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Introduction

This book is intended as an exploration of the moduli space Poly, of complex
polynomials of degree d > 2 in one variable using tools primarily coming from
arithmetic geometry.

The Mandelbrot set in Poly, has undoubtedly been the focus of the most
comprehensive set of studies, and its local geometry is still an active research
field in connection with the Fatou conjecture; see [19] and the references therein.
In their seminal work, Branner and Hubbard [30, 31] gave a topological descrip-
tion of the space of cubic polynomials with disconnected Julia sets using combi-
natorial tools. In any degree, Poly, is a complex orbifold of dimension d—1, and
is therefore naturally amenable to complex analysis and in particular to pluripo-
tential theory. This observation has been particularly fruitful to describe the
locus of instability, and to investigate the boundary of the connectedness locus.
DeMarco [49] constructed a positive closed (1,1) current whose support is pre-
cisely the set of unstable parameters. Dujardin and the first author [68] then
noticed that the Monge-Ampeére measure of this current defines a probability
measure fip; whose support is in a way the right generalization of the boundary
of the Mandelbrot set in higher degree, capturing the part of the moduli space
where the dynamics is the most unstable (see also [11] for the case of rational
maps). The support of uni has a very intricate structure: it was proved by
Shishikura [152] in degree 2 and later generalized in higher degree by the second
author [87] that the Hausdorff dimension of the support of pp;¢ is maximal equal
to 2(d —1).

A polynomial is said to be post-critically finite (or PCF) if all its critical
points have a finite orbit. The Julia set of a PCF polynomial is connected, of
zero measure, and the dynamics on it is hyperbolic off the post-critical set. PCF
polynomials form a countable subset of larger classes of polynomials (such as
Misiurewicz, or Collet-Eckmann) for which the thermodynamical formalism is
well understood [141, 142]. They also play a pivotal role in the study of the
connectedness locus of Poly,: their distribution was described in a series of
papers [76, 90, 91] and proved to represent the bifurcation measure pip;s.

Any PCF polynomial is the solution of a system of d — 1 equations of the
form P™(c) = P™(c) where ¢ denotes a critical point and n,m are two distinct
integers. In the moduli space, these equations are algebraic with integral coeffi-
cients, so that any PCF polynomial is in fact defined over a number field. Ingram

[109] pushed this remark further and built a natural height hp;s: Poly,;(Q) — Ry



for which the set of PCF polynomials coincides with {hp;s = 0}.

Height theory yields interesting new perspectives on the geometry of Poly,,
and more specifically on the distribution of PCF polynomials. We will be mostly
interested here in the so-called dynamical André-Oort conjecture, which ap-
peared in [6]; see also [156].

This remarkable conjecture was set out by Baker and DeMarco, who were
motivated by deep analogies between PCF dynamics and CM points in Shimura
varieties, and more specifically by works by Masser-Zannier [27, 123, 171] on
torsion points in elliptic curves. An historical account on the introduction of
these ideas in arithmetic dynamics is given in [5, §1.2] and [6, §1.2]; see also [93].
We note that this analogy goes far beyond the problems considered in this book,
and applies to various conjectures described in [52, 155]. We refer to the book
by Zannier [171] for a beautiful discussion of unlikely intersection problems in
arithmetic geometry.

Baker and DeMarco proposed characterizing irreducible subvarieties of Poly,
(or more generally of the moduli space of rational maps) containing a Zariski
dense subset of PCF polynomials, and conjectured that such varieties were de-
fined by critical relations. This conjecture was proven for unicritical polynomials
in [97] and [98], and in degree 3 in [77] and [103].

It is our aim to give a proof of that conjecture for curves in Poly, for any
d > 2, and based on this result to attempt a classification of these curves in
terms of combinatorial data encoding critical relations.

Our proof roughly follows the line of arguments devised in the original paper
of Baker and DeMarco, and relies on equidistribution theorems of points of
small height by Thuillier [160] and Yuan [168]; on the expansion of the Bottcher
coordinates; and on Ritt’s theory characterizing equalities of composition of
polynomials.

We needed, though, to overcome several important technical difficulties, such
as proving the continuity of metrics naturally attached to families of polynomi-
als. We also had to inject new ingredients, most notably some dynamical rigidity
results concerning families of polynomials with a marked point whose bifurcation
locus is real-analytic.

For the most part in the book, we shall work in the more general context
of polynomial dynamical pairs (P,a) parametrized by a complex affine curve
C, postponing the proof of the dynamical André-Oort conjecture to the last
chapter. We investigate quite generally the problem of unlikely intersection
that was promoted in the context of torsion points on elliptic curves by Zannier
and his co-authors [123, 171], and later studied by Baker and DeMarco [5, 6]
in our context. This problem amounts to understanding when two polynomial
dynamical pairs (P,a) and (Q,b) parametrized by the same curve C' have an
infinite set of common parameters for which the marked points are preperiodic.
We obtain quite definite answers for polynomial pairs, and we prove finiteness
theorems that we feel are of some interest for further exploration.
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We have tried to review all the necessary material for the proof of the dy-
namical André-Oort conjecture, but we have omitted some technical proofs that
are already available in the literature in an optimal form. On the other hand,
we have made some efforts to clarify some proofs which we felt are too sketchy
in the literature. The group of dynamical symmetries of a polynomial plays a
very important role in unlikely intersection problems, and we have thus included
a detailed discussion of this notion.

Let us now describe in more detail the content of the book.

POLYNOMIAL DYNAMICAL PAIRS

In this paragraph we present the main players of our moograph. The central
notion is that of a POLYNOMIAL DYNAMICAL PAIR parametrized by a curve. Such
a pair (P, a) is by definition an algebraic family of polynomials P, parametrized
by an irreducible affine curve C defined over a field K, accompanied by a regular
function a € K[C] which defines an algebraically varying marked point. Most of
the time, these objects will be defined over the field of complex numbers K = C,
but it will also be important to consider polynomial dynamical pairs over other
fields such as number fields, p-adic fields, or finite fields.

Any polynomial dynamical pair leaves a “trace” on the parameter space C,
which may take different forms. Suppose first that K is an arbitrary field, and
let K be an algebraic closure of K. The first basic object to consider is the set
Preper(P, a) of (closed) points ¢t € C(K) such that a(t) is preperiodic under P;.
This set is either equal to C or at most countable.

A slightly more complicated but equally important object one can attach
to (P,a) is the following divisor. Let C' be the completion of C, that is, the
unique projective algebraic curve containing C' as a Zariski dense open subset,
and smooth at all points C'\ C. Points in C'\ C are called branches at infinity
of C. Any pair (P,a) induces an effective divisor Dp, on C, which is obtained
by setting

ordc (Dp,g) := lim _L min{0, ord.(P"(a))}, (1)
? n—oo dn

for any branch ¢ at infinity. The limit is known to exist and is always a rational

number; see §4.2.2.

When K = C, one can associate various topological objects to a polynomial
dynamical pair. One can consider the locus of stability of the pair (P, a) which
consists of the open set in which the family of holomorphic maps {P"(a)}n>0
is normal. Its complement is the BIFURCATION LOCUS, which we denote by
Bif(P, a). This set can be characterized using potential theory as follows. Recall
the definition of the Green function of a polynomial P of degree d:

1
gp(z) := lim d—nmax{log|P”(z)|,O},

n—oo

so that {gp = 0} is the filled-in Julia set of P consisting of those points having



bounded orbits. On the parameter space C, we then define the function

9r.a(t) = gp,(a(t)).

It is a non-negative continuous subharmonic function on C, and the support of
the measure pnie = Agp, is precisely equal to Bif(P,a). Of crucial technical
importance is the following result from [78], which relates the function gp, to
the divisor defined above.

Theorem 1. In a neighborhood of any branch at infinity ¢ € C, one has the
exrpansion
gr.a(t) = ordc (Dp,) log ‘t|_1 +g(t)

where t is a local parameter centered at ¢ and g is continuous at 0.

This result can be interpreted in the langage of complex geometry by saying
that gp, induces a continuous semi-positive metrization on the Q-line bundle
O&(Dpyg). This fact is the key to applying techniques from arithmetic geometry.

Let us now suppose that K = K is a number field. For any place v of K,
denote by K, the completion of K, and by C, the completion of its algebraic
closure. It is then possible to mimic the previous constructions at any (finite or
infinite) place v of K to obtain functions gpq,.: C3" — R4 on the analytification
(in the sense of Berkovich) C3" of the curve C' over C,. Summing all these
functions yields a height function hpg,: C(K) — Ry. Alternatively, we may
start from the standard Weil height hg : P1(K) — R.; see e.g. [105]. Then for
any polynomial with algebraic coefficients, we define its canonical height [36] to
be

: 1 n
hp(z) := nh_}n;@ d—nhst(P '(2)),

and finally we set hpo(t) := hp,(a(t)). Using the Northcott theorem, one obtains
that {hp, = 0} coincides with the set Preper(P, a) of parameters t € C(K) for
which a(t) is a preperiodic point of P;.

It is an amazing fact that all the objects attached to a polynomial dynamical
pair (P, a) we have seen so far are tightly interrelated, as the next theorem due
to DeMarco [51] shows.

An isotrivial pair (P, a) is a pair which is conjugated to a constant polynomial
and a constant marked point, possibly after a base change. A marked point is
STABLY PREPERIODIC when there exist two integers n > m such that P*(a(t)) =

B (a(t))-

Theorem 2. Let (P,a) be a polynomial dynamical pair of degree d > 2 which
1s parametrized by an affine irreducible curve C' defined over a number field K.
If the pair is not isotrivial, then the following assertions are equivalent:

(1) the set Preper(P,a) is equal to C(K);

(2) the marked point is stably preperiodic;
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(3) the divisor Dp, of the pair (P,a) vanishes;

(4) for any Archimedean place v, the bifurcation measure ppq, = Agpawv
vanishes;

(5) the height hp,, is identically zero.

A pair (P, a) which satisfies either one of the previous conditions is said to be
passive; otherwise it is called an ACTIVE PAIR. For an active pair, Preper(P, a)
is countable, the bifurcation measure pp, is non-trivial, and the height hp, is
non-zero.

HOLOMORPHIC RIGIDITY FOR POLYNOMIAL DYNAMICAL PAIRS

Rigidity results are pervasive in (holomorphic) dynamics. One of the most fa-
mous rigidity results was obtained by Zdunik [172] and asserts that the measure
of maximal entropy of a polynomial P is absolutely continuous with respect to
the Hausdorff measure of its Julia set iff P is conjugated by an affine transfor-
mation to either a monomial map My(z) = 2%, or to a Chebyshev polynomial
+T,; where Ty(z+271) = 2?4279, In particular, these two families of examples
are the only ones having a smooth Julia set, a theorem due to Fatou [74].

The following analog of Zdunik’s result for polynomial dynamical pairs is
our first main result.

Theorem A. Let (P,a) be a polynomial dynamical pair of degree d > 2 which is
parametrized by a connected Riemann surface S. Assume that Bif (P, a) is non-
empty and included in a smooth real curve. Then one of the following holds:

e cither P, is conjugated to My or Ty for allt € S;

e or there exists a univalent map 1: D — S such that 1+~ (Bif(P,a)) is a non-
empty closed and totally disconnected perfect subset of the real line and the
pair (P or,ao01) is conjugated to a real family over D.

We say that a polynomial dynamical pair (P, a) parametrized by the unit
disk is a real family whenever the power series defining the coefficients of P and
the marked point have all real coefficients.

The previous theorem is a crucial ingredient for handling the unlikely in-
tersection problem that we will describe later. Its proof builds on a transfer
principle from the parameter space to the dynamical plane, which can be de-
composed into two parts.

The first step is to find a parameter to at which a(tg) is preperiodic to a
repelling orbit of P, and such that ¢ — a(t) is transversal at ¢y to the preperiodic
orbit degenerating to a(tg). This step builds on an argument of Dujardin [67].
The second step relies on Tan Lei’s similarity theorem [159], which shows that
the bifurcation locus Bif(P, a) near ¢y is conformally equivalent at small scales
to the Julia set of P, .



