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Preface

1 his book deals with the applications of mathematics to the study of
normal and pathological physiological rhythms. It is directed toward
an audience of biological scientists, physicians, physical scientists, and
mathematicians who wish to read about biological rhythms from a
theoretical perspective.

Throughout this volume, we discuss many biological examples and
present selected mathematical models to emphasize main concepts. The
biological examples have been chosen to illustrate the great variety of
dynamic processes occurring in different organ systems. For most of the
biological examples, a definitive theoretical interpretation is impossible
at the current time. Consequently, the mathematical models are not
intended to be exact descriptions of the real biological system, but are
simplified approximations. We have tried to emphasize the main prin-
ciples and to present them in the simplest way possible. It will remain
for future researchers to determine whether more realistic models dis-
play the same dynamical properties as the simplified versions we present.

We assume a knowledge of calculus but try to explain all advanced
concepts and intend the text to be intelligible to nonmathematicians.
Equations are used sparingly, and we illustrate ideas with physiological
examples and graphs whenever possible. Although there are frequent
cross-references between chapters, the chapters are largely independent
of one another and do not have to be read in the sequence presented.
However, readers with little background in mathematics will need to
refer back to chapters 2 and 3 for explanations of unfamiliar concepts.
The Mathematical Appendix gives further details of some of the main
mathematical techniques together with examples and problems to
illustrate the application of these techniques in concrete situations.

Because of the large range of potential applications of the theory, it
has been impossible to give exhaustive references. Rather, we have tried
to give several key references for each topic to assist the reader in iden-
tifying the relevant literature. In order to preserve the flow of the text,
we have collected the references in the separate Notes and References
sections that follow each chapter.

Over the years we have benefited enormously from discussions and
collaborations with students and colleagues. In particular we thank
J. Belair, P. Dormer, A. Goldberger C. Graves, M. R. Guevara, U.
an der Heiden, S. A. Kauffman, J. Keener, A. Lasota, J. G. Milton,
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R. Perez, G. A. Petrillo, A. Shrier, T. Trippenbach, and A. T. Winfree.
J. G. Milton, S. Strogatz, J. Tyson, and A. T. Winfree made many use-
ful suggestions concerning presentation of the text, and J. G. Milton
suggested the main title. The figures were drafted by B. Gavin, and
S. James helped with the typing. We would like to thank Judith May
and Alice Calaprice of Princeton University Press for their help and
advice throughout the production of this book.

This book was partially written while LG was a visiting research
scientist at the University of California at San Diego and MCM was
a visiting professor at the Universities of Oxford and Bremen. We thank
H. Abarbanel and A. Mandell (San Diego), J. D. Murray (Oxford),
and H. Schwegler (Bremen) for their hospitality during this period of
time. Finally, we have benefited from research grants from the Natural
Sciences and Engineering Research Council (Canada), the Canadian
Heart Association, and the Canadian Lung Foundation.

Montreal
August 1987
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Chapter 1

Introduction:

The Rhythms of Life

x hysiological rhythms are central to life. Some rhythms are maintained
throughout life, and even a brief interruption leads to death. Other
rhythms, some under conscious control and some not, make their ap-
pearance for various durations during an individual's life. The rhythms
interact with one another and with the external environment. Varia-
tion of rhythms outside of normal limits, or appearance of new rhythms
where none existed previously, is associated with disease.

An understanding of the mechanisms of physiological rhythms re-
quires an approach that integrates mathematics and physiology. Of
particular relevance is a branch of mathematics called nonlinear dy-
namics. The roots of nonlinear dynamics were set by Poincare at the
end of the last century but have seen remarkable developments over the
past 25 years. Unfortunately, the main features of nonlinear dynamics
are usually presented in a format suitable for advanced students in
mathematics and are thus difficult for the practicing physiologist. Yet
many of the central ideas that are most relevant in physiology can be
expressed and illustrated in concrete physiological examples. This book
is intended to offer an introduction to recent advances in nonlinear
dynamics as they have been applied to physiology, in a format in-
telligible to a nonmathematician. However, we also hope that those
with a mathematical background will find the numerous physiological
examples of interest, and that some will even find the many poorly
understood phenomena in physiology which we discuss a stimulus for
future research. In this chapter we give a brief outline of this book and
summarize its themes by giving several physiological examples.

1.1 Mathematical Concepts

It is common to measure physiological observables as a function of
time. Four main mathematical ideas have been developed to charac-
terize such time series: steady states, oscillations, chaos, and noise.
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Since the pioneering research of Bernard, Cannon, and others, it
has become fashionable, if not obligatory, to discuss homeostasis near
the beginning of physiology texts. Homeostasis refers to the relative
constancy of the internal environment with respect to variables such as
blood sugar, blood gases, electrolytes, osmolarity, blood pressure, and
pH. The physiological concept of homeostasis can be associated with
the notion of steady states in mathematics. Steady states refer to a con-
stant solution of a mathematical equation. Elucidation of the mecha-
nisms that constrain variables to narrow limits constitutes a key area
of physiological research. As an example of a homeostatic mechanism,
consider the response to a quick mild hemorrhage in an anesthetized
dog (figure 1.1). Following the hemorrhage, reflex mechanisms are ac-
tivated which restore blood pressure to near equilibrium within a few
seconds.

Although the mean blood pressure is maintained relatively constant,
as we all know, the contractions of the heart are approximately peri-
odic. The periodic electrical activity of the heart can be visualized using
an electrocardiogram. Figure 1.2 shows an example of a normal elec-
trocardiogram. Likewise, all of us are familiar with the rhythms of
heartbeat, respiration, reproduction, and the normal sleep-wake cycle.
Less obvious, but of equal physiological importance, are oscillations
in numerous other systems—for example, release of insulin and lutein-
izing hormone, peristaltic waves in the intestine and ureters, electrical
activity of the cortex and autonomic nervous system, and constrictions
in peripheral blood vessels and the pupil. Physiological oscillations are
associated with periodic solutions of mathematical equations.

Hemorrhage [

Mean r145
arterial (•
pressure M25

r170 —
Arterial
oressure 1 3 0 ^

90
(mmHg)

1

1

Hemorrhage
(2ml/kg b.w.)

20 sec

1.1. Arterial and mean arterial pressure responses to a quick mild hemorrhage in a dog
anesthetized with sodium pentobarbital. From Hosomi and Hayashida (1984).
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1.2. Normal electrocardiogram. The P wave corresponds to atrial depolarization, the
QRS complex to ventricular depolarization, and the T wave to ventricular repolariza-
tion. One large box corresponds to 0.2 sec in the horizontal direction, and 0.5 mv in the
vertical direction. From Goldberger and Goldberger (1986).

Of course, we all know that close measurement of any physiological
variable will never give a time sequence that is absolutely stationary
or periodic. Even systems that are assumed to be stationary or periodic
will always have fluctuations about the fixed level or periodic cycle. In
addition, there are systems that appear to be so irregular that it may
be difficult to associate them with any underlying stationary or peri-
odic process. One potential source of physiological variability is the
fluctuating environment. As one eats, exercises, and rests, blood-sugar
levels and insulin levels respond in a characteristic fashion (figure 1.3).

C l o c k t i m e

1.3. Immunoreactive insulin (IRI) and blood glucose (BG) in ambulatory normal subjects
over a 48-hour period. Interrupted lines describe patterns for individual subjects; con-
tinuous lines show the group averages. Symbols: B = breakfast; L = lunch; Sk = snack;
D = dinner; Su = supper; E = 1 hour of walking exercise. From Molnar, Taylor, and
Langworthy (1972).
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Similarly, the blood pressure responds to the changes in activity and
posture. Physiological rhythms themselves can also act to perturb other
rhythms. An example is respiratory sinus arrhythmia in which the heart-
beat is quickened during inspiration. Although such variability is not
necessarily easy to deal with theoretically, its origin is often readily
understood.

More mysterious situations are those in which fluctuations are found
even when environmental parameters are maintained at as constant a
level as possible and no perturbing influences can be identified. For
example, the electroencephalogram measures average electrical activity
from the localized regions of the cortex and shows fluctuations over
time which are often quite irregular (figure 1.4). These situations afford
significant difficulties in understanding the mechanisms leading to the
irregularities.

Mathematics offers us two distinct ways to think about the irregu-
larities intrinsic to physiology. The more common of the two is noise,
which refers to chance fluctuations. For example, such chance fluc-
tuations are often associated with the opening and closing of channels
in neurons and cardiac cells that carry ionic current (figure 1.5). Al-
though "chaos" is often used as a popular synonym for noise, it has
developed a technical meaning that is quite different. Technically, chaos
refers to randomness or irregularity that arises in a deterministic sys-
tem. In other words, chaos is observed even in the complete absence
of environmental noise. An important aspect of chaos is that there is
a sensitive dependence of the dynamics to the initial conditions. This
means that although in principle it should be possible to predict future

'\iM*»^J^-A^^/\^^^^

1.4. Electroencephalogram recorded from a normal 17-year-old woman during natural
sleep. There are 14 Hz spindles, which are independent on either side. The top line shows
1-sec intervals. Simultaneous recordings from the eight electrode positions indicated on
the diagram are displayed. From Kiloh et al. (1981).
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1.5. Currents flowing through an individual potassium channel from a single cell from
dispersed AV node of rabbit heart. Short pulses of 2.4 pA amplitude at a resting potential
of — 20 mv. The histogram represents the distribution of current pulse durations and is
fitted by a single exponential. From Sakmann, Noma, and Trautwein (1983).

dynamics as a function of time, this is in reality impossible since any
error in specifying the initial condition, no matter how small, leads to
an erroneous prediction at some future time.

Some equations display dynamics that are not periodic and fluctu-
ate in irregular fashion. The existence of such equations was known to
Poincare and later mathematicians, but the recognition of these phe-
nomena has only recently emerged in the natural sciences. The impli-
cations of such phenomena in biology and physiology are a topic of
great current interest.

In practical situations, there are fluctuations about some mean value
or oscillations which are more or less regular. It is not a trivial problem
to go backwards from the observation of such dynamics to infer some-
thing about the underlying dynamical system.

Chapters 2 and 3 offer an introduction to the concepts of steady states,
oscillations, noise, and chaos in mathematics. We show how these prop-
erties can arise in equations and how transitions between different types
of dynamical behavior can occur. Since some of the material in chap-
ters 2 and 3 is elementary, those with some knowledge of mathematics
may wish to skip some of the sections. On the other hand, those with
a weaker background in mathematics and those who really do not like
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-FIRING THRESHOLD

Activity

time
1.6. Integrate and fire model. The activity rises to a firing threshold and then resets to zero.

to read about mathematical ideas can skip ahead to other chapters,
using chapters 2 and 3 as references as the need arises.

1.2 Mathematical Models for Biological Oscillators

There is a large literature that proposes many different types of mod-
els for the generation of physiological rhythms. The simplest type of
model is called an integrate and fire model. In such models a quantity
called the activity rises to a threshold leading to an event. The activity
then instantaneously relaxes back to a second lower threshold. This
process is represented schematically in figure 1.6. If the function deter-
mining the rise and fall of the activity between the two thresholds is
fixed, and if the thresholds are fixed, then a periodic sequence of events
will be generated at a readily determined frequency.

A physiological system that can be modeled by an integrate and fire
mechanism is the one controlling the micturition reflex. As time pro-
ceeds, the bladder fills and eventually micturition takes place. Then
the cycle starts anew. In the normal adult, micturition occurs 6-10
times/day with a voiding volume of 300-600 ml. However, pregnant
women and patients with serious bladder or prostatic pathology often
display increased frequency, reduced volume, and nocturia. In figure
1.7 we show the voided volume and micturition times recorded by a
patient with carcinoma of the bladder. We are unaware of detailed
quantitative studies or theoretical analysis of the micturition reflex or
its pathological variants. A variety of other systems have been modeled
by integrate and fire models, and we shall utilize such models in many
different points in the text.

Although integrate and fire models are frequently used in physiology
and will be discussed in several subsequent chapters, from a mathe-


