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Preface

THE ENVIRONMENTAL SCIENCES are witnessing a transformation in how mod-
els and data are used to draw inference and make predictions. Not more than
a decade ago, ecological data were typically thought of as the products of a
controlled experiment designed to test a narrow hypothesis in an abstracted
setting. Statistical references used by environmental scientists contained little
else. Yet data that meet the assumptions of classical statistical models remain
scarce, limited by our capacity to control the environment, the temporal and
spatial extent we can afford to examine, and the ability to see relevant vari-
ables. Beyond philosophical differences over, say, frequentist versus Bayes, is a
more fundamental obstacle: classical methods make demands that environ-
mental data rarely meet.

Meanwhile, environmental questions have expanded to embrace scales of
space and time that could draw on suborganism-level (e.g., leaf-level) experi-
ments to remote sensing, provided there was a framework to assimilate such
mismatched data sets. Information from uncontrolled and partially observed
processes has become a common basis for ad hoc inference and decision. The
evolving concept of “data” extends even to such derived products as model
output. Many types of information are accumulating faster than they can be
assimilated in models; weather records, gene sequences, and remotely sensed
imagery are examples. Environmental scientists require the capacity to draw
inference based on large amounts of information, much of which cannot be
shoehorned into classical models.

With the challenges have come some important new tools. The revolution
in how data are used for inference and prediction is driven not only by the scale
and complexity of issues confronting environmental scientists, but also by mod-
ern techniques for modeling and computation. Environmental scientists are
discovering the capacity to build high-dimensional, yet coherent, models at
relevant scales, and to accommodate the heterogeneous information that comes
from diverse sources and was previously treated in an ad hoc fashion. Together,
ambitious goals and emerging machinery have fueled growing demands on how
to combine process models with data having context that can vary in space, in
time, and among sample units. The approaches are technical and developing
rapidly. Critical application of software requires a background that includes
distribution theory and basic algorithms. This book is motivated by the need
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for an informal treatment of topics that could be accessible to environmental
scientists who have some quantitative skills, but lack deep background in sta-
tistical theory.

In writing this book, I have tried to reach at least two audiences in the
environmental sciences, including the motivated graduate student who has
taken introductory courses in statistics and calculus, but has forgotten most of
it, and the practicing investigator, who is faced with challenging problems. In
my experience, these two audiences often possess some quantitative skills, but
are stifled in their efforts to digest methods of modern inference and predic-
tion available from the statistical literature. This introduction to concepts and
methods includes material that would typically be contained in graduate-level
courses in statistics and applied mathematics. The coverage has been shaped
by experiences with students in my Ecological Models and Data course and in
the summer institute on Ecological Forecasting at Duke University and by col-
leagues with whom I have collaborated and shared ideas.

In the years since the writing of this book began T have come to believe
that the most difficult expectation to dispel is the one about how it should
provide fodder for pithy graduate seminar discussions on the philosophy of
statistics. Some readers will be disappointed not to find within these pages
emphasis on the controversy common in ecological writings on Bayes. The
anticipation for such a book has so dominated the communications I have
received from ecologists concerning its preparation, that I will briefly explain
why this book may not be what some readers expect.

The grounds for these expectations are several, but T see two factors play-
ing an inordinate role. First is the fact that ecological discussions of Bayes have
largely picked up on traditional debates in the statistics literature. These
debates have been, at times, so heated (and entertaining’,) that they have tended
to overwhelm the technical developments that have breathed new life into a
broad aspect of statistical practice. For the nonpractitioner (most environmen-
tal scientists fall in this category), it may be hard not to leave with the impres-
sion that “what’s new” is changing philosophy.

A second and more subtle factor behind the expectation that new meth-
ods can come largely through a seminar format may be an entrenched view
that ecologists can do statistics without becoming too involved in technical
details. Modern Bayes demands a degree of sophistication with distribution
theory that is lacking not only in the statistics courses typically available to
ecologists, but also in the math courses taken at the Ph.D. level. The motivated
student may gain facility with the deterministic models encountered in linear
algebra and differential equations courses, while missing the stochastic mod-
els needed for modern Bayes. Even an introductory course in probability and
stochastic processes will focus on theory, rather than applications that involve
algorithms. In my view, the debates on philosophy can suffer from misunder-
standing of some basic technical concepts.

! For example, Lange et al. (1992) responded to the claim that they were “trying to turn statisti-
cians into Bayesians.” Really, they were just trying to turn “frequentists into statisticians.”
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In contrast to what is often written about statistics in the ecological
literature, many statisticians have recently been preoccupied with tools, rather
than philosophy. The emergence of modern Bayes in so many disciplines has,
to some degree, eclipsed older debates. Tronically, the excitement generated by
technical developments has prompted a number of Bayesians to remind
colleagues that Bayes is more than just machinery. Throughout, I focus on
pragmatic concerns, including modeling, computation, and applications, with
less emphasis on philosophy than some ecologists may expect from a treat-
ment of environmental statistics. I introduce both classical and Bayesian
frameworks, emphasizing how we might want to shift from one to the other
as complexity increases. I do not dwell on philosophical divides, largely
because T think most students who begin to use new tools will develop an
appreciation of these issues along the way. I think that the shift to a Bayesian
view of inference is so inevitable that its adoption does not really need any
more arguments from people like me. In short, this book is intended for those
who want to learn new techniques, including a basic introduction to statisti-
cal modeling and computation, emphasizing process models from the envi-
ronmental sciences. It is a text, rather than a monograph, because the
philosophical debates are available elsewhere—in the ecological literature,
Hilborn and Mangel (1997) is exceptionally good—and the tools themselves
are the source of current focus. A complementary volume edited by Clark and
Gelfand (2006b) focuses primarily on applications and assumes a greater level
of sophistication.

This effort to introduce state-of-the-art inference and prediction tech-
niques to a nonstatistical audience is behind the nonstandard content and
organization. My personal experiences with graduate students and colleagues
led me to believe that a text on this material would need to accomplish several
things. First, it would have to span a broader range of sophistication than is
typical of most ecology and statistics references, starting at a basic level. Many
students with the capability and motivation cannot get started with even the
best new texts on modern Bayes, and there are now several. On the other
hand, if a text starts and remains at a basic level, students fail to appreciate
what it can do for them. This is certainly the conclusion many take from eco-
logical literature on Bayes, which seems to say that Bayesians do a lot more
work to get about the same results. T have been most impressed with the need
for an approach that makes the connections from basic models to environ-
mental application, with plenty of opportunity to see how to get there.
Throughout, T have attempted to present material in terms that are as
nontechnical and jargon-free as possible. Nonetheless, much here will chal-
lenge students entering graduate programs in environmental sciences. This text
assumes that the reader is committed to investing seriously in some technical
background.

So now for the nonstandard organization. A typical text with this degree
of emphasis on statistics would start with probability models and other tech-
nical background. T have taken this approach in the past and found that it
mostly convinces environmental students that this stuff is no fun and will take
more time than they have available to them. More effective for me has been
the treatment of the technical tools as progressive goals to be assimilated



Xii

PREFACE

incrementally. Rather than starting with the hardest topics, I provide extended
appendixes and encourage students to skim them repeatedly. Even the back-
ground distribution models can be most accessible when they come in the form
of computer applications that are backed up by application.

The first cight chapters can be the basis for a self-contained graduate
course, such as my Ecological Models and Data at Duke University. The first
two chapters are intended to move rapidly through some motivation, basic
concepts, and process models, providing an introduction only. Clearly, there
are whole texts devoted to this material. In Chapter 2, my emphasis is on the
broad outline of how one might think about process models, with a general
introduction to applications and behavior. In my course, I move quickly to
inference, which begins in Chapter 3. This is the point where students start to
feel more engaged and make connections to data. By the end of my course
(Chapters 1 through 8 of this book), many students progress to the point of
writing their own Gibbs samplers. Throughout, T attempt to fill in many of the
steps that seem obvious to the practitioner, but can baffle the nonstatistician.
I emphasize individual goals for the course, with computer labs leading
directly to student independent projects. The computer lab manual that
accompanies this text, Statistical Computation for Environmental Scientists in
R, contains substantial cross-referencing with this text. The student projects
assure that students apply the tools and move at their own pace.

Chapters 8 through 10 are more advanced. Here T assume additional
sophistication and include fewer of the technical details. These chapters
provide an overview of the complexity that can be addressed with modern
techniques. For some topics (e.g., spatio-temporal models), T have resorted
almost exclusively to primary statistics literature. Even with advanced mate-
rial, T have attempted to explain the basic modeling concepts and how one can
begin to develop algorithms for computation. These chapters represent a point
of departure for some of the recent excellent texts in this field.

Finally, T have to include a few remarks on literature coverage. This is
intended as a text, not a review of either statistics or ecological modeling. I do
not attempt to reference all relevant papers. Indeed, the many examples
overemphasize work from my own lab for the simple reason that T have
worked extensively with these data sets and models and can readily summa-
rize them in this text. Environmental data sets are inevitably complex, far
more so than is generally acknowledged in publications. T have tried to empha-
size tools to deal with these issues, best done with examples T know well. The
coverage also diminishes after 2003. The draft of this book was essentially
completed by early 2004. T have included some references through 2006, but
these were primarily already known to me before they were published. Thus,
the treatment of publications in 2004 and 2005 is necessarily more cursory
than that of earlier works.



Acknowledgments

I have benefited from the interactions with many students and ecological col-
leagues and from the indulgence of several superb statisticians, who have toler-
ated my meddling in their discipline. Foremost, I have to thank lab members,
present and past, who have reviewed drafts of the text, some of them repeatedly.
These include Brian Beckage, Kendrick Brown, Phil Camill, Mike Dietze,
Michelle Hersh, Janneke HilleRisLambers, Ines Ibanez, Shannon LaDeau, Jason
Lynch, Jason McLachlan, Jackiec Mohan, Mike Wolosin, and Pete Wyckoff,
I owe much to students in my Ecological Models and Data course, who have
provided fodder, in the form of interesting modeling problems, while serving
as experimental subjects for material in this text and the accompanying lab
manual. T thank Peter Morin and Fred Adler for feedback on earlier drafts of
the full text. An anonymous reviewer made many valuable suggestions.

Of my statistical colleagues, I must especially thank Alan Gelfand, Montse
Fuentes, Michael Lavine, and Chris Wikle. Alan has been a continuing inspi-
ration with his support and friendship. T have abused Chris Wikle with more
than one draft of the entire text, and he has been incredibly generous with his
time and feedback. T have had the benefit of significant feedback from Michael
Lavine over the years and some very constructive collaborations. Montse
Fuentes has been supportive through the latter stages of this project. Kate
Calder and Chris Pajorek provided very insightful thoughts on presentation of
the material in Chapter 10. At various times along the way I have benefited
from the additional inputs from Dave Higdon and Peter Mueller. Additional
feedback came from Brad Carlin and Tony Ives.

Finally, Chantal Reid has provided valuable criticism and support
throughout.






Part | Introduction

The first two chapters lay out goals and challenges and introduce basic ele-
ments of models used for ecological data. In Chapter 1 T discuss issues that
arise in the development and application of models for environmental infer-
ence and prediction. In Chapter 2 T apply some examples from population
dynamics as the basis for introducing the different types of models used for
ecological processes. These process models are combined with data and param-
eter models in Parts II, III, and IV.






1 Models in Context

1.1 Complexity and Obscurity in Nature and in Models

This book deals with the use of data and models that can enhance under-
standing and contribute to prediction. These two goals are complementary.
Both involve inference, and model analyses can take the form of predictive
distributions. For environmental scientists, the challenge stems from the fact
that natural and managed systems are high-dimensional, meaning that many
interacting forces are at work (Levin 1998; Clark 2005; Clark and Gelfand
2006a). Much of nature is unmeasurable, unobservable, or both. Much cannot
be manipulated. Faced with obscure, complex, and uncontrolled processes,
environmental scientists have long recognized the need for abstraction (Schaffer
1981; Caswell 1988). Theoreticians and experimentalists attempt to extract
the important relationships from nature so they can be studied in a controlled
setting. Ecologists write models with only a few variables and parameters.
They design experiments with only a few treatments.

The need to simplify on both the theoretical and experimental sides leaves
a gap that can isolate those who analyze ecological models from those who
collect and draw inference from data. This gap makes it difficult to test theory
with data and to model data in appropriate ways (e.g., Oreskes et al. 1994).
The goal of this book is to describe methods that can help to bridge the gap,
starting from concepts that underlie traditional process and statistical models,
and moving toward modern techniques that allow for deeper integration. This
introductory chapter starts with some background and motivation.

1.1.1 Why Ecological Models Are Low-Dimensional

Attempts to abstract key features of a process are an important component of
all scientific disciplines. From the conceptual (theory) side, this abstraction is
accomplished with process models that contain few variables and parameters.
High-dimensional process models are intractable; without simplified models,
they cannot be analyzed to yield transparent relationships. Complex process
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models are difficult to apply beyond the context for which they were developed.
If we can abstract the important elements and develop a simple model thereof,
analysis might allow us to understand how the process behaves and why.

The simplification needed to describe systems mathematically often requires
assumptions that cannot apply to ecological data. Theorists may speak in terms
of processes that apply everywhere, in a general sense, but nowhere in particu-
lar. In the light of the complexity mismatch between theory and the real world,
it is not surprising that mathematical models are often viewed as irrelevant
(e.g., Simberloff 1980). In over a decade of teaching mathematical models T do
not need one hand to count the number of times that a basic model described
in ecological textbooks has been directly applied to a student data set. When it
comes to models, irrelevance can be the price of tractability.

1.1.2 Why Statistical Inference Is Low-Dimensional

Traditionally, the statistical analysis needed for inference and prediction was
possible only for data collected under a rigid design. Here again, simplification
is achieved through use of model systems. Statistical models simplify with
assumptions such as each observation is independent of all others; uncertainty
is typically allowed only for a response variable; the variables must be observ-
able, in the sense that we can assume that values assigned to predictor variables
represent truth. To meet these assumptions, experiments rely on strict design.

By contrast, ecological data are typically complex and interrelated in space
and time (Ellner and Turchin 1995; Scheffer and Carpenter 2003). Broad-scale
and long-term interactions with superimposed high frequency and difficult-to-
measure fluctuations are pervasive. Only small parts of a process readily sub-
mit to experimental control and typically only in terms of highly abstracted
experimental designs (Carpenter 1996; Brown 1995; Skelly 2002; Hastings
2004; Clark and LaDeau 2005). The small amount of variance in data that
is explained by ecological models reflects the high dimensionality of nature,
the many interacting processes that affect observations. The fact that simple
models typically account for a small fraction of the total variance, even in
experimentally controlled settings, leads to obvious questions: Are the impor-
tant factors included in the analysis? Do the assumptions of independence and
uncertainty confined to the response variable impact inference? Can the exper-
imental results be extrapolated to nature?

Because many important processes cannot be studied in controlled experi-
ments, there is a tendency to overlook model assumptions and apply statistical
models where assumptions are violated. Spatio-temporal aspects of data and
most sources of uncertainty tend to be ignored. Whether nature is abstracted to
the point where simple model assumptions can be satisfied or assumptions are
violated in the analysis of natural settings, the barriers between data and the-
ory can be large.

The contrast between the high dimensionality of natural systems versus the
simplicity that is manageable in experiments and models explains part of the
historic gulf between ecological models and data. Throughout, I suggest that
simple process models can be powerful. A goal of this book is to demonstrate
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that this gulf can often be bridged, but only if process models can remain sim-
ple enough to be tractable, and data/parameter models can be sufficiently
sophisticated to allow for the high dimensionality of nature. Rather than design
away natural influences, T emphasize inference based on relevant scales and set-
tings; the focus is on bringing models to nature, rather than nature to models.

1.2 Making the Connections: Data, Inference, and Decision

The challenges of inference, prediction, and decision making faced by ecolo-
gists are shared by many disciplines. T use two examples to highlight some
of the specific issues. To emphasize the generality of both the challenges and
the emerging tools needed to address them, I draw the first example from med-
icine. The second example comes from community ecology.

1.2.1 Example: Soft Data, Hard Decisions

Most information does not come from experiments designed by statisticians,
and most decisions are subjective. Consider the example of a standard treat-
ment of kidney stones with extracorporeal shockwave lithostripsy (Madigan
and York 1995). The stone is located on a real-time ultrasound image by an
operator who will focus shockwaves capable of disintegrating it. If the image
is of high quality (I), there is an increased chance that it will be properly
identified and disintegrated (D). If disintegrated, there is increased chance of
clearance through the urinary tract (C). The decision framework involves inter-
pretation of data with a flow outlined in Figure 1.1a. Note that the medical
practitioner is concerned with the probability of successful clearance (C) given
image quality (I), or Pr{ClI}. Between these two events is the probability of
disintegration (D). The decision is subjective, in the sense that, faced with the
same evidence and choices, two practitioners could arrive at different decisions.

The basic elements of this problem are familiar to environmental scien-
tists, managers, and policy makers. For instance, information is limited, but
it can accumulate with time and experience. To many scientists, these data

a) Graphical model of events b) With parameters

/| —>» D —/ C /| ——™ D ——>» C

(A !\

Pr{ly  Pr{D\l}, Pr{DInot [} Pr{CID}, Pr{Clnot D}
Parameters

FIGURE 1.1. A graphical model of the kidney stone example (modified from Madigan
and York 1995). In (a) is the graphical model of events that the image is of high qual-
ity (I), the stone is disintegrated (D), and the remnants are cleared through the urinary
tract (C). To calculate Pr{ClI} we require five parameters (5). By making them stochas-
tic (giving them priors), we can write simple rules for updating knowledge based on
experience with new patients.
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seem soft. The decision must be based on inadequate knowledge. We may not
have the luxury of putting off a decision until hard data can be collected from,
say, a series of controlled experiments. However, we would value a means for
updating knowledge that can result in better decisions, that is, an adaptive
management framework.

How can the practitioner use the model to learn from accumulated expe-
rience? The answer is, in large part, technical and a principal motivation of this
book. But I provide a partial answer here. The parameters that influence deci-
sions include the probability of C given that disintegration did or did not occur
(Pr{CID} and Pr{Clhot D}, respectively), the probability of D given that image
quality was good or bad (Pr{D|I} and Pr{Dnot I}, respectively), and the proba-
bility that the image was of good quality (Pr{I}) (Figure 1.1b). The values of
these five parameters determine probability of success. Clearly, the more we
know about the values of these parameters, the more informed the decision.
If we treat these parameters as being fixed values, there is no opportunity for
learning. To allow for updating knowledge, the parameters are taken to be
random. This random character of parameters allows for regular updating,
with current understanding being further refined by each new experience (obser-
vation). The posterior knowledge taken from each patient becomes the prior
for the next.

Whether the goal is increased understanding (as in, say, inference), pre-
diction, or decision, the model graph provides a road map that facilitates not
only modeling, but also computation. It emphasizes the importance of condi-
tional probability, represented by arrows connecting events that are directly
linked. In this particular instance, it describes a decision process that involves
uncertainty that can be reduced though a prior-update-posterior cycle.

I use graphs like Figure 1.1 to represent models throughout this book. Early
in the text, I use the convenient structure that involves data, process, and param-
eter submodels. This hierachical framework for submodels serves to decompose
potentially complex problems into simple elements. By the end of this book T
extend this framework to the more general notion of models as networks.

1.2.2 Example: Ecological Model Meets Data

A second example illustrates how the graphical framework of Figure 1.1
extends to ecological processes and brings in some of the challenges that con-
front ecologists attempting to integrate models and data. Ecological models
predict that differences in how species respond to limiting resources can deter-
mine whether they can coexist (Levins 1979; Armstrong and McGehee 1980;
Tilman 1982; Pacala and Silander 1990; Grover 1991; Pacala and Rees 1998;
Murdoch et al. 1998). Is one species better able to exploit a limiting resource
than another species? Does the advantage depend on how much resource is
present? To evaluate the role of limiting resources, ecologists gather data
describing growth responses at different resource levels.

!'The notation | means “given that.” Thus, Pr{CID} means “the probability of event C given that
event D has occurred.”
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Figure 1.2 shows data on seedling response (height growth) to a resource
(light). The degree of scatter in Figure 1.2a and 1.2b is not unusual (Kobe 1999
Finzi and Canham 2000). Growth rate data are obtained from measurements
of seedling height, together with estimates of light that penetrates the forest
canopy. Full sunlight has a value of one, and complete darkness has a value of
zero. Although the raw data do not show obvious differences between the two
species, the fitted model says that the differences are highly significant, with
95 percent confidence intervals of each assigning near zero probability to the
other (Figure 1.2¢). It might seem paradoxical that these broadly overlapping
data clouds are represented by significantly different models, yet this common
situation is rarely mentioned. In fact, it is central to the interpretation of models.

Here is the standard analysis that led to this result. A model might include
parameters that describe a minimum light requirement, a half-saturation con-
stant, and a maximum rate, or asymptote. We could write the model as

Yip = M(x;’t§‘9) + &
g;, ~ N(0,0%)

Ji

where x; and y,; are the predictor and response variables (light and growth) for
the /™ individual at location  at time ¢, and g is the saturating function of light
availability x. 6 represents the three parameters that determine w, representing (1)

a) Liriodendron tulipifera
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0 $

b) Acer rubrum
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o_lﬂl . i LI il FIGURE 1.2. Growth rate responses
0.0 02 0.4 06 08 to light availability. () and (b) show
¢) Fitted model with 95% CI on data obtained as measurements of

seedling height growth and light

Liriodendron  availability. (¢) shows a traditional
) NPT bbbt S model fitted to these data, the solid
S y 223 line being the estimate of p. The

Acer rubrum  dashed lines are 95 percent confi-

0.0 0.2 0.4 06 08 dence intervals for . From Clark
Light estimate et al. (2003).
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the minimum light requirement, (2) a half-saturation constant, and (3) the
asymptotic growth rate. This saturating function does not fully describe the rela-
tionship between x and y—there is residual scatter. To accommodate this scat-
ter, this function is embedded within a stochastic shell, which might allow for
the fact that the model cannot be correct, and growth rates are not precisely
known. Together, deterministic and stochastic elements are termed a likelibood
function. This model says that y is assumed to have a normal distribution with
a mean determined by the function u and residual variance o”. This is the fitted
model of Figure 1.2¢.

The saturating function g runs through the data cloud and is described by
estimates of three parameters 6, which are represented by error distributions
in Figure 1.3. The spread of these error distributions represents the level of
confidence in parameter estimates, which depends, in turn, on the number of
observations, the scatter, and the model. A 95 percent confidence interval can
be viewed as the central 95 percent of the error distribution (although this
is not its precise definition, as discussed in Chapter 5). The errors in these
estimates are asymptotically zero in the sense that, as sample size increases, the
confidence intervals (spread of error distributions) decrease. Hereafter, when
I speak of asymptotics, I mean it in this sense of sample size. A predictive
interval for the function w is obtained by propagating the error in parameters
6 to error in w (dashed lines in Figure 1.3).

Residual €
o
3- _ —
= 97 Asymptote [ B
£ estimate
g
2
2 o L L
(O] L
o_ L ---_
I 1
|
Minimum light estimate 0.2

Density (1/fraction)

0.I4 0:6 0.8 1.0
Light availability (fraction)
FIGURE 1.3. Elements of the traditional model used to analyze data in Figure 1.1. There

are error distributions for three parameters and residual stochasticity in the error term €
(From Clark et al. 2003).
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Obviously, the 95 percent confidence interval on u(x) does not bound
95 percent of the data. The uncertainty in parameter estimates, which is used
to construct the envelope for w, is relatively small in comparison with vari-
ability in the data. The bulk of the variation is associated with the error term
& This scatter is represented by a density shown on the far right-hand side of
Figure 1.3. We could calculate a predictive interval for y that incorporates this
scatter (it integrates &) (Feiburg and Ellner 2003; Clark 2003), but that is
rarely done. We would do this to predict as-yet unobserved growth response
data y. But if this scatter is viewed as noise or error, we might not have much
use for this predictive interval—it adds clutter, but not insight. Moreover, if we
thought the scatter captured by g;, was anything other than error, it might be
difficult to justify this model in the first place.

So what is this leftover scatter? T began by saying that the scatter sopped
up by g, might be associated with observation errors or model misspecifica-
tion. But measurements of seedling height can be off by a centimeter. They are
not off by a meter. So observation error is not the explanation for the broad
scatter in Figure 1.2, If the deterministic part of the model w is inadequate, we
might increase its complexity in terms of a more flexible form or by including
additional covariates that could explain the scatter. In either case, we require
more parameters. In fact, ecologists have studied seedling growth many times,
and measurements of more variables often do not explain much additional
scatter. In other words, we often cannot account for this variability by increas-
ing the complexity of the deterministic part of the model w(x) (Clark et al.
2003a). If the scatter is not observation error, and we cannot accommodate it
by incorporating more deterministic complexity, traditional methods do not
leave many options.

In fact, there are many ways in which stochasticity might stand in for
unobservable aspects of this relationship. For example, the light data x might
be variable or imprecisely known. This brings an additional source of sto-
chasticity and is sometimes termed an error-in-variables problem. T distin-
guish between the light seen by a plant at location j, x; and the observation
of it using the notation x/°**). To allow that observations depend on the
true light level, with uncertainty, T include a density for light observations,
x{°%) ~ p(x,d), where ¢ represents any parameters that enter the model for
observations. We now have the model

Yip = M(x;’t§‘9) + &y

x;’ths ~ p(x;,d) uncertainty in x

& ~ N(0,0%) error in y

Asin Section 1.2.1, we can represent this model with a graph. The basic model
that ignores uncertainty in light is represented by Figure 1.4a. If implemented
in a Bayesian framework (Chapter 4), T could refer to this as “simple Bayes.”
The stochastic element in this graph is represented by the connection between
o and y, indicating the error in y. In part b of this figure, there is an additional
source of stochasticity associated with observations of x. The graph has
increased in complexity to accommodate this additional relationship.
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a) Simple Bayes b) Errors in x ¢) Random individual effects
(obs) b:
& > Yy Xj Y XI(/o ¥ Yij Data model(s)
Ti/ % /TI/ % /T” Process model
c G [0} o G [0} o 9

© Parameter model

FIGURE 1.4. Four models that can be used to model growth response to light. Complexity
increases from a simple model with error in y (a), to error in both variables (5), to vari-
ability among individuals (¢). Modified from Clark (2005).

But there is still much more going on in Figure 1.2. We expect that indi-
viduals will have different responses to light, depending on many factors that
cannot be measured. If individual responses result from unmeasured or
unmeasurable factors, then we can include random effects in the model. In this
case, there is a parameter vector that applies to each individual 6. These indi-
vidual parameters are drawn from a distribution having parameters 0. This
model is:

Vie = w(x50;) + &

X2 ~ p(x,) error in x
0; ~ p(O) random individual effects
&5 ~ N(0,0%) error in y

There are now n+k new parameters that must be estimated, one 6, for each
individual, and k parameters in 6, describing population heterogeneity.

The model is getting complex, and the list of potentially important influ-
ences is still not exhaustive. For example, we might include random effects
associated with location, fixed or random effects for years, and there might be
autocorrelation between years or with distance. We might have additional
sources of information that are not yet accommodated by the model. Already
the model is beginning to look like a network of elements, some of which are
known and some unknown. This network perspective is readily depicted with
graphs. The modules labeled as “Data,” “Process,” and “Parameter” on the
right-hand side of Figure 1.4 help organize relationships.

With these basic principles in mind, I return to the traditional analysis,
which superficially appears to have clarified a relationship involving broad
scatter with a tight relationship between resource and growth (Figure 1.2). So
where did the scatter go? And did we lose anything important? Using models
available in standard software, there is a deterministic function w(x) buried
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in noise. The function u(x) is like the mean response, and it is surrounded by
error that is independent of u(x). We now have the answer to the first ques-
tion: the scatter was sopped up by a stochastic shell.

The second question is more difficult to answer. The insights used to
extend the simple model came from recognition that observations of height
growth are imprecise, light observations or treatments are variable and impre-
cisely known, individuals have different genotypes, and their responses to
light depend on other factors that vary in time and space. Some of these
factors can vary on such fine spatial and temporal scales that we could not
hope to measure them. Because there are response times associated with many
variables, we would have a hard time even deciding on a scale to measure
them. If all of these factors contribute to the scatter, then the problem is high-
dimensional.

How do the assumptions of the statistical model used to fit Figure 1.2¢
compare with the factors we identified on the basis of ecological insight?
One could argue that at least one of these factors, observation error, is con-
sistent with the statistical model (the deterministic-response-in-a-stochastic-
shell approach). This would be the case if there were a deterministic response
that applies to all individuals, and it was obscured by errors that result
from sampling. The two might be independent if meter stick error does not
depend on tree height. But the data suggest that this assumption does not apply
here. The measurements could be off by perhaps a centimeter, but not by
a meter.

Once we move beyond simple observation error, the deterministic-
response-in-a-stochastic-shell model becomes less plausible. The other factors
are not well described by this model, because their effects depend on the func-
tion w(x) itself. Of course, we could make the stochasticity depend on u(x)
in a specific way by, say, modeling log values. Where such specific transfor-
mations can provide a quick fix, use them. For a number of reasons, this quick
fix will not suffice here. If the estimates of the light level at which a plant
grows are only approximate, then x is stochastic, and, in turn, w(x) is sto-
chastic; it is a function of stochastic x. If individuals have different responses
to light due to genotype or factors that vary, then there is a function wu(x) for
each individual .

Is this simply nit-picking? How much of a difference can it make? Would
we not fit roughly the same model, regardless of seemingly arcane decisions
about what causes the scatter? Can these details affect the inference on the
process of interest, example, competition and coexistence? The answer is, “it
depends.” We will confront this issue repeatedly. For now simply consider a
few more points. First, the range of variability in growth described by the fitted
function wu(x) in Figure 1.2¢ is a small fraction of the total (Figure 1.2a, b).
If pressed to identify the dominant term in our model, we would have to
say that it is the part we have relegated to the noise or error term, not to the
signal w(x).

The first point leads to a second. Inference is based on a model that differs
substantially from our view of the relationship. If the scatter were modest we
might ignore these factors, but how do we justify it here? If we are satisfied
with sweeping under the rug the dominant part of the relationship, is there any
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point to statistics? Do we have any more confidence in a predictive interval
constructed from the traditional model than we would in a line drawn through
the scatter by eye? It is worth mentioning that the prevailing confidence in
ecological predictions is not great, in part because it is not clear how they
relate to underlying processes and to the data used to fit them. The traditional
view that the scatter is error underlies the interpretation that one species grows
faster at all light levels (Figure 1.5a). In light of the assumptions, can we be
sure that tulip poplar outcompetes red maple?

If we trust the data and we trust the theory (e.g., growth is a saturating
function of light), then the statistical analysis is the weak link. Off-the-shelf
software does not provide flexible options for most ecological data sets. In
other words, it may be a bad idea to let default assumptions from canned soft-
ware determine everything beyond the basic process model.

As preface to techniques covered in this book, consider what happens if
we allow for the sources of variability that are consistent with ecological insight
(uncertainties in observations, light, and the growth response u(x)). An analy-
sis that admits these considerations suggests broad overlap (Figure 1.5b). It is
true that we could also construct broadly overlapping prediction intervals for
the classical approach in Figure 1.5a. This interval could be constructed by
putting back the scatter (the stochastic shell) that we threw away to produce
Figure 1.5a. I discuss this in later sections of the book. This is generally not
done in ecological analyses, because modeling begins from the premise that
everything other than u(x) constitutes error and is independent of w(x).
Moreover, the predictive interval obtained by mixing in g is not the one we
obtain under the assumption that many factors contribute stochasticity, and
many of them come through wu(x) itself.

Throughout this book T focus on the weak interface, the critical connection
that is needed to evaluate relationships and to predict. Modern approaches use
structure to allow for complexity and stochastic elements to stand in for uncer-
tainty. Getting this connection right helps make theory relevant, and it allows
us to exploit data fully.
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FIGURE 1.5. Comparison of the predictive interval on p from a classical analysis, as has
been standard practice in ecological analyses, with the predictive interval on y from the
model in Figure 1.4c.
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1.3 Two Elements of Models: Known and Unknown

I emphasize two elements of models, including variables and relationships
that are known, either because they can be seen or we can assume them to be
true, and those that are unknown, because they are obscure. The former con-
stitutes much of traditional modeling in ecology. Unknowns are treated
stochastically. Section 1.3.1 gives a brief overview of process models, followed
in Section 1.3.2 by some aspects of unknown model elements, which are taken
up in stochastic components.

1.3.1 A Point of Departure: Ecological Process Models

Environmental scientists do not have the luxury of continuing to limit atten-
tion to simple models. Low-dimensional models and designed experiments will
continue to contribute insight, but the growing demand for relevant inference
and prediction calls for the added capacity to address complex interactions.
Modeling often begins with a process component to describe how things work.
We may seck to determine whether or not relationships exist (e.g., hypothesis
tests), to quantify relationships, and to make predictions. Where possible, the
modeling strategy will focus on simple process models and, in many cases,
allow for complexity on the stochastic side. Still, many processes have multi-
ple interacting elements. Here T mention some of the types of environmental
questions that entail integration of data and models, some of which are nec-
essarily high-dimensional. Not all of these examples are included in this book,
but they are all amenable to the approaches considered here.

Populations—At a time of intense interest in protecting rare species, the
awareness that many nonendangered species undergo extreme fluctuations
in density is of great interest. A broad range of questions and processes is
addressed using population models and data. What places a population at risk?
Will changes in the demography or age structure of a population have conse-
quences in the future? What are the ecological implications of this structure?
What kinds of constraints and trade-offs gave rise to observed life history
schedules?

Ecologists use models to explore relationships involving individual behav-
ior and dynamics of populations. For example, reproductive episodes can
result in oscillations if there are strong feedback effects of density on popu-
lation growth rate. Although evidence for chaos in population dynamics is
weak (Hassell et al. 1976; Ellner and Turchin 1995), feedback involving
resources or natural enemies can result in complex dynamics (Elton 1924;
Saucy 1994; Ostfeld and Jones 1996; Earn et al. 2000). Oscillations can bring
a population seemingly close to extinction, only to be followed by rebound to
high abundances. Such fluctuations can occur repeatedly. They can be peri-
odic, and, thus, are potentially predictable. Important strides in the 1970s
(May 1974) initiated fertile research that has expanded to include feed-
backs and environmental variation (e.g., Bjornstad et al. 2001). Age represents
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one of several kinds of structure in populations. It can have several classes
of effects, depending on its contribution to time delays and response to per-
turbations (Lande et al. 2002; Coulson et al. 2001). The inherent spatial vari-
ability in nature (e.g., soils and topography) can explain much pattern in
populations, but spatial pattern can also result from processes endogenous to
populations themselves. Spatial coupling can result from environmental varia-
tion (the Moran effect) (Grenfell et al. 2000), dispersal (Kelly and Sork 2002),
or other biotic interactions (Ostfeld and Jones 1996).

The challenges faced by scientists and managers come from the fact that
populations are highly variable and subject to many influences, and demo-
graphic processes are hard to see. The basic process models used to infer pop-
ulation dynamics are reviewed in a number of recent theoretical ecology texts
(Chapter 2). Spatio-temporal variability in demographic rates can complicate
models (Wikle 2003a; Clark et al. 2003a) and require many years of data to
estimate parameters (Clark et al. 1999b; Coulson et al. 2001). Many of the
variables that ecologists would like to infer or predict, such as demographic
rates for endangered species and extinction time, occur at low density. Because
different processes may dominate at low density, including Allee effects, we
cannot simply extrapolate parameter estimates obtained from populations
studied at higher densities. Spatio-temporal processes are inherently high-
dimensional, in the sense that variables not only interact with one another, but
they do so in ways that depend on when and where they occur (Legendre
1993a; Ranta et al. 1995). Natural ecosystems are characterized by both con-
tinuous and discrete variation in space (Hanski 1998). Parameter uncertainty
may have a large impact on predictions of extinction risk (Ludwig 1999;
Ellner and Feiberg 2003). Ecologists have long struggled to characterize land
cover in ways that are tractable, yet relevant for population dynamics (Lande
1988; Franklin et al. 2000).

Ecological Communities—Models are used to understand trophic interac-
tions among species (Hutchinson 1959; MacArthur 1972; Tilman 1982,
1988). For example, why are there so many species? Why are some abundant
and others rare? Trophic interactions and environmental controls contribute
to these patterns. Interactions among species on the same and on different
trophic levels must somehow explain much of the pattern (or lack thereof)
observed in nature. Why don’t the best competitors for the few resources that
appear to limit growth drive all others to extinction (Tilman 1988)? How do
species interact by way of shared natural enemies (Holt 1977) or other types
of indirect effects (Wootton 1993)?

Early ecological models were deterministic, but incorporation of tempo-
ral stochasticity has become increasingly popular. Ecologists early suspected
that variability in time could have some obvious as well as some mysteri-
ous implications for fundamental ecological processes (e.g., Elton 1924;
Hutchinson 1959). Fluctuations in the environment coupled with temporal
integration by organisms (e.g., long life, dormancy) can contribute to coexis-
tence of species, and it may have evolutionary consequences (Chesson 2000).
I consider different approaches for accommodating temporal heterogeneity
in Chapter 9.
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Spatial relationships complicate modeling, including movement and
re-source patchiness. Recent theoretical models have increasingly focused
on how predictions of spatial models differ from those of nonspatial ones (e.g.,
Lewis 1997; Neuhauser 2001; Bolker et al. 2003). A rich literature is develop-
ing that emphasizes problems related to spatial covariance and scale (Levin
1992). Theory has facilitated understanding of how aggregation of individu-
als in space affects interactions such as competition and predation. New
statistical approaches allow us to consider processes where spatial relation-
ships are not spatially coherent and change over time (Chapter 10).

Recent models have contributed to our understanding of how discase
can affect population dynamics. For example, models have proved invaluable
for exploring the spread of AIDS (Anderson and May 1991), foot-and-mouth
(Keeling et al. 2001), and the temporal trends in measles (Bjornstad et al.
2002) and whooping cough (Rohani et al. 1999). Examples of spatio-temporal
analyses based on epidemiological data arise in Chapters 9 and 10.

Ecosystem Function—Biogeochemistry involves models and data at a range
of spatial and temporal scales. While the 7 percent perturbation of carbon
exchange between plants and the atmosphere has been enough to awaken
global concerns of climate change, it is one of many interacting cycles that are
absorbing the dramatic alterations by humans (Schlesinger 2004). Freshwater
shortages, eutrophication from mobilized reactive N and P, acidified precipi-
tation from mobilized S, and pollution of rivers and coastal oceans are just a
few of the now-recognized transformations in the chemical environmental
upon which life depends. Fertilizer applied in the Upper Midwest impacts fish-
eries in the Gulf of Mexico (Galloway 2004). Growing awareness that impor-
tant human perturbations transcend the periodic table (e.g., recent concerns
for Pb, Fe, Cl, and B, to name a few) underscores the need to understand link-
ages. Biology is central to such linkages. Stochiometric relationships demanded
by organisms mean that change in the supply of one constituent can cascade
through many others (Elser and Sterner 2002). Stochiometric relationships
put biology in the driver’s seat, as a regulator and a place where nonlinear feed-
backs can reside, while simultancously lending a degree of predictability to
element interactions.

With a pending global energy crisis and its broad impact through climate,
carbon will keep the attention of biogeochemists for some time (Jackson and
Schlesinger 2004). Environmental scientists must anticipate not only the future
impact of continuing human perturbations, but they also must weigh in on
potential engineering fixes, such as the large-scale N fertilization of soils and
Fe fertilization of oceans to stimulate uptake of atmospheric COs.

The modeling challenges are great, involving physical processes in soils,
waters, and the atmosphere at a range of scales. I mention several continental-
scale analyses involving air quality in Chapter 10.

Biodiversity Feedbacks on Ecosystems—Through integration of data and
models, the melding of the classically distinct disciplines of community and
eco-system ecology has shown that nutrient addition can lead to reduced
diversity (Wedin and Tilman 1996), while diversity can play an important role
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in nutrient supply (Vitousek et al. 1996) and retention (Tilman et al. 1996).
Reorganization of food webs comes with changes in nutrient loading that
propagate through primary producers to herbivores (Rosenzweig 1971;
Carpenter et al. 2001). Nonindigenous species not only respond to land use
changes, native biodiversity, and climate change, but they can also change
native ecosystems, altering fire regimes (D’Antonio et al. 2000), promoting
spread of infectious disease (some of which are themselves caused by non-
indigenous pathogens) (Daszak et al. 2000), and affecting nutrient cycling
(Vitousek et al. 1996). How does the loss or addition of species affect ecosys-
tem functioning? Is there a minimal number of species needed to maintain
ecosystem function in a given setting? Is redundancy needed as a buffer against
change (e.g., Loreau et al. 2001)? Does variability at the level of individual
populations propagate broadly? Or are species with similar or complementary
function and niche requirements roughly equivalent (Doak et al. 1998; Reich
et al. 2003)?

The many scale-dependent issues that arise in the context of ecosystem
function can be modeled using the graphical framework outlined in Section 1.2,
This framework is applied throughout this book.

Human Dimensions—Models and data are used to provide guidance on
potential impacts of climate and land-cover change. The pace of contemporary
climate change threatens reorganization of food webs, as species outrun their
natural enemies and hosts, forming new networks of interaction, while others
are left behind. Anthropogenic climate change has already affected many pop-
ulations, but to what degree, and how has it propagated through communi-
ties? Lags, transient effects, and poorly understood changes in phenology
are already combining to produce unanticipated effects on migratory birds,
pollinators, and plant reproduction (Parmesan and Yohe 2003). Migration
potential of plants became a research priority when general circulation mod-
els (GCMs) of the atmosphere suggested that contemporary migration rates
would need to exceed apparent dispersal capacities of many species (Pitelka
et al. 1997; Clark et al. 1998, 2003b). A growing number of examples from
contemporary invasions demonstrate the extensive impacts that can follow
from a small change in species richness (Mack et al. 2000; Callaway and
Manon 2006). Ecologists are increasingly applying models to help understand
which species, communities, ecosystems, and habitats are susceptible to cli-
mate change impacts.

Models and data are central to CO, fertilization study. Where can we
expect CO,-enhanced growth responses, for which species, and how will
changing competitive relationships affect diversity (Hattenschwiller and Korner
1996; Mohan et al. 2005)? How do climate and CO,-induced shifts in the
length and timing of the growing season affect species distributions and inter-
actions, and ultimately ecosystem-level processes (Farnsworth et al. 1996;
DeLucia et al. 1999; Parmisan and Yohe 2003; Root et al. 2003; Ibanez et al.
2006)? How do the combined effects of climate, CO,, and habitat fragmenta-
tion affect migration potential?

These examples, drawn from a range of ecological concerns, have been
traditionally modeled deterministically, in the sense that unknowns are ignored
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or treated in unrealistic ways. There is a growing number of important excep-
tions that constitute many of the examples used in this book. Because process
models do not include everything that goes on in nature, we need to consider
what to do with the things that are left out. As suggested in Section 1.2, these
leftovers are treated stochastically.

1.3.2 Stochasticity and a Structure for Complexity

The foregoing processes can be complex and obscure, and involve the types of
unknowns described in Section 1.2.2. As discussed for that simple example,
statistical inference is used to integrate data with the phenomena that are for-
mulated as process models. That integration involves stochasticity. I began this
chapter by saying that a statistical model may be as simple as a process model
wrapped in stochasticity, a place to park the scatter. In fact, stochasticity is
not confined to places where data enter the model. In Section 1.2.2 it stands
in for unknowns, such as differences among individuals that cannot be related
to specific variables or processes that are only partially understood. As back-
ground and motivation for the methods that follow, I consider the concept of
stochasticity a bit further.

In this book, T use the term stochasticity to refer to things that are
unknown. Although we could speak of a stochastic process, it can be most
productive to think of processes themselves as deterministic. Models are sto-
chastic, because we cannot measure or specify everything that is relevant. We
choose what to treat deterministically and what must be treated stochastically.
This pragmatic position is encountered in traditional mathematical treatments
(e.g., Taylor and Karlin 1994) and in computer sciences applications such as
machine learning (Mitchell 1997; Pearl 2002), and it is unavoidable in mod-
ern statistics (e.g., Dawid 2004). Nonetheless, this view of stochasticity may
appear to conflict with terminology in the ecological literature, in that it does
not suggest that processes are themselves stochastic. When pressed, those who
argue that, say, population dynamics are inherently stochastic, may appeal to
Heisenberg’s uncertainty principle, which says that we cannot simultaneously
know a particle’s position and momentum. The uncertainty it describes has
no demonstrated (or hypothesized) relevance at the level of observable phe-
nomena. There is no obvious answer to the question of whether processes are
really stochastic, but there is a practical approach—deterministic relation-
ships are used for relationships that are known; stochasticity stands in for the
unknowns. For example, Palmer et al. (2005) discuss the classic Lorenz (1963)
attractor, a type of chaotic behavior, produced by a set of three coupled dif-
ferential equations. Standard model selection arguments (Chapter 6) might tell
us to truncate the model to two equations, because the third equation accounts
for only 4 percent of the total variance. It is well known that this truncation
completely changes the behaviour—it is not even chaotic. So what is the
statistician to do with so little information on one-third of the state variables?
One answer is a stochastic autoregressive term, which recovers the chaotic
behavior, including the Lorenz attractor with the two-equation truncated
version, In other words, judicious application of stochasticity stands in for
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additional complexity, which may be unknown, unobserved, or both. For an
ecological example, births and deaths are modeled as demographic stochastic-
ity in models that treat each individual as a black box; we do not care to model
the physiology of individual bodies. But a physiologist might do precisely that
and would not view birth and death as stochastic, but rather as explicit
processes about which much is known. We could have a philosophical debate
about this; thus, I simply adopt this perspective on pragmatic grounds, several
of which are outlined here:

1. Tt helps clarify the role of stochasticity in models—it stands in for
things that are unknown.

2. Tt helps clarify the trade-off between determinism and stochasticity
in models. If we could (or desired to) know everything, we would
have a high-dimensional, deterministic model. If little is known, we
may require a sophisticated treatment of stochasticity. Or we might
choose a stochastic representation simply to reduce the complexity
of a model.

3. It emphasizes that the terms noise and error are not always the best
way to think about the role of stochasticity. In many cases, variabil-
ity emanates from many unidentified sources, including from the
process itself and from the context of the process. Sources of variabil-
ity may be unknown, yet still demand careful treatment.

For pragmatic reasons I take the view that there are real processes behind
the widely ranging growth rates in Figure 1.2. Stochastic representation is used
when we do not know the underlying processes, they cannot be measured, or
we do not know how to describe them in a deterministic model. The many
components may operate on different scales. Simply collecting them all in one
stochastic shell seems to agree with the concept of noise, but the processes they
represent should impact the model in diverse ways. Figure 1.4c showed three
different ways in which stochasticity stands in for uncertainty in x, in y, and
in 8. This example illustrates the pragmatic treatment of stochasticity that is
essential to modern data modeling. I began with a deterministic process model
that might be motivated by previous understanding (saturating light-growth
response). I then identified aspects of the problem that are unknown, includ-
ing the resource, the differences among individuals, and the process model
itself. Stochasticity is introduced for each of these unknowns.

Modern statistical methods provide a framework for complexity that allows
for the comprehensive treatment of unknowns that contribute to Figure 1.2d.
Assuming the wrong structure for stochastic elements might be just as naive as
an inappropriate function for the deterministic process. The basic approach
involves a decomposition of complex problems into those that control the
process of interest, those that generate data, and the underlying parameters.
This structure admits influences that may impinge in diverse ways, without
necessarily requiring that they can be observed or even identified.

The basic structure I follow throughout is outlined in Figure 1.6. This par-
ticular decomposition comes from Berliner (1996) and has been used in several
recent ecological examples (e.g., Wikle 2003a; Clark et al. 2003b, 2004). Like



MODELS IN CONTEXT 19

Predictor ~ Response
variable variable

X —> Y Data model
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A Process model FIGURE 1.6. A graphical structure

for an inferential model. Arrows
T indicate direct relationships that
B Parameter model are specified explicitly as condi-

tional distributions.

Figures 1.1 and 1.4, it is a graphical representation that provides a road map
for the model. Attention may initially focus on the process level, where we
allow for stochasticity in terms of process error or model misspecification. The
connection to data accommodates sampling and the stochasticity that results
from observation errors, sampling, missing data, and so forth. The parameter
model can accommodate structure or relationships among sample units that
might result from location, aggregation of individuals or traits, and so on.

By decomposing the problem, we can work directly with a process model
that may be simple (and general), while allowing for the complexity that
applies to a specific system (parameter models can absorb structure among
variables) and data set or experimental design (data model) at other levels.
This structure also admits data assimilation, meta-analysis, prediction, and deci-
sion analysis. To emphasize this connection between models and data it can be
useful to think of inference and forward simulation as two sides of the same
coin, one being the inverse of the other.

1.4 Learning with Models: Hypotheses and Quantification

Broadly speaking, the principal products of an analysis consist of (1) quanti-
fying relationships and states (estimates and confidence intervals), (2) testing
hypotheses (including model selection), (3) prediction, and (4) decision. Of these
four activities, ecological analysis has tended to focus on hypothesis testing.
I will not dwell on philosophy, but my inclination to soft-peddle hypothesis
testing throughout this book needs some explanation. T discuss hypothesis test-
ing many times, but it will often not be a prime motivation.

Before discussing why T place less emphasis on hypothesis testing than is
customary, it is important to first say that hypotheses are critical. Any hope of
success requires experiments and observations that are motivated by a clear set
of questions with careful thought as to how the range of potential outcomes
can lead to progress in understanding. A focus on multiple hypotheses, as
opposed to a null hypothesis (e.g., Hilborn and Mangel 1997), can sharpen the
approach. The lack of consensus on how to test hypotheses and to interpret
them plays into a broader misunderstanding of what models are and how
they can be effectively exploited. T summarize some of the issues that arise
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with hypothesis testing followed by general considerations concerning the
inevitable subjectivity of statistics.

1.4.1 Hypothesis Tests

Consider the (null) hypothesis Hy: 8 = g. We collect data and obtain an esti-
mate of 6. Can we make a probability statement about the result? Something
about our confidence that reality is different from or the same as ¢?

Three approaches to hypothesis testing are reviewed by Berger (2003).
Fisher significance testing involves a test statistic S that increases in value the
farther the estimate is from the hypothesized value g. The larger the value of
S, the greater the evidence against the null hypothesis. A P value is associated
with S, but it is not the error probability (i.c., the probability of being wrong).
It is calculated as the area in the tail of the distribution of S, the tail being
everything more extreme than S. If treated as an error probability (as is often
done), the evidence against the null hypothesis is overstated. So P values are
not error probabilities (they violate the frequentist principle—see below); they
are based on values of § more extreme than actually observed.

Neyman-Pearson hypothesis testing has an explicit alternative hypothesis
and appeals to the frequentist principle. This principle can be stated in differ-
ent ways. Berger’s (2003) practical version says that if we could repeat the
experiment many times, then the calculated Type T and Type IT error probabil-
ities (falsely reject the null, falsely accept the null) would agree with the frac-
tion of Type I and Type I errors from the repeated experiments. Whereas the
Fisher alternative is vague (Hg: 8 = g, Hy: 8 # q), the Neyman-Pearson alter-
native is explicit (Hy: 0 = g0, Hi: 6 = g4). As with a Fisher hypothesis test,
there is a test statistic S that increases in value with evidence against the null.
The method requires a predefined critical value of S for accepting versus reject-
ing Hy. The outcome does not discriminate between outcomes (values of S)
that may be barely significant versus very significant, because the critical value
(e.g., « = 0.05) only has meaning if it is designated in advance. Unlike the
Fisher method, we do not conclude that S had a P value of, say, 0.03, unless
this happened to be the preselected critical value. § is either less than the crit-
ical value or not, and the conclusion is the same regardless of whether §
exceeds the critical value by a little or by a lot. In other words, data sets that
lend very different weights to the null hypothesis in the Fisher sense might lead
to the same inference in a Neyman-Pearson sense.

Jeftfreys hypothesis testing also involves an explicit alternative hypothesis.
The null hypothesis can be accepted if it results in a better fit (a greater likeli-
hood) with a probability determined under the assumption that prior proba-
bilities for null and alternative = - One criticism of this approach has been
the need to specify a prior probability (Fisher 1935).

The point of this summary is to emphasize that thoughtful experts do not
agree on how to test a hypothesis. And the challenges mount as we move to
high-dimensional hierarchical models, where the concepts of sample size and
number of parameters do not have obvious interpretations (Gelfand and Ghosh
1998; Spiegelhalter et al. 2002). The desire to assign a probability statement to
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a study is a laudable goal. Tt is often unrealistic in more than a highly qualified
fashion. Ecologists can take sides in the debates and hope to maintain the “illu-
sion of objectivity” (Berger and Berry 1988; Clark 2005). This may be the only
option for those wishing to justify heavy reliance on hypothesis tests. At best,
hypothesis tests are guidelines.

Even where we can agree on a hypothesis test, designs based on rejecting
the null may not yield much. A study deemed unpublishable, because it fails
to reject the null, may have been vacuous from the start. If showing an effect
is viewed as the only informative outcome, there probably is no informative
outcome. Studies founded on questions like “Does X affect Y?2” (Hy: 0 = q)
rarely provide much guidance, regardless of the P value. Such approaches often
devolve to sample size (Spiegelhalter et al. 2003). Alternatively, if designed to
parameterize a relationship, as opposed to rejecting a null hypothesis, that
relationship may be the important product of the study.

1.4.2 The “lllusion of Objectivity”

The foregoing concerns bear on broader issues regarding what models rep-
resent, how they relate to theories and hypotheses, how they are used, and
what can be inferred when they are combined with data. Models area not
truth, just tools,

I will not advocate a distinction between scientific versus statistical mod-
els or between empirical versus mechanistic models. Such terms have had a
place in the context of classical data modeling, because theory and data can be
difficult to combine. For instance, it is common to fit data to a model like that
shown in Figure 1.2, and then to use estimates that fit in a more complex
model, for example, one that is dynamic with additional assumptions about
other variables, perhaps even at different spatial and temporal scales. More
desirable would be to fit the data directly to the model that will ultimately be
used for prediction (Pacala et al. 1996). This direct connection is more desir-
able, because predictive intervals depend on the relationships that are lost
when models are fitted piecemeal. The full model is harder to link directly with
data, because it is complex.

By admitting complexity, modern methods allow for more direct connec-
tions between theory and data. The emerging techniques increasingly make
distinctions between scientific and statistical models unnecessary. A motivation
for setting such terms aside is the sense they can foster that there is a correct
model, a best type of data, and an objective design; that is, there should be some
formal and objective statistical test that will tell us what is best and correct.
Models differ in complexity for many reasons, including not only the com-
plexity of the process, but also how much we can know about it. Models are
caricatures of reality, constructed to facilitate learning. In a world where data
are accumulating at unprecedented rates, far more rapidly than we can assimi-
late them in models (e.g., remote sensing, climate variables, molecular data), we
need ways to combine the information coming from multiple sources. Much of
this book addresses formal structures for integrating multiple data sources
within complementary models.



2

CHAPTER 1

In most cases, there will be more than one way to model the same process.
How well the model fits a data set is one of several considerations in deciding
among candidate models. In several sections, I discuss model selection as a
basis for helping to identify models that can be of most use. I follow the stan-
dard practice of parsimony: increasing complexity in a model requires justifi-
cation. Still, T place less emphasis on model selection than is typically done
within a classical approach focused on rejecting a null hypothesis. This dimin-
ished emphasis on model selection stems not only from the view that there is
rarely a correct model, but also on several characteristics of ecological phe-
nomena. Ecological processes are inherently spatio-temporal, and the best
model can vary from place to place and change over time (e.g., West and
Harrison 1997). The frequentist concepts based on the idealized notion of
resampling an identical population often does not directly translate to envi-
ronmental data sets. This is inevitable in high-dimensional systems that are
subject to processes that operate at a range of scales. This view can shift the
emphasis from that of identifying the correct model to one of identifying mod-
els that can be useful in different settings and the need to consider model
uncertainty as integral to inference. In some cases it can motivate combining
models or model averaging.

Finally, formal statistics should not trump all other considerations, espe-
cially when it comes to model selection. The fit to data is not the sole basis for
model selection. General circulation models of the atmosphere (GCMs) were
constructed to embrace certain physical relationships. Although weather and
climate models can benefit from better integration with data (e.g., Bengtsson
et al. 2003), a hypothesis-testing framework was not the basis for their for-
mulation and does not play a role in continuing model development.

1.4.3 Quantifying Relationships

Unlike hypothesis tests, confidence envelopes are less controversial than many
ecologists think. Confidence envelopes estimated for a given model by differ-
ent methods and stemming from different perspectives often yield similar
results. The processes under investigation are often known to exist. There
may be no point in rejecting the existence of an effect. There may be value in
quantifying it. For example, the effect of interest may contribute a relatively
small fraction of the variance to a data set, because there are other large
effects. If so, model selection (a hypothesis test) may reject the added com-
plexity of a model containing the variable of interest. This should not neces-
sarily deter us from examining those variables. Lange et al. (1992) found
slight improvement in the fit of a change-point model of treatment effects on
CD4 lymphocytes, a surrogate for AIDs infection, in patients with advanced
HIV infection (models of this type are described in Chapter 9). The more
complex model that included the variable of interest was still valuable,
despite the fact that it did not explain nearly as much of the total variance as
did other factors. Clark et al. (2004) found that temporal effects on tree
fecundity overwhelmed individual effects, yet individual differences were
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still large. The more complex model that contained individual effects allowed
for quantification of individual effects, in spite of large stochasticity standing
in for other effects. A posterior density centered near zero might suggest use
of a simpler model, yet this parameter might be retained simply as insurance
against effects on estimates of other parameters.

1.4.4 Learning from Models

Learning is progressive. It entails continual updating or assimilating informa-
tion as it accumulates (Section 1.2.1). Models have a central role in this process.
This process might be represented as

updated knowledge = f{data, previous knowledge)
Bayesian methods do this formally as
posterior « likelibood X prior

Learning can occur sequentially, with the posterior or predictive distribution
that derives from information available before serving as a prior to be com-
bined with data that comes available in the future (West and Harrison 1997).
Whether or not we do this formally, the process of successively updating
understanding as information accumulates is standard practice. The Bayesian
framework for learning plays a large role in this book. The likelihood in this
expression admits data. For processes that evolve over time, we might term
this the update/forecast cycle, with the goal being to ingest new information
continually.

1.5 Estimation versus Forward Simulation

Model analysis and prediction are ideally based on the same process model as
that used for estimation (Figure 1.7). This connection is critical if we are to
construct prediction envelopes that accurately reflect uncertainty in data and
models. For a number of reasons, few ecological analyses proceed this way.
Predictions are typically made from models that are not the same as those used
to obtain parameter estimates. And ecological predictions typically come from
process models only after discarding the stochasticity (Clark 2003). It is not
necessarily wrong to analyze models that are not fitted to data. But arbitrary
treatment of uncertainty can make predictions misleading or even meaning-
less. This book is partly motivated by the fact that there are fewer obstacles in
the way of integrating theory and data than there were just a decade ago. New
approaches provide a natural framework for data assimilation and for decision
(Figure 1.7).
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. FIGURE 1.7. Inference is one of several activities that
experiments

can exploit the model structure.

1.6 Statistical Pragmatism

No practicing ecologist is ignorant of the debates over frequentist and
Bayesian approaches (e.g., Dixon and Ellison 1996). Already, philosophy has
come up in reference to stochasticity (Section 1.3.2) and hypothesis testing
(Section 1.4), but it does not play a large role in this book. In light of the philo-
sophical emphasis of ecological writings about Bayes, I should provide some
justification for my largely nonphilosophical treatment in this text. Here 1
summarize several issues that I have written about elsewhere (Clark 2005).
First, the points of controversy have traditionally revolved around fre-
quency versus subjective concepts of probability (Chapters 4 and 5). The differ-
ent concepts are especially important when one tries to make sense of classical
hypothesis testing, but they also arise within the Bayesian community, in the
context of how strictly prior specification must represent current understand-
ing. Ecological writings on Bayes have focused on philosophical differences,
advising that an analysis begins with one’s philosophical stance, which then
prescribes a classical versus a Bayesian approach. This prescription follows
past debates in the statistical literature that have become less common and
less polarized in recent years. T have expressed my view that the dissipation of
such debates and the emergence of modern Bayes in applied fields have less
to do with philosophy than pragmatism (Clark 2005). In fact, the philosophy
remains important, being central to the challenge of doing objective science
using the subjective tools of statistics (e.g., Berger and Berry 1988; Dawid
2004). The expansion of modern Bayes owes much to developing machinery.
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Bayesians can now take on high-dimensional problems that were not accessible
in the past.

In my view, the persistent focus on philosophy in ecological writings has
become counterproductive (Clark 2005). Tt should not be news to any scien-
tist that strong priors can affect estimates. Weak priors generally do not. The
nonpractitioner must wonder at the standard examples provided in many eco-
logical demonstrations of Bayes. Typically a simple Bayesian analysis requires
far more work to arrive at essentially the same confidence envelope that could
have been obtained with standard software in a classical framework. Given
that most ecologists have limited philosophical baggage in this respect, why
complicate the analysis? Moreover, the focus on philosophical differences can
confuse the issues. For example, although Bayesians refer to parameters as
“random,” and frequentists do not, in both cases, parameters are fixed. Going
further, both approaches view parameters as uncertain. Ecologists have long
confused references to random parameters with the idea that the underlying
value of a parameter fluctuates. Classical confidence intervals and Bayesian
credible intervals both express uncertainty about the underlying true value,
which is unknown.

I say more about the underlying assumptions of classical and Bayes mod-
els as we begin to implement them. For now, I simply forewarn that both are
important in this book, with applications being pragmatic rather than philo-
sophical. By pragmatic, I mean that [ avoid unnecessary complexity. The initial
models T discuss in Chapter 3 are classical. Bayesian methods require eval-
uation of integrals, analytically or through simulation. For simple problems
this can mean that Bayes requires more effort. T also discuss Bayes for relatively
simple problems, but it becomes the dominant approach in later chapters to
allow for external sources of information and uncertainty. As models become
more complex, the level of difficulty associated with classical and Bayes can
reverse. Not only will the Bayesian framework bring flexibility to address
complex problems (even where classical methods are still an option), Bayesian
approaches can be easier, facilitated by new computational techniques.

A pragmatic approach need not be controversial. As suggested above, pri-
mary focus on quantification, rather than hypothesis testing, means that
the products of a classical and Bayes analysis (e.g., confidence and credible
intervals) may often be similar (e.g., Cousins 1995; Clark and Lavine 2001).
Controversy can still arise over the role of priors in a Bayesian framework.
I will say that informative priors are a good idea, when external information
is available. Noninformative priors are useful when information is not avail-
able, or when we want to isolate the contribution of a particular data set.
Those just testing the Bayesian waters may be motivated by machinery. Those
who initially balk at informed priors may come to recognize each new data set
as a way of updating what is already known. Priors can be an efficient way to
introduce partially known relationships, in contrast to the traditional practice
of assuming such relationships are completely known. T return to some of
these issues in the final chapter.

Even as models become complex and (in this case) Bayesian, many of the
tools will be familiar from classical statistics. Bayesian models will have embed-
ded within them many traditional structures. The power of modern Bayes comes
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from the capacity to integrate traditional techniques within high-dimensional
models.

Although T embrace both frequentist and Bayesian approaches, there is
much that I avoid. In both cases, there is an established framework that under-
pins the analysis. If T say that I have constructed a confidence envelope based
on Fisher Information or a Bayesian posterior, you will have a good idea of
what it means (Chapter 5). Although challenging problems can foster excur-
sions into ad hockery (a much bigger temptation for the inflexible classical
methods), the formalism of these two approaches is well established.

In this regard, the expanding ecological literature on fitting models with
ad hoc approaches that are neither frequentist nor Bayesian is avoided in this
book. Many such approaches are highly creative. But there can be numerous
pitfalls in terms of inference, prediction, and communication to others. The
goal of inference is a probability statement about unobservables—quantities
we wish to estimate. A probability statement relies on a framework that is con-
sistent throughout. Ad hockery tends to break down the connection between
confidence envelopes and the data used to construct them. Moreover, ad hock-
ery is often unnecessary. When things get complicated, we will go Bayesian.,
It admits complexity within a consistent, reproducible framework. Although
there remains much to understand in the Bayesian world (e.g., selection among
hierarchical models in Chapter 8 and complex spatio-temporal models in
Chapter 10), there is rapid progress and it builds on a firm foundation.
Because we have the Bayesian alternative, there are many recent papers on
how to run lines through data points that will not be covered here.

Finally, although T cover basic concepts in classical statistics, I make no
effort at comprehensive coverage of classical designs and hypothesis tests.
Classical statistics may seem to burden the scientist with a different design
and test for each new application. There is substantial jargon that continues
to find its way into ecological statistics books, much of which is largely his-
torical and rarely encountered in the modern statistics literature. I focus on
general approaches and attempt to minimize jargon.



2 Model Elements: Application to Population Growth

I THIS CHAPTER 1 INTRODUCE some of the basic types of process models used in
ecology. Population growth provides an example, but the principal goal is to
summarize basic features of models that are formulated to describe a process.
These concepts include model state, linear versus nonlinear models (and how
these terms are used in mathematics and in statistics), and structure in models.

Because the focus of this book is data-model connections, my exposition of
standard ecological models differs, in some respects, from those contained in
most texts. Population models are the basis for some excellent recent ecology
texts, including Hastings (1997), Kot (2001), Caswell (2001), Morris and Doak
(2003), and Lande et al. (2003). These references are highly recommended for
ecologists who study populations, as they contain more analysis of models than
is included here. I provide a condensed treatment of this material, but empha-
size aspects of models that will be important as we begin to incorporate data in
Part II. For ecologists who do not study population-level phenomena, I recom-
mend this section for general background on model development.

2.1 A Model and Data Example

In the early part of this century Raymond Pearl (1925) used a simple sigmoid
(logistic) curve, which he sometimes referred to as the law of population growth,
to predict that the U.S. population would reach an upper limit of 197 million
shortly after the year AD 2000 (Figure 2.1a) (Pearl 1925; Kingsland 1985). The
basis for this prediction was U.S. Census Bureau data, from which he obtained
decadal population statistics from AD 1790 to 1910, and the model in which
he placed great faith—so much faith that he reported the inflection point of
the curve to lie at April Fools Day, AD 1914, Note from Figure 2.1a that pop-
ulation sizes after 1910 are based on extrapolation.

The future has come to pass, and the modern census data do not look like
the predictions of the early twentieth century (Figure 2.1b). History provides
two lessons that this and subsequent chapters explore: (1) models can be
importantly wrong (they may fit well for the wrong reasons), and (2) model
evaluation requires estimates of uncertainty.
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FIGURE 2.1. (a) Pearl’s logistic curve fitted to U.S. Census Bureau data from 1790 through
1910. (b) A comparison with the longer series available in AD 2000. (¢) The model assump-
tion that population growth declines with density fitted to two subsets of the full census
data. The parameters 7 and K describe per capita growth rate and the carrying capacity,
respectively. Census data from www.census.gov/population/censusdata/table-16.pdf.

What did Pearl’s model assume? One of the oldest ideas about population
growth is that it cannot continue indefinitely (Darwin 1859; Lack 1954). The
rate of growth will decline as population size increases, because growth will
eventually become limited by resources, natural enemies, and so forth. If den-
sity exceeds some carrying capacity, growth rates can be negative, and density
will either stabilize or decline.

Model construction begins with an assumption of how density affects
growth rate. This relationship is complex and poorly understood. For instance,
fertility might decline, mortality might increase, both in ways that vary in time
and space. Lacking knowledge of these details, ecologists commonly use an
assumption that the per capita rate of growth declines as a constant fraction
of population size. The per capita rate of increase is the proportionate rate
(Appendix B). As a rough approximation, this assumption of constant decline
might be reasonable, regardless of whether density influences fertility or mortality,
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Ny —» Ny —» N4 Process FIGURE 2.2. A graph of the stan-
dard logistic model. The process

\ T / steps forward as governed by two
e Parareters process parameters (# and k) and

process error, having variance o”.

because both are per capita rates. Let # represent density. This linear relation-
ship is written as

proportionate
change in n

= Bo + Bin

There is a potential rate of increase B, that applies when density is low (s is
close to zero). The slope parameter 8, is negative and describes the strength of
population regulation. This relationship between population size and growth
is shown in Figure 2.1¢ as estimated for examples in 2.1a and 2.1b. This is the
logistic model of population growth that was used by Pearl. It is intended to
represent feedback of density on population growth. This model could be
viewed as having a process that is governed by parameters that must be esti-
mated from data (Figure 2.2).! The parameters 8, and 8, can be expressed in
terms of Pearl’s ¥ and K (see below).

The assumptions seem plausible, so why did the model mislead? The logis-
tic model of population growth fits human census data remarkably well
(Figure 2.1a). This close fit can inspire confidence that it represents the correct
model for population growth. We might quarrel with Pearl’s extrapolation
from pre-1910 data on uncertainty grounds—had he attempted to determine
the uncertainty that could have been quantified as part of the model fit, the
subsequent outcome might have been within, say, a standard derivation or so
of model predictions. We could then argue about whether the prediction was
close enough to be useful (model adequacy). We could have this debate
whether or not we agree that this is the most realistic model of population
growth (model selection).

So there is a second issue that concerns whether the model captures the
process in a reasonable way. Obviously, demographers applying the same
model today could reach an equally confident, albeit substantially different,
answer (Figure 2.1b). After all, this tight fit is the outcome that fosters confi-
dence and justifies detailed model analysis and projection.

The close fits in Figure 2.1 belie inaccurate description of the process. For
example, much of the U.S. population increase resulted from immigration,
a process that affects model behavior in a different way than fertility of the res-
ident population. In 1850 (the first year that the U.S. Census attempted to gather
nativity data), nearly 10 percent of the censused population was foreign-born.
By 1910 (Pearl’s data set), foreign-born residents reached nearly 15 percent
(www.census.gov/population/www/documentation/twps0029/ tab01.html). In
this example, extrapolation was impressively inaccurate, in part, because

I'This is not precisely the model fitted by pearl.
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immigration might respond to extrinsic factors to a much greater degree than
does fertlity. Immigration came in waves, for reasons that had little to do with
U.S. population size. This weak link between population size and immigration
means that it is not well described as a per capita rate. Whereas no model
would be precisely correct, this one has serious flaws.

Environmental scientists embrace a broad range of questions, consider
many types of data, and employ a variety of models. To get started, T devote this
chapter to the deterministic elements that are typically included in process mod-
els, such as this one for population growth. Some ecologists think of this as
the theory or process part of the problem. I include only the most basic tools
needed for derivation and analysis, which appear primarily in appendixes. These
process models provide fodder for the data modeling that begins in Chapter 3.

2.2 Model State and Time

In this section T cover some background concepts, terms, and notation. First
I consider the distinction between linear and nonlinear models, followed by
state variables and structure.

2.2.1 When Is a Model Linear?

There is a simple way to determine whether a model is nonlinear: the second
derivative of a linear model is equal to zero. Because this book deals with
models that come from both ecological and statistical traditions, there are dif-
ferent terminologies that can create confusion; in this case, we must agree on
which derivative. Statisticians apply this distinction with respect to the param-
eters of a model. Consider the equation

fin) = B’

There is a state variable # and a parameter 8. (I say more about state variables
in a moment.) In a statistical context, this model is termed linear, because it is

2

linear in B. In other words, dng = 0% For a mathematician, the model f{n) = gn

might be termed nonlinear, because

&f

In other words, mathematicians tend to think in terms of state variables.
Like mathematicians, ecologists tend to think in terms of state variables

and often use the terms density-independent and density-dependent, respec-

tively, for linear and nonlinear models in the state variable population density

2 Differentiate once with respect to 8 to obtain df/d = #?, their differentiate again to obtain zero.
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(e.g., May 1981). Some ecologists will find it confusing to see polynomials
referred to as “linear models.” Recall that statisticians come from a tradition of
thinking about parameters. Of course, models can be nonlinear both in param-

: . n
eters and in state variables, such as f(n) = — and f(n) =1 — e P,
n

I retain this confusion of terms, because it is entrenched. Throughout, I define
how the terms are used in specific cases. Except when used in a statistical con-
text, I use the terms linear and nonlinear with respect to the state variable, such
as concentration of a nutrient, population size or density, and so forth.

A second source of confusion comes from the fact that population ecolo-
gists often apply the terms linear and nonlinear to the effect of density on the
per capita growth rate, 1/n dn/dt. This terminology is fine, so long as it is qual-
ified by context. However, a model that is linear in per capita growth rate is
not a linear differential equation.

In human demography and population biology, linear models (in terms of
the state variable density or abundance) are typically used to describe current
population growth. Standard human population growth statistics, such as
“country X is growing at a rate of Y percent per year,” are examples. They are
rarely used to predict long-term population trajectories (i.e., over generations),
because they cannot be extrapolated with confidence. Many factors that might
be ignored in the short term have long-term or cumulative effects. These reg-
ulatory factors can directly or indirectly involve density or age structure.
Nonlinear models, when used to describe population growth, are termed
density-dependent, because the per capita rate of growth depends on the state
variable density. Such models describe the phenomenon of population regula-
tion or the tendency for population density to approach some stationary dis-
tribution having a mean, a variance, and so forth (May 1973; Dennis and
Taper 1994; Turchin 1995). Nonlinear models are also used when the rate of
a reaction depends on the concentration of substrate.

2.2.2 Time as a Continuous Variable

Many ecological models are dynamic, with time as an explicit variable. Time
can be treated as discrete or continuous. Continuous time models are used to
describe processes where change occurs continuously and are written as rate
equations. For change in density #(¢), we write a differential equation as du/dt.
Differential equations can be linear or nonlinear. The equation

dn
f(n) = T = m

is a linear differential equation, because the second derivative with respect to
the state variable # is

&’ B
ﬁf(") =0

This terminology may seem confusing at first, because the solution to this par-
ticular linear differential equation is exponential (nonlinear) in the continuous
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variable time. In population biology, parameter r is sometimes termed the
“intrinsic rate of increase.” It is the instantaneous contribution of each indi-
vidual to the population through its birth rate and mortality risk, which is easy
to see if we express this rate on a per capita basis,

l@ B d(In n)
ndt  dt
It has the solution
n(t + dt) = n(t) & 2.1

where dt is a time increment (Appendix B). T use the notation #(#) to denote
time as a continuous variable, to distinguish it from the notation for discrete
time 7, in Section 2.2.3. Short-term rates of population change are often
reported as annual rates of population growth and presented as percents.
These statistics are calculated as 100 7. To determine 7 based on knowledge of
n(t) and n(t + dt), take logs of equation 2.1

Inn(t + dt) = Inn(t) + rdt
and rearrange,

- Inn(t + dt) — Inn(s) 2
dt

Population increase is described by r > 0 and vice versa. Figure 2.3 shows an
application of this model, as it was used to describe the twentieth-century
increase in the nesting population of black noddies (Anowus minutus) on Heron
Island, Great Barrier Reef (Ogden 1993). The rapid increase, estimated as
r = 0.081 (8.1 percent per year), cannot continue indefinitely, yet it appears
to fit the existing data well.

Nonlinear differential equations are commonly used in ecology. If the envi-
ronment has a limited capacity to support new individuals, the per capita rate
must decline as population density increases. Pearl used the simplest assump-
tion of a straight line (left side of Figure 2.4). This equation could be written as

1dn

;E = BO + Bln 2.3

for two parameters, an intercept 8y and a slope B;. In this logistic model, the
first parameter is positive so that growth rate is positive at low density. The
second parameter is negative, reflecting the negative effect of density on growth
rate (Figure 2.4a). Ecologists often write this as

1dn

n
n dt 7,<1 K>

with parameters B8y being equivalent to r and B, equivalent to —#/K. This is
the “continuous logistic” or (formerly) the “Law of Population Growth” of
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FIGURE 2.3. The black noddy population increase on Heron Island. The exponential
model was fitted to this data set, with allowance for process error and observation
errors (Chapter 9).

1/n dn/dt © A

0]5
2 4
1 1

0]0

Per capita growth rate
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Density n

FIGURE 2.4. A linear effect of density on per capita growth rate, 1/1 dn/dt, from Equation
2.3, with parameters transformed to » and K. Although the effect of density on per
capita growth rate is linear (left), this is a nonlinear differential equation, sometimes
called the logistic equation for population growth. Right is the same model, plotted as
simple population growth, dr/ds, rather than per capita growth. Parameters are taken
from the fitted model for the BPF moose data (Fig. 2.5). Note that the carrying capac-
ity estimate would be slightly below 200 individuals.

Pearl (Figure 2.1). The logistic model of population growth is nonlinear,
because the second derivative of dn/dt with respect to n does not equal zero.
This is clear from the “hump™ in Figure 2.4b. Nonlinear models usually can-
not be solved (the logistic model is an exception—Appendix B).
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2.2.3 Discrete Time

Discrete time models describe changes that occur at discrete intervals in time,
such as a population of organisms where births and deaths occur at discrete
intervals. These may be periodic, example, annual, but they need not be equally
spaced in time—Chapter 9 provides examples of unequally spaced intervals.
A discrete time model consists of an expression describing change from one
time increment to the next. If the time increment is, say, one unit, then there is
an expression for ny, 14, 1, . . . . The time increment might be one generation
of duration T, in which case there would be an expression for s, 1y, 757, . . . .
Discrete time process models are termed difference equations.

As an example, the simplest population model expresses density at the
next time step as the sum of individuals present at the current time plus new
individuals added by births minus those lost to mortality, n,=n, +B, ;—D,_,.
Let B, = n,b and D, = n,p, with the two new parameters being per capita rates.
Then

n, = m (1 + b — p)
nt,l/\ 2.4

where the composite parameter A = 1 + b — p is sometimes termed the finite
rate of increase. This first-order linear difference equation has a solution
that we can discover by iteration (Appendix B). This difference equation 7, =
fin, _1) = n,_ A is linear in terms of 7, because d*f/dn* = 0. In population biol-
ogy, it is often written in terms of change in log density, In #, = In s, ; + In A,
to express change in proportionate terms, that is, on a per capita basis. The per
capita rate of change is In A, and is often represented by the quantity = In A.

Nonlinear difference equation models are common in the environmental
sciences. An example from population ecology refers to factors that might
maintain a population within some range of densities, similar to the continu-
ous logistic model of the previous section. Per capita birth rates, death rates,
or both may decline as density increases due to diminishing resources, crowd-
ing, and so on. A conventional model that describes a decline in growth rate
as density approaches some carrying capacity K is written as

(%)
n, = M A N

As density approaches K, the exponent approaches zero, and density does not
change. If density is greater than K, then the exponent is negative, and density
declines. Ecologists usually write this model in terms of the parameter 7, or
A =¢', to obtain an equivalent discrete Ricker (1954) model

n, = M, ex {r(lntl>} 2.5
t +—1EXP K #

(Appendix B). This is a nonlinear difference equation, because d*fldn* # 0. An
example is shown in Figure 2.5b, where interannual changes in moose density
are modeled with an underlying process described by Equation 2.5.




ELEMENTS OF PROCESS MODELS + 35

g

g (o

o] e

2 § -

< -~

= ~

o « :

€ o

- P r=0272

s o K =193

= r T T T 1 r T T T 1
a 0 100 200 300 400 1950 1960 1970 1980 1990

ny AD Year

FIGURE 2.5. Models fitted to the BPF moose data (using methods of Chapter 9) com-
pared with the deterministic version of the logistic model (smooth line). Left is the lag-
one plot with observations and the fitted model (solid curve). This plot could be used
to construct a cobweb diagram (Appendix B) that would show the constant solution to
be stable: from any initial density we would converge to n* = 193. This convergence
comes from the curved relationship in the figure, left (Section B.5.4). Right, is the time
plot. The vertical arrows indicate years of missing data. Dashed lines bound the 95 per-
cent credible interval, indicating the degree of uncertainty as to the true population
size. The uncertainty reflected in both graphs raises doubts about the existence of this
stable solution #* = K. From Clark and Bjernstad (2004).

Discrete time models are often applied to processes that are continuous,
cither for convenience or for sampling considerations. In the latter case, it is
important to recognize that discrete and continuous time models do not always
exhibit the same behavior. Most ecological processes are not precisely continu-
ous in time, yet difficult to characterize through a simple discretization of time.
There can be some advantages to difference equations, particularly when data
are concerned. Tt is becoming increasingly common to work directly with dis-
cretized versions of continuous time models with allowance for the error asso-
ciated with discretization. Due to the focus on data, this book mostly discusses
discrete time models. It is still important to understand continuous models,
because environmental processes are often analyzed in continuous time. For
example, the continuous formulation

can be discretized to

M, g = 1, + dn current density plus increment in n

dn ) . e
=mn, + |:<dt dt + &, | increment in # is linear

approximation plus error

=n, + rn<l — Z)dt + &, substitute for dn/dt
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To follow this transition from continuous to discrete time, recall from intro-
ductory calculus that dn is defined as the small increment in # that occurs with
a small time increment, dt. After review of Appendix A, you should recognize
this as the Taylor series for n,. 4, with & representing error that comes from
ignoring higher-order terms. The discrete and continuous versions will behave
similarly, provided that the time increment dt is not too large and nonlineari-
ties are not too large. The process error term & accommodates the error that
comes from the fact that T did not integrate the rate equation, but, rather,
simply scaled the rate of change, dn/dt, by the time increment dt. This error
will often be small relative to other sources of process error, meaning that
rn(1 — n/K) is a crude approximation of the growth process. When discretized
in this manner, the error associated with & increases with the time elapsed
between ¢ and ¢ + dr. Difference equations can be unstable due to the coupl-
ing of nonlinear dynamics with a time lag dt (May 1974). It is important to
note, however, that the instability that can result from using a difference equa-
tion to approximate a nonlinear differential equation is less of an issue for
data modeling than it is for simulation. With data modeling, we are not solv-
ing equations, but rather estimating parameters. We want to allow for process
errors, regardless of their source. Scaling of process error is discussed in
Chapter 9.

If generations overlap, dynamics depend on some underlying interactions
that are not explicitly included in the models considered thus far. The differ-
ence equation s, = f(#n, 1) says that density at time ¢ is fully determined by den-
sity one time step ago. A model for growth that depends on population size in
the more distant past could allow for change in age distribution (e.g., Nisbet
and Gurney 1982). It is also possible that the population interacts with other
species that are not explicitly included in the model (Schaffer 1981). Although
unknown, it is possible to allow for such effects deterministically, by including
delayed feedback. In Section 9.9, T mention models of the form

ny = f(?’lt,l, ) nt—p)

This model says that density at time # directly depends not only on density at
t — 1, but also at times back to ¢ — p. In this case, p is the order of the model.

2.2.4 Discrete States and Structure

In addition to continuous versus discrete time, models have continuous versus
discrete state variables. In the context of population growth, state refers to
population size (number of individuals) or density (number per area or vol-
ume). The state variable could also refer to the concentration of a nutrient, to
the volume or mass of moisture in soil, to the land cover classification of a
county, or to the number of infections or deaths in a defined area. Confusion
can arise when there are multiple state variables, because the terms continu-
ous state versus discrete state are sometimes used to refer to the quantity
within a given class or category or to the way in which the categories them-
selves are defined (Table 2.1). The differential equation and difference equation
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Treatment of Time, State, and Structure in Some Common Process Models

Process Model

Time State Structure

Continuous Discrete Continuous Discrete Continuous Discrete  Stochastic

Differential equation
Difference equation

Partial differential
equation

System of differential
equations

System of difference
equations/matrix
models

Discrete state Markov
process/cellular
automata

Birth/death process
(continuous time
Markov process)

Integro-difference/
integral projection

Random effects”

X X
X X
X X X
X X X
X X X
X X X
X X
X X X
X X X X X

" Random effects arise in the context of data modeling, discussed in Chapter 9.

models discussed in the previous section contain a single state variable (den-
sity) that is continuous, in the sense that density can assume any values greater
than or equal to zero (although the zero class is still typically viewed as dis-
crete and requires special consideration—more on this later). Alternatively,
a model for the number of births or deaths could be modeled with discrete
numbers, the state variable assuming integer values 0, 1,2, . ...

A structured model indicates discrete classes or categories. A structured
model can be written as (1) multiple attributes for a state variable or (2) multi-
ple state variables. In the latter case, each of the classes is viewed as a different
state variable and represented by a separate equation. Together the equations
constitute a system of differential (continuous time) or difference (discrete time)
equations. In the former case, attributes may be represented as continuously
varying (e.g., age) or as discrete classes (e.g., classes for juveniles and adults).
Either way, there is structure (e.g., age or stage) associated with the single state
variable density.

If the stages are discrete, the full system of equations may be represented
with a matrix having elements that describe transitions among states. This is
standard practice when models are linear in state variables. Deterministic
matrix models have become extremely popular in population ecology, in part
because analysis is accomplished with linear algebra (most such models are
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linear; see the thorough treatment of Caswell 2001). For example, the demog-
raphy of a population could be represented as a collection of demographic
rates organized in a table or matrix. Matrix models are discrete in time and in
structure—all individuals have a specific class or stage to which they belong.
However, within a stage, density is a continuous variable. A transition matrix
contains demographic rates that are the basis for projecting stage structure for-
ward in time. I take a few moments here to outline some of their key features.
Classes or stages are defined based on age (age-structured model) or other
attributes (stage-structured model). Age-structured models can be viewed as a
special case of stage-structured models. They are often used when age informa-
tion is available, having the advantage that transitions among classes (i.c., ages)
can occur at the same rate as the passage of time. Individuals who survive
advance one age increment in one time increment. There is no uncertainty asso-
ciated with timing of transition. The U.S. Census Bureau uses age structure,
because it is available for a large segment of the U.S. human population. The
transition matrix based on age is often called a Leslie matrix (Leslie 1945).
Stage structure is typically used when age is uncertain and when stages
provide a useful summary of demographic rates. Perennial plants may have
a number of stages, including mature individuals, rosettes, and seeds in the soil
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= " . . 1 assumes constant reproductive
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rate after reaching maturation
Age x at age 2 (Equation 2.6).
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that cannot be aged accurately. Invertebrates pass through a discrete set of
metamorphic stages that often are readily identifiable. Because transitions
among stage classes are more variable than are those among age classes, mod-
els must accommodate additional considerations. Analysis involves more
work, and estimates of transition rates tend to have greater uncertainty.

A classic example for the northern spotted owl (NSO) (Strix occidentalis)
includes a fecundity schedule m1,, consisting of transitions related to births
and deaths. A simple birth schedule includes a maturation age of x = 2 years
and an average production of b = 0.382 offspring per year thereafter. This
schedule could be written as

m, = 2.6

0 x<2
b x=2

(Lande 1987, 1988; McKelvey et al. 1993) (Figure 2.6b). Deaths are modeled
using age-specific survival parameters, often interpreted as the probability
that an individual in age class x will survive the interval from, say, fto ¢ + 1. If
age classes and time are measured in the same units, then survival is sometimes
estimated as the fraction of individuals in age class x that survive during the age
interval (x, x + 1) relative to the fraction present at the beginning of the age x,

Myr1

X

where 7, is the density of individuals in age class x and p, is interpreted as the
probability of mortality. The survivor function can be obtained from the age-
specific survival parameters as
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5 10 15 20 rate summed over all age classes
Age x (Equation E.1).
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and interpreted as the probability of surviving to age x, obtained as the joint
probability of surviving all previous age intervals (Figure 2.7a).> NSOs have
high juvenile (first year) mortality. McKelvey et al. (1993) use a low juvenile
survival rate of s; = 0.159 and a higher rate of s = 0.868 for subadults and
adults. The plot of survivorship shows the large decline during the first year
and slower decline thereafter (Figure 2.7a).

Analysis of population growth rate, population structure, and contribu-
tions of demographic rates to population growth rate can be accomplished
directly from these equations (Appendix E) or using matrix algebra (Appendixes
C, E). For the latter, demographic rates are assembled in a matrix A, having
elements a;;, describing the contribution of stage j to stage 7. Here is a matrix
for the NSO model just discussed,

0 0 b
A=1]s 0 0 2.8
0 s s

The contribution of stage j to the population at the next time increment is deter-
mined by the elements in ™ column of A. Individuals in stage 1 can only survive
to stage 2 (a5, = s4) or die, with probability 1 — s;. Individuals in stage 3 not only
can survive in stage 3 (@33 = s), but they can also produce offspring (a3 = b).
Several examples in this book involve matrix population models (Sections 9.16,
E.3). If a population grows linearly, and it possesses a stable stage structure, then
the growth rate is obtained as the dominant eigenvalue of A (Appendix E).

Instead of discrete classes, there may be a continuous range of states, with
the rate taken to be expectations for a random variable. The states may be rep-
resented by a continuous function describing how this expectation varies with
size or age. For example, fecundity, natality, or age-specific fertility schedules
can be represented by smooth functions of age or size (Figure 2.8). For the
continuous age variable g, define expected fecundity mi(a) = expected off-
spring per unit time per age-a female per time. Because a is continuous, per
capita births during the age interval (a, @ + da) are approximately m(a)da for
some age interval da. Time and age are often measured on the same units, with
da = dt, although this need not be the case. This expectation is a continuous
function of time and of state. As in Figure 2.8, such functions are often
expressed in terms of size, say, m(x) for diameter x, rather than age a. To
obtain the age schedule, we need an additional piece of information, the
growth rate dx/da,

% The indexing of classes needs careful thought (e.g., Cawell 2001). I adopt the following con-
vention. Define the first age class to be x = 1. The individual enters this age class at birth. At this
point, the survivor function is /; = 1. At the end of age class 1, the survivor functionis ,, = [; X
s, = s;. This is the probability of surviving to the beginning of age class 2. If the survival rate is
the constant rate x; then [, = s,
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dm  dmdx
da  dx da

(recall the chain rule). Continuous survival functions are summarized in Section
E.6, with inference discussed in Sections 3.8 and 8.2.

In continuous time, structure can be included as systems of ordinary dif-
ferential equations (ODEs) and partial differential equations (PDEs). A system
of coupled ODEs describes rates of change among discrete stages. There is a
rate equation for each state, and equations are coupled by terms that express
the continuous transitions among these discrete states. Ecological models are
often posed as coupled ODEs.

A PDE represents how the condition of the state variable changes contin-
uously with time, in this case represented by the index of age and time on the
state variable n,

anla, t)
ot

Models involve an additional equation for boundaries (the boundary condi-
tion). For an age-structured model, there is a boundary at age zero, which can
be a function describing fecundity. Finally, there will a function for the initial
condition. Unlike a simple differential equation, where the initial condition is
a constant, with a PDE, the initial condition is a function of (in this case) the
variable a, describing the age structure at time ¢ = 0. PDEs apply to many
types of structure, including size, physmloglcal state, and location. Metz and
Dickmann (1986) provide an overview. Parameterization can be challenging
(Wood 2001), and stochasticity is typically ignored or limited to simple Gaussian
variability. Some basic concepts are included in Section E.7.4. They appear in
Chapter 10, where we consider diffusion.
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7/
Q_
]
=3
5
o
)
(o ’
« L
o FIGURE 2.8 Fecundity schedules for
o b4 two tree species treated as a con-
/ tinuous function of tree size.
LT These are schedules for expected
ol” : y
———T fecundity. Actual fecundity shows
0 100

large fluctuations (chapter 10).
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Integral projection models are discrete in time, but continuous in state
(Easterling et al. 2000). The term integro-difference refers to the integrated
effects of all stages at the current time on the density of stages at the next time.
This combination provides an alternative to matrix projection models for
cases where stages are not clearly differentiated, but shift more-or-less contin-
uously. Over a discrete time increment, the population structure, described by
a continuous variable x, changes as

nyon () = / k() (y)dy
0

where the kernel k(xly) represents transitions from state y to state x. The ker-
nel summarizes transitions that result from fecundity, survival, and growth.
Although not yet widely used, integral projection models could be more broadly
applied (Section E.8), because they do not assume a single transition parameter,
I do not explicitly consider this approach here, because Bayesian approaches in
Chapter 9 can be used to address a wide range of deterministic and stochastic
components of growth rates (Section 9.17.4). A brief introduction to stochas-
ticity in models follows.

2.3 Stochasticity for the Unknown

Continuous time models can accommodate stochasticity (Bartlett 1960;
Dennis et al. 1991; Lande et al. 2003), but they are typically treated in a
deterministic fashion. In ecology, deterministic models are used to model
expected values of a variable, for example, change in the mean density of a
population. In such cases, the population size is assumed to be large. Density,
being the number of individuals per unit area or volume, is a real number that
results from division. Thus, a large population does not imply that density is
large, because density could be defined over an arbitrary area or volume.
Rather, both the population density and size must be sufficiently large that we
can ignore the stochasticity represented by individual births and deaths.
Large population size does not assure that such stochasticity can be ignored,
because individual births and deaths can be important if density is effectively
low. Moreover, variability among individuals can and, perhaps typically, does
have impact even when populations are large. I devote substantial attention
to this in later chapters.

Models where the state variable is represented by a discrete number of
items or events involve probabilities of transition that result from, say, births
and deaths. Unlike continuous state population models, which can be sto-
chastic, but are typically treated deterministically, models for discrete numbers
or events are invariably stochastic. The fluctuations that result from the fact
that births and deaths are necessarily discrete events are termed demographic
stochasticity (May 1973; Engen et al. 1998), although the same term has been
applied to variability among individuals in terms of fitness (Lande et al. 2003).
Because this book focuses on data-model connections, I deal with discrete
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counts more often than is typical in traditional ecological models. A connec-
tion between discrete and continuous models is obtained with a deterministic,
continuous model for an underlying process, such as natality or risk, superim-
posed with a stochastic, discrete model for the events themselves, such as
births and deaths, for observations thereof, such as counts, or both. An example
is shown in Figure 2.6, where the fecundity schedule 1, is a deterministic rela-
tionship (Figure 2.6b) for the mean number of births, from which actual births
are taken to be stochastic (Figure 2.6a).

Several types of stochastic models are used for ecological processes.
A Markov chain is a process where there is a probability associated with tran-
sitions among states, and each transition probability depends solely on the cur-
rent state. In population models, transitions result from birth, growth, and
death. A model for discrete numbers of individuals in each state could involve
the same matrix that was described for the deterministic model in Equation
2.5, but now transitions occur stochastically, with each column of the matrix
being one element of a multinomial parameter vector. Such models are taken
up in Chapter 9.

There are many combinations of discrete versus continuous time, state,
and structure (Table 2.1), and stochasticity can enter in a number of ways. For
example, population models that are continuous in time, but have a discrete
number of individuals in a state are termed birth-death processes. Let p,(t)
be the distribution of densities # at time ¢, where n = 0, 1,2, .. .. A rate equa-
tion dp,/dt describes the instantaneous rate of change in the probability of
state 7. Because time is continuous in this formulation, development of the
model entails writing down instantaneous probabilities of transition from one
state to a neighboring state. A birth-death process is a continuous time
Markov chain. Birth-death processes are sometimes implemented in discrete
time. If several births and deaths might occur from one time increment to the
next, there are a potentially large number of transition possibilities, each with
an associated probability. This model is sometimes termed a branching process.
A matrix can be used to define probabilities of transition from a given state
to any other state. Rather than defining a large number of transition proba-
bilities among all pairs of possible states (population sizes), we might focus
on a random variable representing the number of new individuals that enter
or leave a population during a given time step (Kot 2001; Caswell 2001). T do
not dwell on continuous time birth-death models, because they have not been
well developed for data modeling, which is our focus, and potential for analy-
sis is limited. Solutions are available for some simple linear models, and there
are useful results for some nonlinear models (Nisbet and Gurney 1982;
Ricciardi 1986). Overviews of such models include Bartlett (1960) and Kot
(2001).

A random walk is a Markov process where there are nonzero probabili-
ties of moving to either of the adjacent states, there is zero probability of all
other transitions in a single time increment, and the transition probability does
not depend on the state variable itself. Models of random walks arise in a
number of contexts, often where the state variable is location rather than pop-
ulation size. A biased random walk has unequal probabilities of moving to
adjacent states, with the bias sometimes being termed advection.
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In addition to some of these standard models that regularly appear in the
ecological literature, there is an additional class of models that is increasingly
applied to data, termed random effects models (Table 2.1), which come from
the statistical literature (Clark 2003; Clark et al. 2003a). In this case, the struc-
ture is defined stochastically to allow for the differences among sample units
that will be estimated from data, as opposed to being defined in advance. The
variability among seedlings in terms of growth response to light is an example
(Section 1.2.2).

2.4 Additional Background on Process Models

The general classes of models mentioned in this chapter are thoroughly dis-
cussed in a number of recent texts on ecological theory applied at the popula-
tion level (e.g., May 1973; Edelstein-Keshet 1988; Murray 1989; Hastings
1997; Kot 2001; Caswell 2001; Case 2000) and ecosystem level (DeAngelis
1992; Agren and Bosatta 1996). Some basic elements of analysis are provided
in the form of appendixes for basic process models (Appendix B), matrix manip-
ulations (Appendix C), and life history calculation (Appendix E). This mate-
rial is placed in appendixes, because it is referenced in several sections of the
book and is intended for use on an as-needed basis.



Part |l Elements of Inference

In this section I move directly to inference, the practice of estimating unknowns
based on models and data. I begin with the likelihood, introduce inference by
maximum likelihood, and then mention the method of moments. The remain-
ing chapters of Part II take up confidence envelopes and the basics of model
selection.






3 Pyint Estimation: Maximum Likelibood
and the Method of Moments

3.1 Introduction

The basic models from Chapter 2 are used to describe a process. The process
might be viewed as the core of a stochastic model that brings in sources of
uncertainty and additional variability associated with the collection of data.
I now consider connections between models and data.

Statistical inference involves constructing and evaluating models in the con-
text of data. Inference can be motivated by a desire to understand the process
that generated the data, to make predictions, and/or to inform a decision-making
process. The process can involve comparing models, evaluating plausible param-
eter sets, and assigning goodness of fit. Probability statements are made in light
of data, which might come from several sources and accumulate over time.
Decisions involve combining the uncertainties estimated from the analysis with
perceived benefits and consequences (gains, losses, risks) of alternative decisions.

There are two common frameworks for formal statistical inference that
have broad application. I refer to these as classical and Bayes. It is important to
understand both. Likelihood is fundamental to both frameworks, so I begin
here. T then take up maximum likelihood for point estimation. A point estimate
is the value of a parameter that finds most support in the data set. After intro-
ducing the concepts using examples based on survival, T consider applications
to population growth and some standard approaches to survival analysis. At
the end of the chapter, T discuss the method of moments and some general
considerations about sampling distributions. This is a good time to begin famil-
iarizing yourself with the material in Appendix D.

3.2 Likelihood

Likelibood is the probability of a data set given that the model for those data
is deemed to be correct (Fisher 1934). The likelibood principle says that a
model (with parameter values) is more likely than another if it is the one for
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which the data are more probable. This principle provides a basis for saying
which models explain a data set better than others, that is, model selection.
The easiest way to grasp this concept is with an example.

3.2.1 An Exponential Model

Density f(a)

To estimate mortality rate from an experiment, begin by specifying a model.
Initially T assume that there is one observation, the life span of a plant.
If mortality rate is continuous and constant, say, p per unit time, then the
probability that death occurs at an age between g and @ + da can be repre-
sented by the notation Pr{a <a; < (a + da)} (Section E.6). This notation
represents the probability that the observed time of death, a,, occurs after
age a and before age @ + da. The subscript i could indicate that this is
the time of death for the i individual. This is a joint probability of two
events, (1) the plant is still alive at @, and (2) the plant dies before a + da.
If these two events are independent, then the joint probability is their

product:

Pria < a, < (a + da)} = Pr{

1%

h(a)da X l(a)

die now given that} % P { plant is }

plant is still alive

still alive

The factor h{a) is the age-specific risk per unit time, and it is scaled by the
duration of the increment da to obtain the (approximate) probability of death
between a and a + da (Figure 3.1). The last factor [{a) is the survival function,
or the probability of surviving until age a (Equation E.18). If the age-specific
risk is a constant h(a) = p, then [(a) = e **, and we have

exact probability

is this area

-«——— Approx probability is

shaded box, f(a)da

FIGURE 3.1. The relationship
between probability of death in
an age interval from a to
a + da (extracted at upper right)
and the approximation f(a)da
(shaded). As the interval da
becomes small, the two areas con-
verge.



