


i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page i — #1 i
i

i
i

i
i

QUANTITATIVE
BIOSCIENCES
COMPANION IN
MATLAB

Dynamics across Cells,
Organisms, and Populations

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page ii — #2 i
i

i
i

i
i

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page iii — #3 i
i

i
i

i
i

COMPANION IN MATLAB

QUANTITATIVE
BIOSCIENCES

Dynamics across Cells,
Organisms, and Populations

JOSHUA S. WEITZ
BRADFORD P. TAYLOR

Princeton University Press
Princeton and Oxford

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page iv — #4 i
i

i
i

i
i

Copyright © 2024 by Joshua S. Weitz

Princeton University Press is committed to the protection of copyright and the intellectual property our authors
entrust to us. Copyright promotes the progress and integrity of knowledge. Thank you for supporting free speech
and the global exchange of ideas by purchasing an authorized edition of this book. If you wish to reproduce or
distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work
should be sent to permissions@press.princeton.edu

Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540
99 Banbury Road, Oxford OX2 6JX

press.princeton.edu

All Rights Reserved
ISBN (pbk.) 9780691255682
ISBN (e-book) 9780691259628

Library of Congress Control Number: 2023946917

British Library Cataloging-in-Publication Data is available

Editorial: Sydney Carroll and Johannah Walkowicz
Production Editorial: Terri O’Prey
Text Design: Wanda España
Cover Design: Wanda España
Production: Jacqueline Poirier
Copyeditor: Jennifer McClain

Cover image: Simon Dack News / Alamy Stock Photo

MATLAB® is a registered trademarks of The MathWorks®, Inc.
For MATLAB® product information, please contact:
The MathWorks®, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000 Fax: 508-647-7001
E-mail: info@mathworks.com
Web: https://www.mathworks.com
How to buy: https://www.mathworks.com/store
Find your local office: https://www.mathworks.com/company/worldwide

This book has been composed in MinionPro and Omnes

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

-1—
0—

+1—

press.princeton.edu
mailto://info@mathworks.com
https://www.mathworks.com
https://www.mathworks.com/store
https://www.mathworks.com/company/worldwide
mailto://permissions@press.princeton.edu


i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page v — #5 i
i

i
i

i
i

CONTENTS

Preface ix
The goal ix
You can do it xi

Acknowledgments xiii

I MOLECULARANDCELLULARBIOSCIENCES 1

1 Fluctuations and theNature ofMutations 3

1.1 Hands-on approach to mutations and selection 3
1.2 Sampling from provided distributions 4
1.3 Sampling from custom distributions 6
1.4 Comparing binomial and Poisson distributions 8
1.5 The start of dynamics 9
1.6 Inferring parameters from data 11

Solutions to Challenge Problems 15

2 Bistability of Genetic Circuits 21

2.1 Continuous models of cellular dynamics and gene regulation 21
2.2 Simulating coupled ordinary differential equations 23
2.3 Qualitative analysis of nonlinear dynamical systems 25
2.4 Evaluating the local stability of equilibria 28
2.5 Bistability and bifurcation diagrams 31

Solutions to Challenge Problems 35

3 Stochastic Gene Expression andCellular Variability 39

3.1 Simulating stochastic gene expression 39
3.2 Poisson processes: Finding the time of the next event 40
3.3 A theory of timing given multiple stochastic processes 43
3.4 Gillespie algorithm applied to a gene expression model 46
3.5 Loading and saving data 53

Solutions to Challenge Problems 54

v

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page vi — #6 i
i

i
i

i
i

vi Contents

4 EvolutionaryDynamics: Mutations, Selection, andDiversity 59

4.1 Modeling evolutionary dynamics 59
4.2 Transition matrices in Markov processes 60
4.3 The Wright-Fisher model 67

Solutions to Challenge Problems 74

II ORGANISMALBEHAVIORANDPHYSIOLOGY 79

5 Robust Sensing andChemotaxis 81

5.1 Toward chemotaxis in single-celled organisms 81
5.2 Enzyme kinetics 82
5.3 Time-dependent functions in differential equations 84
5.4 Probability distribution redux 86
5.5 E. coli movement 91

Solutions to Challenge Problems 96

6 Nonlinear Dynamics and Signal Processing inNeurons 101

6.1 Computational neuroscience 101
6.2 The Hodgkin-Huxley model 103
6.3 Firing without a current 107
6.4 Neuron dynamics: Thresholds in magnitude and time 109
6.5 Technical appendix 110

Solutions to Challenge Problems 113

7 Excitations and Signaling, fromCells to Tissue 119

7.1 Excitable media: From localized to spatial dynamics 119
7.2 FitzHugh-Nagumo: The ODE model 120
7.3 FitzHugh-Nagumo: One-dimensional PDEs 125

Solutions to Challenge Problems 132

8 Organismal Locomotion throughWater, Air, and Earth 137

8.1 Introduction 137
8.2 The internal origins of movement 138
8.3 Orbits in configuration space 140
8.4 From Borelli to Newton and back again 141

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page vii — #7 i
i

i
i

i
i

Contents vii

8.5 The greatest gait of all 146
Solutions to Challenge Problems 146

III POPULATIONSANDECOLOGICALCOMMUNITIES 151

9 Flocking andCollective Behavior:WhenManyBecomeOne 153

9.1 Agent-based models and emergence in flocks 153
9.2 The Vicsek model 155
9.3 Flocking dynamics 157
9.4 Bonus: The power of leadership 159

Solutions to Challenge Problems 161

10 Conflict andCooperation Among Individuals and Populations 167

10.1 Strategies, games, and populations 167
10.2 Mean field replicator dynamics of microbial games 170
10.3 Stochastic versions of microbial games 171
10.4 Type VI secretion—a killer game, in space 177

Solutions to Challenge Problems 182

11 Eco-evolutionaryDynamics 187

11.1 From predation events to population dynamics 187
11.2 Ecological dynamics when evolution is fast 188
11.3 Functional responses—a microscopic approach 192

Solutions to Challenge Problems 195

12 OutbreakDynamics: FromPrediction toControl 201

12.1 Outbreaks: From deterministic models to stochastic realizations 201
12.2 Epidemic modeling—fundamentals 202
12.3 Stochastic epidemics 207

Solutions to Challenge Problems 210

IV THE FUTUREOFECOSYSTEMS 215

13 Ecosystems: Chaos, Tipping Points, andCatastrophes 217

13.1 Modeling complexity: An enabling view 217
13.2 Small differences, big effects 218

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page viii — #8 i
i

i
i

i
i

viii Contents

13.3 Explosive growth and population catastrophes 223
13.4 Small models of a big climate 227
13.5 Coda 230

Solutions to Challenge Problems 230

Bibliography 237

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page ix — #9 i
i

i
i

i
i

PREFACE

THEGOAL
This computational laboratory guide accompanies the textbook Quantitative Biosciences:
Dynamics across Cells, Organisms, and Populations. The guide is written with students and
early career scientists in mind. The near-term goal is simple: to translate biological prin-
ciples and mathematical concepts into computational models of living systems. The use of
computation is key. Developing computational models both democratizes and broadens
the range of students from diverse backgrounds who can meaningfully integrate mathe-
matical principles and biological concepts. In that sense, the long-term goal of this guide is
to change the culture of how biology is taught and how biological research is conducted in
practice.

As developed, the course upon which both the textbook and these lab notes are based
includes a recurring structure. Eachweek is centered upon a focal scale and biological ques-
tion. Are mutations dependent on selection or independent of selection? How do bacteria
sense and respond to their environment? How do neurons and cardiac cells filter and inte-
grate signals? How do individuals in a collective spontaneously move in flocks? How does
rapid evolutionary change modify the dynamics of populations? These and other questions
motivate a series of two lectures totaling approximately 3 hours that include a mix of bio-
logically focused slides, an introduction to and derivation of mathematical concepts, and a
journal club–like paper discussion. Then, on the third day, the class meets in a “laboratory”
format for another three hours. Each student has their own computer. In front of them is
a student version of that week’s laboratory guide. There are no files to download, at least
not typically. Instead, the laboratory guide includes code in MATLAB, Python, or R that
engages with the themes and questions of the week. The students enter the code because it
turns out that the act of typing reinforces concepts they already understand and highlights
concepts or practices they do not yet understand.

For example, in the first week, we explore evidence that reveals whether mutations are
dependent on or independent of selection.The textbook details both the biological evidence
and mathematical concepts that underlie Luria and Delbrück’s (LD) conclusion that muta-
tions are random and independent of selection (Luria and Delbrück 1943). Yet, if students
are to truly commit these concepts into their own practice, they must strive to re-create
them. In a Quantitative Biosciences class, such an effort could involve asking students to
(re)derive the Luria and Delbrück distribution or its moments. However, doing so would
likely preclude many students who grasp the core idea underlying the LD mechanism but
find rigorous mathematical derivations do not add to their intuition. Instead, we take a dif-
ferent tack. We ask students to translate the mathematical concepts into a computational
model, and then probe the qualitative and quantitative behavior of the model in regimes

ix

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page x — #10 i
i

i
i

i
i

x Preface

that reflect the biological system at hand. The art of building themodel reinforces and deep-
ens student intuition. This is not just a matter of convenience. For many systems of interest,
e.g., neuronal firing, flocking of organisms, or eco-evolutionary dynamics, there may not
exist a closed form solution to derive (or if one exists, it may reflect only a partial, asymp-
totic, or even approximate solution). In essence, computation is an imperative, not just an
alternative.

This book embraces the imperative to create models of living systems for yet another
purpose: to bridge the gap between receiving information from the instructor and reaching
a deeper understanding. This bridging of the gap has been described by the eighteenth-
century chemist Joseph Priestly as “something that cannot be described in words.” David
Kaiser (2005) elaborated on this concept in assessing the history of the dissemination of
Feynman diagrams in the post-WWII era:

Experimentalists must work hard to hone something like artisanal knowledge or
craft skill in addition to an understanding of general principles. Historians and
sociologists have argued that tacit knowledge plays a central role when it comes
to replicating someone else’s instruments, even when the would-be replicator is
already an expert experimentalist or instrument maker.

Replace the word experimentalists with quantitative bioscientists and the word instruments
with code and this quote animates the core of this hands-on computational laboratory
guide. The tacit knowledge helps steer students toward good coding practice, clear and
understandable modeling, and accessible visualizations of model results.

And yet there is one more objective of this computational guide. As taught in a course
format, the computational laboratory guide is meant to help students prepare for home-
work that encourages independent thinking, problem solving, and ultimately independent
research. To do so requires that students are prepared with a diverse repertoire of computa-
tional skill sets. This rationale is similar to that underlying the proliferation of tool-centric
coding workshops in biology. As is apparent, if students cannot load, analyze, and visualize
their data in a rigorous and repeatable manner, that will undermine the quality of well-
designed experiments and sampling schemes. Yet analyzing data in the absence of biological
questions can become a hollow enterprise. If students are to understand how feedbacks in
living systems lead to emergent phenomena not necessarily embedded in the properties
of individual components, then they need to develop a diverse repertoire of simulation
approaches, to build the appropriate simulation model at the appropriate scale.

The goal of teaching practical skills as a means to increase tacit knowledge is embedded
in each module. The modules themselves are not organized by method but by problem, in
parallel to the organization of the main text. But the methods do in fact build upon each
other. Each module introduces and/or reinforces different practical approaches to develop
computational models of living systems. Students who work their way through this book
should expect to gain practical expertise in the following methods:

• Sampling from probability distributions
• Stochastic branching processes
• Continuous time modeling

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page xi — #11 i
i

i
i

i
i

Preface xi

• Local stability analysis for nonlinear dynamical systems
• Stochastic modeling via the Gillespie algorithm
• Markov chains
• Bifurcation analysis
• Excitable system dynamics
• Partial differential equations
• Comparing stochastic to continuous models
• Agent-based simulations
• Discrete time dynamics—including the emergence of chaos

This is a non-trivial list. The mathematics underlying each approach could involve an
entire course. But that is not the point. The point is to help students integrate each of these
concepts when necessary into usable and principled code. In essence, the start of the title—
Quantitative Biosciences—is meant to tell the story, emphasizing the essential integration
of mathematical reasoning and computation in enabling understanding and eventually the
ability of students to make advances of their own. This is a middle path, but one that we
hope proves productive in the long term. Students interested in advanced studies in stochas-
tic processes, nonlinear dynamics, or time series analysis are encouraged to pursue them.
Perhaps they might be even more likely to do so after taking this course.

YOUCANDO IT
After some debate and sufficient reflection, we have decided to replicate the course experi-
ence by organizing each chapter in the format of a student version. Thismeans that chapters
are structured as guides with questions, rather than manuals with solutions. Typically, the
instructor version with solutions to challenge problems is handed out at the end of class.
Here the answers are provided at the end of chapters. To get the most out of this book, we
recommend that you try, as long as is possible, to avoid turning to these pages. Think of it
as your own marshmallow test. The answers are there, but they are not the only answers.
More than anything, the answers are there to ensure that when you get stuck there is a light
to help keep you going along the path.

What then should you, the reader, do? Our recommendation: Just begin.This laboratory
guide comes in three flavors: MATLAB, Python, and R. The descriptions and mathematics
are common to all, so it is up to you to choose a language and stick with it. As applicable,
source code is available at the book’s website, free for download, use, and reuse. In addition,
an optional tutorial in each language is also available on the website, and may represent a
necessary primer for some students before beginning.Many other tutorials exist—but a lack
of deep experience in coding should not prevent you from beginning. Why? Because you
can do it.

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page xii — #12 i
i

i
i

i
i

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page xiii — #13 i
i

i
i

i
i

ACKNOWLEDGMENTS

The central goal of this computational guide is to help students develop the tacit knowledge
needed to explore living systems across scales. As noted in the accompanying textbook,
this guide would not have been possible without the input of colleagues, students in the
Quantitative Biosciences (QBioS) PhD program at Georgia Tech, and those who utilized
material under development as part of undergraduate and graduate programs and as part of
short courses in the United States, France, Italy, and Brazil. Special thanks go to QBioS and
Georgia Tech students who provided critical feedback that has shaped the need for the book
and the nature of the book itself: Qi An, Akash Arani, Emma Bingham, Pablo Bravo, Alfie
Brownless, Rachel Calder, Alexandra Carruthers-Ferrero, Hyoann Choi, Ashley Coenen,
Shlomi Cohen, Raymond Copeland, Sayantan Datta, Kelimar Diaz, Robert Edmiston,
Shuheng Gan, Namyi Ha, Hayley Hassler, Maryam Hejri Bidgoli, Lynn (Haitian) Jin, Elma
Kajtaz, Cedric Kamalseon, Katalina Kimball-Linares, Tucker J. Lancaster, Daniel A. Lauer,
Zewei Lei, Guanlin Li, Hong Seo Lim, Ellen Liu, Lijiang Long, Katie MacGillivray, Jiyeon
Maeng, Andreea Magalie, Pedro Márquez-Zacarías, Zachary Mobille, Daniel Muratore,
Carlos Perez-Ruiz, Aaron R. Pfennig, Rozenn Pineau, Brandon Pratt, Joy Putney, Arad-
hya Rajanala, Athulya Ram, Elisa Rheaume, Rogelio A. Rodriguez-Gonzalez, Benjamin
Seleb, Varun Sharma, Benjamin Shipley, Cassie Shriver, Michael Southard, Sarah Sundius,
Disheng Tang, Stephen Thomas, Kai Tong, Akash Vardhan, Hector Augusto Velasco-Perez,
EthanWold, FionaWood, LeoWood, Siya Xie, Christopher Zhang, Mengshi Zhang, Conan
Y. Zhao, and Baxi Zhong.

Thank you to Van Savage, David Murrugarra, Rafael Peña Miller, and Carles Tardío
Pi for their comprehensive review of the textbook and laboratory guides. Van gets a dou-
ble thanks for his willingness to try out this material in formative stages—thanks also to
Tianyun Lin for facilitating feedback from UCLA students that has been essential to refin-
ing the format and content of the book. Thank you to colleagues at Georgia Tech, especially
those in the Physics of Living Systems program, for their input that shaped the computa-
tional lab guide material over many years, especially Flavio Fenton, J. C. Gumbart, Simon
Sponberg, and Daniel Goldman, as well as to current and former colleagues in Biological
Sciences, especially Will Ratcliff as well as multiple group members who helped teach part
of the course and whose input was critical to improve the material: Stephen Beckett, David
Demory, Adriana Lucia Sanz, JeremyHarris, Joey Leung, and JacopoMarchi. We have tried
to follow the good counsel of our colleagues—any remaining mistakes are ours alone.

The time and resources to develop this computational lab guide have been made possi-
ble, in part, by grants and support from the National Science Foundation (NSF) Physics
of Living Systems, Biological Oceanography Dimensions of Biodiversity, Bridging Ecol-
ogy and Evolution programs, NIH NIGMS, NIH NIAID, Army Research Office, Charities

xiii

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 6:44 — page xiv — #14 i
i

i
i

i
i

xiv Acknowledgments

in Aid Foundation, Marier Cunningham Foundation, Chaire Blaise Pascal Program of the
Íle-de-France, Mathworks Corporation, Simons Foundation, Centers for Disease Control
and Prevention, A. James & Alice B. Clark Foundation, and the Burroughs Wellcome Fund.

Finally, thank you to the entire staff at Princeton University Press, including Ali-
son Kalett, Sydney Carroll, and the copyeditors, illustrators, indexers, and production
specialists who have elevated this material into an integrated whole.

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 1 — #1 i
i

i
i

i
i

Part I

Molecular andCellular Biosciences

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 2 — #2 i
i

i
i

i
i

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 3 — #3 i
i

i
i

i
i

ChapterOne

Fluctuations and theNature ofMutations

1.1 HANDS-ONAPPROACHTOMUTATIONSANDSELECTION
The goal of this lab is to simulate a growing bacterial population, including the ances-
tral “wild type” as well as mutants generated de novo during the growth process. The core
techniques are straightforward: connecting the simplest model of exponential growth with
stochastic events. To do so requires a few techniques, all centered on the ramifications of
sampling from random distributions using MATLAB. As you will see, learning how to
sample from random distributions will be relevant in many biological systems. Indeed,
being able to simulate stochastic dynamics is key for simulating biological systems at scales
from molecules to organisms to ecosystems. Hence, this opening chapter introduces basic
concepts that are used throughout the laboratory guide. This chapter also serves another
function: to link the material in the textbook with the homework.

The laboratory will prepare you to build components of two categories of mutational
models, as illustrated in a generalized schematic form in Figure 1.1. These initial compo-
nents form the basis for the homework problems presented in the main text. In this figure,
the left panel illustrates a branching process in which an individual bacterium in generation
g= 0 divides so that there are two bacteria in generation g= 1, four bacteria in generation
g= 2, and so on such that there are 2g bacteria after g generations. Of these, a fraction of the
offspring may be different than the ancestral wild type. These different bacteria are referred
to asmutants. Notably, in this model, mutants give rise to mutant daughter cells and not to
wild-type cells. The right panel illustrates an alternative model of mutation, in which many
bacteria in a single generation undergo some stochastic change, i.e., a mutation, render-
ing a small number of bacteria into mutants. This latter case may be related to a phenotypic
change, e.g., exposure to a virus or chemical agent. How to build models of both kinds, how
to compare them, and how to reconcile the predictions of such models with experimental
data from Luria and Delbrück form the core of this laboratory.

The key aim of this laboratory is to begin a process to relate the mechanism by
which mutants are generated with signatures that can be measured. These signatures
may include the mean as well as the variance in the number of mutants between parallel
experiments.

3

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 4 — #4 i
i

i
i

i
i

4 Chapter 1

Branching process

g = 0

g = 1

g = 2

g = 3

Mutants
W

il
d

 t
yp

es

Event-associated mutation

Mutant

W
il

d
 t

yp
es

Figure 1.1: Stochastic models of mutation: Mutations are independent of selection (left) or dependent on
selection (right). (Left) Branching process in which a single (or small) number of wild-type bacteria (empty
cells) divide and occasionallymutate; themutants (shaded) also divide. (Right) Mutation occurs randomly
among a large population given interactionwith a selective pressure, leading to a small fraction ofmutants.

1.2 SAMPLINGFROMPROVIDEDDISTRIBUTIONS
In order to simulate stochastic processes, such as mutation in a population, one must
repeatedly sample random numbers. Random numbers can be generated by any modern
programming language. In doing so, it is possible to use built-in functions or to manip-
ulate the generated random numbers to ensure they have a specified mean, variance, and
higher-order moments. For example, to randomly sample a number between 0 and 1, use
the command

rand

Do this a few times. Each number is different. But generating multiple random numbers
one at a time is unnecessary. Instead, generating multiple random numbers can be done
automatically; e.g., use the following commands to randomly sample 100 points between
0 and 1:

randvec = rand(1,100);

or

randvec = rand(100,1);

These commands will generate a set of 100 random numbers either in a row, or a column.
It is also possible, as shown in the introductory coding demos available on the book’s

website, to generate random matrices. Use the following command to generate a random
matrix of size m×n array:

randarray = rand(m,n);

As is apparent, the shape of the matrix can be specified in terms of the number of rows m
and columnsn. If the code does not work, that is probably because you have not yet defined

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 5 — #5 i
i

i
i

i
i

Fluctuations and the Nature of Mutations 5

the size; do so a few times and see how easy it is to generate distinct random matrices. Note
for future reference that two arrays must be the same size in order to perform element-wise
operations (e.g., addition, subtraction, or element-by-element multiplication). Also note
the names of variables—they tend to be descriptive. This is a good practice because it makes
code easier to read, modify, and reuse.The first challenge problem should help get youmore
comfortable working with the core features of random distributions.

CHALLENGEPROBLEM: Properties of RandomDistributions

What is the mean value of a single instance of invoking rand? Similarly, what is the
variance? Once you have identified the mean and variance, plot the distribution of
numbers generated by rand by sampling a large number of points (104) and then
using thehist function to generate a histogram. What shape is the distribution? How
does it change as you change the number of bins for the histogram?

MATLAB also allows sampling different distributions than the uniform distribution.
As one exercise, plot the distribution of the output for the following functions: (i) standard
normal distribution with a mean of 20 and standard deviation of 5 using

randn

and (ii) the Poisson distribution with rate parameter 𝜆= 20 using

poissrnd

Examples of the outputs can be seen in Figure 1.2.
It is possible to shift the range of randomly generated numbers using relatively simple

operations, generating arbitrary variations (in range and location) of preexisting distribu-
tions. This may be useful in many circumstances, not only within the context of the LD

Poisson distribution

0

200

400

600

800

1000
Normal distribution

x=mean_val+std_val*randn(10000,1) x=poissrnd(mean_val)

0 5 10 15 20 25 30 35 40 45 500 10 20 30 40
Value Value

50
0

200

400C
o

u
n

ts

C
o

u
n

ts600

800

1000

Figure 1.2:Sampling from randomdistributions, including thenormal distribution (left) and thePoissondis-
tribution (right).

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 6 — #6 i
i

i
i

i
i

6 Chapter 1

problem. The following challenge problem provides an opportunity to build your intuition
for manipulating and generating random numbers with distinct means and ranges.

CHALLENGEPROBLEM: RandomNumberGeneration

This problem focuses on modifying the means and ranges of random numbers by
modulating the output of built-in random number functions.

• Generate 1000 random numbers equally spaced between 0 and 5.
• Generate 1000 random numbers equally spaced between 2 and 7.
• Generate 1000 random numbers equally spaced between −5 and 5.

In each of these cases, use the built-in random number generator and then simple
arithmetic (i.e., addition, subtraction, and multiplication) to transform the random
numbers to specified ranges. You can do it!

1.3 SAMPLINGFROMCUSTOMDISTRIBUTIONS
MATLAB offers the option to generate specialized distributions. However, it is also possible
to sample from “custom” distributions, i.e., both parametric and non-parametric distribu-
tions. One way to do so is to leverage the cumulative distribution function, or cdf. The cdf
at a point, x, gives the probability of observing a value less than or equal to x. Formally, if
p(x)dx is the probability of observing the random variable between x and x+dx, then the
cdf is

P(x)=∫
x

−∞
p(y)dy (1.1)

where y is a “dummy” variable used here for notational purposes of integrating over
the probability distribution. The cdf is a monotonically increasing function with a range
between 0 and 1. These constraints allow random sampling from arbitrary distribu-
tions if one is provided with the cdf in advance, by leveraging properties of the uniform
distribution. An ideal way to illustrate this is via the exponential distribution.

The exponential distribution arises in many biological processes. For example, for pro-
cesses that randomly occur with a constant rate 𝜆, then the time of the first occurrence of
an event is exponentially distributed such that p(x)=𝜆e−𝜆x, given mean time 1/𝜆. The cdf
of the exponential distribution is 1− e−𝜆x. Most numerical software tools have packages
to sample exponential random numbers; this is precisely why it is instructive to compare
the built-in solution to the custom solution. Indeed, one can think of the cdf of the expo-
nential random distribution as having a one-to-one correspondence with the cdf of the
uniform random distribution. That is, whereas half the values generated by a uniform ran-
dom distribution will be < 0.5, that is not true for an exponential distribution. Instead,
given the shape parameter 𝜆, then half the values of an exponential distribution will have
values x< xu such that 1− e−𝜆xu = 0.5. This insight can help move from one distribution to
the other.

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 7 — #7 i
i

i
i

i
i

Fluctuations and the Nature of Mutations 7

To sample random numbers from the exponential distribution, first sample from the
uniform distribution between 0 and 1.

probsamp = rand;

Think of this as a random value of P, which we denote as cu. By randomly sampling the cdf
of the uniform random distribution, the next question becomes: what value of the expo-
nentially distributed random variable xe corresponds to that point in the cdf? To answer
this question requires that we invert the cdf, i.e., P= 1− e−𝜆xe , to obtain an equation of xe
in terms of the cdf. To show this in action, denote cu as the randomly selected value from
the cdf of the uniform distribution. To map the cdf of the uniform distribution onto the
cdf of the exponential distribution (our custom distribution) requires that cu = 1− e−𝜆xe .
For xe to be an exponentially distributed random number requires transforming the uni-
form random numbers into the exponentially distributed random numbers we would like
to generate:

1− e−𝜆xe = cu

e−𝜆xe = 1− cu

−𝜆xe = log 1− cu

xe =
− log 1− cu

𝜆 (1.2)

This gives xe =− 1
𝜆 log (1− cu). This converts the sampling distribution of rand (i.e., cu) to

an exponential distribution. In order to use this repeatedly, it will be convenient to make
and save a function:

function exprand = rand2exp(probsamp,lambda)
exprand = -1/lambda*log(1-probsamp);

end

The following section leverages the prior code snippet for using uniform sampling to
generate exponentially distributed numbers given a process with rate 𝜆= 1/10:

lambda=1/10;
probsamp = rand(10^3,1);
expprobsamp = rand2exp(probsamp,lambda)

Now it is time to see if any of this works—via a challenge problem.

CHALLENGEPROBLEM: Comparing Exponential RandomSampling

Compare the distribution of 103 exponentially distributed random numbers using the
cdf-basedmethod to the distribution using the following built-inMATLAB command:

matlabexprnd = random('exp',1/lambda,10^3,1); —-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 8 — #8 i
i

i
i

i
i

8 Chapter 1

Note that the function random allows sampling from a number of different common
distributions. (Hint: Another helpful function is the empirical cumulative distribution
function, orecdf.This is useful in generating cumulative distributions from randomly
sampled “data.”) If your code is working, it should look like the following:

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0

0.1

0.2

P
ro

b
ab

il
it

y 
d

is
tr

ib
u

ti
o

n
, p

(x
)

cd
f,

 P
(x

)

Value, x
0 20 40 60

Custom method
Built-in method
!eory, 1 – e–λx

80 100
Value, x

0.3

0.4

0.5
Custom method
Built-in method

These figures show a comparison of customized sampling and built-in exponential ran-
dom sampling via probability distributions (left) and cumulative distributions (right).
For the cdf, the expected distribution is shown as a solid black line.

1.4 COMPARINGBINOMIALANDPOISSONDISTRIBUTIONS
Binomial distributions result from counting the number of occurrences given independent
samples with probability of occurrence p. For example, consider a mutation probability of
p= 10−8. Irrespective of whethermutations are independent of or dependent on selection, it
would typically take a large number of cell divisions (or cells) for a mutant to appear. Using
a binomial distribution, one could, in theory, predict the number of mutants expected to
occur in a single round of cell division or given an exposure of a large collection of n cells to
a selective force. Formally, the binomial distribution denotes the probability that k events
occur out of n trials given the per trial probability p. This distribution is

P(k)=
⎛
⎝
n
k
⎞
⎠
pk (1− p)n−k (1.3)

where (nk) denotes the number of uniqueways of choosing k of n elements (i.e., the binomial
coefficient). However, if occurrences are rare and the number of samples, n, is large, then
the binomial distribution converges to the Poisson distributionwith shape parameter 𝜆=np
(this shape is the expected mean number of events in n trials). To see this computationally,
compare the cdfs of the sample of repeated binomial sampling to repeated Poisson sampling
with varying n. For example, use the following code to obtain and plot the cdf for binomial
random numbers given 100 trials each with probability p= 0.2:

n = 100;
lambda = 20;
p = lambda/n;
numsamps = 10^3;

-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 9 — #9 i
i

i
i

i
i

Fluctuations and the Nature of Mutations 9

binosamps = binornd(n,p,1,numsamps);
sortbino=sort(binosamps,'ascend');
cdfbino=(1:numsamps)/numsamps;
tmph=plot(sortbino,cdfbino,'k-');
set(tmph,'linewidth',2);

Here binornd samples binomial random numbers, and sorting the result allows for an
explicit calculation of the empirical cdf (without using a built-in function).

CHALLENGEPROBLEM: Comparing the Binomial to the Poisson

Compare the binomial and Poisson cdfs for n = 40, 100, and 1000 in each case, assum-
ing there is an expected number of 20 events such that the probability per event
decreases from 0.5 to 0.2 to 0.02, respectively. If your code is working, it should look
something like this:

10 20 30

Value, x

Sample size, n = 40 Sample size, n = 100 Sample size, n = 1000

40
0

0.2

0.4

cd
f

0.6

0.8

1

Binomial
Poisson

10 20 30

Value, x

40
0

0.2

0.4

cd
f

0.6

0.8

1

Binomial
Poisson

10 20 30

Value, x

40
0

0.2

0.4
cd

f

0.6

0.8

1

Binomial
Poisson

Technical note: Keep in mind that the binornd function generates the outcome of
n trials each with a p probability of success. Try to compare outcomes with sum
(rand(n,1)<p). Are the outcomes different in a substantive way than simply sampling
from a binomial? It is worth considering that the binomial distribution is equivalent to
running n trials each with a p probability of success and then reporting how many, m,
were successful. By definition, 0≤m≤n. Hence, each trial is successful with probability
p. Because rand returns uniformly distributed random numbers between 0 and 1, then
rand < p is 1 with probability p and 0 with probability 1− p. As such, by invoking the
rand command n times and comparing it to p, it should return a 1 approximately np times;
this is, by definition, 𝜆 from above. Hence, just as we used the uniform random distribution
to generate exponentially distributed numbers, it is also possible to use the same distribu-
tion to generate random events that have precisely the same properties as binomial random
numbers.

1.5 THE STARTOFDYNAMICS
The schematics in Figure 1.1 illustrate two distinct mechanisms by which mutant bacte-
ria can increase in number in a population. Via the independent mutation hypothesis,
mutations happen rarely during cell division and then selection acts upon them later. Via

—-1

—0

—+1



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 10 — #10 i
i

i
i

i
i

10 Chapter 1

the dependentmutation hypothesis, mutations only occurwhen the cell experiences a selec-
tion pressure, and in that case a small fraction of heritable cells acquire a mutation. The
consequences of these two ideas are examined at length in themain text and then developed
as the centerpiece of the homework problems. Yet to get there requires that you develop a
dynamic simulation.

Rather than giving away the homework (and the fun involved in doing this yourself),
there is a way to start along the path toward dynamics. First, consider the case where
mutations are dependent on selection. It should be apparent that manipulating probabil-
ity distributions as described here can be used to generate a small number of mutants in a
population. For example, consider the case where there are n= 105 cells and p= 10−4. In that
event, one expects approximately 10 mutational events, which can be generated as follows:
sum(rand(n,1)<p). Yet the case of the independent selection is more difficult.

As a start to a dynamic model, consider a two-step process. First, a population of cells,
with certain features doubles in size. Second, a fraction of the cells changes in some way.
Simply to illustrate this point, initialize a 1× 5 array with 0.5 in the second entry, e.g.,

x=zeros(1,5);
x(2)=0.5;

Next, double the size of the array. How to do this is up to you. Indeed, doubling an array
is perhaps a crude way to simulate a dynamic process, but it provides some intuition to
the underlying changes in the system. It also helps illustrate ways to concatenate matrices
together, e.g., y=[x,x]; Examine the output of y and notice that there are now instances
of a 0.5 value, in the second and seventh positions. This is a direct result of concatenating
the matrices. Now, if the value of 0.5 was some property of a cell, then it is clear that two
cells have that same property. If instead one used a value of 1 for a mutant and 0 for a
wild type, then it is apparent that the process of cell division (which doubled the number of
cells) also doubled the number of mutants. Of course, at this point it would be important
to change the property of y in the event of a new mutation. In that case, you can use the
random number generating methods already described to decide which, if any, of the array
elements to change.

Of course, if you want to see what happens in a few instances, consider this loop:

x=[1,0];
for i=1:4,
x=[x,x]

end

The result should be a growing list of 0s and 1s:

1 0

1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...
-1—
0—

+1—



i
i

“125-110271_Weitz_Biosciences_4P” — 2023/11/14 — 7:13 — page 11 — #11 i
i

i
i

i
i

Fluctuations and the Nature of Mutations 11

This kind of approach loses track of the mother-daughter relationships (at least explicitly).
But it is possible to modify the arrays and then begin to change both the size and the nature
of the population.

How to build models of bacterial growth and mutation is treated in detail in the text-
book (and associated homework). From a computational perspective, suchmodels are built
around a few simple ideas, including adding elements to an array and changing the value of
an array. For example, here are a series of small exercises that illustrate core concepts toward
building your own simulation model of bacterial growth and mutation. Type in each and
modify them. Soon you may just be ready to tackle the question of whether mutations are
dependent on or independent of selection.

CHALLENGEPROBLEM: AStep towardBacterial Growth

Write a program to generate an in silico population of 100 bacteria, of which ≈ 90% are
wild types and the rest are mutants (denote these as 1s and 0s, respectively). Then dou-
ble the size of this population while retaining the properties of the original population.
Finally, switch one element, either 0 to 1 or 1 to 0.

1.6 INFERRINGPARAMETERS FROMDATA
Thus far, this laboratory has provided resources for sampling from and manipulating dif-
ferent probability distributions—with an eye toward developing dynamic simulations of
growing and mutating bacterial populations. These can be used in a generative sense, as
described in the textbook, to compare and contrast the independent and acquired muta-
tional hypotheses. However, there is another question that is relevant to hypothesis testing:
how to infer process rates and parameters from data. To tackle such an approach, first
download the file poissdata.csv, which contains 100 random samples from Poisson
distributions with an unknown rate parameter. Or you can enter the following string of
numbers into an array. Here it is—exciting, no?

3,4,2,5,2,2,5,0,5,2,4,4,4,1,4,3,3,2,3,2,2,6,3,4,4,5,2,2,5,0,1,2,2,2,4,3,
3,2,4,5,2,4,6,3,5,5,1,3,1,2,2,5,4,8,4,3,5,2,6,3,3,2,3,4,4,3,2,2,3,2,6,2,
2,0,2,5,4,5,4,5,3,9,3,5,2,6,3,5,1,1,2,1,4,2,5,7,4,3,4,4

Although this seems abstract, imagine that these numbers correspond to resistance
colonies measured after a Luria-Delbrück (LD) experiment—it turns out that these have
features quite distinct from the LD experiments, but they nonetheless provide a good basis
for deeper exploration. The remainder of this lab is aimed at estimating the rate parame-
ter, i.e., the unknown 𝜆, from which one could estimate the unknown mutation rate. These
steps are the centerpiece of the homework. Hence, it’s worthwhile to take some time to
understand the inverse problem using a simpler example.

The central objective of parameter inference is to try to identify a value (or set of val-
ues) that is compatible with observations. The degree of compatibility may depend on
one’s preference for the unexpected. In practice, most inference approaches try to ask the

—-1

—0

—+1


