR_LINE() AS ErrLine,

 ERROR_MESSAGE() AS ErrMessage

END CATCH

BEGIN TRY

 SELECT 5/0

END TRY

BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrNumber,

 ERROR_SEVERITY() AS ErrSeverity,

 ERROR_STATE() AS ErrState,

 ERROR_PROCEDURE() AS ErrProc,

 ERROR_LINE() AS ErrLine,

 ERROR_MESSAGE() AS ErrMessage

END CATCH

 Chapter 2 T-SQL Enhancements 41

You can examine the value reported by any of the various ERROR_xxx functions to decide
what to do with the control flow of your procedure and whether to abort any transactions. In
our example in Listing 2-35, which attempts to divide by zero, here are the values returned
by the error functions. (The ERROR_PROCEDURE function returns NULL in this example be-
cause the exception did not occur within a stored procedure.)

ErrNumber ErrSeverity ErrState ErrProc ErrLine ErrMessage

---------- ------------ ---------- -------- -------- ----------------------------------

8134 16 1 NULL 2 Divide by zero error encountered.

When you experience a transaction abort error inside a transaction located in the TRY block,
control is passed to the CATCH block. The transaction then enters a failed state in which locks
are not released and persisted work is not reversed until you explicitly issue a ROLLBACK
statement. You’re not allowed to initiate any activity that requires opening an implicit or ex-
plicit transaction until you issue a ROLLBACK.

Certain types of errors are not detected by the TRY/CATCH block, and you end up with an
unhandled exception even though the error occurred inside your TRY block. If this happens,
the CATCH block is not executed. This is because CATCH blocks are invoked by errors that
take place in actual executing code, not by compile or syntax errors. Two examples of such
errors are syntax errors and statement-level recompile errors (for example, selecting from a
nonexistent table). These errors are not caught at the same execution level as the TRY block,
but at the lower level of execution—when you execute dynamic SQL or when you call a
stored procedure from the TRY block. For example, if you have a syntax error inside a TRY
block, you get a compile error and your CATCH block will not run, as shown here:

-- Syntax error doesn't get caught

BEGIN TRY

 SELECT * * FROM Customer

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

The result is an error from SQL Server, not from your CATCH block, as follows:

Msg 102, Level 15, State 1, Line 2

Incorrect syntax near '*'.

Statement-level recompilation errors also don’t get caught by CATCH blocks. For example,
using a nonexistent object in a SELECT statement in the TRY block forces an error from SQL
Server, but your CATCH block will not execute, as shown here:

-- Statement level recompilation doesn't get caught

BEGIN TRY

 SELECT * FROM NonExistentTable

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

42 Part I Core Fundamentals

 The result is an error from SQL Server, as follows:

 Msg 208, Level 16, State 1, Line 3

Invalid object name 'NonExistentTable'.

 When you use dynamic SQL or a stored procedure, these types of compile errors do get
caught because they are part of the current level of execution. Each of the SQL blocks shown
in Listing 2-36 will execute the CATCH block.

 LISTING 2-36 Catching syntax and recompilation errors in dynamic SQL and stored procedure calls with
 exception handlers

 -- Dynamic SQL Example

BEGIN TRY

 EXEC sp_executesql 'SELECT * * FROM Customer'

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

GO

-- Stored Procedure Example

CREATE PROCEDURE MyErrorProc

AS

 SELECT * FROM NonExistentTable

GO

BEGIN TRY

 EXEC MyErrorProc

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

 The varchar(max) Data Type

 The varchar(max), nvarchar(max), and varbinary(max) data types are extensions of the var-
char, nvarchar, and varbinary data types that can store up to 2 gigabytes (GB) of data. They
are alternatives to text, ntext, and image and use the max size specifi er. Using one of these
data types is easy—you just specify it in your CREATE TABLE statement (or in any variable
declaration) with a (max) identifi er, as in this example:

 CREATE TABLE TableWithMaxColumn

 (Customer_Id int, CustomerLifeStory varchar(max))

 All the standard T-SQL string functions operate on varchar(max), including concatenation
functions SUBSTRING, LEN, and CONVERT. For example, you can use the T-SQL SUBSTRING

-- Dynamic SQL Example

BEGIN TRY

 EXEC sp_executesql 'SELECT * * FROM Customer'

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

GO

-- Stored Procedure Example

CREATE PROCEDURE MyErrorProc

AS

 SELECT * FROM NonExistentTable

GO

BEGIN TRY

 EXEC MyErrorProc

END TRY

BEGIN CATCH

 PRINT 'Error'

END CATCH

 Chapter 2 T-SQL Enhancements 43

function to read parts of the string (chunks), and the UPDATE statement has also been en-
hanced to support the updating of chunks.

This is a vast improvement over the limitations in SQL Server 2000 and earlier, where text and
image fields were used to store this type of data. These data types are not allowed as stored
procedure parameters and cannot be updated directly, and many of the string manipulation
functions don’t work on the text data type.

The WAITFOR Statement

In SQL Server 2000, WAITFOR waited for a specified duration or a supplied datetime value.
Starting with SQL Server 2005, as with the TOP enhancements, you can use WAITFOR with
a SQL expression. You can essentially use the WAITFOR function to wait for a T-SQL state-
ment to affect at least one row. (You can also set a time-out on that SQL expression.) You can
specify WAITFOR to wait not only in SELECT statements but also in INSERT, UPDATE, DELETE,
and RECEIVE statements. In essence, SELECT statements won’t complete until at least one row
is produced, and data manipulation language (DML) statements won’t complete until at least
one row is affected.

Here is the syntax:

WAITFOR(<statement>) [,TIMEOUT <timeout_value>]

This feature provides an alternative to polling. For example, you can use WAITFOR to select
all the records in a log or a queue table, as shown here:

WAITFOR (SELECT * FROM MyQueue)

DDL Triggers

SQL Server supports data definitin language (DDL) triggers, allowing you to trap DDL opera-
tions and react to them. You can thus roll back the DDL activity. DDL triggers work synchro-
nously, immediately after the triggering event, similar to the way that DML triggers work.
DDL triggers can be database-wide and can react to certain types of DDLs or all DDLs.

The cool thing about DDL triggers is that you can get context information from querying the
EVENTDATA function. Event data is an XML payload of data about what was happening when
your DDL trigger ran (including information about the time, connection, and user), the type
of event that was fired, and other useful data. To get at EVENTDATA data, you have to use the
EVENTDATA function in your trigger code. If you issue a ROLLBACK statement in the trigger,
the EVENTDATA function will no longer return information. In this situation, you must store
the information in a variable before issuing the ROLLBACK statement to be accessed later.

44 Part I Core Fundamentals

 Note SQL Server 2008 introduces new security features that allow you to audit DDL actions,
as an alternative to using DDL triggers for auditing the same information. We cover SQL Server
Audit in Chapter 5.

 The AdventureWorks2008 trigger, shown in Listing 2-37, is created at the database level and
will capture DROP TABLE attempts. First we’ll create a log table to log all our event data us-
ing an XML column, and then we’ll create a dummy table that we will attempt to delete for
testing our trigger on. Our trigger will issue a ROLLBACK (which effectively cancels the at-
tempted DROP TABLE operation) and then write the event data to this table.

LISTING 2-37 Catching DROP TABLE attempts with a trigger

 -- Create a log table

CREATE TABLE TriggerLog (LogInfo xml)

-- Create a dummy table to delete later on

CREATE TABLE TableToDelete (Id int PRIMARY KEY)

-- Add some dummy data

INSERT INTO TableToDelete VALUES(1)

GO

-- Create a trigger that will prevent the table from being deleted

CREATE TRIGGER StopTableDrop ON DATABASE AFTER DROP_TABLE

AS

 DECLARE @EventData AS xml

 SET @EventData = EVENTDATA() -- must be captured *before* rollback

 ROLLBACK

 PRINT 'DROP TABLE attempt in database ' + DB_NAME() + '.'

 INSERT INTO TriggerLog VALUES(@EventData)

The following example attempts to drop a table (which will fail because of our DDL trigger)
and then queries the TriggerLog table to examine the details of the attempt:

-- The trigger in action...

DROP TABLE TableToDelete

SELECT * FROM TriggerLog

The results look like this:

DROP TABLE attempt in database AdventureWorks2008.

(1 row(s) affected)

Msg 3609, Level 16, State 2, Line 2

The transaction ended in the trigger. The batch has been aborted.

-- Create a log table

CREATE TABLE TriggerLog (LogInfo xml)

-- Create a dummy table to delete later on

CREATE TABLE TableToDelete (Id int PRIMARY KEY)

-- Add some dummy data

INSERT INTO TableToDelete VALUES(1)

GO

-- Create a trigger that will prevent the table from being deleted

CREATE TRIGGER StopTableDrop ON DATABASE AFTER DROP_TABLE

AS

 DECLARE @EventData AS xml

 SET @EventData = EVENTDATA() -- must be captured *before* rollback

 ROLLBACK

 PRINT 'DROP TABLE attempt in database ' + DB_NAME() + '.'

 INSERT INTO TriggerLog VALUES(@EventData)

 Chapter 2 T-SQL Enhancements 45

The EventData XML recorded to the TriggerLog table at the time we ran the script in Listing
2-37 on our system looks like this:

<EVENT_INSTANCE>

 <EventType>DROP_TABLE</EventType>

 <PostTime>2008-06-11T22:07:42.910</PostTime>

 <SPID>55</SPID>

 <ServerName>SQL08DEV</ServerName>

 <LoginName>SQL08DEV\Administrator</LoginName>

 <UserName>dbo</UserName>

 <DatabaseName>AdventureWorks2008</DatabaseName>

 <SchemaName>dbo</SchemaName>

 <ObjectName>TableToDelete</ObjectName>

 <ObjectType>TABLE</ObjectType>

 <TSQLCommand>

 <SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON" QUOTED_

IDENTIFIER="ON" ENCRYPTED="FALSE" />

 <CommandText>DROP TABLE TableToDelete</CommandText>

 </TSQLCommand>

</EVENT_INSTANCE>

SNAPSHOT Isolation

For working with T-SQL transactions, SQL Server 2005 introduced a new isolation level called
SNAPSHOT that allows you to work in a mode in which writers don’t block readers. Readers
thus read from a previously committed version of the data they request, rather than being
blocked during write transactions. SNAPSHOT isolation works by SQL Server maintaining a
linked list in tempdb that tracks changes to rows and constructs an older, committed ver-
sion of data for readers to access. This isolation level is useful for optimistic locking, in which
UPDATE conflicts are uncommon. For example, if process 1 retrieves data and later attempts
to modify it, and if process 2 has modified the same data between the retrieval and modi-
fication belonging to process 1, SQL Server produces an error when process 1 attempts to
modify data because of the conflict. Process 1 can then try to reissue the transaction. This
mode can be efficient in situations where UPDATE conflicts are not common.

Look for a more thorough discussion of SQL Server isolation levels and transactions in
Chapter 12.

Table-Valued Parameters

We explored common table expressions (CTEs) at the beginning of this chapter and saw how,
in SQL Server 2005, they provided a new alternative to using temporary tables and table vari-
ables, which have been around for a long time in SQL Server. Table-valued parameters (TVPs)
in SQL Server 2008 give us yet another choice for treating a set of rows as a single entity that
you can query or join against. It is now also remarkably easy to send an entire set of rows

46 Part I Core Fundamentals

from our .NET client applications to SQL Server with just one server roundtrip using Microsoft
ADO.NET, as you’ll see close up toward the end of our discussion of TVPs.

Note TVPs and all the remaining topics in this chapter are all-new features available only in SQL
Server 2008.

More than Just Another Temporary Table Solution

A TVP is based on a new user-defined table type in SQL Server 2008 that describes the
schema for a set of rows that can be passed to stored procedures or user-defined functions
(UDFs). It’s helpful to understand TVPs by first comparing them with table variables, temp ta-
bles, and CTEs and then contrasting their similarities and differences. All of these techniques
provide a different way of querying or joining against a typed temporary result set, enabling
you to treat a TVP, table variable, temporary table, or CTE just as you would an ordinary table
or view in many scenarios.

Both CTEs and table variables store their row data in memory, assuming reasonably sized sets
that don’t overflow the RAM cache allocated for them (in which case, they do get pushed
into tempdb). In contrast, the new TVPs in SQL Server 2008 are always stored in tempdb. This
means that they incur disk I/O just as regular temp tables do, which is a performance hit
evaded by (reasonably sized) memory-resident CTEs and table variables, and a consideration
for you to bear in mind when using TVPs. Conversely, this also means that TVPs are better
suited than CTEs and table variables when dealing with larger numbers of rows, since TVPs
can be indexed but CTEs and table variables cannot.

The real power of TVPs in SQL Server 2008 lies in the ability to pass an entire table (a set of
rows) as a single parameter from client to server and between your T-SQL stored procedures
and user-defined functions. Table variables and temporary tables, on the other hand, cannot
be passed as parameters. CTEs are limited in scope to the statement following their creation
(as mentioned at the beginning of this chapter) and are therefore inherently incapable of be-
ing passed as parameters.

Reusability is another side benefit of TVPs. The schema of a TVP is centrally maintained,
which is not the case with table variables, temporary tables, and CTEs. You define the schema
once by creating a new user-defined type (UDT) of type table, which you do by applying the
new AS TABLE clause to the CREATE TYPE statement, as shown in Listing 2-38.

 Chapter 2 T-SQL Enhancements 47

 LISTING 2-38 Defi ning the schema for a user-defi ned table type

 CREATE TYPE CustomerUdt AS TABLE

 (Id int,

 CustomerName nvarchar(50),

 PostalCode nvarchar(50))

 This statement creates a new user-defi ned table type named CustomerUdt with three
 columns. TVP variables of type CustomerUdt can now be declared and populated with rows
of data that fi t this schema, which SQL Server will store in tempdb behind the scenes. These
variables can be passed freely between stored procedures—unlike regular table variables,
which are stored in RAM behind the scenes and cannot be passed as parameters. When TVP
variables declared as CustomerUdt fall out of scope and are no longer referenced, the under-
lying data in tempdb supporting the TVP is deleted automatically by SQL Server.

 Tip The schema of this CustomerUdt table type is now embedded in the database (just like any
other UDT), which makes it easily reusable throughout your T-SQL code. Even if you don’t neces-
sarily need the parameter-passing capability of a TVP, defi ning one makes it easy to instantly
declare a variable of the table type without declaring the entire schema. Compare that with table
variables and temporary tables, where you can fi nd yourself duplicating the same schema in your
code.

 So although it’s called a table-valued parameter, in fact, we see that a TVP is essentially a new
user-defi ned table type. This new table type earns its name by allowing populated instances
of itself to be passed on as parameters to stored procedures and user-defi ned functions
(UDFs)—something you still can’t do with a regular table variable. In a sense, you can think of
TVPs as table variables on steroids: they provide similar functionality (temporary row set stor-
age), add new capabilities (can be passed as parameters), and carry more overhead (use disk
storage versus RAM).

 Note In this text, the terms table-valued parameter (TVP) and user-defi ned table type are used
interchangeably.

 Once the table type is defi ned, you can create stored procedures with parameters of that
type to pass an entire set of rows using TVPs.

 TVP types are displayed in Management Studio Object Explorer in the new User-Defi ned
Table Types node beneath Programmability, Types, as shown in Figure 2-1.

CREATE TYPE CustomerUdt AS TABLE

 (Id int,

 CustomerName nvarchar(50),

 PostalCode nvarchar(50))

48 Part I Core Fundamentals

FIGURE 2-1 User-defined table types that can be used for TVPs displayed in Management Studio Object
Explorer

There are many practical applications for this newly acquired ability to pass entire sets of
data around as parameters, and we’ll explore a number of them in the rest of this section.
You will be sure to discover more good uses for TVPs on your own, just by setting your
 imagination loose on your requirements.

Working with a Multiple-Row Set

One common scenario in which TVPs can be applied is a typical order entry system. When a
customer places an order, a new order row and any number of new order detail rows must
be created in the database. Traditionally, this might be accomplished by creating two stored
procedures—one for inserting an order row and one for inserting an order detail row. The
application would invoke a stored procedure call for each individual row, so for an order with
20 details, there would be a total of 21 stored procedure calls (1 for the order and 20 for the
details). There could of course be even larger orders with many more than 20 details. As a
result, numerous roundtrips are made between the application and the database, each one
carrying only a single row of data. Additional programming would also be required to wrap
the entire set of insert operations within a single atomic transaction. The transaction would
be needed to ensure that an order is completely inserted into the database—or not inserted
at all—in the event that an error occurs at any point during the process.

Enter TVPs. Now you can create a single stored procedure with just two TVPs, one for the or-
der row and one for the order details row. The client can now issue a single call to this stored
procedure, passing to it both the order and all of the order details at one time, as shown in

 Chapter 2 T-SQL Enhancements 49

Listing 2-39. Furthermore, the entire operation is guaranteed to succeed or fail as a whole,
eliminating the need to program a transaction around the process.

 LISTING 2-39 Creating a stored procedure that accepts TVPs

 CREATE PROCEDURE uspInsertNewOrder

 (@OrderTvp AS OrderUdt READONLY,

 @OrderDetailsTvp AS OrderDetailUdt READONLY)

AS

 INSERT INTO [Order]

 SELECT * FROM @OrderTvp

 INSERT INTO [OrderDetail]

 SELECT * FROM @OrderDetailsTvp

 As you can see, this code is inserted into the Order and OrderDetail tables directly from the
rows passed in through the two TVPs. We have essentially performed a bulk insert with a
single call, rather than individual inserts across multiple calls wrapped in a transaction. (Note
that the code in Listing 2-39 assumes that the Order and OrderDetail tables already exist and
that the OrderUdt and OrderDetailUdt table types have already been created with a column
schema that matches the tables.)

 We’ll now take a closer look at the bulk insert possibilities for TVPs and how to create,
 declare, populate, and pass TVPs in T-SQL. Then we’ll look at how TVPs can be used as a
powerful T-SQL parameter-passing mechanism. In the last part of this section, we’ll demon-
strate how to populate TVPs and pass them across the network from .NET client application
code to stored procedures using ADO.NET.

 Using TVPs for Bulk Inserts and Updates

 Here’s an example of a stored procedure that you can create in the AdventureWorks2008
database that accepts a TVP and inserts all of the rows that get passed in through it into
the Product.Location table. By creating a user-defi ned table type named LocationUdt that
describes the schema for each row passed to the stored procedure, any code can call the
stored procedure and pass to it a set of rows for insertion into Product.Location using a single
 parameter typed as LocationUdt.

 First we’ll create the user-defi ned table data type LocationUdt, as shown in Listing 2-40.

 LISTING 2-40 Creating the LocationUdt table type to be used for bulk operations with TVPs

 CREATE TYPE LocationUdt AS TABLE(

 LocationName varchar(50),

 CostRate int)

CREATE PROCEDURE uspInsertNewOrder

 (@OrderTvp AS OrderUdt READONLY,

@OrderDetailsTvp AS OrderDetailUdt READONLY)

AS

 INSERT INTO [Order]

 SELECT * FROM @OrderTvp

 INSERT INTO [OrderDetail]

 SELECT * FROM @OrderDetailsTvp

CREATE TYPE LocationUdt AS TABLE(

 LocationName varchar(50),

 CostRate int)

50 Part I Core Fundamentals

 Now a TVP variable of this type can be declared to hold a set of rows with the two columns
LocationName and CostRate. These rows can be fed to a stored procedure by passing the
TVP variable into it. The stored procedure can then select from the TVP just like a regular
table or view and thus use it as the source for an INSERT INTO…SELECT statement that ap-
pends each row to the Product.Location table.

 Rows added to Product.Location require more than just the two fi elds for the location name
and cost rate. The table also needs values for the availability and modifi ed date fi elds, so
we’ll let the stored procedure handle that. What we’re doing here is defi ning a schema that
can provide a subset of the required Product.Location fi elds (Name and CostRate), for passing
multiple rows of data to a stored procedure that provides values for the remaining required
fi elds (Availability and Modifi edDate). In our example, the stored procedure sets Availability
to 0 and Modifi edDate to the GETDATE function on each row of data inserted from the TVP
(passed in as the only parameter) that provides the values for Name and CostRate, as shown
in Listing 2-41.

 LISTING 2-41 Creating a stored procedure to perform a bulk insert using a TVP declared as the LocationUdt
table type

 CREATE PROCEDURE uspInsertProductionLocation

 (@TVP LocationUdt READONLY)

AS

 INSERT INTO [Production].[Location]

 ([Name], [CostRate], [Availability], [ModifiedDate])

 SELECT *, 0, GETDATE() FROM @TVP

 We now have a stored procedure that can accept a TVP containing a set of rows with loca-
tion names and cost rates to be inserted into the Production.Location table and that sets the
availability quantity and modifi ed date on each inserted row—all achieved with a single pa-
rameter and a single INSERT INTO…SELECT statement! The procedure doesn’t know or care
how the caller populates the TVP before it is used as the source for the INSERT INTO…SELECT
statement. For example, the caller could manually add one row at a time, as follows:

 DECLARE @LocationTvp AS LocationUdt

INSERT INTO @LocationTvp VALUES('UK', 122.4)

INSERT INTO @LocationTvp VALUES('Paris', 359.73)

EXEC uspInsertProductionLocation @LocationTvp

 Or the caller could bulk insert into the TVP from another source table using INSERT INTO…
SELECT, as in our next example. We will fi ll the TVP from the existing Person.StateProvince
table using the table’s Name column for LocationName and the value 0 for CostRate. Passing
this TVP to our stored procedure will result in a new set of rows added to Production.Location
with their Name fi elds set according to the names in the Person.StateProvince table, their

CREATE PROCEDURE uspInsertProductionLocation

 (@TVP LocationUdt READONLY)

AS

 INSERT INTO [Production].[Location]

 ([Name], [CostRate], [Availability], [ModifiedDate])

 SELECT *, 0, GETDATE() FROM @TVP

 Chapter 2 T-SQL Enhancements 51

CostRate and Availability values set to 0, and their Modifi edDate values set by GETDATE, as
shown here:

 DECLARE @LocationTVP AS LocationUdt

INSERT INTO @LocationTVP

 SELECT [Name], 0.00 FROM [Person].[StateProvince]

EXEC uspInsertProductionLocation @LocationTVP

 The TVP could also be populated on the client using ADO.NET, which we cover at the end of
this section.

 Bulk updates (and deletes) using TVPs are possible as well. You can create an UPDATE state-
ment by joining a TVP (which you must alias) to the table you want to update. The rows
updated in the table are determined by the matches joined to by the TVP and can be set to
new values that are also contained in the TVP. For example, you can pass a TVP populated
with category IDs and names for updating the Categories table in the database, as shown in
Listing 2-42. By joining the TVP to the Categories table on the category ID, all the matching
rows in the Categories table can be updated with the new category names in the TVP.

 LISTING 2-42 Bulk updates using TVPs

 UPDATE Category

 SET Category.Name = ec.Name

 FROM Category INNER JOIN @EditedCategoriesTVP AS ec ON Category.Id = ec.Id

 Working with a Single Row of Data

 You don’t need to be working with multiple rows of data in a set to derive benefi t from TVPs.
Because they encapsulate a schema, TVPs can come in handy even when dealing with only a
single row that holds a collection of column values to be used as a typed parameter list.

 It is now easy to pass these multiple values along from one stored procedure to another by
using a single parameter rather than by authoring and maintaining duplicate signatures with
multiple parameters in your T-SQL code. As you’ve seen, the schema of a TVP is defi ned just
once, using the CREATE TYPE…AS TABLE statement shown earlier, and is thus maintained
centrally in one location for the entire database. This makes TVPs easy to reuse as structures
for wrapping a typed parameter list passed around as a single parameter in code.

 By creating the preceding CustomerUdt TVP that encapsulates three columns, we can now
pass the three values from one stored procedure to another using one TVP, rather than us-
ing three separate parameters for each column. For longer parameter lists, of course, this can
mean the difference between one parameter versus a dozen of more. So without using the
TVP, our stored procedure might look like the code in Listing 2-43.

UPDATE Category

 SET Category.Name = ec.Name

 FROM Category INNER JOIN @EditedCategoriesTVP AS ec ON Category.Id = ec.Id

52 Part I Core Fundamentals

 LISTING 2-43 Creating a stored procedure with a typical parameter list

CREATE PROCEDURE uspPassWithoutUdt(

 @Id int,

 @CustomerName nvarchar(50),

 @PostalCode nvarchar(50))

AS

 BEGIN

 -- Use the parameters

 SELECT @Id, @CustomerName, @PostalCode

 END

A call to this stored procedure would typically look like this:

EXEC uspPassWithoutUdt 1, 'Christian Hess', '23911'

Now imagine many more stored procedures with the same parameter list. These would all
have the same three parameters, which would lead you to copy and paste, duplicating and
maintaining them in each stored procedure. Using a TVP instead alleviates this burden, since
the schema is centrally defi ned only once in the defi nition of the user-defi ned table type (see
Listing 2-38).

With this table type defi ned, our stored procedures now have a much simplifi ed signature
that no longer requires us to duplicate the parameter list. The same stored procedure can
now be implemented as shown in Listing 2-44.

LISTING 2-44 Creating a stored procedure with parameter values embedded in a TVP

CREATE PROCEDURE uspPassWithUdt(@CustomerTvp CustomerUdt READONLY)

AS

 BEGIN

 -- Extract values from the TVP

 SELECT Id, CustomerName, PostalCode FROM @CustomerTvp

 END

To call this stored procedure, we declare a TVP variable of type CustomerUdt, insert into it
a single row of data containing the three values, and then pass just the single variable on to
the stored procedure, as shown here:

 DECLARE @CustomerTvp CustomerUdt

INSERT INTO @CustomerTvp(Id, CustomerName, PostalCode)

 VALUES(1, 'Christian Hess', '23911')

EXEC uspPassWithUdt @CustomerTvp

 This is logically analogous in the .NET world to creating a class or struct instance, populating
its properties or fi elds, and passing the instance on to a method call that then retrieves the

CREATE PROCEDURE uspPassWithoutUdt(

 @Id int,

 @CustomerName nvarchar(50),

 @PostalCode nvarchar(50))

AS

 BEGIN

 -- Use the parameters

 SELECT @Id, @CustomerName, @PostalCode

END

CREATE PROCEDURE uspPassWithUdt(@CustomerTvp CustomerUdt READONLY)

AS

 BEGIN

 -- Extract values from the TVP

 SELECT Id, CustomerName, PostalCode FROM @CustomerTvp

 END

 Chapter 2 T-SQL Enhancements 53

values it wants from those properties or fields. A “package the parameters” approach such as
this usually results in neater and more maintainable code—whether that code is written in
.NET or T-SQL—particularly for lengthy and frequently reused parameter lists.

If you take proper care up front, you can design these parameter lists to tolerate the addition
of new columns to the schema of the user-defined table type in the future without disturb-
ing existing T-SQL code that references preexisting columns. To completely insulate code
from extensions to the parameter list schema, you’ll need to pay some special attention to
your coding style when populating values—namely, avoiding INSERT statements that have
no explicit column list. INSERT statements that populate a TVP should always use an explicit
column list so that new columns added in the future do not affect their behavior and cause
errors.

Tip In general, it is best practice to use explicit column lists in your INSERT statements.

INSERT statements with no explicit column list adapt dynamically with respect to the schema
of the table being inserted into. As the result of adding new columns to the table, an INSERT
statement without an explicit column list that worked before will now certainly fail because
the number of values specified in its VALUES clause will no longer match the number of
columns in the table. To ensure that these statements continue to function despite future
extensions to the schema, they must provide an explicit column list for mapping the speci-
fied VALUES. This will allow you to insert new columns anywhere in the schema (not just ap-
pended to the end), since providing an explicit column list means that you are not tied to the
number (or order) of the columns in the table type. You’ll also need to make sure that new
columns added to the schema are either nullable or have default values assigned to them so
that existing INSERT statements will continue to work properly without the concern of pro-
viding values for newly added columns.

This strategy puts you in the best position, since you are now in control and can make your
own decisions about how, when, and where to use the values newly added to your typed
 parameter lists. You can choose to use the newer values only in new T-SQL code that needs
to support them, without ever revisiting or modifying existing code that continues to work
just fine. You can also incrementally and selectively update any existing code as you need or
want to.

If you’ve coded defensively as we’ve just discussed, you’re ready to safely extend the
CustomerUdt table definition by adding a fourth column. There is no ALTER TYPE…AS TABLE
statement available, so the table type must be dropped and then re-created. Because SQL
Server tracks and enforces integrity on object dependencies in the database, it will also be
necessary to first drop all the stored procedures that reference the table type, drop the table
type itself, re-create the table type with the new schema, and then re-create the dropped
stored procedures. This might (and perhaps should) discourage you from too frequently

54 Part I Core Fundamentals

extending the parameter lists in your TVP schemas, although the burden is alleviated by
the ability to easily generate all the necessary scripts that re-create all the programmability
objects (stored procedures, TVPs, and so on) in the database. The code in Listing 2-45 drops
and re-creates the table type and stored procedure.

 LISTING 2-45 Revising the schema of the CustomerUdt table type

DROP PROCEDURE uspPassWithUdt

DROP TYPE CustomerUdt

GO

CREATE TYPE CustomerUdt AS TABLE

 (Id int,

 CustomerName nvarchar(50),

 HomePhone nvarchar(50), -- inserted new column

 PostalCode nvarchar(50))

GO

CREATE PROCEDURE uspPassWithUdt(@CustomerTvp CustomerUdt READONLY)

AS

BEGIN

 -- Extract values from the TVP

 SELECT Id, CustomerName, PostalCode FROM @CustomerTvp

 END

The SELECT statement in the stored procedure has not been modifi ed and therefore con-
tinues to use only the original three columns. Had the SELECT statement been coded in-
stead as SELECT * (that is, without an explicit column list), it would now be selecting the new
HomePhone column as well, without any modifi cation on your part. Understanding this, it’s
up to you to determine on a case-by-case basis whether to use SELECT * or SELECT with an
explicit column list against your TVPs (although SELECT * is generally regarded as poor prac-
tice in production code). For INSERT statements, as we’ve explained, you should always use
an explicit column list to code defensively against extensions to the TVP schema.

Creating Dictionary-Style TVPs

You can use TVPs to implement a generic dictionary-like structure to use as another fl ex-
ible parameter-passing mechanism. This technique is roughly analogous to populating a
Dictionary object in .NET that uses a string for the key and an object (which can hold any
data type) for the value and then passing the dictionary object to another method. Achieving
this with T-SQL in the past would typically require composing a string containing all of the
data, with one delimiter separating each pair and another delimiter separating the key and
value within each pair. The stored procedure would accept this string and then decompose it
by parsing the delimiters to extract the values and casting them to their appropriate types.
Using the intrinsic T-SQL string manipulation functions to implement this is both tedious and
awkward. With SQL Server 2005, the situation could be improved marginally by leveraging

DROP PROCEDURE uspPassWithUdt

DROP TYPE CustomerUdt

GO

CREATE TYPE CustomerUdt AS TABLE

 (Id int,

 CustomerName nvarchar(50),

 HomePhone nvarchar(50), -- inserted new column

 PostalCode nvarchar(50))

GO

CREATE PROCEDURE uspPassWithUdt(@CustomerTvp CustomerUdt READONLY)

AS

BEGIN

 -- Extract values from the TVP

 SELECT Id, CustomerName, PostalCode FROM @CustomerTvp

END

 Chapter 2 T-SQL Enhancements 55

the xml data type and composing an “array” in XML to be passed on to a stored procedure,
which could then decompose the XML using XQuery. Here too, TVPs can provide a much
easier solution natively.

 First create a simple user-defi ned table type named KeyValuePairUdt, as shown in
Listing 2-46.

 LISTING 2-46 Creating a table type to be used for storing and passing key-value pairs

 CREATE TYPE KeyValuePairUdt AS TABLE

 (K nvarchar(50),

 V sql_variant)

 This table type defi nes the two columns K and V, which can hold a string key and a value of
any data type. (The sql_variant data type is a “one size fi ts all” type that can hold almost any
SQL Server data type.) Then declare a TVP, populate it with several key-value pairs, and pass
it on to your stored procedure, as shown here:

 DECLARE @Username AS nvarchar(50)

DECLARE @DOB AS date

DECLARE @IsActive AS bit

SET @Username = 'Admin'

SET @DOB = '1/2/2006'

SET @IsActive = 1

DECLARE @ParamsPackage AS KeyValuePairUdt

INSERT INTO @ParamsPackage(K, V) VALUES('Username', @Username)

INSERT INTO @ParamsPackage(K, V) VALUES('DOB', @DOB)

INSERT INTO @ParamsPackage(K, V) VALUES('IsActive', @IsActive)

EXEC uspProcessEntry 392, @ParamsPackage

 Here we have three values assigned into variables for username, date of birth, and an active
fl ag, of types nvarchar(50), date, and bit. We then declare a TVP named @ParamsPackage
typed as our new KeyValuePairUdt table type, into which we insert each of the three differ-
ently typed values with the corresponding string keys Username, DOB, and IsActive. Because
the key column (K) in KeyValuePairUdt is nvarchar, the keys must be strings. However, by de-
claring the value column (V) as sql_variant, we are able to store a mix of data types as values
in each row of our @ParamsPackage TVP.

 We then call the uspProcessEntry stored procedure, as shown in Listing 2-47, passing two
parameters: a regular integer for EntryId and the TVP holding our dictionary of key-value
pairs. The stored procedure picks up the fi rst parameter as a normal integer value. To ex-
tract elements from the dictionary passed in by the second parameter, the stored procedure
selects them one at a time from the TVP by the string keys it expects the caller to have set
(Username, DOB, and IsActive). Again, because of the sql_variant data type, the stored proce-
dure is able to extract the values in their various different native data types.

CREATE TYPE KeyValuePairUdt AS TABLE

 (K nvarchar(50),

 V sql_variant)

56 Part I Core Fundamentals

 LISTING 2-47 Creating a stored procedure that accepts a dictionary of values using a TVP

CREATE PROCEDURE uspProcessEntry(

 @EntryId AS int,

 @KeyValuePairTvp AS KeyValuePairUdt READONLY)

AS

 BEGIN

 SET NOCOUNT ON

 DECLARE @Username AS nvarchar(max)

 DECLARE @DOB AS date

 DECLARE @IsActive AS bit

 SELECT @Username = CONVERT(nvarchar, V)

 FROM @KeyValuePairTvp WHERE K = 'Username'

 SELECT @DOB = CONVERT(date, V)

 FROM @KeyValuePairTvp WHERE K = 'DOB'

 SELECT @IsActive = CONVERT(bit, V)

 FROM @KeyValuePairTvp WHERE K = 'IsActive'

 PRINT 'EntryId: ' + CAST(@EntryId AS nvarchar)

 PRINT 'Username: ' + @Username

 PRINT 'DOB: ' + CAST(@DOB AS nvarchar)

 PRINT 'IsActive: ' + CAST(@IsActive as nvarchar)

 END

Passing TVPs Using ADO.NET

 Arguably the most compelling facet of TVPs is the ability to marshal multiple rows of data
from a client application to SQL Server 2008 without requiring multiple roundtrips or imple-
menting special logic on the server for processing the data. We’ll conclude our discussion of
TVPs with the new SqlDbType.Structured enumeration in ADO.NET, which makes doing this
both possible and easy.

 Simply prepare a SqlCommand object as you did in the past, setting its CommandType
property to CommandType.StoredProcedure and populating its Parameters collec-
tion with SqlParameter objects. All you do to mark a SqlParameter as a TVP is to set its
SqlDbType property to SqlDbType.Structured. You will then be able to specify any DataTable,
DbDataReader, or IList<SqlDataRecord> object as the parameter value to be passed to the
stored procedure in a single call to the server.

 In Listing 2-48, a new customer order is stored in separate Order and OrderDetail DataTable
objects within a DataSet. The two tables are passed to the SQL Server stored procedure we
saw earlier, which accepts them as TVPs for insertion into the Order and OrderDetail database
tables.

CREATE PROCEDURE uspProcessEntry(

 @EntryId AS int,

 @KeyValuePairTvp AS KeyValuePairUdt READONLY)

AS

 BEGIN

 SET NOCOUNT ON

 DECLARE @Username AS nvarchar(max)

 DECLARE @DOB AS date

 DECLARE @IsActive AS bit

 SELECT @Username = CONVERT(nvarchar, V)

 FROM @KeyValuePairTvp WHERE K = 'Username'

 SELECT @DOB = CONVERT(date, V)

 FROM @KeyValuePairTvp WHERE K = 'DOB'

 SELECT @IsActive = CONVERT(bit, V)

 FROM @KeyValuePairTvp WHERE K = 'IsActive'

 PRINT 'EntryId: ' + CAST(@EntryId AS nvarchar)

 PRINT 'Username: ' + @Username

 PRINT 'DOB: ' + CAST(@DOB AS nvarchar)

 PRINT 'IsActive: ' + CAST(@IsActive as nvarchar)

 END

 Chapter 2 T-SQL Enhancements 57

 LISTING 2-48 Passing TVPs to a SQL Server stored procedure from ADO.NET

 // Assumes conn is an open SqlConnection object and ds is

// a DataSet with an Order and OrderDetails table

using(conn)

{

 // Create the command object to call the stored procedure

 SqlCommand cmd = new SqlCommand("uspInsertNewOrder", conn);

 cmd.CommandType = CommandType.StoredProcedure;

 // Create the parameter for passing the Order TVP

 SqlParameter headerParam = cmd.Parameters.AddWithValue

 ("@OrderTvp", ds.Tables["Order"]);

 // Create the parameter for passing the OrderDetails TVP

 SqlParameter detailsParam = cmd.Parameters.AddWithValue

 ("@OrderDetailsTvp", ds.Tables["OrderDetail"]);

 // Set the SqlDbType of the parameters to Structured

 headerParam.SqlDbType = SqlDbType.Structured;

 detailsParam.SqlDbType = SqlDbType.Structured;

 // Execute the stored procedure

 cmd.ExecuteNonQuery();

}

 This code calls a SQL Server 2008 stored procedure and passes to it an order header and
the complete set of order details with a single roundtrip in a single implicit transaction.
Remarkably, it’s just as simple as that.

 You can also send a set of rows directly to a parameterized SQL statement without creat-
ing a stored procedure. Because the SQL statement is dynamically constructed on the client,
there is no stored procedure signature that specifi es the name of the user-defi ned table type
for the TVP. Therefore, you need to tell ADO.NET what the type is by setting the TypeName
property to the name of the table type defi ned on the server. For example, the code in
Listing 2-49 passes a DataTable to a parameterized SQL statement.

 LISTING 2-49 Passing TVPs to a parameterized SQL statement from ADO.NET

 // Define the INSERT INTO...SELECT statement to insert into Categories

const string TSqlStatement =

 "INSERT INTO Categories (CategoryID, CategoryName)" +

 " SELECT nc.CategoryID, nc.CategoryName" +

 " FROM @NewCategoriesTvp AS nc";

// Assumes conn is an open SqlConnection object and ds is

// a DataSet with a Category table

using(conn)

{

 // Set up the command object for the statement

 SqlCommand cmd = new SqlCommand(TSqlStatement, conn);

// Assumes conn is an open SqlConnection object and ds is

// a DataSet with an Order and OrderDetails table

using(conn)

{

 // Create the command object to call the stored procedure

 SqlCommand cmd = new SqlCommand("uspInsertNewOrder", conn);

 cmd.CommandType = CommandType.StoredProcedure;

 // Create the parameter for passing the Order TVP

 SqlParameter headerParam = cmd.Parameters.AddWithValue

 ("@OrderTvp", ds.Tables["Order"]);

 // Create the parameter for passing the OrderDetails TVP

 SqlParameter detailsParam = cmd.Parameters.AddWithValue

 ("@OrderDetailsTvp", ds.Tables["OrderDetail"]);

 // Set the SqlDbType of the parameters to Structured

 headerParam.SqlDbType = SqlDbType.Structured;

 detailsParam.SqlDbType = SqlDbType.Structured;

 // Execute the stored procedure

 cmd.ExecuteNonQuery();

}

// Define the INSERT INTO...SELECT statement to insert into Categories

const string TSqlStatement =

 "INSERT INTO Categories (CategoryID, CategoryName)" +

 " SELECT nc.CategoryID, nc.CategoryName" +

 " FROM @NewCategoriesTvp AS nc";

// Assumes conn is an open SqlConnection object and ds is

// a DataSet with a Category table

using(conn)

{

 // Set up the command object for the statement

 SqlCommand cmd = new SqlCommand(TSqlStatement, conn);

58 Part I Core Fundamentals

 // Add a TVP specifying the DataTable as the parameter value

 SqlParameter catParam = cmd.Parameters.AddWithValue

 ("@NewCategoriesTvp", ds.Tables["Category"]);

 catParam.SqlDbType = SqlDbType.Structured;

 catParam.TypeName = "dbo.CategoriesUdt";

 // Execute the command

 cmd.ExecuteNonQuery();

}

 Setting the TypeName property to dbo.CategoriesUdt in this code means that you have a us-
er-defi ned table type by that name on the server, created using the CREATE TYPE…AS TABLE
statement that defi nes the CategoryID and CategoryName columns.

You can also use any object derived from DbDataReader to stream rows of data to a TVP. In
the example shown in Listing 2-50, we fi rst call an Oracle stored procedure to select from
an Oracle database into a connected OracleDataReader. The reader object gets passed as a
single table-valued input parameter to a SQL Server 2008 stored procedure, which can then
use the Oracle data in the reader as the source for adding new rows into the Category table
in the SQL Server database.

LISTING 2-50 Passing a connected OracleDataReader source as a TVP to SQL Server

// Set up command object to select from Oracle

OracleCommand selCmd = new OracleCommand

 ("SELECT CategoryID, CategoryName FROM Categories;", oracleConn);

// Execute the command and return the results in a connected

// reader that will automatically close the connection when done

OracleDataReader rdr = selCmd.ExecuteReader

 (CommandBehavior.CloseConnection);

// Set up command object to insert into SQL Server

SqlCommand insCmd = new SqlCommand

 ("uspInsertCategories", connection);

insCmd.CommandType = CommandType.StoredProcedure;

// Add a TVP specifying the reader as the parameter value

SqlParameter catParam = cmd.Parameters.AddWithValue

 ("@NewCategoriesTvp", rdr);

catParam.SqlDbType = SqlDbType.Structured;

// Execute the stored procedure

insertCommand.ExecuteNonQuery();

// Set up command object to select from Oracle

OracleCommand selCmd = new OracleCommand

 ("SELECT CategoryID, CategoryName FROM Categories;", oracleConn);

// Execute the command and return the results in a connected

// reader that will automatically close the connection when done

OracleDataReader rdr = selCmd.ExecuteReader

 (CommandBehavior.CloseConnection);

// Set up command object to insert into SQL Server

SqlCommand insCmd = new SqlCommand

 ("uspInsertCategories", connection);

insCmd.CommandType = CommandType.StoredProcedure;

// Add a TVP specifying the reader as the parameter value

SqlParameter catParam = cmd.Parameters.AddWithValue

 ("@NewCategoriesTvp", rdr);

catParam.SqlDbType = SqlDbType.Structured;

// Execute the stored procedure

insertCommand.ExecuteNonQuery();

 // Add a TVP specifying the DataTable as the parameter value

 SqlParameter catParam = cmd.Parameters.AddWithValue

 ("@NewCategoriesTvp", ds.Tables["Category"]);

 catParam.SqlDbType = SqlDbType.Structured;

 catParam.TypeName = "dbo.CategoriesUdt";

 // Execute the command

 cmd.ExecuteNonQuery();

}

 Chapter 2 T-SQL Enhancements 59

TVP Limitations

There are a number of limitations to TVPs that you should be aware of. First and foremost,
TVPs are read-only after they are initially populated and passed; they cannot be used to re-
turn data. The READONLY keyword must be applied to TVPs in the signatures of your stored
procedures, or they will not compile. Similarly, the OUTPUT keyword cannot be used. You
cannot update the column values in the rows of a TVP, and you cannot insert or delete rows.
If you must modify the data in a TVP, one workaround is to insert the data from the TVP into
a temporary table or into a table variable to which you can then apply changes.

There is no ALTER TABLE…AS TYPE statement that supports changing the schema of a TVP
table type. Instead, you must first drop all stored procedures that reference the type before
dropping the type, re-creating it with a new schema, and then re-creating the stored pro-
cedures. Indexing is limited as well, with support only for PRIMARY KEY and UNIQUE con-
straints. Also, statistics on TVPs are not maintained by SQL Server.

New Date and Time Data Types

The date, time, datetime2, and datetimeoffset types are four new data types in SQL Server
2008 for storing dates and times, which you should now begin using for new database de-
velopment in lieu of the traditional datetime and smalldatetime data types. The new types
are now much better aligned with the .NET Framework, Microsoft Windows, and the SQL
standard—unlike datetime and smalldatetime—and have important advantages over those
types, including improvements in range, precision, and storage.

In addition, SQL Server 2008 delivers full Open Database Connectivity (ODBC), OLE-DB, and
ADO.NET client provider support for all four data types. They are compatible for use across
all other SQL Server components, including client tools, Integration Services, Replication,
Reporting Services, and Analysis Services.

Separation of Dates and Times

We’ll begin by looking at the new date and time types. Database developers have long been
clamoring for the ability to store dates and times as separate types, and SQL Server 2008
now finally delivers it to us with these two new types. If you need to store only a date value
(for example, a date of birth), use the new date type. Similarly, use the new time type for
 storing just a time value (for example, a daily medication time), as shown here:

DECLARE @DOB date

DECLARE @MedsAt time

The datetime and smalldatetime types, which were the only previously available options,
each include both a date and a time portion. In cases where only the date or only the time is

60 Part I Core Fundamentals

needed, the extraneous portion consumes storage needlessly, which results in wasted space
in the database. In addition to saving storage, using date rather than datetime yields better
performance for date-only manipulations and calculations, since there is no time portion to
be handled or considered.

Note Separate date and time data types are planned for a future version of the .NET
Framework. Until then, the .NET data types that map to the newly separated SQL Server 2008
date and time types are System.DateTime and System.TimeSpan.

More Portable Dates and Times

To continue storing both a date and a time as a single value, use the new datetime2 data
type. This new type supports the same range of values as the DateTime data type in the .NET
Framework, so it can store dates from 1/1/0001 (DateTime.MinValue in .NET) to 12/31/9999
(DateTime.MaxValue in .NET) in the Gregorian calendar. Contrast this with the allowable date
values for the regular datetime type, which range only from 1/1/1753 to 12/31/9999. This
means that dates in .NET from 1/1/0001 through 12/31/1752 can’t be stored at all in SQL
Server’s datetime type, a problem solved by using either the date, datetime2, or datetimeoff-
set type in SQL Server 2008. Since the supported range of dates is now the same in both .NET
and SQL Server, any date can be safely passed between these client and server platforms
with no special considerations. You are strongly encouraged to discontinue using the older
datetime and smalldatetime data types and to use only date and datetime2 types for new de-
velopment (or the new datetimeoffset type for time zone awareness, which is discussed next).

Note The SQL standard calls the datetime2 data type a timestamp. Unfortunately, Microsoft has
already used the name timestamp for a special data type that generates unique binary values
often used for row versioning but does not, in fact, represent either a date or a time. For this rea-
son, SQL Server 2008 again deviates from the SQL standard by naming this new type datetime2
and simultaneously introduces a new synonym for the poorly chosen timestamp type, now more
aptly named rowversion. This discourages continued use of the name timestamp as originally de-
fined by Microsoft.

You’re not alone if you feel that datetime2 was yet another poor naming choice for this new type
designed as a replacement for datetime. Being unable to use the name timestamp, Microsoft
clearly had a difficult time coming up with a new name and finally just settled on datetime2.
Don’t be surprised to see a new synonym for this type appear in the future, when someone in
Redmond finally has better luck at choosing good names!

There has also been a need for greater precision of fractional seconds in time values. The
datetime type is accurate only within roughly 3.33 milliseconds, whereas time values in
Windows and .NET have a significantly greater, 100-nanosecond (10-millionth of a second),

 Chapter 2 T-SQL Enhancements 61

accuracy. (The smalldatetime type doesn’t even support seconds and is accurate only to the
minute.) Storing times in the database therefore results in a loss of precision.

Like the expanded range of supported dates, the new time, datetime2, and datetimeoffset
types are now more aligned with .NET and other platforms by also providing the same
100-nanosecond accuracy. As a result, we no longer incur any data loss of fractional sec-
ond accuracy between platforms when recording time values to the database. Of course,
there are storage implications that come with greater time precision, and we’ll discuss those
momentarily.

Time Zone Awareness

The fourth and last new data type in this category introduced in SQL Server 2008 is
 datetimeoffset. This type defines a date and time with the same range and precision that
datetime2 provides but also includes an offset value with a range of –14:00 to +14:00 that
identifies the time zone. In the past, the only practical approach for globalization of dates
and times in the database has been to store them in Coordinated Universal Time (UTC) for-
mat. Doing this requires back-and-forth conversion between UTC and local time that must be
handled at the application level, and that means writing code.

Using the new datetimeoffset type, you can now store values that represent the local date
and time in different regions of the world and include the appropriate time zone offset
for the region in each value. Because the time zone offset embedded in the date and time
value is specific to a particular locale, SQL Server is able to perform date and time compari-
sons between different locales without any conversion efforts required on your part. While
 datetimeoffset values appear to go in and come out as dates and times local to a particular
region, they are internally converted, stored, and treated in UTC format for comparisons,
sorting, and indexing.

Calculations and comparisons are therefore performed correctly and consistently across all
dates and times in the database regardless of the different time zones in various regions. By
simply appending the time zone offset to datetimeoffset values, SQL Server handles the con-
versions to and from UTC for you automatically in the background. Even better, you can ob-
tain a datetimeoffset value either as UTC or local time. For those of us building databases that
need to store various local times (or even just dates) in different regions of the world, this is
welcomed as an extremely convenient new feature in SQL Server 2008. The database now
handles all the details, so the application developer doesn’t have to. Time zone functionality
is now simply available for free right at the database level.

For example, the database knows that 9:15 AM in New York is in fact later than 10:30 AM in
Los Angeles if you store the values in a datetimeoffset data type with appropriate time zone
offsets. Because the New York time specifies a time zone offset of –5:00 and the Los Angeles
time has an offset of –8:00, SQL Server is aware of the three-hour difference between the

62 Part I Core Fundamentals

two time zones and accounts for that difference in all date/time manipulations and calcula-
tions. This behavior is demonstrated by the code in Listing 2-51.

LISTING 2-51 Time zone calculations using datetimeoffset

DECLARE @Time1 datetimeoffset

DECLARE @Time2 datetimeoffset

DECLARE @MinutesDiff int

SET @Time1 = '2007-11-10 09:15:00-05:00' -- NY time is UTC -05:00

SET @Time2 = '2007-11-10 10:30:00-08:00' -- LA time is UTC -08:00

SET @MinutesDiff = DATEDIFF(minute, @Time1, @Time2)

SELECT @MinutesDiff

The output result from this code is:

255

(1 row(s) affected)

SQL Server was clearly able to account for the three-hour difference in time zones. Because
10:30 AM in Los Angeles is actually 1:30 PM in New York, a difference of 255 minutes (4 hours
and 15 minutes) between that time and 9:15 AM New York time was calculated correctly.

Note Time zone names are not supported, nor is there support for daylight savings time.
Unfortunately, these features did not make it into the fi nal release of the product, but they are
on the list for the next version of SQL Server. Time zones can be expressed only by hour/minute
offsets, and you must continue to handle daylight savings time considerations on your own.

The .NET Framework also now provides the same functionality in a new type by the same
name, System.DateTimeOffset. This means that .NET client applications and SQL Server can
seamlessly pass time zone–aware values back and forth to each other.

Note SQL Server 2008 also provides time zone support for the xsd:dateTime type. We cover this
Extensible Schema Defi nition (XSD) enhancement in Chapter 6.

Date and Time Accuracy, Storage, and Format

Date values stored in date, datetime2, and datetimeoffset types are compacted into a fi xed
storage space of 3 bytes. They use an optimized format that is 1 byte less than the 4 bytes

DECLARE @Time1 datetimeoffset

DECLARE @Time2 datetimeoffset

DECLARE @MinutesDiff int

SET @Time1 = '2007-11-10 09:15:00-05:00' -- NY time is UTC -05:00

SET @Time2 = '2007-11-10 10:30:00-08:00' -- LA time is UTC -08:00

SET @MinutesDiff = DATEDIFF(minute, @Time1, @Time2)

SELECT @MinutesDiff

 Chapter 2 T-SQL Enhancements 63

consumed by the date portion of the older datetime type (supporting a greater range in a
smaller space).

Time values stored in time, datetime2, and datetimeoffset types, by default, consume five
bytes of storage to support the same 100-nanosecond accuracy as Windows and .NET.
However, the folks at Microsoft did not cast aside the storage concerns of developers and
database administrators who don’t require the highest degree of fractional-second preci-
sion. You can specify a lower degree of precision in order to benefit from further compacted
storage by providing an optional scale parameter when declaring time, datetime2, and da-
tetimeoffset variables. The scale can range from 0 to 7, with 0 offering no fractional-second
precision at all being contained in the smallest space (3 bytes) and 7 (the default) offering
the greatest fractional-second precision (100 nanoseconds) in the largest space (5 bytes). The
scale essentially dictates the number of digits supported after the decimal point of the sec-
onds value, where a scale value of 7 supports a fractional precision of 100 nanoseconds (each
100 nanoseconds being 0.0000001 second).

Table 2-1 shows the storage requirement and precision of time, datetime2, and datetimeoffset
values for the different scale values from 0 through 7. The value in the precision column
refers to the number of characters contained in an International Organization for
Standardization (ISO)–formatted string representation of the three types for each possible
scale value.

TABLE 2-1 Storage Requirements and Precision of the New Date and Time Data Types

time datetime2 datetimeoffset

Scale Value Bytes Precision Bytes Precision Bytes Precision

 0 3 8 6 19 8 26

 1 3 10 6 21 8 28

 2 3 11 6 22 8 29

 3 4 12 7 23 9 30

 4 4 13 7 24 9 31

 5 5 14 8 25 10 32

 6 5 15 8 26 10 33

 7 5 16 8 27 10 34

The default scale is 7, which offers the greatest precision (to 100 nanoseconds) in the largest
space. This means that declaring a variable as time, datetime2, or datetimeoffset is the same
as declaring it as time(7), datetime2(7), or datetimeoffset(7), making the following two state-
ments equivalent:

DECLARE @StartDateTime datetime2

DECLARE @StartDateTime datetime2(7)

64 Part I Core Fundamentals

If you don’t require any fractional precision at all, use a scale of 0, as in this example:

DECLARE @FeedingTime time(0)

As shown in the preceding table, only 3 bytes are required to store a time in @FeedingTime,
which is accurate only to the second.

Two time values with differing scales are perfectly compatible with each other for compari-
son. SQL Server automatically converts the value with the lower scale to match the value with
the greater scale and compares the two safely.

Almost all industry-standard string literal formats are supported for conveniently
 representing dates and times. For example, the date May 15, 2008, can be expressed in any
of the formats shown in Table 2-2.

TABLE 2-2 Common Valid Date and Time String Literal Formats

Format Example

Numeric 5/15/2008, 15-05-2008, 05.15.2008

Alphabetical May 15, 2008

ISO8601 2008-05-15, 200805153

ODBC {d’2008-05-15’}

W3C XML 2008-05-15Z

You have similar flexibility for representing times. For example, the same time value can be
expressed as 23:30, 23:30:00, 23:30:00.0000, or 11:30:00 PM. Time zone offsets are expressed
merely by appending a plus or minus sign followed by the UTC hours and minutes for the
zone—for example, +02:00 for Jerusalem.

Note There are even more possible formatting variations than those we’ve indicated here.
The purpose of Table 2-2 is to convey how accommodating SQL Server is with respect to varia-
tions in date and time syntax. Refer to SQL Server Books Online for a complete specification of
supported date and time literal formats.

You can use CAST or CONVERT to extract just the date or time portion of a datetime2 col-
umn for searching. When you perform such a conversion on a datetime2 column that is in-
dexed, SQL Server does not need to resort to a sequential table scan and is able to perform
the much faster index seek to locate the specific date or time. For example, the following
code defines a table with a datetime2 type that has a clustered index. Selecting by date or
time only can be achieved using CONVERT, while still using the clustered index for efficient
searching, as shown in Listing 2-52.

 Chapter 2 T-SQL Enhancements 65

 LISTING 2-52 Using CONVERT to extract the date and time portion from a datetime2 column

 CREATE TABLE DateList(MyDate datetime2)

CREATE CLUSTERED INDEX idx1 ON DateList (MyDate);

-- Insert some rows into DateList...

SELECT MyDate FROM DateList WHERE CONVERT(date, MyDate) = '2005-04-07';

SELECT MyDate FROM DateList WHERE CONVERT(time(0), MyDate) = '09:00:00';

 New and Changed Functions

 All of the traditional date-related and time-related functions, including DATEADD, DATEDIFF,
DATEPART, and DATENAME now of course fully support the new date and time data types
introduced in SQL Server 2008, and several new functions have been added as well. We con-
clude our discussion of the new date and time data types by exploring the T-SQL extensions
added to support them.

 The new SYSDATETIME and SYSUTCDATETIME functions return the date and time on the
server as datetime2 types (with full seven-scale precision accuracy within 100 nanoseconds),
just as the GETDATE and GETUTCDATE functions continue to return the current date and time
as datetime types. Another new function, SYSDATETIMEOFFSET, returns the date and time on
the server as a datetimeoffset type, with a time zone offset refl ecting the regional settings
established on the server, which includes awareness of local daylight savings time. The code
in Listing 2-53 shows the contrast between the various similar server date and time functions.

 LISTING 2-53 Comparing server date and time functions

 SET NOCOUNT ON

SELECT GETDATE() AS 'GETDATE() datetime'

SELECT GETUTCDATE() AS 'GETUTCDATE() datetime'

SELECT SYSDATETIME() AS 'SYSDATETIME() datetime2'

SELECT SYSUTCDATETIME() AS 'SYSUTCDATETIME() datetime2'

SELECT SYSDATETIMEOFFSET() AS 'SYSDATETIMEOFFSET() datetimeoffset'

 Running this code just after 8:20 PM on November 10, 2007, in New York results in the fol-
lowing output:

 GETDATE() datetime

2007-11-10 20:21:19.380

GETUTCDATE() datetime

2007-11-11 01:21:19.380

CREATE TABLE DateList(MyDate datetime2)

CREATE CLUSTERED INDEX idx1 ON DateList (MyDate);

-- Insert some rows into DateList...

SELECT MyDate FROM DateList WHERE CONVERT(date, MyDate) = '2005-04-07';

SELECT MyDate FROM DateList WHERE CONVERT(time(0), MyDate) = '09:00:00';

SET NOCOUNT ON

SELECT GETDATE() AS 'GETDATE() datetime'

SELECT GETUTCDATE() AS 'GETUTCDATE() datetime'

SELECT SYSDATETIME() AS 'SYSDATETIME() datetime2'

SELECT SYSUTCDATETIME() AS 'SYSUTCDATETIME() datetime2'

SELECT SYSDATETIMEOFFSET() AS 'SYSDATETIMEOFFSET() datetimeoffset'

66 Part I Core Fundamentals

SYSDATETIME() datetime2

2007-11-10 20:21:19.3807984

SYSUTCDATETIME() datetime2

2007-11-11 01:21:19.3807984

SYSDATETIMEOFFSET() datetimeoffset

2007-11-10 20:21:19.3807984 -05:00

There are also new TODATETIMEOFFSET and SWITCHOFFSET functions that allow you to per-
form time zone offset manipulations. TODATETIMEOFFSET will convert any date or time type
(that has no time zone offset) to a datetimeoffset type by applying whatever time zone offset
you provide. SWITCHOFFSET makes it easy to fi nd out what the same time is in two different
time zones. You provide the datetimeoffset for a source location and a time zone offset for
a target location, and SWITCHOFFSET returns a datetimeoffset representing the equivalent
date and time in the target location, as shown in Listing 2-54.

 LISTING 2-54 Performing time zone offset manipulations using TODATETIMEOFFSET and SWITCHOFFSET

 DECLARE @TheTime datetime2

DECLARE @TheTimeInNY datetimeoffset

DECLARE @TheTimeInLA datetimeoffset

-- Hold a time that doesn't specify a time zone

SET @TheTime = '2007-11-10 7:35PM'

-- Convert it to one that specifies time zone for New York

SET @TheTimeInNY = TODATETIMEOFFSET(@TheTime, '-05:00')

-- Calculate the equivalent time in Los Angeles

SET @TheTimeInLA = SWITCHOFFSET(@TheTimeInNY , '-08:00')

SELECT @TheTime AS 'Any Time'

SELECT @TheTimeInNY AS 'NY Time'

SELECT @TheTimeInLA AS 'LA Time'

 Here is the output result:

 Any Time

2007-11-10 19:35:00.0000000

NY Time

2007-11-10 19:35:00.0000000 -05:00

LA Time

2007-11-10 16:35:00.0000000 -08:00

DECLARE @TheTime datetime2

DECLARE @TheTimeInNY datetimeoffset

DECLARE @TheTimeInLA datetimeoffset

-- Hold a time that doesn't specify a time zone

SET @TheTime = '2007-11-10 7:35PM'

-- Convert it to one that specifies time zone for New York

SET @TheTimeInNY = TODATETIMEOFFSET(@TheTime, '-05:00')

-- Calculate the equivalent time in Los Angeles

SET @TheTimeInLA = SWITCHOFFSET(@TheTimeInNY , '-08:00')

SELECT @TheTime AS 'Any Time'

SELECT @TheTimeInNY AS 'NY Time'

SELECT @TheTimeInLA AS 'LA Time'

 Chapter 2 T-SQL Enhancements 67

 You can use TODATETIMEOFFSET with INSERT INTO…SELECT to bulk-insert date and time
values with no time zone information from a source table into a target table and to apply a
time zone offset to produce datetimeoffset values in the target table. For example, the fol-
lowing code copies all the row values from the dt2 column in table test1 (of type datetime2,
which has no time zone information) into the dto column in test2 (of type datetimeoffset) and
applies a time zone offset of –05:00 to each copied value:

 INSERT INTO test2(dto)

 SELECT TODATETIMEOFFSET(dt2, '-05:00') FROM test1

 The next example retrieves all the datetimeoffset values from the dto column in the test2 ta-
ble, which can include values across a variety of different time zones. Using a SWITCHOFFSET
function that specifi es an offset of –05:00, the values are automatically converted to New
York time from whatever time zone is stored in the test2 table:

 SELECT SWITCHOFFSET(dto, '-05:00') FROM test2

 Last, both the existing DATEPART and DATENAME functions have been extended to add sup-
port for microseconds (mcs), nanoseconds (ns), and time zone offsets (tz) in the new types, as
shown in Listing 2-55.

 LISTING 2-55 Using the new date portions in SQL Server 2008 with DATEPART and DATENAME

 SET NOCOUNT ON

DECLARE @TimeInNY datetimeoffset

SET @TimeInNY = SYSDATETIMEOFFSET()

-- Show the current time in NY

SELECT @TimeInNY AS 'Time in NY'

-- DATEPART with tz gets the time zone value

SELECT DATEPART(tz, @TimeInNY) AS 'NY Time Zone Value'

-- DATENAME with tz gets the time zone string

SELECT DATENAME(tz, @TimeInNY) AS 'NY Time Zone String'

-- Both DATEPART and DATENAME with mcs gets the microseconds

SELECT DATEPART(mcs, @TimeInNY) AS 'NY Time Microseconds'

-- Both DATEPART and DATENAME with ns gets the nanoseconds

SELECT DATEPART(ns, @TimeInNY) AS 'NY Time Nanoseconds'

 Running this code returns the following output:

 Time in NY

2007-11-10 20:50:55.7851424 -05:00

SET NOCOUNT ON

DECLARE @TimeInNY datetimeoffset

SET @TimeInNY = SYSDATETIMEOFFSET()

-- Show the current time in NY

SELECT @TimeInNY AS 'Time in NY'

-- DATEPART with tz gets the time zone value

SELECT DATEPART(tz, @TimeInNY) AS 'NY Time Zone Value'

-- DATENAME with tz gets the time zone string

SELECT DATENAME(tz, @TimeInNY) AS 'NY Time Zone String'

-- Both DATEPART and DATENAME with mcs gets the microseconds

SELECT DATEPART(mcs, @TimeInNY) AS 'NY Time Microseconds'

-- Both DATEPART and DATENAME with ns gets the nanoseconds

SELECT DATEPART(ns, @TimeInNY) AS 'NY Time Nanoseconds'

68 Part I Core Fundamentals

NY Time Zone Value

-300

NY Time Zone String

-05:00

NY Time Microseconds

785142

NY Time Nanoseconds

785142400

The MERGE Statement

The new MERGE statement in SQL Server 2008 does just what its name says. It combines the
normal insert, update, and delete operations involved in a typical merge scenario, along with
the select operation that provides the source and target data for the merge. That’s right—it
combines four statements into one. In fact, you can combine five statements into one using
the OUTPUT clause, and even more than that with INSERT OVER DML (a new T-SQL feature),
as you’ll see later in this chapter.

In earlier versions of SQL Server, separate multiple statements were required to achieve what
can now be accomplished with a single MERGE statement. This new statement has a flexible
syntax that allows us to exercise fine control over source and target matching, as well as the
various set-based DML actions carried out on the target. The result is simpler code that’s
easier to write and maintain (and also runs faster) than the equivalent code using separate
statements to achieve the same result.

More Info We cover the most pertinent MERGE statement keywords in our discussions. You can
and should refer to Books Online for the complete MERGE syntax.

More Info The MERGE statement is particularly suited to data warehousing scenarios. We cover
the concepts and techniques behind data warehousing in Chapter 14.

Let’s look at our first example, which uses MERGE to efficiently manage our stocks and
trades. We begin by creating the two tables to hold stocks that we own and daily trades that
we make, as shown in Listing 2-56.

 Chapter 2 T-SQL Enhancements 69

 LISTING 2-56 Creating the Stock and Trade tables

 CREATE TABLE Stock(Symbol varchar(10) PRIMARY KEY, Qty int CHECK (Qty > 0))

CREATE TABLE Trade(Symbol varchar(10) PRIMARY KEY, Delta int CHECK (Delta <> 0))

 We start off with 10 shares of Adventure Works stock and 5 shares of Blue Yonder Airlines
stock. These are stored in our Stock table:

 INSERT INTO Stock VALUES ('ADVW', 10)

INSERT INTO Stock VALUES ('BYA', 5)

 During the day, we conduct three trades. We buy 5 new shares for Adventure Works, sell
5 shares of Blue Yonder Airlines, and buy 3 shares for our new investment in Northwind
Traders. These are stored in our Trade table, as follows:

 INSERT INTO Trade VALUES('ADVW', 5)

INSERT INTO Trade VALUES('BYA', -5)

INSERT INTO Trade VALUES('NWT', 3)

 Here are the contents of the two tables:

 SELECT * FROM Stock

GO

Symbol Qty

---------- -----------

ADVW 10

BYA 5

(2 row(s) affected)

SELECT * FROM Trade

GO

Symbol Delta

---------- -----------

ADVW 5

BYA -5

NWT 3

(3 row(s) affected)

 At the closing of the day, we want to update the quantities in our Stock table to refl ect the
trades of the day we recorded in the Trade table. Our Adventure Works stock quantity has
risen to 15, we no longer own any Blue Yonder Airlines (having sold the only 5 shares we
owned), and we now own 3 new shares of Northwind Traders stock. That’s going to involve
joining the Stock and Trade tables to detect changes in stock quantities resulting from our
trades, as well as insert, update, and delete operations to apply those changes back to the

CREATE TABLE Stock(Symbol varchar(10) PRIMARY KEY, Qty int CHECK (Qty > 0))

CREATE TABLE Trade(Symbol varchar(10) PRIMARY KEY, Delta int CHECK (Delta <> 0))

