


Structural Econometr ic Model ing in Industr ia l
Organizat ion and Quantitat ive Market ing





Structural Econometric
Modeling in Industrial
Organization and

Quantitative Marketing
THEORY AND APPLICATIONS

ALI HORTAÇSU AND JOONHWI JOO

PRINCETON UNIVERSITY PRESS

PRINCETON & OXFORD



Copyright c© 2023 by Princeton University Press

Princeton University Press is committed to the protection of copyright and the intellectual property
our authors entrust to us. Copyright promotes the progress and integrity of knowledge. Thank you for
supporting free speech and the global exchange of ideas by purchasing an authorized edition of this
book. If you wish to reproduce or distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work
should be sent to permissions@press.princeton.edu

Published by Princeton University Press
41William Street, Princeton, New Jersey 08540
99 Banbury Road, Oxford OX2 6JX

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Names: Hortaçsu, Ali, author. | Joo, Joonhwi, 1986– author.
Title: Structural econometric modeling in industrial organization and

quantitative marketing : theory and applications / Ali Hortaçsu and
Joonhwi Joo.

Description: Princeton : Princeton University Press, [2023] | Includes
bibliographical references and index.

Identifiers: LCCN 2023003868 (print) | LCCN 2023003869 (ebook) |
ISBN 9780691243467 (hardback) | ISBN 9780691251004 (ebook)

Subjects: LCSH: Econometric models—Case studies. | Industrial organization
(Economic theory)—Econometric models—Case studies. |
Marketing—Mathematical models. | BISAC: BUSINESS & ECONOMICS /
Economics /Microeconomics | BUSINESS & ECONOMICS / Economics / Theory

Classification: LCCHB141 .H673 2023 (print) | LCCHB141 (ebook) |
DDC 330.01/5195—dc23/eng/20230417

LC record available at https://lccn.loc.gov/2023003868
LC ebook record available at https://lccn.loc.gov/2023003869

British Library Cataloging-in-Publication Data is available

Editorial: Joe Jackson, EmmaWagh
Jacket: Wanda España
Production: Lauren Reese
Publicity: William Pagdatoon
Copyeditor: SusanMcClung

Jacket Credit: santima suksawat / Alamy Stock Photo

This book has been composed in Arno Pro

Printed on acid-free paper.∞
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

press.princeton.edu
https://lccn.loc.gov/2023003868
https://lccn.loc.gov/2023003869


CONTENTS

Preface ix

1 Introduction: Structural Econometric Modeling 1

1.1 Model 1

1.1.1 Scientific Model and Economic Model 1
1.1.2 Predictive Model and Causal Model 2

1.2 Econometrics 4

1.3 Structure 5

1.4 Debate around the Structural Econometric

Modeling Approach 7

1.5 Outline of This Book 8

2 Static and Dynamic Discrete Choice 11

2.1 Binary Choice 11

2.1.1 Motivation: Linear Probability Model 11
2.1.2 Binary Logit and Binary Probit Model 12
2.1.3 Marginal Effects 15

2.2 Multiple Choice: Random Utility Maximization Framework 15

2.2.1 Preliminary Results: Type I Extreme Value Distribution

and Its Properties 16
2.2.2 The Simple Logit Model 19
2.2.3 Independence of Irrelevant Alternatives and

the Nested Logit Model 21
2.2.4 Discussion 23

2.3 Single-Agent Dynamic Discrete Choice 24

2.3.1 Full-Solution Method with Fixed-Point Iteration 25
2.3.2 Estimation with Conditional Choice Probability Inversion 31

v



vi contents

2.3.3 Nested Pseudo-Likelihood Estimation 34
2.3.4 Extension to Incorporate Unobserved State Variables 39
2.3.5 (Non)-identification of the Discount Factor 43

3 Demand Estimation Using Market-Level Data 47

3.1 Product-Space Approach 48

3.1.1 Linear and Log-Linear Demand Model 48
3.1.2 The Almost Ideal Demand System 48
3.1.3 Further Discussion of the Product-Space Approach 51

3.2 Characteristics-Space Approach I: Static Logit

Demand Models 52

3.2.1 Microfoundation: Discrete-Choice Random

Utility Maximization 52
3.2.2 Logit Demand Models with Aggregate Market Data 54
3.2.3 Further Discussion of the Static Logit Demand Models 59

3.3 Characteristics-Space Approach II: Extensions of

the Static Logit Demand Models 70

3.3.1 Accommodating Zero Market Shares 70
3.3.2 Characteristics-Space Approach without Random

Utility Shocks 72

4 Estimation of Discrete-Game Models 79

4.1 Estimation of Discrete-Game Models with

Cross-Sectional Data 79

4.1.1 Static Discrete Games with Complete Information 80
4.1.2 Static Discrete Games with Incomplete Information 90
4.1.3 Further Discussion of the Estimation of Game Models

with Cross-Sectional Data 94

4.2 Estimation of Dynamic Discrete-Game Models 95

4.2.1 Industry Dynamics in an Oligopolistic Market and

the Markov Perfect Equilibrium 95
4.2.2 Estimation Frameworks of Dynamic Discrete Games 98
4.2.3 Further Issues and Discussion of Dynamic Game

Models Estimation 107



contents vii

5 Empirical Frameworks of Consumer Search 113

5.1 Utility Specification and Some Preliminary Results 113

5.1.1 Utility Specification in Consumer Search Models 113
5.1.2 Some Preliminary Results on Stochastic Dominance 114

5.2 Classical Search-Theoretic Models: Sequential Search

and Simultaneous Search 115

5.2.1 Sequential Search 117
5.2.2 Simultaneous Search 124

5.3 Price Dispersion in the Market Equilibrium and Search Cost

Identification with Price Data 130

5.3.1 Critiques of Classical Consumer Search Models as Explanations

of the Observed Price Dispersion 130
5.3.2 Equilibrium Price-Dispersion Models and Search-Cost

Distribution Identification Using Market-Level Price Data 132

5.4 Empirical Frameworks with Search-Set Data or Their Proxy 145

5.4.1 Empirical Frameworks of Sequential Search 145
5.4.2 Empirical Frameworks of Simultaneous Search 153
5.4.3 Testing the Modes of Search and Further Reading 156

6 Auctions: Theory and Empirics 161

6.1 Bidders’ Valuations 162

6.1.1 Private Values versus Interdependent Values 162
6.1.2 Symmetry versus Asymmetry of Bidders 163

6.2 Single-Unit Auctions with Independent Private

Values: Theory 163

6.2.1 The Four Standard Auctions and Their Equilibrium Strategies 164
6.2.2 Revenue Equivalence and Allocative Efficiency 168
6.2.3 Extensions 170

6.3 Single-Unit Auctions with Independent Private Values:

Empirics and Econometrics 175

6.3.1 Empirics and Econometrics for SPAs 175
6.3.2 Empirics and Econometrics for FPAs 180

6.4 Single-Unit Auctions with Interdependent Values 190

6.4.1 Theory 190
6.4.2 Empirics and Econometrics 200



viii contents

6.5 Multiunit and Multi-Good Auctions 207

6.5.1 The Wilson Model and Its Applications 207
6.5.2 Sponsored Search Auctions 221
6.5.3 Package Bidding and Spectrum Auctions 223

Appendix Review of Basic Estimation Methods 231

A.1 Maximum Likelihood Estimation 231

A.1.1 Definitions and Preliminary Results 231
A.1.2 Consistency and Asymptotic Efficiency 235

A.2 Generalized Method of Moments 238

A.2.1 Motivation and Setup 238
A.2.2 Efficiency Bound 239
A.2.3 Tests of Overidentifying Restrictions 244
A.2.4 Quadratic-Form Minimization and Implementation 246

A.3 Simulation-Based Estimation Methods 247

A.3.1 A Starting Point: The Glivenko-Cantelli Theorem 248
A.3.2 Method of Simulated Moments 248
A.3.3 Maximum Simulated Likelihoods 250
A.3.4 Implementation Algorithms 250

Index 253



PREFACE

This book is prepared for a course on structural econometric methods used in
empirical industrial organization and quantitativemarketing. The targeted readers
are second-year PhD students, who are assumed to have basic knowledge of first-
year microeconomics and econometrics. We tried to give a concise and coherent
overview of the literature, while not losing the key insights and features of the
important structural econometric models and the associated estimationmethods.

The purpose of this manuscript is to provide a compact overview of toolkits
that can be used for a structural empirical analysis in industrial organization,
quantitative marketing, and other related fields. Treatments on the subjects are
far from complete, although we tried to include as detailed list of references as
possible. The references at the end of each chapter include all the cited works
in the body, and some additional readings related to the topic. We recommend
that readers interested in a particular topic consult the references listed at the
end of each chapter, and the relevant handbook chapters as well. We focus more
on the formulations of economic and econometric models, estimation methods,
and estimation algorithms. In many instances, we abstract away from concrete
empirical applications. We emphasize that this is not because we think the
applications are unimportant, but due to the limited scope of this volume.

We are grateful to Terry Culpepper and Steve (Haoran) Li, who helped
prepare themanuscript. JinMiao, Eric Richert, Jinyeong Son, and two anonymous
reviewers read the manuscript very carefully and helped root out several errors
and expositional problems. Hortaçsu would like to thank Rana, Suna, and Mina
for their unwavering support throughout the project. Joo is grateful to Jean-Pierre
Dubé for his continued guidance and support.

The authors’ names are in alphabetical order and each contributed equally.
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Introduction: Structural
Econometric Modeling

Structural econometric modeling is a set of approaches that rely extensively on
economic theory to explicitly specify and test the relationships amongdistinct eco-
nomic phenomena. The terminology defines three parts: structure, econometrics,
and model. In what follows, we first discuss what each part of the terminology
entails, in reverse order. Then we touch upon the debate around the structural
econometric modeling approach against its reduced-form counterpart.

1.1 Model

This section discusses what an economic model is. Then we articulate when a
model should be considered as capturing only correlations and when a model can
be considered as capturing causality as well. We begin our discussion in a broader
context of howmodels are built and tested in science.

1.1.1 Scientific Model and Economic Model

A scientific model consists of abstractions and simplifications of the real world,
selecting and incorporating only the relevant aspects of the world that a researcher
is analyzing. Scientificmodels aremost commonly formulated usingmathematical
language.One of themajor strengths of utilizing amodel in science comes from its
logic of establishing the relations among distinct variables: build a model and test
the predictions from thatmodel using real-world data. Themain goal of building a
model is to specify hypothetical relationship among distinct phenomena, summa-
rized in the form of variables, in a testable form. Once amodel is built, predictions
from that model are subject to tests using statistical methods applied to real-world
data. A statistical test of a scientific model is expressed in terms of testing the null

1



2 chapter 1

and alternative hypotheses. Very roughly, the probability that the null hypothesis
is not true given the data boils down to the p-value. That is, the p-value is gives the
probability that a test statistic is obtained just by coincidence, given that (1) the
null and alternativehypotheses are set up correctly, and (2) an adequate estimation
method is used to compute the p-value. If the real-world data do not support the
predictions from amodel, themodel is rejected.Models that are rejected less often
are considered more reliable, and more reliable models are considered to provide
more reliable predictions.

Economics standson the sameground.Economists build economicmodels and
testmodel predictions using datawith econometricmethods. An immediate ques-
tion might arise: what defines a model as an economic model? We suggest that
there are two key ingredients of an economic model: (1) optimizing behaviors
of (2) the rational agent(s).1 Economic theory begins from preferences, technol-
ogy, information, and various equilibrium concepts. As a result of the optimizing
behavior of one or multiple rational agents, observable/testable equilibrium out-
comes are derived in the form of mathematical statements. Those outcomes are
tested using real-world data with appropriate econometric methods.

1.1.2 Predictive Model and Causal Model

Amodel generally makes testable predictions about correlations between distinct
variables. Such correlations can sometimes imply causal relationships between the
variables of interest, generally undermuchmore stringent conditions and assump-
tions. In this subsection, we discuss when a model can be interpreted as implying
a causal relationship between distinct variables. We begin our discussion with the
following two simple examples. Both examples involve linear models between
explanatory and explained variables.

Example 1.1.1. Suppose that one has collected data on the height and weight of
a randomly selected group in the population. Let yi be the weight, and let xi be the
height of each individual. The researcher runs the following regression:

yi =β1 +β2xi + εi. (1.1.1)

The OLS estimate β̂2 turns out to be positive and highly statistically significant.
Does this finding imply a causal relationship between height and weight?

1. Recent advances in several fields such as behavioral economics allow for violations of those two key
ingredients. For instance, rationality might be bounded or optimization might be imperfect. Although we
focus mostly on conventional microeconomic theory here, we do consider advances in behavioral economics
as important progress in the profession.
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Example 1.1.2. Suppose that one conducted a repeatedHooke’s experiment and
recorded the results. Let yi be the length of the spring, and let xi be the ran-
domly assigned weight of the pendulum. Again, the researcher runs the following
regression:

yi = γ1 + γ2xi + εi. (1.1.2)

The OLS estimate γ̂2 is positive and highly statistically significant. Does this find-
ing imply a causal relationship between theweight of the pendulum and the length
of the spring?

The answer to the first question is definitely no.2 But the answer to the second
question is possibly yes. A positive and highly statistically significant γ̂2 estimate
may be taken as evidence of a causal relationship—that is, xi causes yi. The struc-
tures of the two thought experiments seem to be quite similar at a glance; both
equations (1.1.1) and (1.1.2) represent a linear model between xi and yi,3 a data
set is collected, a simple linear regression is run, and the coefficient estimates have
the same sign and are statistically significant. But the implications on the causality
can be starkly different. Where does this stark difference come from?

To answer this question, we first remind ourselves what regression reveals and
what it does not. The slope coefficient estimate from a simple regression being
positive (negative) is equivalent to the in-sample Pearson correlation coefficient
between the explanatory variable and the explained variable being positive (neg-
ative).4 If the data used in the regression are randomly sampled from the target
population, high statistical significance can be interpreted as the positive (nega-
tive) sample correlation revealed from regression implying the positive (negative)
population correlation.

What regression per se does not reveal is causality between the explanatory vari-
able(s) and the explained variable. The experimental variations during the data-
generating process are what make the correlation evidence of causality. Returning
our focus to the two illustrative examples, the data on xi of the second experiment
are generated by a randomized experiment, where the researcher took full control
over xi. By contrast, the data on weight and height are not generated from a ran-
domizedexperiment.Another possibly exogenous factor, such as goodnutrition, is
likely to simultaneously affect both height andweight; those exogenous factors are
contained in the error term εi and treated as unobservable to the econometrician
in the model considered.

2. If you are not convinced, recall Procrustes, the stretcher, in theOdyssey. When Procrustes stretches the
guest to fit him in his bed, will the guest’s weight increase?

3. We relegate the discussion on the role of εi to section 1.2.
4. Recall from elementary econometrics that the ordinary least squares (OLS) slope coefficient estimate

is the sample covariance of xi and yi scaled by the sample variance of xi.
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An experimental variation in the explanatory variable(s) is essential for identi-
fying the corresponding explanatory variable as a cause for change in the explained
variable. The intuition behind the importance of experimental variation in estab-
lishing causality between two variables can bemore easily illustrated in the context
of omitted-variable bias in linear regression. Suppose that a causal and linear rela-
tionship exists between the vector of explanatory variables (xi, vi) and yi, where vi
is unobserved to a researcher. Furthermore, assume that the correlation between
xi and vi is nonzero, which is usual. If the sign and magnitude of the causal effect
of interest are about variable xi, a researcher may be tempted to run the following
OLS regression:

yi =β1 +β2xi + εi,
and claim β̂ represents the causal effect of xi on yi. This claim is unarguably false
unless the correlation between xi and vi is zero or the correlation between vi and yi
is zero.5 The problem with virtually any observational data is that infinitely many
vi’s are possible that are not observed, and the best way to avoid this situation is to
have xi generated by an experiment, and therefore, it has zero correlation with any
possible omitted variables.

The linear model in Example 1.1.2, once estimated using experimental data on
length and weight as described previously, can be used to predict a causal effect
of the explanatory variable(s) on the explained variable. A model that has causal
interpretation is often referred to as a causal model. On the contrary, the linear
model in Example 1.1.1, after being estimated using observational data on height
and weight, cannot be used to predict a causal relation. However, it does not pre-
vent one from using the model to predict a correlation between the explanatory
variable(s) and the explained variable. Amodel that can only be used to predict the
behavior of the explained variable using the explanatory variable is often referred
to as a predictive model. The usefulness of a causal model is its capability to answer
the questions related to counterfactual experiments; with only a predictive model,
it is generally not possible to answer questions regarding counterfactuals.Counter-
factuals are the ultimate goal of building and calibrating a structural econometric
model. We will discuss more about counterfactuals in section 1.3.

1.2 Econometrics

Economic (theory) models often do not readily incorporate real-world data with-
out an added stochasticity that is necessary to estimate and/or test themodel. The
key characteristic that discerns an econometric model from an economicmodel is

5. See any undergraduate-level econometrics textbook for the reasoning behind this point.
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whether the model can directly incorporate relevant data. To incorporate relevant
data, additional statistical structure should be added to an economic model. As is
often the case, the added statistical structure is imposed in the formof addedunob-
servable (both to the econometrician and/or to economic agents) variable(s) to
the economic model of interest. The error terms εi in Examples 1.1.1 and 1.1.2,
respectively, are examples of added unobservables; εi captures anything other than
the assumed linear relationship between xi and yi, and it is impossible to rationalize
data without the error term. We note that an economic model and an economet-
ric model are sometimes indistinguishable because in some stochastic economic
models, the unobservables (to the economic agents) are inherent in the economic
model.

Conceptually, econometric models have three kinds of error terms. The first
is due to researcher uncertainty, which is sometimes referred to as the “structural
error” or “unobserved heterogeneity.” This kind of error term is observable to the
economic agent, but not to the econometrician. The structural errors affect the
decision of the economic agents in the same way that the observables do. The sec-
ond is driven by agent uncertainty. It is observable to neither the economic agent
nor the econometrician. However, the variable may affect the economic agent’s
decision, often in terms of ex ante expectations. The third is the error term that is
added merely for the rationalization of the data or the tractability of estimation.
This type of error termmay include measurement errors. Distinguishing between
these concepts during the estimation is sometimes difficult or even impossible.
However, being clear about these conceptual distinctions in the modeling stage is
very important because the distinctions may affect the counterfactuals critically.

1.3 Structure

Conducting a counterfactual policy6 experiment is one of the most important
goals of building and calibrating/estimating an econometric model. Through
counterfactual policy experiments, a researcher can answer questions related to
changes in economic outcomes caused by hypothetical changes in a policy that
affects economic agents. The key ingredients of an economic model explained in
section 1.2, optimizing behaviors of rational agents involved and possible changes
in the equilibrium, need to be accounted for during the counterfactual policy
experiments; they need to be explicitly formulated in the econometric model to
evaluate and quantify the causal effect of a change in policy.

6. The term “policy” is used in a broad sense here. It can be a firm’s conduct, government regulation,
consumers’ choice environment, and so on; it does not necessarily mean public policy.
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For a valid counterfactual policy experiment, certain aspects of the correspond-
ing econometricmodel shouldbe taken as invariant to possible changes in a policy;
such invariant aspects are referred to as the structure of the model. Structure in
a model is a set of restrictions how variables behave. For example, in the simple
causal linear model discussed in Example 1.1.2, the key structure imposed is that
yi responds linearly to a change in xi.7 The model parameters of the econometric
model, (γ1, γ2), are set free during the stages of calibration/estimation. Once the
model parameters (γ1, γ2) are estimated, the parameter estimates are also taken as
a part of the structure during predictions and counterfactual experiments.

Economic theory is themain source of the structure in a structural econometric
model. The structure ofmany structural econometricmodels is nonlinear because
most underlying economic models specify nonlinear relationships between the
variables of interest up to the set of unknownparameters. By estimating a structural
econometric model using real-world data, a researcher can obtain the magnitude
of the parameters, in addition to their signs, in the underlying economicmodel. In
turn, the magnitude of the effects resulting from a hypothetical change in a policy
can be quantified; in contrast, it is often the case that only signs of the effects froma
hypothetical policy change can be identified from the reduced-form counterparts
of structural econometric models. However, the ability of quantifying the effects
associatedwith a hypothetical policy change comeswith its costs: the nonlinearity
from explicitly specifying the possible relationships generallymakes the structural
econometric approach much more difficult to implement than its reduced-form
counterpart.

Formulating and estimating a structural econometricmodel typically follow the
following steps: (1)Formulate awell-defined economicmodel of the environment
under consideration; (2) add a sufficient number of stochastic unobservables to
the economic model; (3) identify and estimate the model parameters; and (4)
verify the adequacy of the resulting structural economic model as a description of
the observed data. In step (2), a researcher should decide whether to fully specify
the distribution of the unobservables. Related to steps (2) and (3), estimation of
structural econometricmodels often boils down to obtaining the point-identified,
finite-dimensional, and policy-invariant model parameters.8 A few possibilities

7. The econometric model in equation (1.1.2) is a structural model to the extent that the linearity is taken
as coming from a valid theory that specifies the causal linear relationship between xi and yi. Note that it is also
possible to interpret the econometric model in equation (1.1.2) as an approximation of a possibly nonlinear
causal relationship between xi and yi. More discussions of the interpretation of the linear models follow in
section 1.4.

8. The literature on the partially identified or nonparametric structural econometric models is growing.
We study some examples of them in subsequent chapters.
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exist for step (4). For example, the researcher can split the sample, estimate the
model using only a subset of the sample, and examine the accuracy of the out-
of-sample prediction. Another way of validating the structural models is to match
the predictions of structural models with the data from a randomized experiment.
We think an appropriate model validation is crucial to the credibility of the results
from estimating a structural econometric model and conducting counterfactual
policy experiments using the estimated structuralmodel. A simple sensitivity anal-
ysis alonemay not be enough to persuade the audience that themodel is a credible
and realistic approximation of the world.

1.4 Debate around the Structural

Econometric Modeling Approach

Broadly, there are two ends of building an econometric model from an economic
model: reduced-form and structural econometric models in a narrow sense.9

There has been a debate in the literature between the structural and reduced-form
approaches in econometric modeling.

Reduced-form econometric models abstract away from rational agents, opti-
mization, and equilibria. They specify the simple relationships between the vari-
ables of interest and use relevant estimation methods to back out the parameters.
Their econometric specifications are mostly linear, which has a justification that
linear functions are a first-order approximation of any smooth functions. The
strengths of reduced-form econometric models are their simplicity and relative
robustness to the model misspecifications. On the other hand, a structural econo-
metric model begins by explicitly stating the economic model specifications, such
as the objective functions, the optimizing variable, the equilibrium concept, the
degree of information of the agents and of the econometrician, and the possible
source of endogeneity. Then, the model is solved step by step. As a result, the rela-
tions between the variables are specified in terms of the moment (in)equalities,
likelihoods, or quantile restrictions. Finally, the relevant estimation methods for
such specifications are used to back out the model parameters.

By explicitly specifying the economic models, structural econometric mod-
eling enables one to make in-sample and out-of-sample predictions and policy
counterfactuals. Specifically, the ability to make out-of-sample causal predictions
is one of the greatest strengths of a structural econometric model. For instance,

9. In awide sense, even the linear instrumental-variablemodel is a structural econometricmodel, implicitly
imposing a very specific structure on how the instrumental variables affect the outcome variables. This point
has been thoroughly investigated by Heckman and Vytlacil (2005).
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a reduced-form model of merger identified using retrospective analysis may be
enough topredict amerger impact if the analyst is interested inpredicting the effect
of counterfactual merger with similar attributes to retrospective ones. However,
if one is interested in simulating mergers under a different market environment,
a linear extrapolation is likely to be a poor fit. Furthermore, the linear shape and
even the direction of themerger impact suggested by the reduced-formmodelmay
not be valid anymore under some counterfactual policy experiments, subject to
the “Lucas critique” (see Lucas 1976). By explicitly specifying and estimating the
policy-invariant nonlinear economic relationships between the market environ-
ment and the equilibriumoutcomes of amerger, structural econometricmodeling
allows one to make predictions out-of-sample.

A disadvantage of structural econometric modeling is that the predictions or
policy counterfactuals can be sensitive tomodelmisspecifications. The possibility
ofmodelmisspecification is consideredoneof the greatestweaknesses in the struc-
tural econometric modeling approach, especially because structural econometric
models generally take sophisticated nonlinear causal relationships between vari-
ables, inherited from the underlying economic theory, as given and fixed a priori.
Ideally, every ingredient in a structural econometricmodel could be tested by run-
ning carefully designed, randomized experiments, but it is generally very difficult
when the subject of study is the economic behavior of individuals or organizations.

Taking either approach does not exclude the other, and much successful
research has used one approach to inform work with the other. That said, we view
the reduced-form approach and structural approach to econometric modeling as
complements with different strengths, not substitutes, as explained previously.

1.5 Outline of This Book

Modern empirical industrial organization and quantitative marketing rely exten-
sively on the structural econometric modeling approach using observational data.
The goal of this textbook is to give an overviewof how the various streams of litera-
ture in empirical industrial organization and quantitative marketing use structural
econometric modeling to estimate the model parameters, give economic-model-
based predictions, and conduct policy counterfactuals.

This book consists of six chapters and an appendix. We discuss the basics of
single-agent static and dynamic discrete choice in chapter 2, which is now a stan-
dard baseline modeling framework in empirical industrial organization, quantita-
tive marketing, and many other adjacent fields. In chapter 3, we move on to study
demand estimation with market data, where we introduce demand-estimation
methods in the product space and characteristics space, respectively. In chapter 4,
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we focus on strategic interactions of firms in the static and dynamic setup.We then
move our focus back to consumers to study the empirical frameworks of consumer
search in chapter 5. Finally, we study the theory and empirics of auctions in chap-
ter 6. For completeness, we also summarize basic features of the most commonly
used baseline estimation frameworks in the appendix.

The book does not cover many interesting relevant topics, such as production
function estimation methods and Bayesian learning models. We refer the read-
ers to relevant survey papers and handbook chapters to learn more about these
topics.10
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2

Static and Dynamic
Discrete Choice

The discrete-choice framework, often referred to as “qualitative response mod-
els,” has become a major workhorse in diverse contexts of empirical industrial
organization and other fields in applied microeconomics. In this chapter, we
review the basic theory on the binary choice and multiple discrete-choice mod-
els. Then we proceed to study the dynamic discrete-choice models pioneered by
Rust (1987); Hotz and Miller (1993), and Hotz et al. (1994) to study how the
discrete-choice framework incorporates the forward-looking behavior of an eco-
nomic agent. Throughout this chapter, we assume that individual choice data on
a finite set of alternatives are available. We focus mostly on the fully parametric
setup, of which themain goal often boils down to deriving the likelihood function
for the maximum-likelihood estimation.

2.1 Binary Choice

2.1.1 Motivation: Linear Probability Model

In this section, we consider the binary choice data of individuals indexed by i∈
I :={1, 2, . . . , I}, for alternatives indexed by j∈J := {1, 2, . . . , J}. Throughout
this section, we assume that data for each consumer’s choice on each alternative
are available where the set of alternatives J is not exclusive. Let yi,j be a discrete
outcome variable with only two possibilities, 0 and 1. If consumer i chooses to buy
product j, yi,j = 1; otherwise, yi,j = 0. For notational convenience, our discussion
focuses on a single individual i.

Consider the following linear estimation equation:

yi,j = δj + ηi,j,
11
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in which ηi,j is an error term and δj = x′
jθ , where xj is a vector of covariates that

shifts the choice probability, observable to the econometrician.1

The ordinary least squares (OLS) estimator θ̂OLS is consistent for θ and asymp-
totically normal. The model is called the “linear probability model” because the
prediction ŷj is such that

ŷi,j = Ê
[
yi,j|xj

]= P̂r
(
yi,j = 1|xj

)= x′
j θ̂OLS.

Because this model has the prediction ŷi,j = x′
j θ̂OLS, the OLS estimator provides

us with an easy interpretation of the marginal effects: A one-unit increase in x(l)j
will increase the predicted conditional probability P̂r

(
yi,j = 1|xj

)
by θ̂ (l)OLS. The

implied constant marginal effects follow from construction of the linear probabil-
ity model. An immediate drawback of this approach is that the constant marginal
effect assumption is likely invalid in any discrete-choice model. It yields a poor fit
when ŷi,j is close to 0 or 1, and it eventually leads the model to predict ŷi,j> 1 or
ŷi,j< 0. It motivates the choice of G (·) to be a legitimate probability distribution
with an unrestricted support, as we study in this chapter.2

2.1.2 Binary Logit and Binary Probit Model

Let us formalize the setup. Consider a latent utility y∗i,j specified by

y∗i,j = δj + εi,j εi,j ∼ i.i.d.G (·) (2.1.1)

yi,j =
⎧⎨
⎩
1 if y∗i,j ≥ 0

0 if y∗i,j< 0
,

where δj is the mean utility index that represents the observable component of y∗i,j
to the econometrician; and εi,j represents the idiosyncratic shocks on the latent
utility that are unobservable to the econometrician, which is fully known to the
consumer. We assume that δj and εi,j are orthogonal.

1. Throughout chapter 2, we index the vector of characteristics x only by j, which implies that x can vary
only with the alternatives, not with individuals. However, this restriction is purely for notational convenience.
In principle, x can be indexed by both i and j.

2. We focus on the parametric methods in this section. Note that there are semiparametric index models
that do not require a researcher to specify the shape of G (·). See, for example, Klein and Spady (1993) and
Blundell and Powell (2004).
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The two parametric specifications of G (·) used most often are standard Gaus-
sian and logistic (0, 1). Assume that g (.), the probability density function ofG (.),
is symmetric around 0. This is indeed the case for the standard Gaussian and the
logistic distributionwith locationparameter 0.Consider the following conditional
probability:

Pr
(
yi,j = 1|xj

)= Pr
(
x′
jθ + εi,j> 0

)
= Pr

(
εi,j>−x′

jθ
)

= 1− Pr
(
εi,j ≤ −x′

jθ
)

= Pr
(
εi,j ≤ x′

jθ
)

=G
(
x′
jθ
)
.

The next-to-last equality follows from 1− Pr
(
εi,j ≤ −x′

jθ
)

= Pr
(
εi,j ≤ x′

jθ
)
by

the symmetry of g (.). The Probit model assumes εi,j ∼ i.i.d.N (0, 1), and the
logit model assumes εi,j ∼ i.i.d. logistic (0, 1).3 In both models, either the scale
of θ or G (·)’s scale parameter σ cannot be identified. To see why, consider the
following:

Pr
(
yi,j = 1|xj

)= Pr

(
εi,j

σ
>−x′

jθ

σ

)

= Pr
(
εi,j ≤ x′

jθ
)
.

So long as σ > 0, any change in σ does not affect the choice probability. The
convention is to set σ = 1 rather than adjusting the scale of θ .

Fix i. Suppose that we have the observations
{
yi,j, xj

}J
j=1. The likelihood func-

tion of the binary choice models for individual i is

Li
({

yi,j, xj
}J
j=1 |θ

)
=

J∏
j=1

[
Pr
(
yi,j = 1|xj

)]1(yi,j=1) [Pr (yi,j = 0|xj
)]1(yi,j=0)

=
J∏

j=1

[
G
(
x′
jθ
)]yi,j [

1−G
(
x′
jθ
)](1−yi,j)

. (2.1.2)

3. That is, Pr
(
yi,j = 1|xj

)=G
(
x′jθ
)

= exp
(
x′
jθ
)

1+exp
(
x′
jθ
) .
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The log-likelihood function follows by taking the logarithm

li
({

yi,j, xj
}J
j=1 |θ

)
=

J∑
j=1

{
yi,j lnG

(
x′
jθ
)

+ (1− yi,j
)
ln
[
1−G

(
x′
jθ
)]}

. (2.1.3)

Taking derivatives with respect to the parameter vector θ on equation (2.1.3)
yields the sum of the scores:

si
({

yi,j, xj
}J
j=1 |θ

)
=

J∑
j=1

⎧⎨
⎩ yi,j

G
(
x′
jθ
)g (x′

jθ
)

− 1− yi,j

1−G
(
x′
jθ
)g (x′

jθ
)⎫⎬
⎭ xj

=
J∑

j=1

⎧⎨
⎩

g
(
x′
jθ
)

G
(
x′
jθ
) [

1−G
(
x′
jθ
)] [yi,j −G

(
x′
jθ
)]⎫⎬
⎭ xj.

(2.1.4)

Setting equation (2.1.4) to 0 yields the first-order condition for the maximum-

likelihood estimation for the binary choice models. The
g
(
x′
jθ
)

G
(
x′
jθ
)[

1−G
(
x′
jθ
)] term

can be interpreted as a weighting function; and
[
yi,j −G

(
x′
jθ
)]

is the prediction
error, the expectation of which is zero.

In the logit model, the first-order condition si
({

yi,j, xj
}J
j=1 |θ

)
= 0 simplifies

further, using the fact that ∀z∈ R, g(z)
G(z)[1−G(z)] = 1.4 Combining the fact with

4. For a logistic probability density function g (·) with location parameter 0 and scale parameter 1, the
following holds:

g (z)= exp (z)
1+ exp (z)

− exp (2z)
[1+ exp (z)]2

= [1+ exp (z)] exp (z)− exp (2z)
[1+ exp (z)]2

= exp (z)+ exp (2z)− exp (2z)
[1+ exp (z)]2

= exp (z)
[1+ exp (z)]2

and

G (z) [1−G (z)]= exp (z)
1+ exp (z)

[
1

1+ exp (z)

]
.

Taking the ratio yields g(z)
G(z)[1−G(z)] = 1.
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equation (2.1.4), the first-order condition for the maximum likelihood problem
with the first-order condition simplifies as

si
({

yi,j, xj
}J
j=1 |θ

)
= 0

⇒
J∑

j=1

[
yi,j −G

(
x′
jθ
)]

xj = 0.

If xj contains 1 in its row, the first-order condition also contains ȳ=G
(
x′
jθ
)
.

2.1.3 Marginal Effects

The marginal effect of the binary choice model, ∂ Pr(yi,j=1|xj)
∂x(l)j

, is

∂ Pr
(
yi,j = 1|xj

)
∂x(l)j

=
∂G
(
x′
jθ
)

∂x(l)j

= g
(
x′
jθ
)
θ(l). (2.1.5)

Unlike the linear probabilitymodel, themarginal effect varies across observations.
Heterogeneity in responses exists in this model because of the nonlinearity of
G (·). Onemay report equation (2.1.5) for each observation j in principle. Alterna-
tively, one can consider either (1) the average marginal effect 1J

∑J
j=1 g

(
x′
j θ̂
)
θ̂ (l)

or (2) the marginal effect on average (or median) observation g
(
x̄′θ̂
)
θ̂ (l). It

is acceptable to report either (1) or (2) as the summary measure of marginal
effects; the researchermust be transparent aboutwhich summarymeasure is being
reported.

2.2 Multiple Choice: Random Utility Maximization Framework

To model a discrete choice over multiple alternatives, we introduce the sim-
ple logit model and the nested logit model developed in a series of works by
McFadden, (1974, 1978, 1981) and McFadden and Train (2000), among others.
The random utility maximization (RUM) framework is the major workhorse in
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diverse contexts of applied microeconomics when multiple mutually exclusive
alternatives exist. A common way to derive the logistic choice probabilities is to
begin from the additive i.i.d. type I extreme-value-distributed idiosyncratic utility
shocks. We present some preliminary results on type I extreme value distribu-
tion in section 2.2.1, and then present our main results in the subsections that
follow.

2.2.1 Preliminary Results: Type I Extreme Value Distribution
and Its Properties

Definition. (Type I Extreme Value Distribution) εi ∼T1EV (α) if εi follows the
cumulative distribution function

Pr (εi ≤ ε)= Fα (ε)

= exp [− exp [− (ε−α)]] .

Note that this distribution is also referred to as a “Gumbel distribution” or “dou-
ble exponential distribution.”5 When α= 0, the expectation of a type I extreme
value random variable is the Euler-Mascheroni constant γ ≈ 0.5772. Note that
throughout this book, we will take a location shift by −γ ≈ −0.5772 when it
represents an econometric error term in order to make it a mean-zero random
variable.

Lemma 2.2.1. (Density Function of Type I Extreme Value Distribution) Let Fα (ε)
be the cumulativedistribution functionofT1EV (α). Then theprobability density
function fα (ε)= exp (α− ε) Fα (ε).

Lemma 2.2.2. (Distribution of Maximum over Independently Distributed T1EV
Random Variables) Let εi,j ∼T1EV

(
αj
)
, where εi,j are independent over j. Let

α= ln
[∑J

j=1 exp
(
αj
)]
. Then,

max
j

{
εi,j
}∼T1EV (α).

5. In principle, type I extreme value distribution is a two-parameter distribution, location, and
scale. If the scale parameter is denoted by σ , then the cumulative distribution function would be
Pr (εi ≤ ε)= exp [− exp [− (ε−α) /σ ]]. We normalize the scale parameter to 1 because it cannot be
identified in general.


