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PREFACE

When we (the authors of this book) were students, some understanding of plasma
physics was expected of us, and there were physics courses in which we could learn
it. That is no longer true, but we believe it should be, and this book is designed to
facilitate such courses. Why?

Plasmas play major roles, for example, (1) in attempts to achieve controlled ther-
monuclear fusion using magnetic and inertial confinement; (2) in explanations of
radio wave propagation in the ionosphere and the observed behavior of the solar
corona and wind; and (3) in astrophysics, where they are responsible for emission
throughout the electromagnetic spectrum (e.g., from black holes, highly magnetized
neutron stars, and ultrarelativistic outflows).

Plasmas exhibit an amazingly rich set of phenomena and behaviors, which enrich
their roles in nature and vastly complicate the technology required for their control
and manipulation, most importantly in controlled fusion. Among the most interesting
phenomena are (1) the surfing of individual electrons and ions on plasma waves
that consist of collective, collisionless oscillations of electrons, ions, and sometimes
magnetic fields; (2) that surfing’s amplification of some wave modes (feeding of energy
from the surfing particles to the collective excitations) and damping of other wave
modes (feeding of energy from the modes to the particles); and (3) nonlinear wave-
wave coupling in which, for example, two incoming waves (collective oscillations of
collisionless particles and magnetic field) interact to produce a new outgoing wave.

This rich behavior arises from a plasma’s atomic-scale structure: A plasma is a gas
that is significantly ionized (usually by heating or photons) and thus is composed of
electrons and ions, and sometimes has an embedded or confining magnetic field. In
plasmas, the mean-free paths of electrons and ions are often comparable to or even far
longer than macroscopic length scales, so the plasma typically does not behave like a
fluid. Its dynamics can be strongly influenced by the particles’ velocity distributions.
Rich dynamical behavior occurs both in physical space and in velocity space, and the
two are strongly coupled and are also coupled to any embedded magnetic field.
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QUANTUM PHYSICS IN THIS BOOK

This book deals primarily with classical plasma physics. Nevertheless, we make fre-
quent reference to quantum mechanical concepts and phenomena, and we often use
quantum concepts and techniques in the classical domain, for example, in our analy-
ses of nonlinear wave-wave coupling. This is because classical physics arises from
quantum physics as an approximation, and sometimes—especially in plasmas—the
imprints left on classical physics by its quantum roots are so strong that classical phe-
nomena are most powerfully discussed and analyzed in quantum language.

GUIDANCE FOR READERS

The amount and variety of material covered in this book may seem overwhelming. If
so, keep in mind that

. the primary goals of this book are to teach the fundamental concepts of plasma
physics, which are not so extensive that they should overwhelm, to illustrate
those concepts in action, and, through our illustrations, to give the reader
some physical understanding of how plasmas behave.

We do not intend to provide a mastery of the many illustrative applications contained
in the book. To further help students and other readers who feel overwhelmed, we
have labeled as “Track Two” sections that can be skipped on a first reading, or skipped
entirely—but are sufficiently interesting and important that many readers may choose
to browse or study them. Track-Two sections are labeled by the symbol .

We have aimed this book at advanced undergraduates and first- and second-
year graduate students, of whom we expect only (1) a typical physics or engineering
student’s facility with applied mathematics, and (2) a typical undergraduate-level un-
derstanding of classical mechanics, electromagnetism, elementary thermodynamics,
and quantum mechanics. We also target working scientists and engineers who want
to learn or improve their understanding of plasma physics.

This book is appropriate for a one-quarter or one-semester course in plasma phys-
ics. We presume it will also be used as supplementary reading in other courses where
plasmas are important—for example, in astrophysics, geophysics, and controlled fu-
sion.

This book is the fourth of five volumes that together constitute a single treatise,
Modern Classical Physics (or “MCP,” as we shall call it). The full treatise was published
in 2017 as an embarrassingly thick single book. (The electronic edition is a good deal
lighter.) For readers’ convenience, we have placed, at the end of this volume, the Table
of Contents, Preface, and Acknowledgments of MCP. The five separate textbooks of
this decomposition are

. Volume 1: Statistical Physics,

. Volume 2: Optics,

. Volume 3: Elasticity and Fluid Dynamics,
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. Volume 4: Plasma Physics, and

. Volume 5: Relativity and Cosmology.

These individual volumes are much more suitable for human transport and for use in
individual courses than their one-volume parent treatise, MCP.

The present volume is enriched by extensive cross-references to the other four
volumes—cross-references that elucidate the rich interconnections of various areas
of physics.

In this and the other four volumes, we have retained the chapter numbers from
MCP and, for the body of each volume, MCP’s pagination. In fact, the body of this
volume is identical to the corresponding MCP chapters, aside from corrections of
errata (which are tabulated at the MCP website http://press.princeton.edu/titles/MCP
.html) and a small amount of updating that has not changed pagination. For readers’
cross-referencing convenience, a list of the chapters in each of the five volumes appears
immediately after this Preface.

EXERCISES

Exercises are a major component of this volume, as well as of the other four volumes
of MCP. The exercises are classified into five types:

1. Practice. Exercises that provide practice at mathematical manipulations (e.g.,
of tensors).

2. Derivation. Exercises that fill in details of arguments skipped over in the text.

3. Example. Exercises that lead the reader step by step through the details of
some important extension or application of the material in the text.

4. Problem. Exercises with few, if any, hints, in which the task of figuring out
how to set up the calculation and get started on it often is as difficult as doing
the calculation itself.

5. Challenge. Especially difficult exercises whose solution may require reading
other books or articles as a foundation for getting started.

We urge readers to try working many of the exercises—especially the examples,
which should be regarded as continuations of the text and which contain many of the
most illuminating applications. Exercises that we regard as especially important are
designated by **.

UNITS

Throughout this volume, we use SI units, as is customary today in plasma physics.

BRIEF OUTLINE OF THIS BOOK

When a plasma’s dynamical timescales are sufficiently long, it behaves like a fluid
and so can be understood and analyzed by the techniques of fluid dynamics (Volume
3 of MCP). If this fluid-like plasma has an embedded magnetic field, the plasma’s
(usually high) electric conductivity will strongly couple that field to the fluid. The
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study of such a magnetized fluid is called magnetohydrodynamics, or MHD for short,
and is the subject of MCP Chap. 19. In MCP, we formally classify MHD and Chap.
19 as part of fluid dynamics, because they also accurately describe other electrically
conducting, magnetized fluids (e.g., liquid metals like mercury and liquid sodium).
However, by far the most important and widespread application of MHD today is to
plasmas, so we have included Chap. 19 in this volume instead of in our fluid dynamics
book, Volume 3 of MCP.

In Chap. 19, we derive and elucidate the basic equations and principles of MHD,
and we then illustrate them for a nondynamical plasma (magnetostatics) in two ways:
(1) We analyze the steady flow of plasma along magnetic ducts and describe appli-
cations to electric power generation and to spacecraft propulsion. (2) We describe a
tokamak, the currently most promising configuration for magnetic confinement of a
hot plasma in controlled-fusion R&D. Turning to dynamical plasmas, we use MHD to
analyze the stability of various magnetostatic equilibria, most importantly the toka-
mak and other, simpler configurations for magnetic confinement of plasmas. We also
discuss the physics of some of the many unstable modes of oscillation that plague
magnetic confinement configurations. To illustrate the application of MHD to geo-
physics and planetary science, we discuss the generation of Earth’s magnetic field by
dynamo flows in its liquid core; and we analyze magnetosonic waves propagating in
a magnetized plasma, such as the interstellar medium.

Important aspects of a plasma’s dynamics can be understood by what is happening
microscopically, with individual electrons and ions, and groups of them. In Chap. 20,
we study the particle kinetics of plasmas. Among the important particle-kinetic phe-
nomena we analyze in Chap. 20 are: (1) Debye shielding—the manner in which the
electric field of an individual electron or ion is shielded by collective redistribution of
other electrons and ions, so the field dies out much faster than 1/r. (2) The remark-
ably long mean free paths of electrons and ions when the only impediment to their
constant-velocity motion is Coulomb scattering, with the consequence that the pri-
mary impediment to unimpeded motion is scattering off plasma waves (wave-particle
interactions, treated in Chap. 23). (3) The motions of individual particles (electrons
or ions), and collections of them, in a magnetic field that may be inhomogeneous and
time varying, and implications of these motions for behaviors of the plasma.

When a plasma’s dynamical timescales are sufficiently short, and the velocities
of its electrons (and those of its ions) are not greatly spread out (so the plasma is
“cold”), then the negatively charged electrons are coupled together and behave like one
fluid, and the positively charged ions are coupled together and behave like a second
fluid. These two fluids, interacting with each other and with a magnetic field, can be
analyzed using a two-fluid formalism that we develop in Chap. 21. We illustrate this
formalism by its most important application: to the wide variety of waves that can
propagate in a cold plasma like our ionosphere. We also use the two-fluid formalism to
illustrate how easily waves can feed off an ordered relative motion of ions and electrons
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and can grow in strength by extracting kinetic energy from the ordered motions: the
two-stream instability.

For warm plasmas (with wide spreads of electron and ion velocities), the velocity
distributions can undergo interesting and complex dynamics, which couples to the
particles’ spatial dynamics and to the magnetic field, if present. In other words, the
rich dynamics occurs in the six-dimensional phase space of particle positions and
velocities, and so is best analyzed using a kinetic theory formalism that we develop
and illustrate in Chaps. 22 and 23.

In Chap. 22, we develop this kinetic-theory formalism and then linearize it in
the electron and ion distribution functions and the magnetic field. For simplicity, we
focus largely but not entirely on an unmagnetized plasma, applying it most impor-
tantly to Langmuir waves—longitudinal oscillations of the electron distribution with
the restoring force partially due to thermal pressure and partially electrostatic; and
ion-acoustic waves—the analog, for ions, of Langmuir waves. We discover, in our lin-
earized kinetic-theory analysis, the damping of these wave modes by electrons or ions
that surf on the waves (Landau damping) and, under some circumstances (such as
the two-stream instability), the feeding of the surfing particles’ kinetic energy into
the waves so the waves grow instead of damp. We explore the instabilities that re-
sult from this surfing in several ways, including a study of particles trapped in the
waves, and Nyquist’s method of analyzing the waves’ dispersion relation. And we illus-
trate the power of Nyquist’s method by exhibiting its application to a system far from
plasma physics: the stability of a feedback-control system (e.g., an automobile’s cruise
control). We conclude this chapter with a discussion of N-particle distribution func-
tions, which, despite their apparent formality, can lead to usable answers for practical
problems, such as calculating the Coulomb correction to the equation of state of a
plasma.

In Chap. 23, on the nonlinear dynamics of plasmas, we restore the nonlinear terms
to the kinetic-theory formalism, one after another, and discover their effects. The
first nonlinear term reveals (not surprisingly) the back action of Langmuir and ion-
acoustic waves on the surfing particles, to reduce or increase the particles’ kinetic
energy at the same rate as the wave gains or loses energy. The formalism at this
order is called quasilinear theory. The next nonlinear term gives rise to the nonlinear
interaction of two waves to resonantly produce a third wave. This is called three-
wave mixing , and it is a ubiquitous phenomenon that occurs in many other areas of
science and technology, perhaps most importantly today, for light waves that interact
in a nonlinear crystal (see Chap. 10 of MCP Volume 2)—a major foundation for
nonlinear-optics technology. Although we derive our weakly nonlinear kinetic-theory
formalism from the equations of classical plasma physics, we discover in Chap. 23 that
the formalism can be written much more elegantly and powerfully in the language of
the quantum theory of interacting bosonic plasmons (the quanta associated with the
plasma waves), electrons, and ions. In the quantum formalism, we easily identify a
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term, missed classically, that describes a high-speed charged particle’s spontaneous
Cerenkov-type emission of Langmuir plasmons (and ion-acoustic plasmons). By
comparing the quantum theory’s stimulated emission term with that computed from
the classical theory, we infer the quantitative strength of this spontaneous emission
and discover that it can be as important as the purely classical processes we have been
studying. This analysis exhibits the deep and powerful relationships between quantum
physics and classical physics that occur widely elsewhere in science and technology.
We conclude this chapter with a discussion of collisionless shock waves and their deep
relationship to solitons.

In three short appendixes, we present sections from other volumes of MCP that
underpin portions of this volume:

. Appendix A, Evolution of Vorticity—A good starting point for our analy-
sis of the evolution of the magnetic field in Chap. 19 on magnetohydro-
dynamics.

. Appendix B, Geometric Optics—An essential foundation for some of our
analysis of waves in plasmas in Chaps. 21, 22, and 23.

. Appendix C, Distribution Function and Mean Occupation Number—The
link between more traditional kinetic theory and its application to plasmas
in Chaps. 22 and 23.
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19CHAPTER NINETEEN

Magnetohydrodynamics
. . . it is only the plasma itself which does not ‘understand’ how beautiful the theories are

and absolutely refuses to obey them.
HANNES ALFVÉN (1970)

19.119.1 Overview

In preceding chapters we have described the consequences of incorporating viscosity
and thermal conductivity into the description of a fluid. We now turn to our final
embellishment of fluid mechanics, in which the fluid is electrically conducting and
moves in a magnetic field. The study of flows of this type is known as magnetohydro-
dynamics, or MHD for short. In our discussion, we eschew full generality and with
one exception just use the basic Euler equation (no viscosity, no heat diffusion,
etc.) augmented by magnetic terms. This approach suffices to highlight peculiarly
magnetic effects and is adequate for many applications.

The simplest example of an electrically conducting fluid is a liquid metal, for
example, mercury or liquid sodium. However, the major application of MHD is in
plasma physics—discussed in Part VI. (A plasma is a hot, ionized gas containing free
electrons and ions.) It is by no means obvious that plasmas can be regarded as fluids,
since the mean free paths for Coulomb-force collisions between a plasma’s electrons
and ions are macroscopically long. However, as we shall learn in Sec. 20.5, collective
interactions between large numbers of plasma particles can isotropize the particles’
velocity distributions in some local mean reference frame, thereby making it sensible
to describe the plasma macroscopically by a mean density, velocity, and pressure.
These mean quantities can then be shown to obey the same conservation laws of
mass, momentum, and energy as we derived for fluids in Chap. 13. As a result, a
fluid description of a plasma is often reasonably accurate. We defer to Part VI further
discussion of this point, asking the reader to take it on trust for the moment. In MHD,
we also implicitly assume that the average velocity of the ions is nearly the same as
the average velocity of the electrons. This is usually a good approximation; if it were
not so, then the plasma would carry an unreasonably large current density.

Two serious technological applications of MHD may become very important in the
future. In the first, strong magnetic fields are used to confine rings or columns of hot
plasma that (it is hoped) will be held in place long enough for thermonuclear fusion
to occur and for net power to be generated. In the second, which is directed toward a
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BOX 19.1. READERS’ GUIDE

. This chapter relies heavily on Chap. 13 and somewhat on the
treatment of vorticity transport in Sec. 14.2.

. Part VI, Plasma Physics (Chaps. 20–23), relies heavily on this chapter.

similar goal, liquid metals or plasmas are driven through a magnetic field to generate
electricity. The study of magnetohydrodynamics is also motivated by its widespread
application to the description of space (in the solar system) and astrophysical plasmas
(beyond the solar system). We illustrate the principles of MHD using examples drawn
from all these areas.

After deriving the basic equations of MHD (Sec. 19.2), we elucidate magnetostatic
(also called “hydromagnetic”) equilibria by describing a tokamak (Sec. 19.3). This is
currently the most popular scheme for the magnetic confinement of hot plasma. In
our second application (Sec. 19.4) we describe the flow of conducting liquid metals or
plasma along magnetized ducts and outline its potential as a practical means of elec-
trical power generation and spacecraft propulsion. We then return to the question
of magnetostatic confinement of hot plasma and focus on the stability of equilibria
(Sec. 19.5). This issue of stability has occupied a central place in our development of
fluid mechanics, and it will not come as a surprise to learn that it has dominated re-
search on thermonuclear fusion in plasmas. When a magnetic field plays a role in the
equilibrium (e.g., for magnetic confinement of a plasma), the field also makes possible
new modes of oscillation, and some of these MHD modes can be unstable to expo-
nential growth. Many magnetic-confinement geometries exhibit such instabilities. We
demonstrate this qualitatively by considering the physical action of the magnetic field,
and also formally by using variational methods.

In Sec. 19.6, we turn to a geophysical problem, the origin of Earth’s magnetic field.
It is generally believed that complex fluid motions in Earth’s liquid core are responsible
for regenerating the field through dynamo action. We use a simple model to illustrate
this process.

When magnetic forces are added to fluid mechanics, a new class of waves, called
magnetosonic waves, can propagate. We conclude our discussion of MHD in Sec. 19.7
by deriving the properties of these wave modes in a homogeneous plasma and dis-
cussing how they control the propagation of cosmic rays in the interplanetary and
interstellar media.

As in previous chapters, we encourage our readers to view films; on magneto-
hydrodynamics, for example, Shercliff (1965).

19.2 19.2 Basic Equations of MHD

The equations of MHD describe the motion of a conducting fluid in a magnetic field.
This fluid is usually either a liquid metal or a plasma. In both cases, the conductivity,
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strictly speaking, should be regarded as a tensor (Sec. 20.6.3) if the electrons’ cyclotron
frequency (Sec. 20.6.1) exceeds their collision frequency (the inverse of the mean time
between collisions; Sec. 20.4.1). (If there are several collisions per cyclotron orbit, then
the influence of the magnetic field on the transport coefficients will be minimal.)
However, to keep the mathematics simple, we treat the conductivity as a constant
scalar, κe. In fact, it turns out that for many of our applications, it is adequate to take
the conductivity as infinite, and it does not matter whether that infinity is a scalar or
a tensor!

Two key physical effects occur in MHD, and understanding them well is key to
developing physical intuition. The first effect arises when a good conductor moves
into a magnetic field (Fig. 19.1a). Electric current is induced in the conductor, which,
by Lenz’s law, creates its own magnetic field. This induced magnetic field tends to
cancel the original, externally supported field, thereby in effect excluding the magnetic
field lines from the conductor. Conversely, when the magnetic field penetrates the
conductor and the conductor is moved out of the field, the induced field reinforces
the applied field. The net result is that the lines of force appear to be dragged along
with the conductor—they “go with the flow.” Naturally, if the conductor is a fluid with
complex motions, the ensuing magnetic field distribution can become quite complex,
and the current builds up until its growth is balanced by Ohmic dissipation.

The second key effect is dynamical. When currents are induced by a motion of a
conducting fluid through a magnetic field, a Lorentz (or j× B) force acts on the fluid
and modifies its motion (Fig. 19.1b). In MHD, the motion modifies the field, and the
field, in turn, reacts back and modifies the motion. This behavior makes the theory
highly nonlinear.

Before deriving the governing equations of MHD, we should consider the choice
of primary variables. In electromagnetic theory, we specify the spatial and temporal
variation of either the electromagnetic field or its source, the electric charge density
and current density. One choice is computable (at least in principle) from the other

N S N S

B B
(a) (b)

F = j × B

j¯
v

two key physical effects in
MHD

FIGURE 19.1 The two key physical effects that occur in MHD. (a) A moving conductor
modifies the magnetic field by dragging the field lines with it. When the conductivity
is infinite, the field lines are frozen in the moving conductor. (b) When electric
current, flowing in the conductor, crosses magnetic field lines, a Lorentz force is
generated that accelerates the fluid.
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using Maxwell’s equations, augmented by suitable boundary conditions. So it is with
MHD, and the choice depends on convenience. It turns out that for the majority of
applications, it is most instructive to deal with the magnetic field as primary, and toin MHD the magnetic field

is the primary variable use Maxwell’s equations

Maxwell’s equations ∇ . E = ρe
ε0

, (19.1a)

∇ . B= 0, (19.1b)

∇× E =−∂B
∂t

, (19.1c)

∇× B= μ0j+ μ0ε0
∂E
∂t

(19.1d)

to express the electric field E, the current density j, and the charge density ρe in terms
of the magnetic field (next subsection).

19.2.1 19.2.1 Maxwell’s Equations in the MHD Approximation

As normally formulated, Ohm’s law is valid only in the rest frame of the conductor. In
particular, for a conducting fluid, Ohm’s law relates the current density j′ measured
in the fluid’s local rest frame to the electric field E′ measured there:

j′ = κeE′, (19.2)

where κe is the scalar electric conductivity. Because the fluid is generally accelerated,
dv/dt �= 0, its local rest frame is generally not inertial. Since it would produce a
terrible headache to have to transform time and again from some inertial frame to
the continually changing local rest frame when applying Ohm’s law, it is preferable to
reformulate Ohm’s law in terms of the fields E, B, and j measured in an inertial frame.
To facilitate this (and for completeness), we explore the frame dependence of all our
electromagnetic quantities E, B, j, and ρe.

Throughout our development of magnetohydrodynamics, we assume that the
fluid moves with a nonrelativistic speed v� c relative to our chosen reference frame.
We can then express the rest-frame electric field in terms of the inertial-frame electric
and magnetic fields as

E′ = E + v × B; E′ = |E′| � E , so E �−v × B. (19.3a)

In the first equation we have set the Lorentz factor γ ≡ 1/
√

1− v2/c2 to unity, con-
sistent with our nonrelativistic approximation. The second equation follows from the
high conductivity of the fluid, which guarantees that current will quickly flow in what-
ever manner it must to annihilate any electric field E′ that might be formed in the fluid’s
local rest frame. By contrast with the extreme frame dependence (19.3a) of the electric

946 Chapter 19. Magnetohydrodynamics



field, the magnetic field is essentially the same in the fluid’s local rest frame as in the
laboratory. More specifically, the analog of Eq. (19.3a) is B′ = B− (v/c2)× E; and
since E ∼ vB , the second term is of magnitude (v/c)2B , which is negligible, giving

B′ � B. (19.3b)

Because E is highly frame dependent, so is its divergence, the electric charge density
ρe. In the laboratory frame, whereE ∼ vB , Gauss’s and Ampère’s laws [Eqs. (19.1a,d)]
imply thatρe ∼ ε0vB/L∼ (v/c2)j , whereL is the lengthscale on which E and B vary;
and the relation E′ � E with Gauss’s law implies |ρ′

e
| � |ρe|:

ρe ∼ j v/c2, |ρ′
e
| � |ρe|. (19.3c)

By transforming the current density between frames and approximating γ � 1, we
obtain j′ = j+ ρev = j+O(v/c)2j ; so in the nonrelativistic limit (first order in v/c)
we can ignore the charge density and write

j′ = j. (19.3d)

in MHD, magnetic field
and current density are
approximately frame
independent; electric field
and charge density are
small and frame dependent

To recapitulate, in nonrelativistic magnetohydrodynamic flows, the magnetic field
and current density are frame independent up to fractional corrections of order
(v/c)2, while the electric field and charge density are highly frame dependent and
are generally small in the sense thatE/c∼ (v/c)B� B and ρe ∼ (v/c2)j � j/c [in
Gaussian cgs units we have E ∼ (v/c)B� B and ρec ∼ (v/c)j � j ].

Combining Eqs. (19.2), (19.3a), and (19.3d), we obtain the nonrelativistic form of
Ohm’s law in terms of quantities measured in our chosen inertial, laboratory frame:

Ohm’s lawj= κe(E + v × B). (19.4)

We are now ready to derive explicit equations for the (inertial-frame) electric field
and current density in terms of the (inertial-frame) magnetic field. In our derivation,
we denote by L the lengthscale on which the magnetic field changes.

We begin with Ampère’s law written as ∇× B−μ0j=μ0ε0∂E/∂t = (1/c2)∂E/∂t ,
and we notice that the time derivative of E is of orderEv/L∼Bv2/L (sinceE ∼ vB).
Therefore, the right-hand side is O[Bv2/(c2L)] and thus can be neglected compared
to the O(B/L) term on the left, yielding:

current density in terms of
magnetic field

j= 1
μ0

∇× B. (19.5a)

We next insert this expression for j into the inertial-frame Ohm’s law (19.4), thereby
obtaining

electric field in terms of
magnetic fieldE =−v × B+ 1

κeμ0
∇× B. (19.5b)
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If we happen to be interested in the charge density (which is rare in MHD), we can
compute it by taking the divergence of this electric field:

charge density in terms of
magnetic field ρe =−ε0∇ . (v × B). (19.5c)

Equations (19.5) express all the secondary electromagnetic variables in terms of our
primary one, B. This has been possible because of the high electric conductivity κe and
our choice to confine ourselves to nonrelativistic (low-velocity) situations; it would
not be possible otherwise.

We next derive an evolution law for the magnetic field by taking the curl of Eq.
(19.5b), using Maxwell’s equation ∇× E=−∂B/∂t and the vector identity ∇× (∇×
B)=∇(∇ . B)− ∇2B, and using ∇ . B= 0. The result is

evolution law for magnetic
field

∂B
∂t
=∇× (v × B)+

(
1
μ0κe

)
∇2B, (19.6)

which, using Eqs. (14.4) and (14.5) with ω replaced by B, can also be written as

DB
Dt

=−B∇ . v +
(

1
μ0κe

)
∇2B, (19.7)

where D/Dt is the fluid derivative defined in Eq. (14.5). When the flow is in-
compressible (as it often will be), the ∇ . v term vanishes.

Equation (19.6)—or equivalently, Eq. (19.7)—is called the induction equation and
describes the temporal evolution of the magnetic field. It is the same in form as the
propagation law for vorticity ω in a flow with ∇P ×∇ρ = 0 [Eq. (14.3), or (14.6) with
ω∇ . v added in the compressible case]. The ∇× (v × B) term in Eq. (19.6) dominates
when the conductivity is large and can be regarded as describing the freezing offor large conductivity:

freezing of magnetic field
into the fluid

magnetic field lines in the fluid in the same way as the ∇× (v × ω) term describes
the freezing of vortex lines in a fluid with small viscosity ν (Fig. 19.2). By analogy
with Eq. (14.10), when flux-freezing dominates, the fluid derivative of B/ρ can be
written as

D

Dt

(
B
ρ

)
≡ d

dt

(
B
ρ

)
−
(

B
ρ

. ∇
)

v = 0, (19.8)

where ρ is mass density (not to be confused with charge density ρe). Equation (19.8)
states that B/ρ evolves in the same manner as the separation�x between two points
in the fluid (cf. Fig. 14.4 and associated discussion).

The term [1/(μ0κe)]∇2B in the B-field evolution equation (19.6) or (19.7) is
analogous to the vorticity diffusion term ν∇2ω in the vorticity evolution equation
(14.3) or (14.6). Therefore, when κe is not too large, magnetic field lines will diffuse
through the fluid. The effective diffusion coefficient (analogous to ν) is

magnetic diffusion
coefficient DM = 1/(μ0κe). (19.9a)
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FIGURE 19.2 Pictorial representation of the evolution of the magnetic field
in a fluid endowed with infinite electrical conductivity. (a) A uniform
magnetic field at time t = 0 in a vortex. (b) At a later time, when the fluid
has rotated through ∼30◦, the circulation has stretched and distorted
the magnetic field.

Earth’s magnetic field provides an example of field diffusion. That field is believed
to be supported by electric currents flowing in Earth’s iron core. Now, we can estimate
the electric conductivity of iron under these conditions and from it deduce a value
for the diffusivity, DM ∼ 1 m2 s−1. The size of Earth’s core is L∼ 104 km, so if there
were no fluid motions, then we would expect the magnetic field to diffuse out of the
core and escape from Earth in a time

magnetic decay timeτM ∼ L2

DM
(19.9b)

∼3 million years, which is much shorter than the age of Earth, ∼5 billion years.
The reason for this discrepancy, as we discuss in Sec. 19.6, is that there are internal
circulatory motions in the liquid core that are capable of regenerating the magnetic
field through dynamo action.

Although Eq. (19.6) describes a genuine diffusion of the magnetic field, to compute
with confidence the resulting magnetic decay time, one must solve the complete
boundary value problem. To give a simple illustration, suppose that a poor conductor
(e.g., a weakly ionized column of plasma) is surrounded by an excellent conductor
(e.g., the metal walls of the container in which the plasma is contained), and that
magnetic field lines supported by wall currents thread the plasma. The magnetic field
will only diminish after the wall currents undergo Ohmic dissipation, which can take
much longer than the diffusion time for the plasma column alone.

It is customary to introduce a dimensionless number called the magnetic Reynolds
number,RM , directly analogous to the fluid Reynolds number Re, to describe the rel-
ative importance of flux freezing and diffusion. The fluid Reynolds number can be
regarded as the ratio of the magnitude of the vorticity-freezing term, ∇× (v × ω)∼
(V/L)ω, in the vorticity evolution equation, ∂ω/∂t =∇× (v × ω)+ ν∇2ω, to the
magnitude of the diffusion term, ν∇2ω ∼ (ν/L2)ω: Re= (V/L)(ν/L2)−1= VL/ν.
Here V is a characteristic speed, and L a characteristic lengthscale of the flow.
Similarly, the magnetic Reynolds number is the ratio of the magnitude of the
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TABLE 19.1: Characteristic magnetic diffusivities DM , decay times τM , and magnetic
Reynolds numbers RM for some common MHD flows with characteristic length scales L
and velocities V

Substance L (m) V (m s−1) DM (m2 s−1) τM (s) RM

Mercury 0.1 0.1 1 0.01 0.01

Liquid sodium 0.1 0.1 0.1 0.1 0.1

Laboratory plasma 1 100 10 0.1 10

Earth’s core 107 0.1 1 1014 106

Interstellar gas 1017 103 103 1031 1017

magnetic-flux-freezing term, ∇× (v × B)∼ (V/L)B , to the magnitude of the mag-
netic-flux-diffusion term,DM∇2B= [1/(μoκe)]∇2B∼B/(μoκeL2), in the induction
equation (19.6):

magnetic Reynolds
number and magnetic field
freezing

RM = V/L

DM/L
2 =

VL

DM
= μ0κeVL. (19.9c)

When RM � 1, the field lines are effectively frozen in the fluid; when RM � 1, Ohmic
dissipation is dominant, and the field lines easily diffuse through the fluid.

Magnetic Reynolds numbers and diffusion times for some typical MHD flows
are given in Table 19.1. For most laboratory conditions, RM is modest, which means
that electric resistivity 1/κe is significant, and the magnetic diffusivity DM is rarely
negligible. By contrast, in space physics and astrophysics, RM is usually very large,
RM� 1, so the resistivity can be ignored almost always and everywhere. This limiting

perfect MHD: infinite
conductivity and magnetic
field freezing case, when the electric conductivity is treated as infinite, is often called perfect MHD.

The phrase “almost always and everywhere” needs clarification. Just as for large-
Reynolds-number fluid flows, so also here, boundary layers and discontinuities can be
formed, in which the gradients of physical quantities are automatically large enough
to make RM ∼ 1 locally. An important example discussed in Sec. 19.6.3 is magneticmagnetic reconnection

and its influence reconnection. This occurs when regions magnetized along different directions are
juxtaposed, for example, when the solar wind encounters Earth’s magnetosphere. In
such discontinuities and boundary layers, the current density is high, and magnetic
diffusion and Ohmic dissipation are important. As in ordinary fluid mechanics, these
dissipative layers and discontinuities can control the character of the overall flow
despite occupying a negligible fraction of the total volume.

19.2.2 19.2.2 Momentum and Energy Conservation

The fluid dynamical aspects of MHD are handled by adding an electromagnetic force
term to the Euler or Navier-Stokes equation. The magnetic force density j× B is the
sum of the Lorentz forces acting on all the fluid’s charged particles in a unit volume.
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