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Preface

The subject of this book, traditionally called celestial mechanics, is the oldest
branch of theoretical physics. The publication in 1687 of the Principia, New-
ton’s masterpiece on celestial mechanics, is widely regarded as the capstone
of the Scientific Revolution. Since then, celestial mechanics has attracted the
attention of many of the greatest physicists and mathematicians of the past
several centuries, including Lagrange, Laplace, Gauss, Poincaré, Kolmogorov,
and others. Concepts first explored in celestial mechanics are central to many
if not most branches of physics, and its successful high-precision predictions of
the motions of the planets have impacted disciplines as diverse as navigation
and philosophy.

Celestial mechanics experienced a renaissance in the second half of the twen-
tieth century. Starting in 1957, space flight created a demand for accurate and
rapid orbit calculations as well as a need to understand the qualitative behavior
of a wide variety of orbits. The development of high-speed digital computation
enabled the study of classic problems in celestial mechanics with new tools. Ad-
vances in nonlinear dynamics and chaos theory provided new insights into the
long-term behavior of orbits. Spacecraft visited every planet in the solar sys-
tem and sent back data that dramatically expanded our understanding of the
rich dynamics of their orbits, spins, and satellites. Finally, we have discovered
thousands of planets outside the solar system, and celestial mechanics plays a
central role in the analysis of the observations and the interpretation of their
implications for the formation and evolution of planetary systems.

The primary goal of this book is to provide an introduction to celestial
mechanics that reflects these developments. The reader is assumed to have an
undergraduate background in classical mechanics and methods of mathematical
physics (vectors, matrices, special functions, and so on), and much of what is
needed is summarized in Appendixes B, C and D. The book contains most of
the material that is needed for the reader to carry out research in the dynamics
of planetary systems.

A book is defined in large part by what is left out, and a lot has been left
out of this one. There is no analysis of spacecraft dynamics, except for a few
examples and problems. There is almost no discussion of planet formation, since
the tools that are needed to study this subject are mostly different from those of
celestial mechanics. For similar reasons there is no discussion of planetary rings.
Although general relativity offers a more accurate description of planetary mo-
tions than does Newtonian mechanics, its main use is in compiling high-accuracy
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planetary ephemerides and so it is only described briefly, in Appendix J. Pertur-
bation theory for planets and satellites on nearly circular, nearly coplanar orbits
was the main focus of celestial mechanics in the nineteenth and early twentieth
centuries, but many of the problems for which this theory was needed can now
be solved using computer algebra or numerical orbit integration; thus the topic
is described in much less detail than in earlier books at this level. There is only
limited discussion of the rich phenomenology of extrasolar planets, since this is
a large and rapidly growing subject that deserves a book of its own.

There are problems at the end of the book, many of which are intended to
elaborate on topics that are not covered fully in the main text. Some of the
problems are more easily done using a computer algebra system.

The notation in the book is mostly standard. We regularly use the notation
f(x) = O(x) to indicate that |f(x)/x| is no larger than a constant value as
|x| → ∞. We assume that 00 = 1, although most mathematical and scientific
software treats it as undefined. The symbols ' and ∼ are used to indicate
approximate equality, with ' suggesting higher accuracy than ∼. Vectors and
matrices are denoted by boldface type (a, A) and operators by boldface sans-
serif type (A). We usually do not distinguish row vectors from column vectors;
thus we write a = (a1, a2, a3), in which a is a row vector, as well as Aa, in which
the matrix A multiplies the column vector a.

We are all indebted to the Smithsonian/NASA Astrophysics Data System,
https://ui.adsabs.harvard.edu, and the arXiv e-print service, https://arxiv.org, which
have revolutionized access to the astronomy literature. In large part thanks
to their efforts, most of the literature referenced here can easily and freely be
accessed on the web.

All of the plots were prepared using Matplotlib (Hunter 2007), and most of
the orbit integrations were done using REBOUND (Rein & Liu 2012).

I have learned this subject largely through my colleagues, collaborators and
students, including Eugene Chiang, Luke Dones, Subo Dong, Martin Duncan,
Wyn Evans, Dan Fabrycky, Eric Ford, Jean-Baptiste Fouvry, Adrian Hamers,
Julia Heisler, Kevin Heng, Matthew Holman, Mario Jurić, Boaz Katz, Jacques
Laskar, Renu Malhotra, Norman Murray, Fathi Namouni, Annika Peter, Cristo-
bal Petrovich, Gerald Quinlan, Thomas Quinn, Roman Rafikov, Nicole Rap-
paport, Hanno Rein, Prasenjit Saha, Kedron Silsbee, Aristotle Socrates, Serge
Tabachnik, Dan Tamayo, Alar Toomre, Jihad Touma, Paul Wiegert, Jack Wis-
dom, Qingjuan Yu and Nadia Zakamska. I thank Hanno Rein, Renu Malhotra
and her students, and especially Alar Toomre, who read and commented on large
parts of the manuscript, as well as Alysa Obertas and David Vokrouhlický, who
contributed their research results for the figures. Above all, I am indebted to
Peter Goldreich, who introduced me to this subject. My long collaboration with
him was one of the highlights of my research career.

Much of this book was completed at home during the pandemic that began
in 2020. I am grateful to my wife Marilyn for her unswerving support for this
project, without which it would neither have been started nor finished.

https://ui.adsabs.harvard.edu
https://arxiv.org
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Chapter 1

The two-body problem

1.1 Introduction

The roots of celestial mechanics are two fundamental discoveries by Isaac
Newton. First, in any inertial frame the acceleration of a body of mass m

subjected to a force F is
d
2
r

dt2
= F

m
. (1.1)

Second, the gravitational force exerted by a point mass m1 at position r1 on
a point mass m0 at r0 is

F = Gm0m1(r1 − r0)�r1 − r0�3 , (1.2)

with G the gravitational constant.1 Newton’s laws have now been super-
seded by the equations of general relativity but remain accurate enough
to describe all observable phenomena in planetary systems when they are
supplemented by small relativistic corrections. A summary of the relevant
effects of general relativity is given in Appendix J.

The simplest problem in celestial mechanics, solved by Newton but
known as the two-body problem or the Kepler problem, is to determine
1 For values of this and other constants, see Appendix A.

1



2 CHAPTER 1. THE TWO-BODY PROBLEM

the orbits of two point masses (“particles”) under the influence of their mu-
tual gravitational attraction. This is the subject of the current chapter.2

The equations of motion for the particles labeled 0 and 1 are found by
combining (1.1) and (1.2),

d
2
r0

dt2
= Gm1(r1 − r0)�r1 − r0�3 ,

d
2
r1

dt2
= Gm0(r0 − r1)�r0 − r1�3 . (1.3)

The total energy and angular momentum of the particles are

Etot = 1
2m0�ṙ0�2 + 1

2m1�ṙ1�2 − Gm0m1�r1 − r0� ,
Ltot =m0r0 × ṙ0 +m1r1 × ṙ1, (1.4)

in which we have introduced the notation ṙ = dr�dt. Using equations (1.3)
it is straightforward to show that the total energy and angular momentum
are conserved, that is, dEtot�dt = 0 and dLtot�dt = 0.

We now change variables from r0 and r1 to

rcm ≡ m0r0 +m1r1

m0 +m1
, r ≡ r1 − r0; (1.5)

here rcm is the center of mass or barycenter of the two particles and r is
the relative position. These equations can be solved for r0 and r1 to yield

r0 = rcm − m1

m0 +m1
r, r1 = rcm + m0

m0 +m1
r. (1.6)

Taking two time derivatives of the first of equations (1.5) and using equa-
tions (1.3), we obtain

d
2
rcm

dt2
= 0; (1.7)

2 Most of the basic material in the first part of this chapter can be found in textbooks on clas-
sical mechanics. The more advanced material in later sections and chapters has been treated
in many books over more than two centuries. The most influential of these include Laplace
(1799–1825), Tisserand (1889–1896), Poincaré (1892–1897), Plummer (1918), Brouwer &
Clemence (1961) and Murray & Dermott (1999).
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thus the center of mass travels at uniform velocity, a consequence of the
absence of any external forces.

In these variables the total energy and angular momentum can be written

Etot = Ecm +Erel, Ltot = Lcm +Lrel, (1.8)

where

Ecm = 1
2M �ṙcm�2, Lcm =Mrcm × ṙcm,

Erel = 1
2µ�ṙ�2 − GµM

�r� , Lrel = µ r × ṙ; (1.9)

here we have introduced the reduced mass and total mass

µ ≡ m0m1

m0 +m1
, M ≡m0 +m1. (1.10)

The terms Ecm and Lcm are the kinetic energy and angular momentum as-
sociated with the motion of the center of mass. These are zero if we choose
a reference frame in which the velocity of the center of mass ṙcm = 0. The
terms Erel and Lrel are the energy and angular momentum associated with
the relative motion of the two particles around the center of mass. These
are the same as the energy and angular momentum of a particle of mass µ
orbiting around a mass M (the “central body”) that is fixed at the origin of
the vector r.

Taking two time derivatives of the second of equations (1.5) yields

d
2
r

dt2
= − GM

r3
r = − GM

r2
r̂, (1.11)

where r = �r� and the unit vector r̂ = r�r. Equation (1.11) describes any one
of the following:

(i) the motion of a particle of arbitrary mass subject to the gravitational
attraction of a central body of mass M that is fixed at the origin;

(ii) the motion of a particle of negligible mass (a test particle) under the
influence of a freely moving central body of mass M ;
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(iii) the motion of a particle with mass equal to the reduced mass µ around
a fixed central body that attracts it with the force F of equation (1.2).

Whatever the interpretation, the two-body problem has been reduced to a
one-body problem.

Equation (1.11) can be derived from a Hamiltonian, as described in §1.4.
It can also be written

r̈ = −∇�K, (1.12)

where we have introduced the notation ∇f(r) for the gradient of the scalar
function f(r) (see §B.3 for a review of vector calculus). The function
�K(r) = −GM�r is the Kepler potential. The solution of equations (1.11)
or (1.12) is known as the Kepler orbit.

We begin the solution of equation (1.11) by evaluating the rate of change
of the relative angular momentum Lrel from equation (1.9):

1

µ

dLrel

dt
= dr

dt
× dr
dt
+ r × d2r

dt2
= − GM

r2
r × r̂ = 0. (1.13)

Thus the relative angular momentum is conserved. Moreover, since Lrel

is normal to the plane containing the test particle’s position and velocity
vectors, the position vector must remain in a fixed plane, the orbital plane.
The plane of the Earth’s orbit around the Sun is called the ecliptic, and the
directions perpendicular to this plane are called the north and south ecliptic
poles.

We now simplify our notation. Since we can always choose an inertial
reference frame in which the center-of-mass angular momentum Lcm = 0

for all time, we usually shorten “relative angular momentum” to “angular
momentum.” Similarly the “relative energy” Erel is shortened to “energy.”
We usually work with the angular momentum per unit mass Lrel�µ = r × ṙ
and the energy per unit mass 1

2 �ṙ�2− GM��r�. These may be called “specific
angular momentum” and “specific energy,” but we shall just write “angular
momentum” or “energy” when the intended meaning is clear. Moreover
we typically use the same symbol—L for angular momentum and E for
energy—whether we are referring to the total quantity or the quantity per
unit mass. This casual use of the same notation for two different physical
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quantities is less dangerous than it may seem, because the intended meaning
can always be deduced from the units of the equations.

1.2 The shape of the Kepler orbit

We let (r, ) denote polar coordinates in the orbital plane, with  increas-
ing in the direction of motion of the orbit. If r is a vector in the orbital
plane, then r = rr̂ where (r̂,  ̂) are unit vectors in the radial and azimuthal
directions. The acceleration vector lies in the orbital plane and is given by
equation (B.18),

r̈ = (r̈ − r ̇2)r̂ + (2ṙ ̇ + r ̈) ̂, (1.14)

so the equations of motion (1.12) become

r̈ − r ̇2 = −d�K(r)
dr

, 2ṙ ̇ + r ̈ = 0. (1.15)

The second equation may be multiplied by r and integrated to yield

r
2
 ̇ = constant = L, (1.16)

where L = �L�. This is just a restatement of the conservation of angular
momentum, equation (1.13).

We may use equation (1.16) to eliminate  ̇ from the first of equations
(1.15),

r̈ − L
2

r3
= −d�K

dr
. (1.17)

Multiplying by ṙ and integrating yields

1
2 ṙ

2 + L
2

2r2
+�K(r) = E, (1.18)

where E is a constant that is equal to the energy per unit mass of the test
particle. Equation (1.18) can be rewritten as

1
2v

2 − GM

r
= E, (1.19)
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where v = (ṙ2 + r2 ̇2)1�2 is the speed of the test particle.
Equation (1.18) implies that

ṙ
2 = 2E + 2GM

r
− L

2

r2
. (1.20)

As r → 0, the right side approaches −L2�r2, which is negative, while the
left side is positive. Thus there must be a point of closest approach of the
test particle to the central body, known as the periapsis or pericenter.3 In
the opposite limit, r →∞, the right side of equation (1.20) approaches 2E.
Since the left side is positive, when E < 0 there is a maximum distance that
the particle can achieve, known as the apoapsis or apocenter. Orbits with
E < 0 are referred to as bound orbits since there is an upper limit to their
distance from the central body. Orbits with E > 0 are unbound or escape
orbits; they have no apoapsis, and particles on such orbits eventually travel
arbitrarily far from the central body, never to return.4

The periapsis distance q and apoapsis distance Q of an orbit are de-
termined by setting ṙ = 0 in equation (1.20), which yields the quadratic
equation

2Er
2 + 2GMr −L2 = 0. (1.22)

For bound orbits, E < 0, there are two roots on the positive real axis,

q = GM − �(GM)2 + 2EL
2�1�2

2�E� , Q = GM + �(GM)2 + 2EL
2�1�2

2�E� .

(1.23)
For unbound orbits, E > 0, there is only one root on the positive real axis,

q = �(GM)2 + 2EL
2�1�2 − GM

2E
. (1.24)

3 For specific central bodies other names are used, such as perihelion (Sun), perigee (Earth),
periastron (a star), and so forth. “Periapse” is incorrect—an apse is not an apsis.

4 The escape speed vesc from an object is the minimum speed needed for a test particle to
escape from its surface; if the object is spherical, with mass M and radius R, equation
(1.19) implies that

vesc = �2GM

R
�1�2 . (1.21)
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To solve the differential equation (1.17) we introduce the variable u ≡
1�r, and change the independent variable from t to  using the relation

d

dt
=  ̇ d

d 
= Lu2 d

d 
. (1.25)

With these substitutions, ṙ = −Ldu�d and r̈ = −L2
u
2
d
2
u�d 2, so equa-

tion (1.17) becomes
d
2
u

d 2
+ u = − 1

L2

d�K

du
. (1.26)

Since �K(r) = −GM�r = −GMu the right side is equal to a constant,
GM�L2, and the equation is easily solved to yield

u = 1

r
= GM

L2
[1 + e cos( −$)], (1.27)

where e ≥ 0 and $ are constants of integration.5 We replace the angular
momentum L by another constant of integration, a, defined by the relation

L
2 = GMa(1 − e2), (1.28)

so the shape of the orbit is given by

r = a(1 − e2)
1 + e cos f , (1.29)

where f =  −$ is known as the true anomaly.6
The closest approach of the two bodies occurs at f = 0 or azimuth  =$

and hence$ is known as the longitude of periapsis. The periapsis distance
is r(f = 0) or

q = a(1 − e). (1.30)
5 The symbol $ is a variant of the symbol for the Greek letter ⇡, even though it looks more

like the symbol for the letter !; hence it is sometimes informally called “pomega.”
6 In a subject as old as this, there is a rich specialized vocabulary. The term “anomaly” refers

to any angular variable that is zero at periapsis and increases by 2⇡ as the particle travels
from periapsis to apoapsis and back. There are also several old terms we shall not use:
“semilatus rectum” for the combination a(1− e2), “vis viva” for kinetic energy, and so on.
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When the eccentricity is zero, the longitude of periapsis $ is undefined.
This indeterminacy can drastically slow or halt numerical calculations that
follow the evolution of the orbital elements, and can be avoided by replacing
e and $ by two new elements, the eccentricity components or h and k

variables
k ≡ e cos$, h ≡ e sin$, (1.31)

which are well defined even for e = 0. The generalization to nonzero incli-
nation is given in equations (1.71).

Substituting q for r in equation (1.22) and replacing L
2 using equation

(1.28) reveals that the energy per unit mass is simply related to the constant
a:

E = − GM

2a
. (1.32)

First consider bound orbits, which have E < 0. Then a > 0 by equation
(1.32) and hence e < 1 by equation (1.28). A circular orbit has e = 0 and
angular momentum per unit mass L = (GMa)1�2. The circular orbit has the
largest possible angular momentum for a given semimajor axis or energy, so
we sometimes write

j ≡ L

(GMa)1�2 , where j = �j� = (1 − e2)1�2 (1.33)

ranges from 0 to 1 and represents a dimensionless angular momentum at a
given semimajor axis.

The apoapsis distance, obtained from equation (1.29) with f = ⇡, is

Q = a(1 + e). (1.34)

The periapsis and the apoapsis are joined by a straight line known as the
line of apsides. Equation (1.29) describes an ellipse with one focus at the
origin (Kepler’s first law). Its major axis is the line of apsides and has
length q +Q = 2a; thus the constant a is known as the semimajor axis. The
semiminor axis of the ellipse is the maximum perpendicular distance of the
orbit from the line of apsides, b = maxf [a(1 − e2) sin f�(1 + e cos f)] =
a(1 − e2)1�2. The eccentricity of the ellipse, (1 − b2�a2)1�2, is therefore
equal to the constant e.
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Box 1.1: The eccentricity vector
The eccentricity vector offers a more elegant but less transparent derivation of
the equation for the shape of a Kepler orbit. Take the cross product of L with
equation (1.11),

L × r̈ = − GM

r3
L × r. (a)

Using the vector identity (B.9b), L × r = −r ×L = −r × (r × ṙ) = r2ṙ − (r ⋅ ṙ)r,
which is equal to r

3
dr̂�dt. Thus

L × r̈ = −GM
dr̂

dt
. (b)

Since L is constant, we may integrate to obtain

L × ṙ = −GM(r̂ + e), (c)

where e is a vector constant of motion, the eccentricity vector. Rearranging
equation (c), we have

e = ṙ × (r × ṙ)
GM

− r

r
. (d)

To derive the shape of the orbit, we take the dot product of (c) with r̂ and use the
vector identity (B.9a) to show that r̂ ⋅ (L × ṙ) = −L2�r. The resulting formula is

r = L
2

GM

1

1 + e ⋅ r̂ =
a(1 − e2)
1 + e ⋅ r̂ ; (e)

in the last equation we have eliminated L
2 using equation (1.28). This result is

the same as equation (1.29) if the magnitude of the eccentricity vector equals the
eccentricity, �e� = e, and the eccentricity vector points toward periapsis.

The eccentricity vector is often called the Runge–Lenz vector, although its
history can be traced back at least to Laplace (Goldstein 1975–1976). Runge
and Lenz appear to have taken their derivation from Gibbs & Wilson (1901), the
classic text that introduced modern vector notation.
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Unbound orbits have E > 0, a < 0 and e > 1. In this case equation (1.29)
describes a hyperbola with focus at the origin and asymptotes at azimuth

 =$ ± f∞, where f∞ ≡ cos−1(−1�e) (1.35)

is the asymptotic true anomaly, which varies between ⇡ (for e = 1) and
1
2⇡ (for e → ∞). The constants a and e are still commonly referred to
as semimajor axis and eccentricity even though these terms have no direct
geometric interpretation.

Figure 1.1: The geome-
try of an unbound or hy-
perbolic orbit around mass
M . The impact parame-
ter is b, the deflection an-
gle is ✓, the asymptotic true
anomaly is f∞, and the pe-
riapsis is located at the tip
of the vector q.

Suppose that a particle is on an unbound orbit around a mass M . Long
before the particle approaches M , it travels at a constant velocity which we
denote by v (Figure 1.1). If there were no gravitational forces, the particle
would continue to travel in a straight line that makes its closest approach to
M at a point b called the impact parameter vector. Long after the particle
passes M , it again travels at a constant velocity v

′, where v ≡ �v� = �v′�
because of energy conservation. The deflection angle ✓ is the angle between
v and v

′, given by cos ✓ = v ⋅ v′�v2. The deflection angle is related to the
asymptotic true anomaly f∞ by ✓ = 2f∞ − ⇡; then

tan
1
2✓ = −cos f∞sin f∞ =

1

(e2 − 1)1�2 . (1.36)

The relation between the pre- and post-encounter velocities can be written

v
′ = v cos ✓ − b̂v sin ✓. (1.37)
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In many cases the properties of unbound orbits are best described by the
asymptotic speed v and the impact parameter b = �b�, rather than by orbital
elements such as a and e. It is straightforward to show that the angular
momentum and energy of the orbit per unit mass are L = bv and E = 1

2v
2.

From equations (1.28) and (1.32) it follows that

a = − GM

v2
, e

2 = 1 + b
2
v
4

(GM)2 . (1.38)

Then from equation (1.36),

tan
1
2✓ = GM

bv2
. (1.39)

The periapsis distance q = a(1 − e) is related to the impact parameter b by

q = GM

v2
��1 + b

2
v
4

G2M2
�1�2 − 1� or b

2 = q2 + 2GMq

v2
. (1.40)

Thus, for example, if the central body has radius R, the particle will collide
with it if

b
2 ≤ b2coll ≡ R2 + 2GMR

v2
. (1.41)

The corresponding cross section is ⇡b2coll. If the central body has zero mass
the cross section is just ⇡R2; the enhancement arising from the second term
in equation (1.41) is said to be due to gravitational focusing.

In the special case E = 0, a is infinite and e = 1, so equation (1.29) is
undefined; however, in this case equation (1.22) implies that the periapsis
distance q = L2�(2GM), so equation (1.27) implies

r = 2q

1 + cos f , (1.42)

which describes a parabola. This result can also be derived from equation
(1.29) by replacing a(1 − e2) by q(1 + e) and letting e→ 1.
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1.3 Motion in the Kepler orbit

The period P of a bound orbit is the time taken to travel from periapsis to
apoapsis and back. Since d �dt = L�r2, we have ∫ t2

t1
dt = L−1 ∫  2

 1
r
2
d ;

the integral on the right side is twice the area contained in the ellipse be-
tween azimuths  1 and  2, so the radius vector to the particle sweeps out
equal areas in equal times (Kepler’s second law). Thus P = 2A�L, where
the area of the ellipse is A = ⇡ab with a and b = a(1− e2)1�2 the semimajor
and semiminor axes of the ellipse. Combining these results with equation
(1.28), we find

P = 2⇡ � a
3

GM
�1�2 . (1.43)

The period, like the energy, depends only on the semimajor axis. The mean
motion or mean rate of change of azimuth, usually written n and equal to
2⇡�P , thus satisfies7

n
2
a
3 = GM, (1.44)

which is Kepler’s third law or simply Kepler’s law. If the particle passes
through periapsis at t = t0, the dimensionless variable

` = 2⇡ t − t0
P
= n(t − t0) (1.45)

is called the mean anomaly. Notice that the mean anomaly equals the true
anomaly f when f = 0,⇡,2⇡, . . . but not at other phases unless the orbit is
circular; similarly, ` and f always lie in the same semicircle (0 to ⇡, ⇡ to
2⇡, and so on).
7 The relation n = 2⇡�P holds because Kepler orbits are closed—that is, they return to the

same point once per orbit. In more general spherical potentials we must distinguish the
radial period, the time between successive periapsis passages, from the azimuthal period
2⇡�n. For example, in a harmonic potential �(r) = 1

2
!
2
r
2 the radial period is ⇡�! but the

azimuthal period is 2⇡�!. Smaller differences between the radial and azimuthal period arise
in perturbed Kepler systems such as multi-planet systems or satellites orbiting a flattened
planet (§1.8.3). For the Earth the radial period is called the anomalistic year, while the
azimuthal period of 365.256363 d is the sidereal year. The anomalistic year is longer than
the sidereal year by 0.00327 d. When we use the term “year” in this book, we refer to the
Julian year of exactly 365.25 d (§1.5).
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The position and velocity of a particle in the orbital plane at a given time
are determined by four orbital elements: two specify the size and shape of
the orbit, which we can take to be e and a (or e and n, q and Q, L and E,
and so forth); one specifies the orientation of the line of apsides ($); and
one specifies the location or phase of the particle in its orbit (f , `, or t0).

The trajectory [r(t), (t)] can be derived by solving the differential
equation (1.20) for r(t), then (1.16) for  (t). However, there is a simpler
method.

First consider bound orbits. Since the radius of a bound orbit oscillates
between a(1 − e) and a(1 + e), it is natural to define a variable u(t), the
eccentric anomaly, by

r = a(1 − e cosu); (1.46)

since the cosine is multivalued, we must add the supplemental condition that
u and f always lie in the same semicircle (0 to ⇡, ⇡ to 2⇡, and so on). Thus
u increases from 0 to 2⇡ as the particle travels from periapsis to apoapsis
and back. The true, eccentric and mean anomalies f , u and ` are all equal
for circular orbits, and for any bound orbit f = u = ` = 0 at periapsis and ⇡
at apoapsis.

Substituting equation (1.46) into the energy equation (1.20) and using
equations (1.28) and (1.32) for L2 and E, we obtain

ṙ
2 = a2e2 sin2 u u̇2 = − GM

a
+ 2GM

a(1 − e cosu) −
GM(1 − e2)

a(1 − e cosu)2 , (1.47)

which simplifies to

(1 − e cosu)2u̇2 = GM

a3
= n2 = ˙̀2. (1.48)

Since u̇, ˙̀ > 0 and u = ` = 0 at periapsis, we may take the square root of this
equation and then integrate to obtain Kepler’s equation

` = u − e sinu. (1.49)

Kepler’s equation cannot be solved analytically for u, but many efficient
numerical methods of solution are available.



14 CHAPTER 1. THE TWO-BODY PROBLEM

The relation between the true and eccentric anomalies is found by elim-
inating r from equations (1.29) and (1.46):

cos f = cosu − e
1 − e cosu, cosu = cos f + e

1 + e cos f , (1.50)

with the understanding that f and u always lie in the same semicircle. Sim-
ilarly,

sin f = (1 − e2)1�2 sinu
1 − e cosu , sinu = (1 − e2)1�2 sin f

1 + e cos f , (1.51a)

tan
1
2f = �1 + e1 − e�

1�2
tan

1
2u, (1.51b)

exp(if) = exp(iu) − �
1 − � exp(iu) , exp(iu) = exp(if) + �

1 + � exp(if) , (1.51c)

where

� ≡ 1 − (1 − e2)1�2
e

. (1.52)

If we assume that the periapsis lies on the x-axis of a rectangular coordinate
system in the orbital plane, the coordinates of the particle are

x = r cos f = a(cosu − e), y = r sin f = a(1 − e2)1�2 sinu. (1.53)

The position and velocity of a bound particle at a given time t can be
determined from the orbital elements a, e, $ and t0 by the following steps.
First compute the mean motion n from Kepler’s third law (1.44), then find
the mean anomaly ` from (1.45). Solve Kepler’s equation for the eccentric
anomaly u. The radius r is then given by equation (1.46); the true anomaly
f is given by equation (1.50); and the azimuth  = f+$. The radial velocity
is

vr = ṙ = ndr
d`
= ndr�du

d`�du =
nae sinu

1 − e cosu =
nae sin f

(1 − e2)1�2 , (1.54)

and the azimuthal velocity is

v = r ̇ = L

r
= na(1 − e2)1�2

1 − e cosu = na
1 + e cos f
(1 − e2)1�2 , (1.55)
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in which we have used equation (1.28).
For unbound particles, recall that a < 0, e > 1, and the period is unde-

fined since the particle escapes to infinity. The physical interpretations of
the mean anomaly ` and mean motion n that led to equations (1.44) and
(1.45) no longer apply, but we may define these quantities by the relations

` = n(t − t0), n
2�a�3 = GM. (1.56)

Similarly, we define the eccentric anomaly u by

r = �a�(e coshu − 1). (1.57)

The eccentric and mean anomalies increase from 0 to∞ as the true anomaly
increases from 0 to cos

−1(−1�e) (eq. 1.35).
By following the chain of argument in equations (1.47)–(1.49), we may

derive the analog of Kepler’s equation for unbound orbits,

` = e sinhu − u. (1.58)

The relation between the true and eccentric anomalies is

cos f = e − coshu
e coshu − 1 , coshu = e + cos f

1 + e cos f , (1.59a)

sin f = (e2 − 1)1�2 sinhu
e coshu − 1 , sinhu = (e2 − 1)1�2 sin f

1 + e cos f , (1.59b)

tan
1
2f = �e + 1

e − 1�
1�2

tanh
1
2u. (1.59c)

A more direct but less physical approach to deriving these results is to sub-
stitute u→ iu, `→ −i` in the analogous expressions for bound orbits.

For parabolic orbits we do not need the eccentric anomaly since the
relation between time from periapsis and true anomaly can be determined
analytically. Since ḟ = L�r2, we can use equation (1.42) to write

t − t0 = � f

0

df r
2

L
= � 8q

3

GM
�1�2 � f

0

df

(1 + cos f)2 . (1.60)
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In the last equation we have used the relation L
2 = 2GMq for parabolic

orbits. Evaluating the integral, we obtain

� GM

2q3
�1�2 (t − t0) = tan 1

2f + 1
3 tan

3 1
2f. (1.61)

This is a cubic equation for tan 1
2f that can be solved analytically.

1.3.1 Orbit averages
Many applications require the time average of some quantity X(r,v) over
one period of a bound Kepler orbit of semimajor axis a and eccentricity e.
We call this the orbit average of X and use the notation

�X� = � 2⇡

0

d`

2⇡
X = � 2⇡

0

du

2⇡
(1 − e cosu)X, (1.62)

in which we have used Kepler’s equation (1.49) to derive the second inte-
gral. An alternative is to write

�X� = � P

0

dt

P
X = � 2⇡

0

df

P ḟ
X = 1

PL
� 2⇡

0
df r

2
X; (1.63)

here P and L = r2ḟ are the orbital period and angular momentum. Substi-
tuting equations (1.28), (1.29) and (1.43) for the angular momentum, orbit
shape and period, the last equation can be rewritten as

�X� = (1 − e2)3�2 � 2⇡

0

df

2⇡

X

(1 + e cos f)2 . (1.64)

Equation (1.62) provides the simplest route to derive such results as

�a�r� = 1, (1.65a)

�r�a� = 1 + 1
2e

2
, (1.65b)

�(r�a)2� = 1 + 3
2e

2
, (1.65c)

�(r�a)2 cos2 f� = 1
2 + 2e2, (1.65d)



1.3. MOTION IN THE KEPLER ORBIT 17

�(r�a)2 sin2 f� = 1
2 − 1

2e
2
, (1.65e)

�(r�a)2 cos f sin f� = 0. (1.65f)

Equation (1.64) gives

�(a�r)2� = (1 − e2)−1�2, (1.66a)

�(a�r)3� = (1 − e2)−3�2, (1.66b)

�(a�r)3 cos2 f� = 1
2(1 − e2)−3�2, (1.66c)

�(a�r)3 sin2 f� = 1
2(1 − e2)−3�2, (1.66d)

�(a�r)3 sin f cos f� = 0. (1.66e)

Additional orbit averages are given in Problems 1.2 and 1.3.

1.3.2 Motion in three dimensions
So far we have described the motion of a particle in its orbital plane. To
characterize the orbit fully we must also specify the spatial orientation of
the orbital plane, as shown in Figure 1.2.

We work with the usual Cartesian coordinates (x, y, z) and spherical
coordinates (r, ✓,�) (see Appendix B.2). We call the plane z = 0, corre-
sponding to ✓ = 1

2⇡, the reference plane. The inclination of the orbital
plane to the reference plane is denoted I , with 0 ≤ I ≤ ⇡; thus cos I = ẑ ⋅ L̂,
where ẑ and L̂ are unit vectors in the direction of the z-axis and the angular-
momentum vector. Orbits with 0 ≤ I ≤ 1

2⇡ are direct or prograde; orbits
with 1

2⇡ < I < ⇡ are retrograde.
Any bound Kepler orbit pierces the reference plane at two points known

as the nodes of the orbit. The particle travels upward (ż > 0) at the ascend-
ing node and downward at the descending node. The azimuthal angle �
of the ascending node is denoted ⌦ and is called the longitude of the as-
cending node. The angle from ascending node to periapsis, measured in
the direction of motion of the particle in the orbital plane, is denoted ! and
is called the argument of periapsis.

An unfortunate feature of these elements is that neither ! nor ⌦ is de-
fined for orbits in the reference plane (I = 0). Partly for this reason, the
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Figure 1.2: The angular elements of a Kepler orbit. The usual Cartesian coordinate
axes are denoted by (x, y, z), the reference plane is z = 0, and the orbital plane
is denoted by a solid curve above the equatorial plane (z > 0) and a dashed curve
below. The plot shows the inclination I , the longitude of the ascending node ⌦, the
argument of periapsis ! and the true anomaly f .

argument of periapsis is often replaced by a variable called the longitude of
periapsis which is defined as

$ ≡ ⌦ + !. (1.67)

For orbits with zero inclination, the longitude of periapsis has a simple
interpretation—it is the azimuthal angle between the x-axis and the peri-
apsis, consistent with our earlier definition of the same symbol following
equation (1.29)—but if the inclination is nonzero, it is the sum of two angles
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measured in different planes (the reference plane and the orbital plane).8
Despite this awkwardness, for most purposes the three elements (⌦,$, I)
provide the most convenient way to specify the orientation of a Kepler orbit.

The mean longitude is

� ≡$ + ` = ⌦ + ! + `, (1.68)

where ` is the mean anomaly; like the longitude of perihelion, the mean
longitude is the sum of angles measured in the reference plane (⌦) and the
orbital plane (! + `).

Some of these elements are closely related to the Euler angles that de-
scribe the rotation of one coordinate frame into another (Appendix B.6). Let(x′, y′, z′) be Cartesian coordinates in the orbital reference frame, defined
such that the z

′-axis points along the angular-momentum vector L and the
x
′-axis points toward periapsis, along the eccentricity vector e. Then the

rotation from the (x, y, z) reference frame to the orbital reference frame is
described by the Euler angles

(↵,�,�) = (⌦, I,!). (1.69)

The position and velocity of a particle in space at a given time t are
specified by six orbital elements: two specify the size and shape of the or-
bit (e and a); three specify the orientation of the orbit (I , ⌦ and !), and
one specifies the location of the particle in the orbit (f , u, `, �, or t0).
Thus, for example, to find the Cartesian coordinates (x, y, z) in terms of
the orbital elements, we write the position in the orbital reference frame as(x′, y′, z′) = r(cos f, sin f,0) and use equation (1.69) and the rotation ma-
trix for the transformation from primed to unprimed coordinates (eq. B.61):

x

r
= cos⌦ cos(f + !) − cos I sin⌦ sin(f + !),

y

r
= sin⌦ cos(f + !) + cos I cos⌦ sin(f + !),

z

r
= sin I sin(f + !); (1.70)

8 Thus “longitude of periapsis” is a misnomer, since $ is not equal to the azimuthal angle of
the eccentricity vector, except for orbits of zero inclination.
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here r is given in terms of the orbital elements by equation (1.29).
When the eccentricity or inclination is small, the polar coordinate pairs

e–$ and I–⌦ are sometimes replaced by the eccentricity and inclination
components9

k ≡ e cos$, h ≡ e sin$, q ≡ tan I cos⌦, p ≡ tan I sin⌦. (1.71)

The first two equations are the same as equations (1.31).
For some purposes the shape, size and orientation of an orbit can be de-

scribed most efficiently using the angular-momentum and eccentricity vec-
tors, L and e. The two vectors describe five of the six orbital elements: the
missing element is the one specifying the location of the particle in its orbit,
f , u, `, � or t0 (the six components of the two vectors determine only five
elements, because e is restricted to the plane normal to L).

Note that ! and ⌦ are undefined for orbits with zero inclination; ! and
$ are undefined for circular orbits; and $, ⌦ and I are undefined for radial
orbits (e → 1). In contrast the angular-momentum and eccentricity vectors
are well defined for all orbits. The cost of avoiding indeterminacy is redun-
dancy: instead of five orbital elements we need six vector components.

1.3.3 Gauss’s f and g functions

A common task is to determine the position and velocity, r(t) and v(t),
of a particle in a Kepler orbit given its position and velocity r0 and v0 at
some initial time t0. This can be done by converting r0 and v0 into the
orbital elements a, e, I,!,⌦, `0, replacing `0 by ` = `0 + n(t − t0) and then
reversing the conversion to determine the position and velocity from the new
orbital elements. But there is a simpler method, due to Gauss.

Since the particle is confined to the orbital plane, and r0,v0 are vectors
lying in this plane, we can write

r(t) = f(t, t0)r0 + g(t, t0)v0, (1.72)

9 The function tan I in the elements q and p can be replaced by any function that is propor-
tional to I as I → 0. Various authors use I , sin 1

2
I , and so forth. The function sin I is not

used because it has the same value for I and ⇡ − I .
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which defines Gauss’s f and g functions. This expression also gives the
velocity of the particle,

v(t) = @f(t, t0)
@t

r0 + @g(t, t0)
@t

v0. (1.73)

To evaluate f and g for bound orbits we use polar coordinates (r, )
and Cartesian coordinates (x, y) in the orbital plane, and assume that r0
lies along the positive x-axis ( 0 = 0). Then the components of equation
(1.72) along the x- and y-axes are:

r(t) cos (t) = f(t, t0)r0 + g(t, t0)vr(t0),
r(t) sin (t) = g(t, t0)v (t0), (1.74)

where vr and v are the radial and azimuthal velocities. These equations
can be solved for f and g:

f(t, t0) = r(t)
r0
� cos (t) − vr(t0)

v (t0) sin (t)�,
g(t, t0) = r(t)

v (t0) sin (t). (1.75)

We use equations (1.16), (1.28), (1.29), (1.54) and the relation  = f −f0 to
replace the quantities on the right sides by orbital elements (unfortunately
f is used to denote both true anomaly and one of Gauss’s functions). The
result is

f(t, t0) = cos(f − f0) + e cos f
1 + e cos f ,

g(t, t0) = (1 − e2)3�2 sin(f − f0)
n(1 + e cos f)(1 + e cos f0) . (1.76)

Since these expressions contain only the orbital elements n, e and f , they are
valid in any coordinate system, not just the one we used for the derivation.
For deriving velocities from equation (1.73), we need

@f(t, t0)
@t

= ne sin f0 − e sin f − sin(f − f0)(1 − e2)3�2 ,



22 CHAPTER 1. THE TWO-BODY PROBLEM

@g(t, t0)
@t

= e cos f0 + cos(f − f0)
1 + e cos f0 . (1.77)

The f and g functions can also be expressed in terms of the eccentric ano-
maly, using equations (1.50) and (1.51a):

f(t, t0) = cos(u − u0) − e cosu0

1 − e cosu0
,

g(t, t0) = 1

n
[sin(u − u0) − e sinu + e sinu0],

@f(t, t0)
@t

= − n sin(u − u0)(1 − e cosu)(1 − e cosu0) ,
@g(t, t0)

@t
= cos(u − u0) − e cosu

1 − e cosu . (1.78)

To compute r(t), v(t) from r0 ≡ r(t0), v0 = v(t0)we use the following
procedure. From equations (1.19) and (1.32) we have

1

a
= 2

r
− v

2

GM
; (1.79)

so we can compute the semimajor axis a from r0 = �r0� and v0 = �v0�. Then
Kepler’s law (1.44) yields the mean motion n. The total angular momentum
is L = �r0 × v0� and this yields the eccentricity e through equation (1.28).
To determine the eccentric anomaly at t0, we use equation (1.46) which
determines cosu0, and then determine the quadrant of u0 by observing that
the radial velocity ṙ is positive when 0 < u0 < ⇡ and negative when ⇡ <
u0 < 2⇡. From Kepler’s equation (1.49) we then find the mean anomaly `0
at t = t0.

The mean anomaly at t is then ` = `0 + n(t − t0). By solving Kepler’s
equation numerically we can find the eccentric anomaly u. We may then
evaluate the f and g functions using equations (1.78) and the position and
velocity at t from equations (1.72) and (1.73).
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1.4 Canonical orbital elements

The powerful tools of Lagrangian and Hamiltonian dynamics are essential
for solving many of the problems addressed later in this book. A summary
of the relevant aspects of this subject is given in Appendix D. In this section
we show how Hamiltonian methods are applied to the two-body problem.

The Hamiltonian that describes the trajectory of a test particle around a
point mass M at the origin is

HK(r,v) = 1
2v

2 − GM

�r� . (1.80)

Here r and v are the position and velocity, which together determine the
position of the test particle in 6-dimensional phase space. The vectors r and
v are a canonical coordinate-momentum pair.10 Hamilton’s equations read

dr

dt
= @HK

@v
= v, dv

dt
= −@HK

@r
= − GM

�r�3 r. (1.81)

These are equivalent to the usual equations of motion (1.11).
The advantage of Hamiltonian methods is that the equations of motion

are the same in any set of phase-space coordinates z = (q,p) that are ob-
tained from (r,v) by a canonical transformation (Appendix D.6). For ex-
ample, suppose that the test particle is also subject to an additional potential
�(r, t) arising from some external mass distribution, such as another planet.
Then the Hamiltonian and the equations of motion in the original variables
are

H(r,v, t) =HK(r,v) +�(r, t), dr

dt
= @H
@v

,
dv

dt
= −@H

@r
. (1.82)

10 We usually—but not always—adopt the convention that the canonical momentum p that is
conjugate to the position r is velocity v rather than Newtonian momentum mv. Velocity
is often more convenient than Newtonian momentum in gravitational dynamics since the
acceleration of a body in a gravitational potential is independent of mass. If necessary, the
convention used in a particular set of equations can be verified by dimensional analysis.
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In the new canonical variables,11

H(z, t) =HK(z) +�(z, t), dq

dt
= @H
@p

,
dp

dt
= −@H

@q
. (1.83)

If the additional potential is small compared to the Kepler potential,��(r, t)� � GM�r, then the trajectory will be close to a Kepler ellipse.
Therefore the analysis can be much easier if we use new coordinates and
momenta z in which Kepler motion is simple.12 The six orbital elements—
semimajor axis a, eccentricity e, inclination I , longitude of the ascending
node ⌦, argument of periapsis ! and mean anomaly `—satisfy this require-
ment as all of the elements are constant except for `, which increases linearly
with time. This set of orbital elements is not canonical, but they can be rear-
ranged to form a canonical set called the Delaunay variables, in which the
coordinate-momentum pairs are:

`, ⇤ ≡ (GMa)1�2,
!, L = [GMa(1 − e2)]1�2,
⌦, Lz = L cos I. (1.84)

Here Lz is the z-component of the angular-momentum vector L (see Figure
1.2); L = �L� (eq. 1.28); and ⇤ is sometimes called the circular angular
momentum since it equals the angular momentum for a circular orbit. The
proof that the Delaunay variables are canonical is given in Appendix E.

The Kepler Hamiltonian (1.80) is equal to the energy per unit mass,
which is related to the semimajor axis by equation (1.32); thus

HK = − GM

2a
= −(GM)2

2⇤2
. (1.85)

11 For notational simplicity, we usually adopt the convention that the Hamiltonian and the
potential are functions of position, velocity, or position in phase space rather than functions
of the coordinates. Thus H(r,v, t) and H(z, t) have the same value if (r,v) and z are
coordinates of the same phase-space point in different coordinate systems.

12 However, the additional potential �(z, t) is often much more complicated in the new vari-
ables; for a start, it generally depends on all six phase-space coordinates rather than just
the three components of r. Since dynamics is more difficult than potential theory, the
tradeoff—simpler dynamics at the cost of more complicated potential theory—is generally
worthwhile.
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Since the Kepler Hamiltonian is independent of the coordinates, the mo-
menta ⇤, L and Lz are all constants along a trajectory in the absence of ad-
ditional forces; such variables are called integrals of motion. Because the
Hamiltonian is independent of the momenta L and Lz their conjugate coor-
dinates ! and ⌦ are also constant, and d`�dt = @HK�@⇤ = (GM)2⇤−3 =(GM�a3)1�2 = n, where n is the mean motion defined by Kepler’s law
(1.44). Of course, all of these conclusions are consistent with what we al-
ready know about Kepler orbits.

Because the momenta are integrals of motion in the Kepler Hamiltonian
and the coordinates are angular variables that range from 0 to 2⇡, the De-
launay variables are also angle-action variables for the Kepler Hamiltonian
(Appendix D.7). For an application of this property, see Box 1.2.

One shortcoming of the Delaunay variables is that they have coordinate
singularities at zero eccentricity, where ! is ill-defined, and zero inclination,
where ⌦ and ! are ill-defined. Even if the eccentricity or inclination of an
orbit is small but nonzero, these elements can vary rapidly in the presence of
small perturbing forces, so numerical integrations that follow the evolution
of the Delaunay variables can grind to a near-halt.

To address this problem we introduce other sets of canonical variables
derived from the Delaunay variables. We write q =(`,!,⌦), p =(⇤, L,Lz)
and introduce a generating function S2(q,P) as described in Appendix
D.6.1. From equations (D.63)

p = @S2

@q
, Q = @S2

@P
, (1.86)

and these equations can be solved for the new variables Q and P. For
example, if S2(q,P) = (` + ! + ⌦)P1 + (! + ⌦)P2 + ⌦P3 then the new
coordinate-momentum pairs are

� = ` + ! +⌦, ⇤,

$ = ! +⌦, L −⇤ = (GMa)1�2�(1 − e2)1�2 − 1�,
⌦, Lz −L = (GMa)1�2(1 − e2)1�2(cos I − 1). (1.87)

Here we have reintroduced the mean longitude � (eq. 1.68) and the longi-
tude of periapsis $ (eq. 1.67). Since � and $ are well defined for orbits of
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zero inclination, these variables are better suited for describing nearly equa-
torial prograde orbits. The longitude of the node ⌦ is still ill-defined when
the inclination is zero, although if the motion is known or assumed to be
restricted to the equatorial plane the first two coordinate-momentum pairs
are sufficient to describe the motion completely.

With the variables (1.87) two of the momenta L − ⇤ and Lz − L are
always negative. For this reason some authors prefer to use the generating
function S2(q,P) = (` + ! +⌦)P1 − (! +⌦)P2 −⌦P3, which yields new
coordinates and momenta

� = ` + ! +⌦, ⇤,

−$ = −! −⌦, ⇤ −L = (GMa)1�2�1 − (1 − e2)1�2�,
−⌦, L −Lz = (GMa)1�2(1 − e2)1�2(1 − cos I). (1.88)

Another set is given by the generating function S2(q,P) = `P1 + (` +
!)P2 +⌦P3, which yields coordinates and momenta

`, ⇤ −L = (GMa)1�2�1 − (1 − e2)1�2�,
` + !, L = (GMa)1�2(1 − e2)1�2,
⌦, Lz = (GMa)1�2(1 − e2)1�2 cos I. (1.89)

The action ⇤−L that appears in (1.88) and (1.89) has a simple physical
interpretation. At a given angular momentum L, the radial motion in the
Kepler orbit is governed by the Hamiltonian H(r, pr) = 1

2p
2
r
+ 1

2L
2�r2 −

GM�r (cf. eq. 1.18). The corresponding action is Jr = � dr pr�(2⇡) (eq.
D.72). The radial momentum pr = ṙ by Hamilton’s equations; writing r

and ṙ in terms of the eccentric anomaly u using equations (1.46) and (1.54)
gives

Jr = na
2
e
2

2⇡
� 2⇡

0
du

sin
2
u

1 − e cosu = na2[1 − (1 − e2)1�2] = ⇤ −L. (1.90)

Thus ⇤ − L is the action associated with the radial coordinate, sometimes
called the radial action. The radial action is zero for circular orbits and
equal to 1

2(GMa)1�2e2 when e� 1.
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Box 1.2: The effect of slow mass loss on a Kepler orbit
If the mass of the central object is changing, the constant M in equations like
(1.11) must be replaced by a variable M(t). We assume that the evolution of the
mass is (i) due to some spherically symmetric process (e.g., a spherical wind from
the surface of a star), so there is no recoil force on the central object; (ii) slow, in
the sense that �dM�dt��M�P , where P is the orbital period of a planet.

Since the gravitational potential remains spherically symmetric, the angular
momentum L = (GMa)1�2(1 − e2)1�2 (eq. 1.28) is conserved.

Moreover, actions are adiabatic invariants (Appendix D.10), so during slow
mass loss the actions remain almost constant. The Delaunay variable ⇤ =(GMa)1�2 (eq. 1.84) is an action. Since ⇤ and L are distinct functions of Ma

and e, and both are conserved—one adiabatically and one exactly—then both Ma

and e are also conserved. In words, during slow mass loss the orbit expands, with
a(t) ∝ 1�M(t), but its eccentricity remains constant. The accuracy of this ap-
proximate conservation law is explored in Problem 2.8.

At present the Sun is losing mass at a rate Ṁ�M = −(1.1±0.3)×10−13 yr−1
(Pitjeva et al. 2021). Near the end of its life, the Sun will become a red-giant
star and expand dramatically in radius and luminosity. At the tip of the red-
giant branch, about 7.6Gyr from now, the solar radius will be about 250 times
its present value or 1.2 au and its luminosity will be 2700 times its current value
(Schröder & Connon Smith 2008). During its evolution up the red-giant branch
the Sun will lose about 30% of its mass, and according to the arguments above the
Earth’s orbit will expand by the same fraction. Whether or not the Earth escapes
being engulfed by the Sun depends on the uncertain relative rates of the Sun’s
future expansion and its mass loss.

Finally, consider the generating function S2(q,P) = P1(` + ! + ⌦) +
1
2P2

2
cot(! +⌦) + 1

2P3
2
cot⌦, which yields the Poincaré variables

� = ` + ! +⌦, ⇤,

[2(⇤ −L)]1�2 cos$, [2(⇤ −L)]1�2 sin$,

[2(L −Lz)]1�2 cos⌦, [2(L −Lz)]1�2 sin⌦. (1.91)

These are well defined even when e = 0 or I = 0. In particular, in the limit
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of small eccentricity and inclination the Poincaré variables simplify to

�, ⇤,

(GMa)1�4e cos$, (GMa)1�4e sin$,

(GMa)1�4I cos⌦, (GMa)1�4I sin⌦. (1.92)

Apart from the constant of proportionality (GMa)1�4 these are just the
Cartesian elements defined in equations (1.71).

All of these sets of orbital elements remain ill-defined when the incli-
nation I = ⇡ (retrograde orbits in the reference plane) or e = 1 (orbits with
zero angular momentum); however, such orbits are relatively rare in plane-
tary systems.13

1.5 Units and reference frames

Measurements of the trajectories of solar-system bodies are some of the
most accurate in any science, and provide exquisitely precise tests of physi-
cal theories such as general relativity. Precision of this kind demands careful
definitions of units and reference frames. These will only be treated briefly
in this book, since our focus is on understanding rather than measuring the
behavior of celestial bodies.

Tables of physical, astronomical and solar-system constants are given in
Appendix A.

1.5.1 Time
The unit of time is the Système Internationale or SI second (s), which is
defined by a fixed value for the frequency of a particular transition of ce-
sium atoms. Measurements from several cesium frequency standards are
combined to form a timescale known as International Atomic Time (TAI).

13 A set of canonical coordinates and momenta that is well defined for orbits with zero angular
momentum is described by Tremaine (2001). Alternatively, the orbit can be described using
the angular-momentum and eccentricity vectors, which are well defined for any Kepler
orbit; see §5.3 or Allan & Ward (1963).
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In contrast, Universal Time (UT) employs the Earth’s rotation on its
axis as a clock. UT is not tied precisely to this clock because the Earth’s
angular speed is not constant. The most important nonuniformity is that
the length of the day increases by about 2 milliseconds per century because
of the combined effects of tidal friction and post-glacial rebound. There
are also annual and semiannual variations of a few tenths of a millisecond.
Despite these irregularities, a timescale based approximately on the Earth’s
rotation is essential for everyday life: for example, we would like noon to
occur close to the middle of the day. Therefore all civil timekeeping is based
on Coordinated Universal Time (UTC), which is an atomic timescale that
is kept in close agreement with UT by adding extra seconds (“leap seconds”)
at regular intervals.14 Thus UTC is a discontinuous timescale composed of
segments that follow TAI apart from a constant offset.

An inconvenient feature of TAI for high-precision work is that it mea-
sures the rate of clocks at sea level on the Earth; general relativity implies
that the clock rate depends on the gravitational potential and hence the rate
of TAI is different from the rate measured by the same clock outside the so-
lar system. For example, the rate of TAI varies with a period of one year and
an amplitude of 1.7 milliseconds because of the eccentricity of the Earth’s
orbit. Barycentric Coordinate Time (TCB) measures the proper time ex-
perienced by a clock that co-moves with the center of mass of the solar
system but is far outside it. TCB ticks faster than TAI by 0.49 seconds per
year, corresponding to a fractional speedup of 1.55 × 10−8.

The times of astronomical events are usually measured by the Julian
date, denoted by the prefix JD. The Julian date is expressed in days and
decimals of a day. Each day has 86400 seconds. The Julian year consists of
exactly 365.25 days and is denoted by the prefix J. For example, the initial
conditions of orbits are often specified at a standard epoch, such as

J2000.0 = JD 2451545.0, (1.93)

which corresponds roughly to noon in England on January 1, 2000. The
modified Julian day is defined as

MJD = JD − 2400000.5; (1.94)
14 The utility of leap seconds is controversial, and their future is uncertain.
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the integer offset reduces the length of the number specifying relatively re-
cent dates, and the half-integer offset ensures that the MJD begins at mid-
night rather than noon.

In contrast to SI seconds (s) and days (1 d = 86400 s) there is no unique
definition of “year”: most astronomers use the Julian year but there is also
the anomalistic year, sidereal year, and the like (see footnote 7). For this
reason the use of “year” as a precise unit of time is deprecated. However,
we shall occasionally use years, megayears and gigayears (abbreviated yr,
Myr, Gyr) to denote 1, 106 and 10

9 Julian years. The age of the solar
system is 4.567Gyr and the age of the Universe is 13.79Gyr. The future
lifetime of the solar system as we know it is about 7.6Gyr (see Box 1.2).

The SI unit of length is defined in terms of the second, such that the
speed of light is exactly

c ≡ 299792458m s−1. (1.95)

1.5.2 Units for the solar system
The history of the determination of the scale of the solar system and the
mass of the Sun is worth a brief description. Until the mid-twentieth cen-
tury virtually all of our data on the orbits of the Sun and planets came from
tracking their positions on the sky as functions of time. This information
could be combined with the theory of Kepler orbits developed earlier in this
chapter (plus small corrections arising from mutual interactions between the
planets, which are handled by the methods of Chapter 4) to determine all of
the orbital elements of the planets including the Earth, except for the overall
scale of the system. Thus, for example, the ratio of semimajor axes of any
two planets was known to high accuracy, but the values of the semimajor
axes in meters were not.15 To reflect this uncertainty, astronomers intro-
duced the concept of the astronomical unit (abbreviated au), which was
originally defined to be the semimajor axis of the Earth’s orbit. Thus the
semimajor axes of the planets were known in astronomical units long be-
fore the value of the astronomical unit was known to comparable accuracy.
15 This indeterminacy follows from dimensional analysis: measurements of angles and times

cannot be combined to find a quantity with dimensions of length.
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Since Kepler’s third law (1.44) is GM = 4⇡2
a
3�P 2, and orbital periods P

can be determined so long as we have accurate clocks, any fractional uncer-
tainty ✏ in the astronomical unit implies a fractional uncertainty of 3✏ in the
solar mass parameter GM⊙.

Over the centuries, the astronomical unit was measured by many dif-
ferent techniques, including transits of Venus, parallaxes of nearby solar-
system objects over Earth-sized baselines and stellar aberration. Never-
theless, even in the 1950s the astronomical unit was only known with a
fractional accuracy of about 10−3. Soon after, radar observations of Venus
and Mars and ranging data from interplanetary spacecraft reduced the un-
certainty by several orders of magnitude. The current uncertainty is much
smaller than variations in the Earth’s semimajor axis due to perturbations
from the other planets, so in 2012 the International Astronomical Union
(IAU) re-defined the astronomical unit to be an exact unit of length,

1 au ≡ 149597870700m. (1.96)

Distances to other stars are measured in units of parsecs (abbreviated
pc), the distance at which 1 au subtends one second of arc. Thus the parsec
is also an exact unit of length, though an irrational number of meters:

1 pc = 648000

⇡
au � 3.0856776 × 1016 m. (1.97)

The determination of the scale of the solar system allowed the deter-
mination of GM⊙ to comparable accuracy. In contrast, the gravitational
constant G, determined by laboratory experiments, is only known to a frac-
tional accuracy of 2 × 10−5 (see Appendix A). Therefore the masses of the
Sun and solar-system planets are much less well known than G times the
masses, and for accurate work they should always be quoted along with the
assumed value of G.

In 2015 the IAU recommended that orbit calculations should be based
on the nominal value of the solar mass parameter

GM⊙ ≡ 1.3271244 × 1020 m3 s−2. (1.98)
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The adjective “nominal” means that this should be understood as a standard
conversion factor that is close to the “actual” value (probably with a frac-
tional error of less than 1 × 10−9). For most dynamical problems it is better
to use a consistent set of constants that is common to the whole community
rather than the best current estimate of each constant.

1.5.3 The solar system reference frame
The Barycentric Celestial Reference System (BCRS) is a coordinate sys-
tem created in 2000 by the IAU. The system uses harmonic coordinates (eq.
J.6), with origin at the solar system barycenter and time given by TCB. This
is the reference system appropriate for solving the equations of motion of
solar system bodies. The orientation of the BCRS coordinate system co-
incides with that of the International Celestial Reference System (ICRS),
which is defined by the adopted angular coordinates of a set of extragalactic
radio sources. For more detail see Kaplan (2005) and Urban & Seidelmann
(2013).

These definitions are based on the assumption that the local inertial ref-
erence frame (the BCRS) is not rotating relative to the distant universe (the
ICRS), sometimes called Mach’s principle. This assumption is testable:
the relative rotation of these frames is consistent with zero and less than
4 × 10−5 arcsec yr−1 (Folkner 2010).

1.6 Orbital elements for exoplanets

The orbital elements of extrasolar planets (“exoplanets”) are much more
difficult to determine accurately than the elements of solar-system bodies.
In most cases we only know some of the six orbital elements, depending on
the detection method.

Here we describe three methods of planet detection based on the clas-
sical observational techniques of spectroscopy, photometry, astrometry and
imaging. We do not discuss a further important technique, gravitational mi-
crolensing, because it measures only the mass of the planet and its projected
separation from the host star and thus provides only limited constraints on
the orbital elements and dynamics (Gaudi 2011).
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1.6.1 Radial-velocity planets

One of the most powerful methods to detect and characterize exoplanets is
through periodic variations in the velocity of their host star, which arise as
both star and planet orbit around their common center of mass.16 These
variations can be detected through small Doppler shifts in the stellar spec-
trum.17

To illustrate the analysis, we consider a system containing a single pla-
net. The star is at r0 and the planet is at r1. The velocity of the star is given
by the time derivative of equation (1.6),

v0 = vcm − m1

m0 +m1
v, (1.99)

where v is the velocity of the planet relative to the star. The velocity of the
center of mass vcm is constant (eq. 1.7). We may choose our coordinates
such that the positive z-axis is parallel to the line of sight from the observer
to the system and pointing away from the observer; thus edge-on orbits have
I = 90○, face-on orbits have I = 0, and positive line-of-sight velocity implies
that the star is receding from us. Then the line-of-sight velocity of the star
relative to the center of mass is

vlos ≡ (v0 − vcm) ⋅ ẑ = − m1

m0 +m1
v ⋅ ẑ. (1.100)

From equation (1.70), v ⋅ ẑ = ż = sin I[ṙ sin(f + !) + r cos(f + !)ḟ] =
sin I[vr sin(f+!)+v cos(f+!)]. Then using equations (1.54) and (1.55),

vlos = − m1

m0 +m1

na

(1 − e2)1�2 sin I� cos(f + !) + e cos!�. (1.101)

16 The possibility of detecting planets by radial-velocity variations and by transits was first
discussed in a prescient short paper by Struve (1952).

17 Unfortunately the term “radial velocity” is commonly used to denote two different quanti-
ties: (i) the component of the planet’s velocity relative to the host star along the line joining
them, and (ii) the component of the star’s velocity relative to the observer along the line
joining them. In practice the meaning is usually clear from the context, but when there is
the possibility of confusion we shall use the term “line-of-sight velocity” as an unambiguous
replacement for (ii).
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Since the orbital period P = 2⇡a3�2�[G(m0+m1)]1�2 is directly observable
while the semimajor axis is not, we eliminate a in favor of P to obtain

vlos = − m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3 sin I

(1 − e2)1�2 � cos(f + !) + e cos!�.
(1.102)

Using equations (1.50) and (1.51a), this result can also be expressed in terms
of the eccentric anomaly,

vlos = − m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3sin I

× (1 − e2)1�2 cosu cos! − sinu sin!
1 − e cosu . (1.103)

To obtain vlos(t), the line-of-sight velocity as a function of time (the velo-
city curve), we write the mean anomaly as ` = 2⇡(t − t0)�P where t0 is
the time of periapsis passage, solve Kepler’s equation (1.49) for u, and then
substitute u into equation (1.103). The velocity curve is not sinusoidal un-
less the orbit is circular, but it is still useful to define the semi-amplitude K
as half the difference between the maximum and minimum velocity. From
equation (1.102) the extrema of vlos occur at f = −! and f = ⇡ − !, so

K = m1

m0 +m1
�2⇡G(m0 +m1)

P
�1�3 sin I

(1 − e2)1�2 . (1.104)

These results tell us what can and cannot be determined from the velo-
city curve. The orbital period P is equal to the period of the velocity curve,
and the eccentricity e and argument of periapsis ! can be determined from
the shape of the curve. The longitude of the node ⌦ is not constrained. The
masses of the star and planet, m0 and m1, and the inclination I cannot be
individually determined, only the combination

µ ≡ m
3
1 sin

3
I

(m0 +m1)2 , (1.105)
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known as the mass function. The mass function is related to the semi-
amplitude and period by

µ = P

2⇡G
K

3(1 − e2)3�2. (1.106)

Since exoplanet masses are usually much smaller than the mass of their host
star, and the mass of the host star can usually be determined from its spectral
properties, the mass function yields a combination of the planetary mass and
orbital inclination, m1 sin I .

The semi-amplitude K varies as a
−1�2 for planets of a given mass, so

radial-velocity searches are most sensitive to planets orbiting close to the
host star. Planets whose orbital periods are much larger than the survey
duration will contribute a constant acceleration or linear drift to the line-
of-sight velocity of the host star, and this signal provides evidence for the
existence of a distant planet but only weak constraints on its properties.

The most precisely measured radial-velocity planets are found orbiting
pulsars. The pulsar emits pulsed radio signals at regular intervals �t. The
pulse emitted at tn = n�t + const arrives at t′

n
= tn + r(tn)�c where r(tn)

is the distance of the pulsar at tn and c is the speed of light. Now write
r(t) = const + vlost where vlos is the line-of-sight velocity of the pulsar,
and we have �t

′
n
= t′

n+1 − t′n = �t(1 + vlos�c). Thus measuring the inter-
vals between pulses yields the line-of-sight velocity (up to an undetermined
constant, since the rest-frame pulse interval �t is unknown), and as usual
periodic variations in the line-of-sight velocity are the signature of a planet.

Pulsar planets are rare, presumably because planets cannot survive the
supernova explosion that creates the pulsar, and only a handful are known.
The prototype is the system of three planets discovered around the pulsar
PSR B1257+12 (Wolszczan & Frail 1992).

1.6.2 Transiting planets

In a small fraction of cases, a planetary system is oriented such that one or
more of its planets crosses the face of the host star as seen from Earth, an
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event known as a transit.18 During the transit, there is a characteristic dip
in the stellar flux, which repeats with a period equal to the planet’s orbital
period.

Suppose that the planet has radius Rp and the star has radius R∗. In
most cases Rp � R∗; for example, the radii of Earth and Jupiter relative
to the Sun are R⊕�R⊙ = 0.009153 and RJ�R⊙ = 0.09937.19 During a
transit the visible area of the stellar disk is reduced to a fraction 1 − f of its
unobscured value, where

f = R
2
p

R2∗ , (1.107)

and the flux from the star is reduced by a similar amount (depending on limb
darkening, to be discussed later in this subsection). An observer watching
Earth or Jupiter transit the Sun would find f = 8.377×10−5 and f = 0.00988
respectively. With current technology, Jupiter-like transits can be detected
from the ground but Earth-like transits can only be detected by space-based
observatories.

The probability that a planet will transit depends strongly on its semima-
jor axis. To determine this probability, we again use a coordinate system in
which the z-axis is parallel to the line of sight. Then the planet transits if and
only if the minimum value of x2 + y2 is less than (R∗ +Rp)2. From equa-
tions (1.70), x2 + y2 = r2 − z2 = r2[1− sin2 I sin2(f +!)] so the minimum
value of x2 + y2 is r

2
cos

2
I . Therefore if the planet is on a circular orbit

with semimajor axis a, it transits if and only if � cos I � < (R∗ +Rp)�a. If the
distribution of orientations of the planetary orbits is random—an untested

18 Transits and occultations are usually distinguished from eclipses. In an eclipse (e.g., an
eclipse of the Sun by the Moon) both bodies have similar angular size. In a transit (e.g.,
a transit of Venus across the Sun) a small body passes in front of a large one, and in an
occultation a small body passes behind a large one.

19 Planets are not perfect spheres: in general, the polar radius Rpol of a rotating planet is
smaller than its equatorial radius Req, and the planet is said to have an equatorial bulge
(Box 1.3). If we assume that the spin and orbital axes of the planet are aligned, then both
are normal to the line of sight if the planet transits the star. Approximating the shape of the
planet as an ellipse, its area on the plane normal to the line of sight is ⇡ReqRpol so the
effective radius for computing the transit depth is Re↵ = (ReqRpol)1�2. For the Earth and
Jupiter the effective radii are R⊕,e↵ = 6367.4 km and RJ,e↵ = 69134 km. In contrast the
Sun is nearly spherical, with a fractional difference in the polar and equatorial radii � 10−5.
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but extremely plausible assumption—then � cos I � is uniformly distributed
between 0 and 1, so the probability of transit is

p = R∗ +Rp

a
. (1.108)

A useful reference time for the duration of the transit is

⌧0 = 2R∗
v
= 2R∗ � a

GM∗ �
1�2 = 12.98 hours

R∗
R⊙ �

a

au
M⊙
M∗ �

1�2
. (1.109)

Here v is the planet’s orbital velocity, M∗ is the stellar mass, and a is the
planet’s semimajor axis; in deriving these equations we have assumed that
the planet’s orbit is circular. The reference time equals the actual transit
time only if the planet radius Rp � R∗, the stellar radius R∗ � a, and the
transit passes through the center of the star. The actual transit time is usually
shorter than ⌧0 since the planet travels along a chord across the star rather
than through its center.

The interval between transits equals the orbital period (eq. 1.43),

P = 2⇡ � a
3

GM∗ �
1�2

. (1.110)

The shape and duration of the transit event can be described more accu-
rately using Figure 1.3. The point of closest approach of the planet to the
center of the star is bR∗ where the impact parameter b is a dimensionless
number in the range 0 to ∼ 1. There are four milestones during the transit
event: first contact, where the projected planetary disk first touches the edge
of the star; second contact, where the entire planetary disk first obscures the
star, third contact, the last time at which the entire planetary disk obscures
the star, and fourth contact, when the transit ends. Between first and sec-
ond contact the flux from the star is steadily decreasing as more and more
of the stellar disk is obscured; between second and third contact the flux is
constant; and between third and fourth contact the flux is steadily return-
ing to its original value. If the closest approach to the center of the star is
at t = 0, then straightforward trigonometry shows that the times associated
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Figure 1.3: The geometry of a planetary transit. The large shaded circle of radius
R∗ shows the disk of the host star, and the unshaded circles of radius Rp show the
position of the planetary disk at first, second, third and fourth contact. The minimum
distance between the centers of the planet and the star is bR∗, where b is the impact
parameter. In this image b = 0.6 and Rp�R∗ = 0.15. The curves at the bottom of
the figure show the stellar flux as a function of time in two cases: no limb darkening
(top), and solar limb darkening (bottom) as described in the paragraph containing
equation (1.114). Analytic expressions for transit light curves are given by Sackett
(1999), Mandel & Agol (2002) and Seager & Mallén-Ornelas (2003).

with these events are

t4 = −t1 = 1

v
�(R∗ +Rp)2 − b2R2∗�1�2 = 1

2⌧0[(1 +Rp�R∗)2 − b2]1�2,
t3 = −t2 = 1

v
�(R∗ −Rp)2 − b2R2∗�1�2 = 1

2⌧0[(1 −Rp�R∗)2 − b2]1�2.
(1.111)

Here we have assumed that R∗ � a so the planet travels across the star at
nearly constant velocity v; an equivalent constraint is that the transit dura-
tion is much less than the orbital period, ⌧0 � P . The total duration of the
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transit is

t4 − t1 = 2

v
�(R∗ +Rp)2 − b2R2∗�1�2 = ⌧0�(1 +Rp�R∗)2 − b2�1�2, (1.112)

and the duration of the flat part of the transit, between second and third
contact, is

t3 − t2 = ⌧0�(1 −Rp�R∗)2 − b2�1�2. (1.113)

What can we measure from the transit depth, duration and shape? The
fractional depth f of the transit determines the ratio of the planetary and
stellar radii Rp�R∗ through equation (1.107). Once this is known, the total
duration t4 − t1 (eq. 1.112) and the duration of the flat part of the transit
t3 − t2 (eq. 1.113) give two constraints on the impact parameter b and the
reference time ⌧0, so both can be determined. If the stellar mass M∗ and
radius R∗ can be determined from the star’s luminosity, colors and spectrum
then equations (1.109) for the reference time and (1.43) for the orbital period
give two constraints on the semimajor axis: if these agree then the planetary
orbit is likely to be circular, and if not it must be eccentric.

This simple model predicts that the flux from the star is constant be-
tween second and third contact, which requires that the surface brightness
of the star is uniform. In practice the surface brightness of the stellar disk is
usually higher near the center, a phenomenon called limb darkening. One
common parametrization of limb darkening is that the surface brightness at
distance R from the center of the stellar disk of radius R∗ is given by

I(R)
I(0) = 1− a(1−µ)− b(1−µ)2, where µ = (1−R2�R2∗)1�2. (1.114)

The limb-darkening coefficients a and b depend on the spectral type of the
star and the wavelength range in which the surface brightness is measured.
For a solar-type star measured in the Kepler wavelength band, a � 0.41 and
b � 0.26.20

The depth of a transit (eq. 1.107) is independent of the semimajor axis a
of the planet, but the probability that a planet will transit varies as a−1 (eq.

20 Limb-darkening models for a wide range of stars are described in Claret & Bloemen (2011).
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1.108), so transit searches are most sensitive to planets close to the host star.
Planets whose orbital periods are larger than the survey duration are difficult
to verify: a useful rule of thumb is that at least three transits are needed for
a secure detection.

1.6.3 Astrometric planets

Planets can be detected by the periodic variations in the position of their
host star as the star orbits around the center of mass of the star and planet.

The Kepler ellipse described by the star is projected onto an ellipse on
the sky plane perpendicular to the line of sight. However, the semimajor
axis and eccentricity of the projected ellipse are generally different from
those of the original ellipse, and the focus of the projected ellipse differs
from the projection of the focus of the original ellipse. Nevertheless all of
the orbital elements, with some minor degeneracies, can be deduced from
these measurements.

We consider a system containing a single planet of mass m1 orbiting
a star of mass m0. We choose coordinates such that the positive z-axis
is parallel to the line of sight from the observer to the system and pointing
toward the observer.21 The position of the star is r0 = rcm−m1r�(m0+m1)
(eq. 1.6), where rcm is the position of the center of mass and r = r1 − r0 is
the vector from the star to the planet. Using equations (1.29) and (1.70) the
position of the star on the sky, in the Cartesian coordinates x and y, is

x0 = xcm − 1 − e2
1 + e cos f (A cos f + F sin f),

y0 = ycm − 1 − e2
1 + e cos f (B cos f +G sin f), (1.115)

21 Unfortunately this orientation is opposite to the orientation of the coordinate system in
§1.6.1. The line-of-sight velocity is always defined to be positive if the star is receding
from the observer, which implies that the positive z-axis points away from the observer.
For astrometric binaries the x-y coordinate system on the sky is assumed to be right-handed
(the positive y-axis is 90○ counterclockwise from the positive x-axis), which requires that
the positive z-axis points toward the observer.
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where the Thiele–Innes elements are

A = m1a

m0 +m1
(cos⌦ cos! − cos I sin⌦ sin!),

B = m1a

m0 +m1
(sin⌦ cos! + cos I cos⌦ sin!),

F = m1a

m0 +m1
(− cos⌦ sin! − cos I sin⌦ cos!),

G = m1a

m0 +m1
(− sin⌦ sin! + cos I cos⌦ cos!); (1.116)

as usual a and e are the semimajor axis and eccentricity of the relative orbit,
and f , I , ! and ⌦ are the true anomaly, inclination, argument of periapsis
and longitude of the ascending node. The four Thiele-Innes elements re-
place a, I , ⌦ and !; their advantage is that the positions are linear functions
of these elements, which simplifies orbit fitting.

Equations (1.115) are simpler when written in terms of the eccentric
anomaly, using equations (1.46), (1.50) and (1.51a):

x0 = xcm −A(cosu − e) − F (1 − e2)1�2 sinu,
y0 = ycm −B(cosu − e) −G(1 − e2)1�2 sinu. (1.117)

The eccentric anomaly is related to the time t through Kepler’s equation
(1.49), and with equation (1.45) this reads n(t − t0) = u − e sinu. Using
these results we can fit the observations of x0 and y0 as a function of time
to equations (1.117) to determine xcm, ycm, A, B, F and G, the eccentricity
e, the mean motion n and the epoch of periapsis t0.

The usual orbital elements are straightforward to derive from the Thiele–
Innes elements. First,

tan(⌦ + !) = B − F
A +G, tan(⌦ − !) = B + F

A −G, (1.118)

and these equations can be solved for ⌦ and !. If these are solutions then
so are ⌦ + k1⇡ and ! + k2⇡, where k1 and k2 are integers. All but one of
these solutions can be discarded because we also require that (i) sin(⌦+!)
has the same sign as B − F ; (ii) sin(⌦ − !) has the same sign as B + F ;
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(iii) 0 ≤ ! < 2⇡; and (iv) 0 ≤ ⌦ < ⇡. The last of these is a convention
that is imposed because astrometric observations alone cannot distinguish
the solutions (⌦,!) and (⌦ + ⇡,! + ⇡).

Next define

q1 = A +G
cos(⌦ + !) , q2 = A −G

cos(⌦ − !) . (1.119)

Then

I = 2 tan−1(q2�q1)1�2, m1a

m0 +m1
= 1

2(q1 + q2). (1.120)

Figure 1.4: The astromet-
ric signal from the solar
system over the 50-year pe-
riod from 2000 to 2050,
as viewed from a star 100
parsecs away in the direc-
tion of the north ecliptic
pole. The arrows mark
an angular distance of 0.1
milliarcseconds.

The fit to the observations also yields the mean motion n, which con-
strains the semimajor axis and masses through Kepler’s third law, n2

a
3 =

G(m0 +m1) (eq. 1.44). Combining this relation with the last of equations
(1.120), we have

m
3
1(m0 +m1)2 =

(q1 + q2)3n2

8G
; (1.121)
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the quantities on the right are observables and the left side is the mass func-
tion for astrometric planets. The mass m0 of the host star can usually be
determined from its spectral properties, so the mass function determines the
planetary mass m1.

The astrometric signal from a planet is proportional to its semimajor
axis, so planets on larger orbits are easier to detect astrometrically. However,
a reliable determination of the orbital elements usually requires data over
at least one orbit, unless the data are extremely accurate. Thus the easiest
planets to detect astrometrically are those with an orbital period smaller than
the span of observations, but not by too much.

Astrometric data from multi-planet systems are hard to interpret if any

of the massive planets in the system has an orbital period longer than the
span of the observations. As an example, the astrometric signal arising from
the motion of the Sun around the barycenter of the solar system is shown
in Figure 1.4, as seen from a star 100 parsecs away. The figure shows that
determining the masses and orbits of the giant planets in a planetary system
like our own, even with an astrometric baseline of 1–2 decades, would be
quite difficult.

1.6.4 Imaged planets
Imaging planets is difficult because the host star is so much brighter than
the planet. For example, the luminosity of the Earth at visible wavelengths
is only about 10−10 times the luminosity of the Sun. The contrast ratio
is more favorable for young, massive planets at infrared wavelengths, in
part because such planets are self-luminous, emitting thermal energy as they
contract (Burrows et al. 1997). Even Jupiter emits roughly as much energy
per unit time from contraction as it reflects from the Sun.

Most planets that have been successfully imaged are in orbits with large
semimajor axes, where they are not swallowed in the glare from their host
star: the median estimated semimajor axis of planets detected by direct
imaging is well over 100 au. For a solar-mass host star the orbital period
at 100 au is 1000 yr, so the motion of most imaged planets relative to their
host star has not been detected at all. What motion has been detected covers
only a small fraction of the orbit, so the uncertainties in the orbital elements
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are large. Nevertheless, it is worth examining briefly what elements can be
detected in principle for imaged planets.

In contrast to astrometric planets, where the position of the host star
relative to the center of mass is measured on the sky plane, we measure
the position of an imaged planet at r1 relative to the host star at r0. By
analogy with equations (1.117) we may write the Cartesian coordinates of
this relative position on the sky plane as

x = x1 − x0 = A′(cosu − e) + F ′(1 − e2)1�2 sinu,
y = y1 − y0 = B′(cosu − e) +G′(1 − e2)1�2 sinu, (1.122)

where u is the eccentric anomaly, e is the eccentricity, and the Thiele–Innes
elements are

A
′ = a(cos⌦ cos! − cos I sin⌦ sin!),

B
′ = a(sin⌦ cos! + cos I cos⌦ sin!),

F
′ = a(− cos⌦ sin! − cos I sin⌦ cos!),

G
′ = a(− sin⌦ sin! + cos I cos⌦ cos!). (1.123)

As usual a, ! and ⌦ are the semimajor axis, argument of periapsis and
longitude of the ascending node. The eccentric anomaly is related to the
time t through Kepler’s equation (1.49), which reads n(t − t0) = u − e sinu
where n is the mean motion. We can fit the observations of x and y as
a function of time to equations (1.122) to determine A

′, B′, F ′, G′, e, n
and t0. Then we can follow the procedure in equations (1.118)–(1.120)
to determine the other orbital elements. Like astrometry, imaging cannot
distinguish the solutions (⌦,!) and (⌦ + ⇡,! + ⇡). A check of the results
comes from Kepler’s third law (1.44): this determines the mass of the host
star from the mean motion and the semimajor axis, and this mass can be
determined independently from the spectral properties of the star.

1.7 Multipole expansion of a potential

In most cases the distance between a planet and its host star, or a satellite
and its host planet, is large enough that both can be treated as point masses.
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However, accurate dynamical calculations must sometimes account for the
distribution of mass within one or both of these bodies. Examples include
tracking artificial satellites of the Earth, measuring the relativistic preces-
sion of Mercury’s perihelion, or determining the precession rate of a planet’s
spin axis.

Let ⇢(r) denote the density of a planet at position r. The total mass of
the planet is M and we assume that the origin is the center of mass of the
planet. Then

� dr⇢(r) =M, � dr⇢(r)r = 0. (1.124)

Using equations (C.44) and (C.55), the gravitational potential can be written
in spherical coordinates r = (r, ✓,�) as

�(r, ✓,�) = −G� dr
′
⇢(r′)
�r − r′� (1.125)

= −G ∞�
l=0� dr

′
⇢(r′) r

l<
rl+1> Pl(cos�)

= − ∞�
l=0

4⇡G
2l + 1

l�
m=−l� dr

′
⇢(r′) r

l<
rl+1> Y

∗
lm
(✓′,�′)Ylm(✓,�).

Here Pl(cos�) and Ylm(✓,�) are a Legendre polynomial and a spherical
harmonic (Appendices C.6 and C.7), r< and r> are the smaller and larger of
r and r

′, cos� = r′ ⋅ r�(r′r) is the cosine of the angle between the vectors r
and r

′, and the asterisk denotes the complex conjugate. Any satellite must
orbit outside all of the planetary mass, so the potential seen by the satellite
simplifies to

�(r, ✓,�) ≡ ∞�
l=0
�l(r, ✓,�), (1.126)

where

�l(r, ✓,�) = − G
rl+1 � dr

′
⇢(r′)r′lPl(cos�) (1.127)

= − 4⇡G
(2l + 1)rl+1

l�
m=−l

Ylm(✓,�)� dr
′
⇢(r′)r′lY ∗

lm
(✓′,�′).

We examine the first three of these terms:
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Monopole (l = 0) Since P0(cos�) = 1 (eq. C.45) and ∫ dr′ ⇢(r′) = M

(eq. 1.124), we have �0(r, ✓,�) = −GM�r, the same as if all the mass of
the planet were concentrated in a point at the origin.

Dipole (l = 1) Since P1(cos�) = cos� = r
′ ⋅ r�(r′r), the combination

r
′P1(cos�) is a linear function of r′ at fixed r and zero at r′ = 0. Then

the second of equations (1.124) implies that the integral in the first line of
equation (1.127) is zero. Thus �1(r, ✓,�) = 0.

Quadrupole (l = 2) Since P2(cos�) = 3
2 cos

2
� − 1

2 , the combination
r
′2P2(cos�) = 3

2(r′ ⋅r)2�r2 − 1
2r
′2. Therefore the quadrupole potential can

be written

�2(r, ✓,�) = G
2r5
� dr

′
⇢(r′)�r′2r2 − 3(r′ ⋅ r)2�. (1.128)

When written in terms of the inertia tensor I of the planet (eq. D.85), this
yields MacCullagh’s formula

�2(r, ✓,�) = 3G
2r5

3�
ij=1

riIijrj− G
2r3

3�
i=1

Iii = 3G
2r5

r
T
Ir− G

2r3
Tr(I); (1.129)

here r
T is the row vector that is the transpose of the column vector r, and

Tr (I) is the trace of the inertia tensor.

Since �l(r, ✓,�) in equation (1.127) falls off with distance ∝ r
−l−1,

at large distances from the host planet the potential is dominated by the
monopole potential (∝ r

−1) and quadrupole potential (∝ r
−3).

1.7.1 The gravitational potential of rotating fluid bodies
Small bodies, such as rocks, comets and most asteroids, are irregularly
shaped. Larger astronomical bodies are nearly spherical, because the forces
due to gravity overwhelm the ability of any solid material to maintain other
shapes (a brief quantitative discussion of this transition is given at the end of
§8.6). Stars and planets are large enough that they can usually be treated as
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a fluid. In this case the distribution of the matter is determined by a balance
between gravity, pressure and centrifugal force due to rotation. Models of
stellar and planetary interiors show that the resulting density distribution is
always axisymmetric around the spin axis.22

Axisymmetry allows us to simplify the spherical-harmonic expansion
(1.127) for the gravitational potential of the planet. If the axis of sym-
metry of the planet is chosen to be the polar axis (✓ = 0), the second
line of equation (1.127) vanishes when m �= 0 since ∫ d�′ Ylm(✓′,�′) ∝∫ d�′ exp(im�′) = 0 when m �= 0. Using the definition (C.46) of spherical
harmonics in terms of associated Legendre functions, equations (1.126) and
(1.127) can be rewritten as

�(r, ✓) = − GM

r
�1 − ∞�

l=2
Jl �Rp

r
�l Pl(cos ✓)� , (1.130)

where the dimensionless multipole moments Jl are given by

Jl ≡ − 1

MRl
p
� dr

′
⇢(r′)Pl(cos ✓′)r′l. (1.131)

The quantity Rp is an arbitrary reference radius that is introduced so that
Jl is dimensionless; conventionally it is chosen to be close to the planetary
radius.

Since P2(cos ✓) = 1
2(3 cos2 ✓ − 1) (eq. C.45), the quadrupole moment

J2 can be written in Cartesian coordinates as

J2 = 1

MR2
p
� dr⇢(r)(12x2 + 1

2y
2 − z2). (1.132)

For an axisymmetric body we define the moments of inertia of the planet
around the equatorial and polar axes as (cf. eqs. D.87)

A = � dr⇢(r)(y2 + z2) = Ixx = Iyy,
22 Non-axisymmetric equilibrium bodies of self-gravitating fluid do exist. The first and most

famous example is the sequence of Jacobi ellipsoids (Chandrasekhar 1969), which are uni-
formly rotating masses of homogeneous, incompressible fluid. However, only axisymmet-
ric equilibria exist for typical planets, in which the material is compressible so the mass is
concentrated toward the center.
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C = � dr⇢(r)(x2 + y2) = Izz, (1.133)

which implies that

J2 = C −A
MR2

p

. (1.134)

Then either MacCullagh’s formula (1.129) or equation (1.130) yields23

�(r, ✓) = − GM

r
+ GMJ2R

2
p

2r3
(3 cos2 ✓ − 1) +O(r−4)

= − GM

r
+ GC −A

2r3
(3 cos2 ✓ − 1) +O(r−4). (1.135)

Notice that measurements of the potential external to the planet allow us
to determine the difference between the moments of inertia A and C but
not the moments themselves. The rate of precession of the spin axis due
to the torque from an external body, such as the Sun, yields the dynamical
ellipticity(C − A)�C (cf. eq. 7.10), so measurements of both the external
gravitational field and the precession are needed to determine both moments
of inertia C and A.

We also expect that rotating planets or stars are symmetric about the
equatorial plane (the plane normal to the polar axis that passes through their
center of mass),24 so ⇢(r, ✓) is an even function of cos ✓ if the center of mass
coincides with the origin. Since Pl(− cos ✓) = (−1)lPl(cos ✓) (eq. C.38),
all multipole moments Jl with odd values of l vanish. In this case there is a
sharper limit on the error in equation (1.135): O(r−5) rather than O(r−4).

Rotation flattens the density distribution of a planet (i.e., the planet be-
comes oblate), so the moment of inertia C around the polar axis is larger
than the moment A around an equatorial axis, which in turn implies through
equation (1.134) that the quadrupole moment J2 is positive. In general the

23 A function f(r) is O(r−p) if rpf(r) is less than some constant when r is large enough.
24 This result can be proved analytically in simple models of a planetary interior. In particular,

if the planet is uniformly rotating (i.e., the fluid has zero velocity in a frame rotating at
a constant angular speed ⌦) and the equation of state is barotropic (i.e., the pressure is a
function only of the density), then Lichtenstein’s theorem states that in equilibrium the
fluid has reflection symmetry around a plane perpendicular to ⌦ (e.g., Lindblom 1992).
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Box 1.3: Rotation, quadrupole moment and flattening
If the quadrupole moment J2 is much larger than all of the Jn with n > 2, equa-
tion (1.135) implies that the gravitational potential outside the planet is

�(r, ✓) = − GM

r
�1 − J2R

2
p

2r2
(3 cos2 ✓ − 1)�. (a)

We assume that the planet is rotating uniformly with angular speed ⌦ around its
polar axis. Then the centrifugal potential is (eq. D.21)

�cent(r, ✓) = − 1

2
⌦

2(x2 + y2) = − 1

2
⌦

2
r
2
sin

2
✓. (b)

If the surface of the planet can be treated as a fluid—that is, if it has an atmosphere
or is large enough that the strength of the material at its surface is negligible—then
the effective potential �e↵(r, ✓) ≡ �(r, ✓)+�cent(r, ✓)must be constant on the
surface.a Let the surface be r = Rp+�R(✓); we assume that the reference radius
Rp is close enough to the mean radius of the surface that ��R(✓)� � Rp. Then
we may expand the effective potential to first order in �R(✓), ⌦2 and J2:

�e↵(R, ✓) = constant+ GM

R2
p

�R(✓)+ 3GM

2Rp

J2 cos
2
✓+ 1

2
⌦

2
R

2

p cos
2
✓. (c)

If this is to be independent of the polar angle ✓ on the surface, we require

�R(✓)
Rp

= −�� 3

2
J2 + ⌦

2
R

3
p

2GM

�
� cos2 ✓ + constant. (d)

Thus the difference between the equatorial radius Req = Rp +�R( 1
2
⇡) and the

polar radius Rpol = Rp +�R(0) is

Req −Rpol

Rp

= 3

2
J2 + ⌦

2
R

3
p

2GM
. (e)

This simple relation connects three observables: the flattening or oblateness of the
planet, the rotation rate and the quadrupole moment.

a Hydrostatic equilibrium in the rotating frame requires ∇p = −⇢∇�e↵ where
p(r) is the pressure and ⇢(r) is the density. Since ∇ ×∇p = 0 for any scalar
field p(r) (eq. B.36a), we must have ∇⇢ × ∇�e↵ = 0. This result implies
that the gradient of the density must be parallel to the gradient of the effective
potential, so surfaces of constant density and effective potential coincide.
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multipole moments with even values of l decrease rapidly as l grows, so the
non-spherical part of the potential is dominated by the quadrupole term even
at the surface of the planet. Given this, there is a simple relation between
the rotation rate, the quadrupole moment and the flattening of the planetary
surface (Box 1.3).

1.8 Nearly circular orbits

1.8.1 Expansions for small eccentricity
Most planet and satellite orbits are nearly circular, so expansions of the
trajectory in powers of the eccentricity e were an essential tool for studying
orbits in the days when all algebra was done by hand. Such expansions
continue to provide insight in many problems of celestial mechanics. Here
we illustrate the derivations of these expansions, which are given to O(e3).
Expansions for other variables, or higher order expansions, can easily be
derived by computer algebra.

(a) True anomaly in terms of eccentric anomaly Take the log of the first
of equations (1.51c),

f = u − i log[1 − � exp(−iu)] + i log[1 − � exp(iu)], (1.136)

and replace � by its expression (1.52) in terms of the eccentricity e. Then
expand as a Taylor series in e:

f = u + e sinu + 1
4e

2
sin 2u + e3(14 sinu + 1

12 sin 3u) +O(e4). (1.137)

(b) Eccentric anomaly in terms of true anomaly Similarly, using the
second of equations (1.51c),

u = f − e sin f + 1
4e

2
sin 2f − e3(14 sin f + 1

12 sin 3f) +O(e4). (1.138)

(c) Mean anomaly in terms of eccentric anomaly This is simply Kep-
ler’s equation (1.49),

` = u − e sinu. (1.139)


