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Foreword

This book discusses the representation theory of classical and
quantum U(sl(2)) with an eye towards topological applications
of the latter. We use the Temperley-Lieb algebra and the quan-
tum spin-networks to organize the computations. We define the
6j-symbols in the classical, quantum, and quantum-root-of-unity
cases, and use these computations to define the Turaev-Viro in-
variants of closed 3-dimensional manifolds. Our approach is ele-
mentary and fairly self-contained. We develop the spin-networks
from an algebraic point of view.
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1 Introduction

These notes grew out of a series of seminars held at the University
of South Alabama during 1993 that were enhanced by regular e-
mail among the three of us. We became interested in quantum
diagrammatic representation theory following visits from Ruth
Lawrence and Lou Kauffman to Mobile.

We develop the Clebsch-Gordan theory and the recoupling the-
ory for representations of classical and quantum U(sl(2)) via the
spin networks of Penrose [27] and Kauffman [16]. In these the-
ories, the finite dimensional irreducible representations are real-
ized in spaces of homogeneous polynomials in two variables. In
the quantum case the variables commute up to a factor of q\ i.e.
yx — qxy. The tensor product of two representations is decom-
posed as a direct sum of irreducibles, and the coefficients of the
various weight vectors are computed explicitly. In the quantum
case, when the parameter is a root of unity, we only decompose
the representations modulo those that have trace 0.

We use the spin networks to develop the theory in the classi-
cal case for two reasons. First, they simplify and unify many of
the tricky combinatorial facts. The simplification of the proofs is
nowhere more apparent than in Theorem 2.7.14 where a plethora
of identities is proven via diagram manipulations. Second, the
spin networks are currently useful and quite popular in the quan-
tum case (see for example [23], [18], [28]). One of our goals here
is to explain the representation theory of quantum sl{2) in the
spin network framework. We know of no better explanation than
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to run through the classical case (which should be more familiar),
and then to imitate the classical theory in the quantum case.

Here we give an overview. The set of (2 by 2) matrices of
determinant 1 over the complex numbers forms a group called
SL{2). The finite dimensional irreducible representations of SL{2)
are well understood. In particular, it is known how to decompose
the tensor product of two such representations into a direct sum
of irreducibles. In this decomposition one can compute explicitly
the image of weight vectors and such computations form the heart
of the so-called Clebsch-Gordan theory. The finite dimensional
representations of SL{2) are the same as those of U(sl(2)) which
is an algebra generated by symbols E, F and H subject to certain
relations.

Furthermore, the tensor product of three representations can
be decomposed in two natural ways. The comparison of these
two decompositions is sometimes called recoupling theory, and
the recoupling coefficients are known as the 6j-symbols. These
symbols satisfy two fundamental identities (orthogonality and the
Elliott-Biedenharn identity) that can be interpreted in terms of
the decomposition of the union of two tetrahedra. In the Elliott-
Biedenharn identity the tetrahedra are glued along a single face
and recomposed as the union of three tetrahedra glued along an
edge. For orthogonality the tetrahedra are glued along two faces,
and the recomposition is not simplicial.

The symmetry of the 6j-symbols and their relationship to
tetrahedra was for the most part a mystery, until Turaev and
Viro [32] constructed 3-manifold invariants based on the analo-
gous theory for quantum 5/(2). The identities satisfied by the
6j-symbols are also satisfied by their quantum analogues. The
Elliott-Biedenharn identity corresponds to an Alexander [1] move
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on triangulations of a 3-manifold while the orthogonality condition
can be interpreted as a Matveev [25] move on the dual 2-skeleton
of a triangulation.

The Turaev-Viro invariants were based on work of Kirillov
and Reshetikhin on the representation of quantum groups [19].
This work together with Reshetikhin-Turaev [29] formed a math-
ematically rigorous framework for the invariants of Witten [34].
Meanwhile Kauffman and Lins [18] gave a simple combinatoric
approach to the invariants based on the Kauffman bracket and
the spin networks of Penrose [27]. Piunikhin [28] showed that the
Kauffman-Lins approach and the Turaev-Viro approach coincide.

Some of Kauffman's contributions to the subject can also be
found in the papers [14], [15], and [17]. A more traditional alge-
braic approach to quantum groups can be found in [30]; in partic-
ular, they discuss from the outset the Hopf-algebra structures.

Lickorish's [23] definition of the Reshetikhin-Turaev invariants
is of a combinatorial nature. The Kauffman-Lins [18] definition of
the Turaev-Viro invariants is defined similarly. Neither of these
combinatorial approaches relied on representation theory. How-
ever, the remarkable feature of quantum topology is that there are
close connections between algebra and topology that were hereto-
fore unimagined. The purpose of this paper is to explore these
relations by examining the algebraic meaning of the diagrams and
by using diagrams to prove algebraic results.

Here is our outline. Section 2 reviews the classical theory of
representations of U(sl(2)). There is nothing new here, but we
do show how the Clebsch-Gordan coefficients and the 6j-symbols
are computed in terms of the bracket expansion (at A = 1). In
Section 3 we mimic these constructions to obtain the quantum
Clebsch-Gordan and 67-symbols. In Section 4 we will define the
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quantum trace and discuss the recoupling theory in the root of
unity case. Section 5 reviews the definitions of the Turaev-Viro
invariants and proves that the definition is independent of the
triangulation by means of the Pachner Theorem [26].
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