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The amount of theoretical work one has to cover before being
able to solve problems of real practical value is rather large,
but this circumstance is an inevitable consequence of the
fundamental part played by transformation theory and is likely
to become more pronounced in the theoretical physics of the
future.

— P.A.M. Dirac

(from the preface to the first edition of
The Principles of Quantum Mechanics,

Oxford, 1930)
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PREFACE

Physical theories of fundamental significance tend to be gauge the-
ories. These are theories in which the physical system being dealt with
is described by more variables than there are physically independent
degrees of freedom. The physically meaningful degrees of freedom then
reemerge as being those invariant under a transformation connecting the
variables (gauge transformation). Thus, one introduces extra variables
to make the description more transparent and brings in at the same time
a gauge symmetry to extract the physically relevant content.

It is a remarkable occurrence that the road to progress has invari-
ably been toward enlarging the number of variables and introducing a
more powerful symmetry rather than conversely aiming at reducing the
number of variables and eliminating the symmetry.

This book is devoted to the general theory of gauge systems both
classical and quantum. It starts from the classical analysis of Dirac,
showing that gauge theories are constrained Hamiltonian systems, and
works its way up to ghosts and the Becchi-Rouet-Stora-Tyutin symme-
try and its cohomology, including the formulation in terms of antifields.
The quantum mechanical analysis deals with both the operator and path
integral methods.

We have attempted to give a fully general and unified treatment
of the subject in a form that may survive future developments. To our
knowledge, such a treatment was not previously available.

Applications are not included except for a chapter on the Maxwell
field and on two-form gauge fields, which are used as an example of
how to apply many parts of the general formalism to a specific system.
Any attempt to cover a reasonably complete list of applications would
have ended up inevitably in a treatise on theoretical physics at large.
Exercises are, however, provided with each chapter.

Marc Henneaux
Claudio Teitelboim
Santiago de Chile, April 1991
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NOTATIONS

First-class constraints
Multipliers for first-class constraints
Second-class constraints
Momentum conjugate to A°
Grassmann parity of A
Ghost conjugate pairs
Antighost conjugate pairs
BRST generator
BRST symmetry
Poisson bracket of phase space

functions A, B
Dirac bracket of phase space

functions A, B
Poisson bracket of phase space

coordinates zA

Symplectic 2-form in coordinates zA

(Graded) commutator AB — (—)SBSABA
of operators A, B

7a w 0 or Ga »
ua or Aa

Xa a 0

eA = 0,1 ( moc
(r)a,Va)
(Ca,P

a)
ft
s

[A,B]

[AB]*

[zA,zB]=aAB

aAB{z),<TABcrh

L
\A,B]

z)

Remark. The summation convention over repeated indices is used
throughout, except when the index is solely repeated in a sign factor.
For instance, there is a summation over a in Xafia(—)£° but none in
\a(-)e°.
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CHAPTER ONE

CONSTRAINED
HAMILTONIAN SYSTEMS

1.1. GAUGE INVARIANCE—CONSTRAINTS

A gauge theory may be thought of as one in which the dynam-
ical variables are specified with respect to a "reference frame" whose
choice is arbitrary at every instant of time. The physically important
variables are those that are independent of the choice of the local refer-
ence frame. A transformation of the variables induced by a change in
the arbitrary reference frame is called a gauge transformation. Physical
variables ("observables") are then said to be gauge invariant.

In a gauge theory, one cannot expect that the equations of motion
will determine all the dynamical variables for all times if the initial
conditions are given because one can always change the reference frame
in the future, say, while keeping the initial conditions fixed. A different
time evolution will then stem from the same initial conditions. Thus,
it is a key property of a gauge theory that the general solution of the
equations of motion contains arbitrary functions of time.

The most thorough and foolproof treatment of gauge systems is
that which proceeds through the Hamiltonian formulation. Once that
formulation is understood, one can go back to the Lagrangian. One can
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even often shortcut the Hamiltonian—at least to a great extent, but to
do so correctly, it is of great help to have a solid understanding of the
Hamiltonian.

Therefore, we will start the analysis of gauge systems by studying
their Hamiltonian formulation. Even though one may rightly regard the
Hamiltonian formulation as the more fundamental one, we will begin the
discussion by assuming that the action principle is given in Lagrangian
form, and we will proceed to pass to the Hamiltonian. We do this only
because it is the situation most often found in practice.

It will emerge from the discussion given below that the presence
of arbitrary functions of time in the general solution of the equations
of motion implies that the canonical variables are not all independent.
Rather, there are relations among them called constraints. Thus, a
gauge system is always a constrained Hamiltonian system. The converse,
however, is not true. Not all conceivable constraints of a Hamiltonian
system arise from a gauge invariance. The analysis developed below
covers, nevertheless, all types of constraints.

1.1.1. The Lagrangian as a Starting Point:
Primary Constraints

The starting point for discussing the dynamics of gauge systems will
be the action principle in Lagrangian form.

The classical motions of the system are those that make the action

SL= / L(q,q)dt (1.1)
ft

= /
•ft!

stationary under variations 6qn(t) of the Lagrangian variables qn(n =
1,. . . , N), which vanish at the endpoints £i, £2-

The conditions for the action to be stationary are the Euler-Lagrange
equations

\ qnJ dqndt\dqn

Equations (1.2) can be written in more detail as

* 8qn'dqn dqn H &qn'dqn' V " ;

We immediately see from (1.3) that the accelerations q'n at a given time
are uniquely determined by the positions and the velocities at that time
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if and only if the matrix d2L/dqn dqn can be inverted; that is, if the
determinant

det ( _£L . ) (1.4)

does not vanish.
If, on the other hand, the determinant (1.4) is zero, the acceler-

ations will not be uniquely determined by the positions and velocities
and the solution of the equations of motion could then contain arbitrary
functions of time. So, the case of interest for systems having gauge de-
grees of freedom is the one where d2L/dqn dqn cannot be inverted. We
must, therefore, allow for that possibility.

The departing point for the Hamiltonian formalism is to define the
canonical momenta by

" " W- (L5)

and we see that the vanishing of the determinant (1.4) is just the con-
dition for the noninvertibility of the velocities as functions of the coor-
dinates and momenta. In other words, the momenta (1.5) are not all
independent in this case, but there are, rather, some relations

0m(«,p) = O, m = l , . . . ,M, (1.6)

that follow from the definition (1.5) of the momenta. Thus, when the p's
in (1.6) are replaced by their definition (1.5) in terms of the q's and q's,
Eq. (1.6) reduces to an identity. The conditions (1.6) are called primary
constraints to emphasize that the equations of motion are not used to
obtain these relations and that they imply no restriction on the coordi-
nates qn and their velocities qn.

We assume for simplicity that the rank of the matrix d2L/dqn dqn

is constant throughout (g, <?)-space and that Eqs. (1.6) define a subman-
ifold smoothly embedded in phase space. This submanifold is known
as the primary constraint surface. If the rank of d2L/dqn dqn is equal
to N — M', there are M' independent equations among (1.6), and the
primary constraint surface is a phase space submanifold of dimension
2N — M'. We do not assume that the constraints (1.6) are independent
so that M may be strictly greater than M'. However, we shall impose
on (1.6) regularity conditions to be detailed in the next subsection.

It follows from (1.6) that the inverse transformation from the p's
to the q's is multivalued. Given a point {qn,pn) that fulfills the con-
straints (1.6), the "inverse image" (qn,qn) that solves (1.5) is not unique,
since (1.5) defines a mapping from the 2iV-dimensional manifold of the
g's and the q's to the smaller manifold (1.6) of dimension 2N — M'.
Therefore, the inverse images of a given point of (1.6) form a manifold of
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dimension M' (see Fig. 1). In order to render the transformation single-
valued, one needs to introduce extra parameters, at least M' in number,
that indicate the location of q on the inverse manifold. These parame-
ters will appear as Lagrange multipliers when we define the Hamiltonian
and study its properties.

<|>sp +p =0
2 r1

q - space p - space

Figure 1: The figure shows the example of a system with two q's and
Lagrangian ^(q1 - q2)2. The momenta are pi = ql — q2 and p2 = q2 — ql •
There is one primary constraint 4> = Pi + V2 = 0- All of q-space is mapped
on the straight line pi + pi = 0 of p-space. Moreover, all the q's on the
straight line q2 — q1 = c are mapped on the same point pi = —c = —P2
belonging to the constraint surface rp — 0. The transformation q —> p is
thus neither one-to-one nor onto. To render the transformation invertible,
one needs to adjoin extra parameters to the p's (see below).

1.1.2. Conditions on the Constraint Functions

There exist many equivalent ways to represent a given surface by
means of equations of the form (1.6). For instance, the surface

can equivalently be written as

or as

P i = 0

Pi = 0

(1.7a)

(1.7b)

(1.7c)
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or, redundantly, as

Pi - 0, Pl
2 = 0. (1.7d)

To pass to the Hamiltonian formalism, it turns out to be necessary
to impose some restrictions on the choice of the functions <pm, which rep-
resent the primary constraint surface. These conditions play an impor-
tant role in the theory and are referred to in the sequel as the regularity
conditions.

They can be stated as follows. The (2/V — M')-dimensional con-
straint surface </>m = 0 should be coverable by open regions, on each of
which ("locally") the constraint functions <j>m can be split into "inde-
pendent" constraints <f>mi — 0 (m' = 1 , . . . ,M') , which are such that
the Jacobian matrix d(4>m')/d(qn,pn) is of rank M' on the constraint
surface, and "dependent" constraints tym' — 0 (m' = M' + 1, . . . , M ) ,
which hold as consequences of the others, (0TO< = 0 => 4>m' — 0).

The condition on the Jacobian matrix d(4>m>)/d(qn,pn) can be al-
ternatively reformulated as:

(i) the functions <j>mt can be locally taken as the first M' coordinates of
a new, regular, coordinate system in the vicinity of the constraint
surface; or

(ii) the gradients d<pi,..., d<j>M, are locally linearly independent on the
constraint surface; i.e., difii A . . . A d<j>Mi jt 0 ("zero is a regular
value of the mapping defined by <fii,..., <j>M'")', °*

(Hi) the variations S(f>mi are of order e for arbitrary variations 6ql and
6pi of order e (Dirac's terminology).

Returning to the example p\ = 0, we see that the descriptions of the
constraint surface by means of (1.7a) and (l-7d) are both admissible. In-
deed, d(pi)/d(qn,pn) is of rank one, while p\2 — 0 is a clear consequence
of pi = 0. However, neither (l-7b) nor (1.7c) is admissible because
d(pi2)/d(qn,pn) vanishes when pi2 = 0, whereas d(y/\pi \)/d(qn,pn)
is singular there. Another example that is excluded by the regularity
conditions is p i 2 +P2 2 = 0. In that case, an admissible description of
the constraint surface is, for instance, pi = 0, P2 = 0.

It should be emphasized that although we assume that the above
split of the contraint functions can locally be performed, it is by no means
necessary to explicitly perform this separation in order to develop the
theory. The subsequent formulas will not be based on any such split.
All that is required is to choose the functions 4>m in such a way that the
split can in principle be achieved.

When the constraint functions cj>m fulfill the required regularity con-
ditions, the following useful properties, which will be repeatedly used in
the sequel, are easily seen to hold.
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Theorem 1.1. If a (smooth) phase space function G vanishes on the
surface 4>m = 0, then G = gm(f>m for some functions gm.

Theorem 1.2. If \n6qn + fJ,nSpn = 0 for arbitrary variations Sqn,6pn

tangent to the constraint surface, then

for some um. The equalities here are equalities on the surface (1.6).

The proof of the first theorem is based on the fact that one can
locally choose the independent constraint functions cf>mi as first coordi-
nates of a regular coordinate system (ym> ,xa), with ym> = (fim>. In these
coordinates one has, since G(0,x) = 0,

G(y,x)= f ±G(ty,x)dt
Jo at

- Vm' I G,m'(ty,x)dt,
Jo

and thus

G = gm4>m

with gm' = Jo
lGtm>(ty,x)dt and gm' = 0. This yields a local proof

of Theorem 1.1. It is straightforward to extend the proof to the whole
of phase space. In order not to obscure the discussion by technical
considerations, the global argument is given in Appendix l.A.

The proof of the second theorem is based on the observation that the
constraint surface is of dimension 2N — M', and therefore the tangent
variations Sqn,6pn at a point form a (27V — M')-dimensional vector space.
Hence, there exist exactly M' independent solutions o{\n6qn+fin8pn = 0.
By the regularity assumptions, the M' gradients (d<j)mi jdqn, d(j)mi/dpn)
of the independent constraints are linearly independent. Since these
gradients clearly solve XnSqn + nn6pn = 0 for tangent variations,
they yield a basis of solutions and Theorem 1.2 holds. Note that in the
presence of redundant constraints, the functions um exist but are not
unique.
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1.1.3. The Canonical Hamiltonian

The next step in the Hamiltonian analysis is to introduce the canon-
ical Hamiltonian H by

H = qn
Pn - L. (1.8)

As defined by (1.8), H is a function of the positions and the veloci-
ties. However, the remarkable fact is that the g's enter H only through
the combination p{q,q) defined by (1.5). This general property of the
Legendre transformation is what makes H interesting. It is verified by
evaluating the change SH induced by arbitrary independent variations
of the positions and velocities:

•n n "•'-'

Here, Spn is not an independent variation but is regarded as a linear
combination of Sq's and tfg's. We see, thus, that the Sq's appear in (1.9)
only through that precise linear combination and not in any other way.
This means that H is a function of the p's and the q's.

The Hamiltonian defined by (1.8) is not, however, uniquely deter-
mined as a function of the p's and the g's. This may be understood by
noticing that the Spn in (1.9) are not all independent but are restricted
to preserve the primary constraints 4>m « 0, which are identities when
the p's are expressed as functions of the g's and g's via (1.5).

We arrive then at the conclusion that the canonical Hamiltonian is
well defined only on the submanifold defined by the primary constraints
and can be extended arbitrarily off that manifold. It follows that the
formalism should remain unchanged by the replacement

and we will see below that this is indeed the case.
Equation (1.9) can be rewritten as

\8qn 8q

from which one infers, using Theorem 1.2, that

dL
dqn

OH
. Oq"

(1.10a)

»™i?- (..10b)
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The first of these relations is particularly important because it enables
us to recover the velocities qn from the knowledge of the momenta pn

(obeying 4>m = 0) and of extra parameters um. These extra parameters
can be thought of as coordinates on the surface of the inverse images of
a given pn.

If the constraints are independent, the vectors d(f>m/dpn are also in-
dependent on (f>m = 0 because of the regularity condition [Exercise l.l(a)].
Hence, no two different sets of M'S can yield the same velocities in (1.10a).
This means that the it's can be expressed, in principle, as functions of the
coordinates and the velocities by solving the equations

q" =

If we define the Legendre transformation from (q,q)-space to the
surface (f>m{q,p) = 0 of (g,p,u)-space by means of

= qn

dL
(1.11a)

we see that this transformation between spaces of the same dimension-
ality 2N is invertible, since one has

q" = q",

•» d H

q = -z.—i- u

<t>m(q,p) = o.

(1.11b)

Hence, Eqs. (1.11b) imply Eqs. (1.11a), and vice versa. Invertibility of
the Legendre transformation when det(<92 L/dqndqn) = 0 can thus be
regained at the price of adding extra variables.

It should be mentioned that the preceding discussion is only of local
validity. We will assume from now on that (1.11) is also globally correct.
This implies, in particular, that a Hamiltonian H can be globally defined
as a function of q,p by means of (1.8) and is not, say, multivalued.

The only modification that arises in the analysis when some con-
straints depend on others is that the variables um are no longer deter-
mined by q and q. Rather, one should view them as functions of q, q
and of extra parameters ua (a = 1 , . . . , M' — M) in number equal to
the degree M' — M of redundancy. The formulas ( l . l l a ) - ( l . l lb ) are
otherwise unchanged.
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1.1.4. Action Principle in Hamiltonian Form

The relations (1.10) enable one to rewrite the original Lagrangian
Eqs. (1.2) in the equivalent Hamiltonian form

(1.12a)

{ }
Pn~ dq» U dq"'

4>m(q,p)=0- (1.12c)

That Eqs. (1.12) follow from (1.2) is a direct consequence of (1.10)
and of the definition of the momenta in terms of the velocities. That,
conversely, Eqs. (1.12) imply (1.2) results from the fact that (1.12a)
and (1.12c) lead, as we have just shown, to pn = dL/dqn. When this
relation is inserted in (1.12b) and (1.10b) is taken into account, one gets
the original Lagrangian equations of motion.

The Hamiltonian equations (1.12) can be derived from the varia-
tional principle

•f"(qnpn -H- um<!>m) = 0 (1.13)

for arbitrary variations 6qn,Spn,6um subject only to the restriction
f>Qn(ti) = Sqn(t2) = 0. The new variables um, which were introduced to
make the Legendre transformation invertible, appear now as Lagrange
multipliers enforcing the primary constraints (1.12c). One can alterna-
tively fix the p's, rather than the g's, at the endpoints. In that case,
the pq term in (1.13) should be replaced by -qp. Yet another varia-
tional principle, in which the p's and the g's are treated symmetrically,
is analyzed in §7.1.3 below.

It is clear from the form of the action principle that the theory is
invariant under H —> H + cm<j>m, since this change merely results in a
renaming um —> um + cm of the Lagrange multipliers. The variational
principle (1.13) is also equivalent to the alternative variational principle
with fewer variables in which the constraints are solved, namely,

{<JnPn — H) dt — 0 (1.14a)

for independent variations of the coordinates and the momenta subject
to the conditions

4>m = 0, Hm = 0. (1.14b)
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This follows from the standard Lagrange multiplier method. The reg-
ularity condition on the constraints plays again a key role here, since
otherwise (1.14) would, in general, not be equivalent to (1.13). (See
Exercise 1.3 in this context.)

The equations of motion derived from (1.13) can be written as

F = [F,H} + um[F,<f>m}. (1.15)

Here, F(q,p) is an arbitrary function of the canonical variables, and the
Poisson bracket (P.B.) is defined as usual by

1.1.5. Secondary Constraints

Let us now examine some of the consequences of the equations of
motion (1.15). A basic consistency requirement is that the primary
constraints be preserved in time. Thus, if we take F in (1.15) to be one
of the 4>m, we should have <f>m = 0. This gives rise to the consistency
conditions,

[4>m,H} + um'[<pm,(l>m,}=0. (1.17)

Equation (1.17) can either reduce to a relation independent of the it's
(thus involving only the g's and the p's) or it may impose a restriction
on the u's. In the former case, if the relation between the p's and the g's
is independent of the primary constraints, it is called a secondary con-
straint. Secondary constraints differ from the primary ones in that the
primary constraints are merely consequences of Eq. (1.5) that defines
the momentum variables, while for the secondary constraints one has
to make use of the equations of motion as well. If there is a secondary
constraint—X(q,p) = 0, say—coming in, we must impose a new consis-
tency condition,

[X,H}+um[X,<pm]=0. (1.18)

Next, we must again check whether (1.18) implies new secondary con-
straints or whether it only restricts the u's, and so on. After the process
is finished, we are left with a number of secondary constraints, which
will be denoted by

cj)k = O, k = M+l,...,M + K, (1.19)

where K is the total number of secondary constraints. The reason for the
notation (1.19) is that the distinction between primary and secondary
constraints will be of little importance in the final form of the theory,
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and it is thus useful to be able to denote all constraints (primary and
secondary) in a uniform way as

(^• = 0, j = l,...,M + K = J. (1.20)

We make the same regularity assumptions on the full set of con-
straints (f>j as on the primary constraints. Namely, we assume not only
that (1.20) defines a smooth submanifold but we also take the constraint
functions <f>j to obey the regularity conditions described in §1.1.2. It will
be further assumed below that the rank of the matrix of the brackets
[4>j,<t>i'\ is constant throughout the surface (1.20) where the constraints
hold.

1.1.6. Weak and Strong Equations

It is useful at this stage to introduce the weak equality symbol "
for the constraint equations. Thus, (1.20) is written as

to emphasize that the quantity <j>j is numerically restricted to be zero
but does not identically vanish throughout phase space. This means,
in particular, that it has nonzero Poisson brackets with the canonical
variables.

More generally, two functions F, G that coincide on the submanifold
defined by the constraints rpj ?» 0 are said to be weakly equal, and one
writes F ss G. On the other hand, an equation that holds throughout
phase space and not just on the submanifold 4>j ss 0 is called strong, and
the usual equality symbol is used in that case. Thus (by Theorem 1.1
with <j)m replaced by <f>j),

F « G <* F -G = cj{q,p)(j)j. (1.21)

1.1.7. Restrictions on the Lagrange Multipliers

Assuming now that we have found a complete set (1.20) of con-
straints, we can go over to study the restrictions on the Lagrange mul-
tipliers um. These restrictions are

[<^,#] + wm[^-,0m]«O, (1.22)

where m is summed from 1 to M and j takes on any of the values
from 1 to J. We can consider (1.22) as a set of J nonhomogeneous
linear equations in the M < J unknowns um, with coefficients that
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are functions of the g's and the p's. These equations should possess
solutions, for otherwise the system described by the Lagrangian (1.1)
would be inconsistent.

The general solution of (1.22) is of the form

um=Um + Vm, (1.23)

where Um is a particular solution of the inhomogeneous equation (1.22)
and Vm is the most general solution of the associated homogeneous
system

Vm[4>j,cf>m}^0. (1.24)

Now, the most general Vm is a linear combination of linearly indepen-
dent solutions Va

m, a = 1 , . . . , A, of the system (1.24). The number A
of independent solutions Va

m is the same for all q,p on the constraint
surface because we assume the matrix [4>j,4>m] to be of constant rank
there. We thus find that the general solution of (1.22) is

um « Um + vaVa
m (1.25)

in terms of coefficients va, which are totally arbitrary. We have thus
explicitly separated that part of um that remains arbitrary from the one
that is fixed by the consistency conditions derived from the requirement
that the constraints be preserved in time.

A more detailed analysis of these consistency conditions and of
how (1.19) and (1.25) explicitly arise is given in §1.6.3 and §3.3.2.

1.1.8. Irreducible and Reducible Cases

If the equations 4>j = 0 are not independent, one says that the con-
straints are "reducible" (or "redundant") and that one is in the "re-
ducible case." One is in the irreducible case when all the constraints are
independent.

By dropping the dependent constraints, one does not lose any infor-
mation. In that sense, one can always assume that one is (locally) in the
irreducible case. However, the separation of the constraints into "depen-
dent" and "independent" ones might be awkward to perform, might spoil
manifest invariance under some important symmetry, or might even be
globally impossible because of topological obstructions. For that reason,
it is preferable to construct the general formalism in both the irreducible
and reducible contexts. The reducible case arises, for example, when the
dynamical coordinates include p-form gauge fields (see Sec. 19.2).

It should be added that, conversely, any irreducible set of constraints
can always be replaced by a reducible one by introducing constraints that
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are consequences of the ones already at hand. The formalism should (and
will) be invariant under such replacements.

1.1.9. Total Hamiltonian

We now return to the equations of motion (1.15) and use expres-
sion (1.25) for um to rewrite those equations in the equivalent form,

FK[F,H' + va4>a], (1-26)

where we have defined

H' = H + Um4>m, (1.27)

4>a = Va
m<j>m. (1.28)

In arriving at (1.26) we have used

[F, Um<f>m) = Um[F, 4>m) + [F, Um]4>m « Um[F, 4>m] (1-29)

and similar expressions for [F, Va
mcj)m].

The function

HT = H' + vacf>a, (1.30)

which appears in (1.26), is called the total Hamiltonian. So in terms of
the total Hamiltonian, the equations of motion read simply

F*[F,HT]. (1.31)

These equations contain A arbitrary functions va and are equivalent, by
construction, to the original Lagrangian equations of motion (1.2).

1.1.10. First-Class and Second-Class Functions

We have mentioned before that the distinction between primary
and secondary constraints is of little importance in the final form of the
Hamiltonian scheme. A different classification of constraints—and, more
generally, of functions defined on phase space—plays, however, a central
role. This is the concept of first-class and second-class functions.

A function F(q, p) is said to be first class if its Poisson bracket with
every constraint vanishes weakly,

[F, <f>j} « 0, j = 1 , . . . , J. (1.32)

A function of the canonical variables that is not first class is called second
class. Thus, F is second class if there is at least one constraint such that
its Poisson bracket with F does not vanish weakly.
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An important feature of the first-class property is that it is preserved
under the Poisson bracket operation. In other words the Poisson bracket
of two first-class functions is first class. This is proved as follows: if F
and G are first class, then

[F> fa] = f/fa'; [G, fa] = 9/fa' • (1.33)

Now by the Jacobi identity we have

[\F,G\,fa}=[F,[G,fa\]-[G,[F,fa]]

=[F,g/fa,]-[G,f/fa.)

-{Gj/}fa'-f/gr
j"fa"~O.

As a first application of the first-class concept we note that H'
and (pa, respectively defined by (1.27) and (1.28), are first class. This
follows from (1.22) and (1.24). Moreover, the cj>a are a complete set
of first-class primary constraints, i.e., any first-class primary constraint
is a linear combination of the <fia (with coefficients that are functions
of the g's and the p's and modulo squares of second-class constraints).
This is so because vaVa

m is the most general solution of (1.24) on the
surface 4>j — 0.

Thus, we learn that the total Hamiltonian (1.30) is the sum of
the first-class Hamiltonian H' and the first-class primary constraints
multiplied by arbitrary coefficients. It should be pointed out here that
the splitting of HT into H' and va$a is not unique because Um appearing
in (1-27) can be any solution of the inhomogeneous equation (1.22). This
means that by merely renaming the arbitrary functions va, we can admit
into H' in (1.30) any linear combination of the </>a without changing the
total Hamiltonian.

1.2. FIRST-CLASS CONSTRAINTS
AS GENERATORS OF
GAUGE TRANSFORMATIONS

1.2.1. Transformations That Do Not Change the
Physical State. Gauge Transformations

The presence of arbitrary functions va in the total Hamiltonian tells
us that not all the g's and p's are observable. In other words, although
the physical state is uniquely defined once a set of g's and p's is given,
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the converse is not true—i.e., there is more than one set of values of
the canonical variables representing a given physical state. To see how
this conclusion comes about, we notice that if we give an initial set of
canonical variables at the time *i and thereby completely define the
physical state at that time, we expect the equations of motion to fully
determine the physical state at other times. Thus, by definition, any
ambiguity in the value of the canonical variables at £2 7̂  t\ should be a
physically irrelevant ambiguity.

Now, the coefficients va are arbitrary functions of time, which means
that the value of the canonical variables at £2 will depend on the choice
of the va in the interval t\ < t < £2- Consider, in particular, ti — t\ +St.
The difference between the values of a dynamical variable F at time t2,
corresponding to two different choices va,va of the arbitrary functions
at time t±, takes the form

6F = 8va[F,<l>a] (1.35)

with 6va = (va - va)6t. Therefore, the transformation (1.35) does not
alter the physical state at time t2. We then say, extending a terminology
used in the theory of gauge fields, that the first-class primary constraints
generate gauge transformations. The gauge transformations (1.35) are
independent if and only if the constraints <fia = 0 are irreducible. When
these constraints are reducible, some of the gauge transformations (1.35)
lead to SF w 0.

In general, the transformations (1.35) are not the only ones that do
not change the physical state. In fact, the following two results hold:

1. The Poisson bracket [tpa, 4>a>\ of any two first-class primary constraints
generates a gauge transformation.

Proof. Applying to a generic dynamical variable F four successive
transformations of the form (1.35) with parameters Sva given by (ea, rja,
—ea, — na) we obtain by virtue of the Jacobi identity

SF = e V ' [F, [fa, <M] + 0(£2) + 0(V
2). (1.36)

Since sa and rja are arbitrary, ear)a' is also arbitrary and the result
follows.

2. The Poisson bracket [4>a,H'] of any first-class primary constraint <j>a

with the first-class Hamiltonian H' generates a gauge transformation.

Proof. We compare the values of the dynamical variable F at time t + e
obtained by (?) first making a gauge transformation (1.35) of parameter
Sva = if and then evolving the system with H'; and (ii) doing the
same operations in reverse order. The net difference must be a gauge
transformation. Repeated application of (1.31) and (1.35) yields for the
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change in F (we keep only terms up to erf and neglect ijf)2 and e1.
This suffices for the argument):

6F = + ([[F,<PahH'] - [[F,H'],<f>a])er,a

= +[F,[4>a,H'}}er,a. (1.37)

This shows that [4>a,H'] generates gauge transformations.

The two results obtained above indicate that in general we may
expect at least some secondary first-class constraints to act also as gauge
generators. In fact, we know that since <f>a and H' are first class, the
brackets [<f>a, 4>ai] and [4>a', H'] will also have that property, which means
that they will be linear combinations of the first-class constraints. There
is, however, no reason to expect this linear combination to contain only
primary constraints, and in practice a good many secondary first-class
constraints do show up in this way.

It is not possible to infer from these considerations that every first-
class secondary constraint is a gauge generator ("Dirac conjecture").
One can actually construct counterexamples (see the next subsection
and subsection 1.6.3). Nevertheless, one postulates, in general, that all
first-class constraints generate gauge transformations. This is the point
of view adopted throughout this book. There are a number of good rea-
sons to do this. First, the distinction between primary and secondary
constraints, being based on the Lagrangian, is not a natural one from
the Hamiltonian point of view. On the contrary, the division of the
constraints into first class and second class relies only on the fundamen-
tal structure of the Hamiltonian theory, the Poisson bracket. Second,
the scheme is consistent in that: (?) the transformation generated by a
first-class constraint preserves all the constraints (first class and second
class) and thus maps an allowed state onto an allowed state, and (ii) the
Poisson bracket of two gauge generators remains a gauge generator (the
Poisson bracket of two first-class constraints is again a first-class con-
straint). Third, as we shall see later, the known quantization methods
for constrained systems put all first-class constraints on the same foot-
ing, i.e., treat all of them as gauge generators. It is actually not clear if
one can at all quantize otherwise. Anyway, since the conjecture holds in
all physical applications known so far, the issue is somewhat academic.
(A proof of the Dirac conjecture under simplifying regularity conditions
that are generically fulfilled is given in subsection 3.3.2.)

Finally, a word of caution. The arguments leading to the identifi-
cation of 4>a and [4>a,H'] as generators of transformations that do not
change the physical state at a given time implicitly assume that the
time t (the integration variable in the action) is observable. That is
information brought in from the outside. One may also take the point
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of view that some of the gauge arbitrariness indicates that the time it-
self is not observable. This is done in the so-called generally covariant
theories (Chapter 4). One of the arbitrary functions is then associated
with reparametrizations t —• f(t) of the time variable. Which function
is chosen is also based on additional information. One may ask and
answer the same questions within both interpretations of the formalism
(see Chapter 4 and §16.2.3).

1.2.2. A Counterexample to the Dirac Conjecture

To illustrate the above considerations, it is of interest to analyze
a system that violates the conjecture. This system is described by the
Lagrangian

L=\eyx2. (1.38)

The equations of motion leave y arbitrary but restrict x to being constant
in time, x = £o- The variable y is, therefore, pure gauge. A "physical
state" of the system is completely specified by a single constant x0, the
initial value of x.

The passage to the Hamiltonian is straightforward. One finds

(j>=PyK0 (1.39a)

as a primary constraint. The Hamiltonian reads

H=\e-*pi. (1.39b)

There is one secondary constraint, namely,

py tzO=>pl &0=>Px «0 . (1.39c)

The constraints are both first class. However, only the first one
generates a gauge transformation. The second one generates shifts in x,
but these shifts do not correspond to any arbitrariness in the general
solution of the equations of motion following from (1.38). Therefore,
the property conjectured by Dirac does not hold for the model (1.38).

However, it appears necessary to adopt px as a gauge generator. Oth-
erwise, one runs into difficulties. Indeed, the space of physically distinct
initial data for (1.38) is then one-dimensional. That space has no bracket
structure, and it is not clear how to pass to quantum mechanics. The way
out is to postulate that the secondary first-class constraint px — 0 gen-
erates gauge transformations, even though this is not exhibited explicitly
by the original Lagrangian. If a; is postulated to be a pure gauge variable,
the physical phase space of (1.38) is zero-dimensional and the system has



20 Chapter One

no physical degree of freedom. The quantization is then straightforward:
the physical Hilbert space contains a single state.

Once this point of view is adopted, as it will be throughout this book,
the proof of the "Dirac conjecture" is somewhat of marginal interest.
Its sole purpose is to determine whether the time evolution derived from
the original Lagrangian exhibits explicitly all the transformations that
do not change the physical state of the system at a given time.

1.2.3. The Extended Hamiltonian

We argued above that the really important classification of con-
straints from the Hamiltonian point of view is the one that distinguishes
between first- and second-class constraints. It is therefore useful to in-
troduce a new notation to distinguish these two kinds of constraints. We
denote the first-class constraints by the letter 7- and, subsequently, by
G—(for "generator" or "gauge") and the second-class ones by x- The
set of all constraints (first and second class) will be denoted by {4>j} as
before.

Now, the most general physically permissible motion should allow
for an arbitrary gauge transformation to be performed while the system
is dynamically evolving in time. The motion generated by the total
Hamiltonian HT contains only as many arbitrary gauge functions as
there are first-class primary constraints. We thus have to add to HT

the first-class secondary constraints multiplied by additional arbitrary
functions. The first-class function obtained in this way has the form

HE = H' + ua
la (1.40)

and is called the extended Hamiltonian. (Here the index a runs over a
complete set of first-class constraints.)

For gauge-invariant dynamical variables (variables such that their
Poisson brackets with the gauge generators j a vanish weakly), the evo-
lution predicted by if', HT, and HE is of course the same. For any other
kind of variable we must use HE to account for all the gauge freedom.

It should be emphasized here that strictly speaking, the need for
the extended Hamiltonian does not follow from the Lagrangian theory.
It is rather the total Hamiltonian HT that generates the original La-
grangian equations of motion, since HE contains more arbitrary func-
tions of time than does HT. The introduction of HE is a new feature of
the Hamiltonian scheme, which truly extends the Lagrangian formalism
by making manifest all the gauge freedom. A precise comparison be-
tween the Hamiltonian equations generated by HT and HE will be given
in Chapter 3 below.
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1.2.4. Extended Action Principle

It has been shown in §1.1.4 that the equations of motion derived
from the original action (1.1) are equivalent to the Hamiltonian equa-
tions of motion derived from the action (1.13),

&r = J{Pnqn-H'-um<j>m)dt, (1.41)

in which the sum um<f)m runs over the primary constraints only. The
Hamiltonian equations of motion that follow from (1.41) are those of
the nonextended formalism.

On the other hand, the equations of motion for the extended for-
malism can be derived from the "extended action principle,"

SB = f(Pnqn -H' - u^j) dt, (1.42a)

where the sum contains all the constraints and not just the primary
ones. Indeed, the equations of motion that follow from (1.42a) imply
that wJ = uaAj, where Aj is such that the first-class constraints are
7a = Aj(f)j and where the w°'s are arbitrary. They then reduce to

FK[F,HE], (1.42b)

<t>i « 0 , (1.42c)

with HE given by (1.40).

1.3. SECOND-CLASS CONSTRAINTS:
THE DIRAC BRACKET

1.3.1. Separation of First-Class and
Second-Class Constraints

Let us now turn to second-class constraints, which are present when-
ever the matrix Cjy — [<f>j,<f>j'] does not vanish on the constraint sur-
face. To keep the discussion simple, let us assume that the constraints
are irreducible. Remarks concerning the reducible case will be
gathered in §1.3.4. We also assume that the rank of the matrix Cjy
of the brackets of all the constraints is constant on the constraint
surface.

Theorem 1.3. If detCjji « 0, there exists (at least) one Erst-class
constraint among the <j>j 's.
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Proof. If det Cjy « 0, one can find a nonzero solution AJ of X^Cjji « 0.
The constraint \i<j>j is then easily seen to be first class, which proves
the theorem.

By redefining the constraints as (j>j —> a^ </>ji, with an appropriate
invertible matrix a^ , one can use the constraint X^cj)j as the first con-
straint of an equivalent representation of the constraint surface. In that
representation C\j = —Cj\ « 0.

Upon repeated use of Theorem 1.3, one finally arrives at an equiv-
alent description of the constraint surface in terms of constraints 7a «
0) Xa « 0 , whose Poisson bracket matrix reads weakly

7a Xoc

S ( S 4L)' (L43)

where Cpa is an antisymmetric matrix that is everywhere invertible on
the constraint surface.

In this representation, the constraints are completely split into first
and second classes. No combination of the Xa is n r s t class and the 7a 's
exhaust all first-class constraints, while any second-class constraint must
have a component along Xa- Note that the number of second-class con-
straints must be even, since otherwise the antisymmetric matrix Gpa

would possess zero determinant. This feature will not be maintained,
however, in the presence of fermionic degrees of freedom.

The separation (1.43) is not unique. It is preserved by the redefini-
tions

7a -+ aa
b"tb, Xa -* a</ Xp + aQ

a7a (1-44)

with det aa
b / 0, det aa^ ^ 0. Also, one can add squares of second-

class constraints to 7a without changing the first-class property, j a —>

We will assume that the second-class functions Xa are such that
det Caf3 ̂  0 everywhere on the surface Xa = 0 and not just on Xa — 0,
7 a = 0. This is necessary to properly handle second-class constraints.

1.3.2. Treatment of Second-Class Constraints:
An Example

Second-class constraints cannot be interpreted as gauge generators,
or, more generally, as generators of any transformation of physical sig-
nificance. The reason is that by definition, the contact transformation
generated by a second-class constraint \ does not preserve all the con-
straints cf>j ss 0 and thus maps an allowed state onto a nonallowed state.



Constrained Hamiltonian Systems 23

How, then, should second-class constraints be treated? Consider-
able insight into this question is obtained by examining the simplest
example of a theory with second-class constraints: one with N pairs of
canonical coordinates where the first pair (ql,Pi) is constrained to be
zero. The constraints are then

Xi = q1 « 0, (1.45a)

X2 = Pi « 0. (1.45b)

These constraints are second class because

[xi,Xa] = l?6 0. (l-45c)

It is rather obvious what we have to do in this case: Equations (1.45a)-
(1.45b) tell us that the first degree of freedom is not important, and
consequently we just discard q1 and px and work with a modified Poisson
bracket:

(°*L™°°°*) (146)

The modified bracket (1.46) of each of the two constraints (1-45) with
an arbitrary dynamical variable is identically zero, which means that
when working with [ , ]* we can set the Xa equal to zero before
evaluating the bracket. Thus, if in this example we use the star bracket
instead of the Poisson bracket, we can set the second-class constraints
strongly equal to zero. It is also clear that the equations of motion for
the other (n > 2) degrees of freedom remain unchanged if we replace
the original Poisson bracket by the modified bracket. Moreover, the
bracket (1.46) clearly satisfies all the good properties of a Poisson bracket
(antisymmetry, derivation property [F,GR]* = [F,G]*R + G[F,R]*, and
the Jacobi identity).

1.3.3. Dirac Bracket

The generalization of (1.46) for an arbitrary set of second-class con-
straints was invented by Dirac.

Since the matrix Cap is invertible, it possesses an inverse Ca@,

C^Cfr = 6%. (1.47)

The Dirac bracket is now defined as

[F, G]* = [F, G] - [F, Xa] Ca? [X0, G}. (1.48)
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A constructive way to arrive at (1.48) is discussed in Exercise 1.12. Here,
we shall simply point out that (1-48) has all the good properties it should
have, namely,

[F,G]* = -[G,F]* (1.49a)

[F,GR]* = [F,G}*R + G[F,R]*, (1.49b)

[[F,G\*,R]* + [[R,F]*,G\* + [[G,R]*,F]* = 0, (1.49c)

[Xa,F]*=0 for any F, (1.50)

[F, G}* « [F, G] for G first class and F arbitrary, (1.51a)

[R,[F,GrY^[R,[F,G]}

for F and G first class and R arbitrary. (1.51b)

The proof of all the above equations except the Jacobi identity
(1.49c) is quite simple and straightforward. One merely uses the defini-
tion (1-48) and the fact that a quadratic combination of constraints is
always first class, even if the original constraints were second class. The
proof of (1.49c) is more elaborate and is discussed in the exercises.

It follows from (1.50) that the second-class constraints can be set
equal to zero either before or after evaluating a Dirac bracket. Fur-
thermore, since the extended Hamiltonian (1-40) is first class, we see
from (1.51a) that the HE still generates the correct equations of motion
in terms of the Dirac bracket, i.e.,

F « [F, HE) « [F, HE}*, for any F . (1.52)

In particular, the effect of a gauge transformation can also be evaluated
by means of the Dirac bracket:

[F,-ra]^[F,laY, for any F. (1.53)

The general situation at this stage is then the following. The original
Poisson bracket is discarded after having served its purpose of distin-
guishing between first-class and second-class constraints. All the equa-
tions of the theory are formulated in terms of the Dirac bracket, and
the second-class constraints merely become identities expressing some
canonical variables in terms of others (strong equations). In simple
cases [such as (1.45)], the second-class constraints can actually be used
to eliminate entirely some canonical variables from the formalism. How-
ever, in more complicated situations, the elimination of some degrees
of freedom in favor of others may be very difficult, even though it can
always be achieved in principle.



Constrained Hamiltonian Systems 25

As a final point, we note that the formalism remains unchanged
under the replacement (1-44) of the second-class constraints Xa by Xa =
o-cP Xp + a-a"1 la in the sense that the Dirac brackets of the gauge-
invariant functions among themselves are not modified on the surface
la = 0.

1.3.4. Reducible First-Class and
Second-Class Constraints

The previous considerations can be extended to cover the reducible
case.

We will say that the reducible constraints <j>j = (ia,Xa) a r e sepa-
rated into first-class constraints (7O) and second-class constraints (xa)
when they obey the following conditions:

(i) The reducibility conditions are split into pure first-class and pure
second-class sets as

Za
ala = 0 (a=l,...,A; a=l,...,A); (1 .54a)

Z&
a

Xa = 0 {a = l,...,B; a = l,...,B); (1 .54b)

where the reducibility functions Za
a and Z&

a may depend on the g's
and the p's;

(ii) The brackets [7a,7b] and [7o,Xa] weakly vanish,

[la,lb}^0, [7a,Xa]«0; (1.54c)

(in) The matrix [xa,X/3] is °f maximal rank B — B on the constraint
surface

rank ([Xa, xp]) = B - B. (1.54d)

(We assume all the conditions (1.54b) to be independent, so that there
are exactly B — B independent second-class constraints.) It is easy to
see that one can always reach locally the separation (1.54) by appropri-
ate redefinitions of the constraints. This can be done, for example, by
first choosing an independent subset of constraints <pu = 0 to which one
applies the results of the previous sections. One then redefines the de-
pendent constraint functions <fiv so as to fulfill (1.54) (take, e.g., <pv = 0).

Because of (1.54), the constraints j a = 0 are all first class, and
furthermore there is no combination of the constraints Xa = 0 that
yields a nontrivial first-class constraint.

Once the separation (1.54) has been achieved, one can consistently
set equal to zero all the second-class constraints, as in the irreducible
case. This can be seen by again choosing a maximum subset of B —
B independent second-class constraints, say, XA (A = 1,...,B — B),
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in terms of which all the \a are expressible, i.e., Xa = maA XA f° r

appropriate ma
A. The matrix C^r of the brackets of this subset is

invertible by assumption; otherwise, (1.54d) would not be of rank B — B.
One can thus use the Dirac bracket (1.48) associated with XA- Since
XA = 0 implies x<* = 0, this procedure consistently enforces all the
second-class constraints. (By "consistently," it is meant that [A, F}*
vanishes as a consequence of Xa = 0 for all functions F that are zero on
the surface Xa = 0.)

One can directly write down the appropriate Dirac brackets without
having to explicitly display a complete, independent subset of second-
class constraints. Indeed, it follows from (1.48) and our above discussion
that [A, B}* takes the form

[A, B}* = [A, B) - [A, xa) Da? \X0, B], (1.55a)

where the matrix Da@ = ~D^a obeys on Xa = 0

D^[xi},Xp] = Sa
p + Z&

a\a
p (1.55b)

for some Xa
p.

Even though Eq. (1.55b) leaves an ambiguity in Da@, given by

D<*0 _, Da0 + z_[a n0]a + ^ ^ (1.55c)

the expression (1.55a) is well denned on the surface Xa — 0. This is
because Z&

a Xa — 0, so that the ambiguous terms in (1.55c) do not
contribute to (1.55a) on Xa = 0. Hence, Eqs. (1.55a) and (1.55b) com-
pletely characterize the Dirac bracket.

Finally, we mention that it is essential here that the reducibility con-
ditions (1.54b) on the second-class constraints do not involve the first-class
ones. If Z&

a Xa — 0 were to be replaced by Zaa Xa + daa la — 0, then
setting Xa — 0 would also amount to setting some first-class constraints
equal to zero. This would lead to inconsistencies.

As an example, consider the system of constraints

The constraint 7 is first class. The constraint functions x i ; X2> and xz
are all second class, since [xi,X2] = 1, [xuXs] = 1> a n d [X2,X3] = ~ 1 -
One may thus superficially think that it is possible to consistently en-
force xi = X2 = X3 = 0 by defining an appropriate bracket. How-
ever, it is easy to see that pi vanishes on xi — X2 — Xa = 0 > a n <i
yet there is no way to choose Da^ in the Dirac bracket (1.55a) so that
k2,P2}* = [q2,P2] - [q2,Xa]DaP [xp,P2] = l vanishes. The problem
arises because the constraints have been incompletely separated: the
reducibility condition on the second-class constraints xi , X2> and X3—
namely, Xi + X2 ~ X3 = ~~7—involves also the first-class constraint 7.


