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Preface

To this day, the theorem of Pythagoras remains 
the most important single theorem in the whole 
of mathematics.

—Jacob Bronowski, The Ascent of Man, p. 160

Though its roots are in geometry, the theorem universally attributed to
Pythagoras has found its way into nearly every branch of science, pure or ap-
plied. Well over four hundred proofs of it are known, and their number is still
growing; the list includes an original proof by a future American president, an-
other by twelve-year-old Albert Einstein, and still another by a young blind
girl. Some of these proofs are breathtaking in their simplicity, while others are
incredibly complex. The theorem itself is known by various names: the theo-
rem of Pythagoras, the hypotenuse theorem, or simply Euclid I 47, so called
because it is listed as Proposition 47 in Book I of Euclid’s Elements. Its char-
acteristic figure (fig. P1), known in some traditions as “the windmill” and in
others as “the bride’s chair,” has been proposed as a cosmic identity card with
which we might introduce ourselves to extraterrestrial beings, if and when we
find them. The theorem plays a central role in numerous applications; occa-
sionally it has been overused, even misused. And perhaps uniquely for a disci-
pline not known for its popular appeal, it has found its way into our daily cul-
ture, appearing on postage stamps and on T-shirts, in works of art and
literature, even in the lyrics of a famous musical. By any measure, it is the
most famous theorem in all of mathematics, the one statement that every stu-
dent, no matter how math-phobic, can recall from his or her high school days.

Today we think of the Pythagorean theorem as an algebraic relation,
a2 + b2 = c2, from which the length of one side of a right triangle can be found,
given the lengths of the other two sides. But that is not how Pythagoras viewed
it; to him it was a geometric statement about areas. It was only with the rise of
modern algebra, about 1600 ce, that the theorem assumed its familiar alge-
braic form. It is important to bear this in mind if we are to trace the evolution
of the theorem over the 2,500 years since Pythagoras supposedly first proved
it and made it immortal. And he was not even the first to discover it: the theo-
rem had been known to the Babylonians, and possibly to the Chinese, at least
a thousand years before him.

Many writers have commented on the beauty of the Pythagorean theorem.
Charles Lutwidge Dodgson, better known by his literary name Lewis Carroll,
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wrote in 1895: “It is as dazzlingly beautiful now as it was in the day when
Pythagoras first discovered it.”1 He was certainly qualified to say this, being a
talented mathematician besides gaining fame as the author of Alice’s Adven-
tures in Wonderland and Through the Looking-Glass. But who is to say what
is beautiful? In 2004, the journal Physics World asked readers to nominate the
twenty most beautiful equations in science. The top winner was Euler’s for-
mula eiπ + 1 = 0, followed in order by Maxwell’s four electromagnetic field
equations, Newton’s second law of motion F = ma, and a2 + b2 = c2, the
Pythagorean theorem; it won only fourth place.2

Note that the contest was for the most beautiful equations, not the laws or
theorems they represent. Beauty, of course, is a subjective attribute, but there
is a fairly broad consensus among mathematicians as to what qualifies a theo-
rem, or the proof thereof, to be called beautiful. A paramount criterion is sym-
metry. Consider, for example, the three altitudes of a triangle: they always
meet at one point (as do the medians and the angle bisectors). This statement
has a certain elegance to it, with its sweeping symmetry: no side or vertex
takes precedence over any other; there is a complete democracy among the
constituents. Or consider the theorem: If through a point P inside a circle a
chord AB is drawn, the product PA × PB is constant—it has the same value for
all chords through P (fig. P2). Again we have perfect democracy: every chord
has the same status in relation to P as any other.

xii ❖ Preface

Figure P1. The Pythagorean theorem: Euclid’s view

In this sense, the Pythagorean theorem is decidedly undemocratic. In the
first place, it applies only to a very special case, that of a right triangle; and
even then it singles out one side, the hypotenuse, as playing a distinctly differ-
ent role from the other two sides. The word hypotenuse comes from the Greek
words hypo, meaning “under,” “beneath,” or “down,” and teinen, “to stretch”;
this makes sense if we view the triangle with the hypotenuse at the bottom, the
way it appears in Euclid’s Elements (see again fig. P1). The Chinese call it
hsien, a string stretched between two points (as in a lute). The Hebrew word for
hypotenuse is ’yeter, which may derive either from mei’tar, a string, or from
yo’ter, “more than” (the length of each leg). But even if we look at the triangle
through modern eyes, with one leg placed horizontally and the other vertically
(fig. P3), the square on the hypotenuse leaps out of the figure at an odd angle. A
beautiful theorem? Perhaps, but not exactly a candidate for Miss America.

If not elegance, what then is it that gives the Pythagorean theorem its uni-
versal appeal? Part of it, no doubt, has to do with the great number of proofs
that have been proposed over the centuries. Elisha Scott Loomis (1852–1940),
an eccentric mathematics teacher from Ohio, spent a lifetime collecting all
known proofs—371 of them—and writing them up in The Pythagorean
Proposition (1927).3 Loomis claimed that in the Middle Ages, it was required
that a student taking his Master’s degree in mathematics offer a new and origi-
nal proof of the Pythagorean theorem; this, he claimed, had spurred students
and teachers to come up with ever new and innovative proofs. Some of these
proofs are based on the similarity of triangles, others on dissection, still others
on algebraic formulas, and a few make use of vectors. There are even “proofs”
(“demonstrations” would be a better word) based on physical devices; in a sci-
ence museum in Tel Aviv, Israel, I saw a demonstration in which colored liq-
uid flowed freely between the squares built on the hypotenuse and on the two

Preface ❖ xiii
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P

Figure P2. PA × PB = PC × PD
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sides of a rotating, plexiglass-made right triangle, showing that the volume of
liquid in the first square equals the combined volume in the other two.

But there is another reason for the universal appeal of the Pythagorean the-
orem, for it is arguably the most frequently used theorem in all of mathemat-
ics. Open any handbook of mathematical formulas; you will find the expres-
sion x2 + y2 in nearly every chapter, often tucked inside a larger expression;
and it is almost always x2 + y2, not x3 + y3 or any other power of the variables.
Directly or indirectly, this expression can be traced to the Pythagorean theo-
rem. Take, for example, trigonometry, a subject notorious for its seemingly
endless supply of formulas. Whether it is sin2 x + cos2 x = 1, or 1 + tan2 x =
sec2 x, or 1 + cot2 x = csc2 x, these identities are the ghosts of the Pythagorean
theorem—indeed, they are called the Pythagorean identities. The same is true
in almost every branch of mathematics, from number theory and algebra to
calculus and probability: in all of them, the Pythagorean theorem reigns
supreme.

❖ ❖ ❖

In this book I have traced the evolution of the Pythagorean theorem and its
impact on mathematics and on our culture in general, starting with the Baby-

xiv ❖ Preface

Figure P3. The Pythagorean theorem: a modern view

lonians nearly four thousand years ago and continuing up to our own time. I
have not attempted to give a comprehensive account of the hundreds of exist-
ing proofs—a nearly impossible task, and a fruitless one too, as many of these
proofs are but slight variations of one another. Even Loomis’s monumental
compilation remains incomplete; many new proofs have been proposed since
the second edition of his book appeared in 1940 (the year of his death), and
new ones continue to be offered even at the time of this writing.4

As with my previous books, this one is aimed at the reader with an interest
in the history of mathematics. Mostly, a good knowledge of high school alge-
bra and geometry, and an occasional smattering of calculus, will be sufficient.
Several subjects that require more detailed mathematical treatment have been
relegated to the appendixes. Because I am making occasional reference to my
earlier books, I will refer to them simply by their titles: To Infinity and Be-
yond: A Cultural History of the Infinite (1991), e: the Story of a Number
(1994), and Trigonometric Delights (1998; all published by Princeton Univer-
sity Press, Princeton, N.J.). Two other frequently mentioned sources are
Howard Eves, An Introduction to the History of Mathematics (Fort Worth,
Texas: Saunders, 1992), and David Eugene Smith, History of Mathematics,
vol. 1: General Survey of the History of Elementary Mathematics; vol. 2: Spe-
cial Topics of Elementary Mathematics (New York, 1923–1925; rpt. New
York: Dover, 1958). These will be referred to as Eves and Smith, respectively.

Many thanks go to my dear wife Dalia for encouraging me to see this work
through and for her meticulous proofreading of the manuscript; to Robert
Langer, for his critical review of the text and his very useful suggestions; to
Vickie Kearn, my editor at Princeton University Press, for her unwavering sup-
port and encouragement to guide this book from its inception to its completion;
to Debbie Tegarden, Carmina Alvarez, and Dimitri Karetnikov, and to all at the
Press for their good care of the manuscript during its production phase; to Alice
Calaprice, my trusted copy editor for the past fifteen years; to Joseph L. Teeters
for providing me with some hard-to-find sources of useful information; to
Howard Zvi Weiss for his help in translating several verses of poetry from the
German; to Barbara and Jeff Niemic and to Deborah Ward for their special ef-
fort to locate and photograph the plaque in Dublin, Ireland, commemorating Sir
William Rowan Hamilton’s discovery of the law of quaternion multiplication;
and to the staff of the Skokie Public Library in Illinois for their efforts to locate
a number of obscure sources. Their help is greatly appreciated.

July 2006

Notes and Sources

1. A New Theory of Parallels (London, 1895).
2. New York Times, Ideas and Trends, October 24, 2004, p. 12.

Preface ❖ xv
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3. (Washington, D.C.: National Council of Teachers of Mathematics, 1968.) More
on this work will be found in chapter 8.

4. Several Web sites are devoted to the Pythagorean theorem and give an account of
recent proofs. The Bibliography gives a partial listing of these sites.
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PROLOGUE

Cambridge, England, 1993

Remember Pythagoras?
—New York Times, June 24, 1993

Mathematical news rarely makes the headlines, let alone front-page cover-
age, but June 24, 1993, was an exception. On that day, the New York Times ran
a front-page story headed, “At Last, Shout of ‘Eureka!’ in Age-Old Math Mys-
tery.” Across the Atlantic the day before, a forty-year-old English mathemati-
cian announced that he had solved math’s most celebrated problem, a simple-
looking proposition that had kept mathematicians busy for the past 350 years.

The mathematician at the center of the excitement was Dr. Andrew Wiles, a
native of Cambridge, England, and a professor at Princeton University in New
Jersey. He made the sensational announcement at the end of a three-lecture se-
ries entitled “Modular Forms, Elliptic Curves, and Galois Representations.”
The subject was not a household term even among mathematicians, let alone
laypeople. But there were rumors that the speaker would pull a surprise, and
the lecture hall was packed with listeners. As the talk drew to its conclusion,
the tension in the audience was palpable. Then, almost casually, Dr. Wiles
ended his lecture with these words: “And by the way, this means that Fermat’s
Last Theorem was true. Q.E.D.”1 There was a rush to the nearest computer ter-
minals, and those with access to e-mail services—still a novelty in 1993—
flashed the news around the globe.

The circumstances behind Wiles’s announcement had all the hallmarks of a
human drama. Pierre de Fermat (1601–1665), a French lawyer by profession
who practiced mathematics as a pastime, made a conjecture in 1637 about the
possible solutions of the simple-looking equation xn + yn = zn, where all the
variables, including the exponent n, stand for positive integers. When n = 1,
the equation is trivial: the sum of any two integers is obviously a third integer,
so we have x1 + y1 = z1. The case n = 2 is of greater interest. There are many
triples of integers (x, y, z) for which x2 + y2 = z2, in fact infinitely many; two
examples are (3, 4, 5) and (5, 12, 13). Such triples, of course, immediately re-
mind us of the Pythagorean theorem: they represent right triangles in which all
three sides have integer lengths. So it was only natural that mathematicians
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tried to go to the next step—find integer solutions of the equations x3 + y3 = z3,
x4 + y4 = z4, and so on. None were ever found.

Fermat thought he had a proof that no integer solutions of the equation
xn + yn = zn exist for any value of n greater than 2. In the margins of his copy
of the works of the third-century ce mathematician Diophantus of Alexandria,
Fermat scribbled a few words that would become immortal:

To divide a cube into two cubes, a fourth power, or in general any power
whatever into two powers of the same denomination above the second is
impossible. I have found an admirable proof of this, but the margin is
too narrow to contain it.2

For the next 350 years, numerous mathematicians, laypeople, and cranks tried
to reconstruct Fermat’s “admirable proof.” All of them failed. Two huge mon-
etary awards, one by the French Academy of Sciences and another by its Ger-
man counterpart, were offered to the first person to come up with a valid
proof; both remained unclaimed.3

Not that the quest for a proof was entirely futile. The great Swiss mathe-
matician Leonhard Euler (1707–1783) in 1753 proved Fermat’s claim for the
special case n = 3. Other special cases followed, and with the advent of elec-
tronic computers, all cases for n under 100,000 have been proven to be cor-
rect. But that is not the same as proving it for all values of n. Fermat’s Last
Theorem (FLT), as it became known, remained unresolved.4

When Wiles jumped into the fray, he already had something to start from:
in 1954, a Japanese mathematician, Yutaka Taniyama (1927–1958), made a
conjecture about a class of objects called elliptic curves. Subsequent work,
particularly by Dr. Gerhard Frey of the University of the Saarland in Germany
and Dr. Kenneth Ribet of the University of California at Berkeley, showed a
clear connection between Taniyama’s conjecture and Fermat’s Last Theorem:
if the former is true, then so is the latter. Wiles, after working in his attic in
near seclusion for seven years, showed that the Taniyama conjecture was in-
deed true; and almost as an afterthought, so was FLT.

But not all was well. After submitting a 200-page-long proof to the scrutiny
of mathematicians able and willing to sift through it, a tiny hole in the logic
was found. Undeterred, Wiles went back into seclusion, and after another year
of hard work, with the help of Cambridge lecturer Richard Taylor, he managed
to fix the hole. FLT is now considered proven, finally worthy of being called a
theorem.5

But why was this one problem singled out as the most famous unsolved
problem in mathematics? For one, there was its deceiving simplicity: any high
school student would be able to understand it. And the mystery of Fermat’s
enigmatic note only added spice to the story (most mathematicians are con-
vinced he did not have a valid proof; the tools needed to crack the problem
simply were not available in his time). But beyond these reasons, FLT leaves
us with a sense that history was closing a circle. For the very same type of

2 ❖ Prologue

equation that Fermat was investigating had already been studied by the Baby-
lonians nearly four thousand years earlier. It is here that our story really be-
gins.

Notes and Sources

1. This is a free quotation based on the New York Times article of June 24, 1993, p.
D22. Wiles’s exact words were not reported.

2. Fermat’s famous scribble, originally written in Latin, has appeared in numerous
English versions. The one used here is from Eves, p. 355.

3. The French award, a gold medal and 300 francs, was offered twice, in 1815 and
again in 1860. Its German counterpart was announced in 1908 and amounted to
100,000 marks—a huge sum at the time. This sum has been reduced in value by the
1929 German inflation to a paltry 7,500 marks (about $4,400 in today’s value). The
two prizes brought in thousands of claims, many by amateurs and cranks with little or
no knowledge of mathematics.

4. The name is a misnomer in two respects: until Wiles’s proof, the “theorem” was
really a conjecture; and it was not Fermat’s last, but rather the last of his many conjec-
tures that mathematicians were unable to resolve.

5. Needless to say, the description of FLT given here is only the briefest of sketches.
For a more detailed account, see Simon Singh’s excellent book, Fermat’s Enigma: The
Epic Quest to Solve the World’s Greatest Mathematical Problem (New York: Walker,
1997).

Cambridge, England, 1993 ❖ 3
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1

Mesopotamia, 1800 BCE

We would more properly have to call
“Babylonian” many things which the Greek
tradition had brought down to us as
“Pythagorean.”

—Otto Neugebauer, quoted in Bartel van der Waerden, 
Science Awakening, p. 77

The vast region stretching from the Euphrates and Tigris Rivers in the east to
the mountains of Lebanon in the west is known as the Fertile Crescent. It was
here, in modern Iraq, that one of the great civilizations of antiquity rose to
prominence four thousand years ago: Mesopotamia. Hundreds of thousands of
clay tablets, found over the past two centuries, attest to a people who flour-
ished in commerce and architecture, kept accurate records of astronomical
events, excelled in the arts and literature, and, under the rule of Hammurabi,
created the first legal code in history. Only a small fraction of this vast archeo-
logical treasure trove has been studied by scholars; the great majority of tablets
lie in the basements of museums around the world, awaiting their turn to be
deciphered and give us a glimpse into the daily life of ancient Babylon.

Among the tablets that have received special scrutiny is one with the unas-
suming designation “YBC 7289,” meaning that it is tablet number 7289 in the
Babylonian Collection of Yale University (fig. 1.1). The tablet dates from the
Old Babylonian period of the Hammurabi dynasty, roughly 1800–1600 bce. It
shows a tilted square and its two diagonals, with some marks engraved along
one side and under the horizontal diagonal. The marks are in cuneiform
(wedge-shaped) characters, carved with a stylus into a piece of soft clay which
was then dried in the sun or baked in an oven. They turn out to be numbers,
written in the peculiar Babylonian numeration system that used the base 60.
In this sexagesimal system, numbers up to 59 were written in essentially our
modern base-ten numeration system, but without a zero. Units were written as
vertical Y-shaped notches, while tens were marked with similar notches written
horizontally. Let us denote these symbols by  and —, respectively. The number
23, for example, would be written as — — . When a number exceeded 59,

Mesopotamia, 1800 BCE ❖ 5

Figure 1.1. YBC 7289
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it was arranged in groups of 60 in much the same way as we bunch numbers
into groups of ten in our base-ten system. Thus, 2,413 in the sexagesimal system
is 40 × 60 + 13, which was written as — — — — — (often a group of
several identical symbols was stacked, evidently to save space).

Because the Babylonians did not have a symbol for the “empty slot”—our
modern zero—there is often an ambiguity as to how the numbers should be
grouped. In the example just given, the numerals — — — — — could
also stand for 40 × 602 + 13 × 60 = 144,780; or they could mean 40/60 +
13 = 13.666, or any other combination of powers of 60 with the coefficients
40 and 13. Moreover, had the scribe made the space between — — — — and
— too small, the number might have erroneously been read as — — —
— —, that is, 50 × 60 + 3 = 3,003. In such cases the correct interpretation
must be deduced from the context, presenting an additional challenge to schol-
ars trying to decipher these ancient documents.

Luckily, in the case of YBC 7289 the task was relatively easy. The number
along the upper-left side is easily recognized as 30. The one immediately un-
der the horizontal diagonal is 1;24,51,10 (we are using here the modern nota-
tion for writing Babylonian numbers, in which commas separate the sexagesi-
mal “digits,” and a semicolon separates the integral part of a number from its
fractional part). Writing this number in our base-10 system, we get
1 + 24/60 + 51/602 + 10/603 = 1.414213, which is none other than the decimal

value of , accurate to the nearest one hundred thousandth! And when this
number is multiplied by 30, we get 42.426389, which is the sexagesimal num-
ber 42;25,35—the number on the second line below the diagonal. The conclu-
sion is inescapable: the Babylonians knew the relation between the length of 

the diagonal of a square and its side, . But this in turn means that they
were familiar with the Pythagorean theorem—or at the very least, with its spe-
cial case for the diagonal of a square (d2 = a2 + a2 = 2a2)—more than a thou-
sand years before the great sage for whom it was named.

Two things about this tablet are especially noteworthy. First, it proves that
the Babylonians knew how to compute the square root of a number to a re-
markable accuracy—in fact, an accuracy equal to that of a modern eight-digit
calculator.1 But even more remarkable is the probable purpose of this particu-
lar document: by all likelihood, it was intended as an example of how to find
the diagonal of any square: simply multiply the length of the side by
1;24,51,10. Most people, when given this task, would follow the “obvious”
but more tedious route: start with 30, square it, double the result, and take the

square root: , rounded to four places.
But suppose you had to do this over and over for squares of different sizes;
you would have to repeat the process each time with a new number, a rather
tedious task. The anonymous scribe who carved these numbers into a clay
tablet nearly four thousand years ago showed us a simpler way: just multiply

the side of the square by (fig. 1.2). Some simplification!2

d = + = =30 30 1800 42 42642 2 .

d a= 2

2

6 ❖ Chapter 1

          

But there remains one unanswered question: why did the scribe choose a
side of 30 for his example? There are two possible explanations: either this
tablet referred to some particular situation, perhaps a square field of side 30 for
which it was required to find the length of the diagonal; or—and this is more
plausible—he chose 30 because it is one-half of 60 and therefore lends itself to
easy multiplication. In our base-ten system, multiplying a number by 5 can
be quickly done by halving the number and moving the decimal point one
place to the right. For example, 2.86 × 5 = (2.86/2) × 10 = 1.43 × 10 = 14.3 
(more generally, ). Similarly, in the sexagesimal system multi-
plying a number by 30 can be done by halving the number and moving the
“sexagesimal point” one place to the right .

Let us see how this works in the case of YBC 7289. We recall that
1;24,51,10 is short for 1 + 24/60 + 51/602 + 10/603. Dividing this by 2, we get

which we must rewrite so that each coefficient of a power 

of 60 is an integer. To do so, we replace the 1/2 in the first and third terms by

by 30/60, getting Finally,

moving the sexagesimal point one place to the right gives us 42;25,35, the
length of the diagonal. It thus seems that our scribe chose 30 simply for prag-
matic reasons: it made his calculations that much easier.

❖ ❖ ❖

If YBC 7289 is a remarkable example of the Babylonians’ mastery of ele-
mentary geometry, another clay tablet from the same period goes even further:
it shows that they were familiar with algebraic procedures as well.2 Known as
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Figure 1.2. A square and its diagonal
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Plimpton 322 (so named because it is number 322 in the G. A. Plimpton Col-
lection at Columbia University; see fig. 1.3), it is a table of four columns,
which might at first glance appear to be a record of some commercial transac-
tion. A close scrutiny, however, has disclosed something entirely different: the
tablet is a list of Pythagorean triples, positive integers (a, b, c) such that
a2 + b2 = c2. Examples of such triples are (3, 4, 5), (5, 12, 13), and (8, 15, 17).
Because of the Pythagorean theorem,3 every such triple represents a right tri-
angle with sides of integer length.

Unfortunately, the left edge of the tablet is partially missing, but traces of
modern glue found on the edges prove that the missing part broke off after
the tablet was discovered, raising the hope that one day it may show up on
the antiquities market. Thanks to meticulous scholarly research, the missing
part has been partially reconstructed, and we can now read the tablet with rel-
ative ease. Table 1.1 reproduces the text in modern notation. There are four
columns, of which the rightmost, headed by the words “its name” in the orig-
inal text, merely gives the sequential number of the lines from 1 to 15. The
second and third columns (counting from right to left) are headed “solving
number of the diagonal” and “solving number of the width,” respectively;
that is, they give the length of the diagonal and of the short side of a rectan-
gle, or equivalently, the length of the hypotenuse and the short leg of a right
triangle. We will label these columns with the letters c and b, respectively. As

8 ❖ Chapter 1

Figure 1.3. Plimpton 322

Mesopotamia, 1800 BCE ❖ 9

an example, the first line shows the entries b = 1,59 and c = 2,49, which rep-
resent the numbers 1 × 60 + 59 = 119 and 2 × 60 + 49 = 169. A quick calcu-

lation gives us the other side as hence
(119, 120, 169) is a Pythagorean triple. Again, in the third line we read
b = 1,16,41 = 1 × 602 + 16 × 60 + 41 = 4601, and c = 1,50,49 = 1 × 602 + 50 ×
60 + 49 = 6649; therefore, giv-
ing us the triple (4601, 4800, 6649).

The table contains some obvious errors. In line 9 we find b = 9,1 =
9 × 60 + 1 = 541 and c = 12, 49 = 12 × 60 + 49 = 769, and these do not form
a Pythagorean triple (the third number a not being an integer). But if we
replace the 9,1 by 8,1 = 481, we do indeed get an integer value for a:

resulting in the triple (481, 600, 769).
It seems that this error was simply a “typo”; the scribe may have been momen-
tarily distracted and carved nine marks into the soft clay instead of eight; and
once the tablet dried in the sun, his oversight became part of recorded history.

a = − = =769 481 360 000 6002 2 ,

a = − = =6649 4601 23 040 000 48002 2 ,

a = − = =169 119 14400 1202 2 ;

Table 1.1
Plimpton 322

(c/a)2 b c

[1,59,0,]15 1,59 2,49 1

[1,56,56,]58,14,50,6,15 56,7 3,12,1 2

[1,55,7,]41,15,33,45 1,16,41 1,50,49 3

[1,]5[3,1]0,29,32,52,16 3,31,49 5,9,1 4

[1,]48,54,1,40 1,5 1,37 5

[1,]47,6,41,40 5,19 8,1 6

[1,]43,11,56,28,26,40 38,11 59,1 7

[1,]41,33,59,3,45 13,19 20,49 8

[1,]38,33,36,36 9,1 12,49 9

1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10

1,33,45 45 1,15 11

1,29,21,54,2,15 27,59 48,49 12

[1,]27,0,3,45 7,12,1 4,49 13

1,25,48,51,35,6,40 29,31 53,49 14

[1,]23,13,46,40 56 53 15

Note: The numbers in brackets are reconstructed.

125-80746_Maor_PythagoreanTheorem_3P.indd   8 7/31/19   8:42 PM



Plimpton 322 (so named because it is number 322 in the G. A. Plimpton Col-
lection at Columbia University; see fig. 1.3), it is a table of four columns,
which might at first glance appear to be a record of some commercial transac-
tion. A close scrutiny, however, has disclosed something entirely different: the
tablet is a list of Pythagorean triples, positive integers (a, b, c) such that
a2 + b2 = c2. Examples of such triples are (3, 4, 5), (5, 12, 13), and (8, 15, 17).
Because of the Pythagorean theorem,3 every such triple represents a right tri-
angle with sides of integer length.

Unfortunately, the left edge of the tablet is partially missing, but traces of
modern glue found on the edges prove that the missing part broke off after
the tablet was discovered, raising the hope that one day it may show up on
the antiquities market. Thanks to meticulous scholarly research, the missing
part has been partially reconstructed, and we can now read the tablet with rel-
ative ease. Table 1.1 reproduces the text in modern notation. There are four
columns, of which the rightmost, headed by the words “its name” in the orig-
inal text, merely gives the sequential number of the lines from 1 to 15. The
second and third columns (counting from right to left) are headed “solving
number of the diagonal” and “solving number of the width,” respectively;
that is, they give the length of the diagonal and of the short side of a rectan-
gle, or equivalently, the length of the hypotenuse and the short leg of a right
triangle. We will label these columns with the letters c and b, respectively. As

8 ❖ Chapter 1

Figure 1.3. Plimpton 322

Mesopotamia, 1800 BCE ❖ 9

an example, the first line shows the entries b = 1,59 and c = 2,49, which rep-
resent the numbers 1 × 60 + 59 = 119 and 2 × 60 + 49 = 169. A quick calcu-

lation gives us the other side as hence
(119, 120, 169) is a Pythagorean triple. Again, in the third line we read
b = 1,16,41 = 1 × 602 + 16 × 60 + 41 = 4601, and c = 1,50,49 = 1 × 602 + 50 ×
60 + 49 = 6649; therefore, giv-
ing us the triple (4601, 4800, 6649).

The table contains some obvious errors. In line 9 we find b = 9,1 =
9 × 60 + 1 = 541 and c = 12, 49 = 12 × 60 + 49 = 769, and these do not form
a Pythagorean triple (the third number a not being an integer). But if we
replace the 9,1 by 8,1 = 481, we do indeed get an integer value for a:

resulting in the triple (481, 600, 769).
It seems that this error was simply a “typo”; the scribe may have been momen-
tarily distracted and carved nine marks into the soft clay instead of eight; and
once the tablet dried in the sun, his oversight became part of recorded history.

a = − = =769 481 360 000 6002 2 ,

a = − = =6649 4601 23 040 000 48002 2 ,

a = − = =169 119 14400 1202 2 ;

Table 1.1
Plimpton 322

(c/a)2 b c

[1,59,0,]15 1,59 2,49 1

[1,56,56,]58,14,50,6,15 56,7 3,12,1 2

[1,55,7,]41,15,33,45 1,16,41 1,50,49 3

[1,]5[3,1]0,29,32,52,16 3,31,49 5,9,1 4

[1,]48,54,1,40 1,5 1,37 5

[1,]47,6,41,40 5,19 8,1 6

[1,]43,11,56,28,26,40 38,11 59,1 7

[1,]41,33,59,3,45 13,19 20,49 8

[1,]38,33,36,36 9,1 12,49 9

1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10

1,33,45 45 1,15 11

1,29,21,54,2,15 27,59 48,49 12

[1,]27,0,3,45 7,12,1 4,49 13

1,25,48,51,35,6,40 29,31 53,49 14

[1,]23,13,46,40 56 53 15

Note: The numbers in brackets are reconstructed.

125-80746_Maor_PythagoreanTheorem_3P.indd   9 7/31/19   8:42 PM



Again, in line 13 we have b = 7,12,1 = 7 × 602 + 12 × 60 + 1 = 25 921 and c =
4,49 = 4 × 60 + 49 = 289, and these do not form a Pythagorean triple; but we
may notice that 25 921 is the square of 161, and the numbers 161 and 289 do
form the triple (161, 240, 289). It seems the scribe simply forgot to take the
square root of 25 921. And in row 15 we find c = 53, whereas the correct entry
should be twice that number, that is, 106 = 1,46, producing the triple (56, 90,
106).4 These errors leave one with a sense that human nature has not changed
over the past four thousand years; our anonymous scribe was no more guilty
of negligence than a student begging his or her professor to ignore “just a little
stupid mistake” on the exam.5

The leftmost column is the most intriguing of all. Its heading again men-
tions the word “diagonal,” but the exact meaning of the remaining text is not
entirely clear. However, when one examines its entries a startling fact comes
to light: this column gives the square of the ratio c/a, that is, the value of csc2 A,
where A is the angle opposite side a and csc is the cosecant function studied in
trigonometry (fig. 1.4). Let us verify this for line 1. We have b = 1,59 = 119
and c = 2,49 = 169, from which we find a = 120. Hence (c/a)2 = (169/120)2 =
1.983, rounded to three places. And this indeed is the corresponding entry in
column 4: 1;59,0,15 = 1 + 59/60 + 0/602 + 15/603 = 1.983. (We should note
again that the Babylonians did not use a symbol for the “empty slot” and
therefore a number could be interpreted in many different ways; the correct in-
terpretation must be deduced from the context. In the example just cited, we
assume that the leading 1 stands for units rather than sixties.) The reader may
check other entries in this column and confirm that they are equal to (c/a)2.

Several questions immediately arise: Is the order of entries in the table ran-
dom, or does it follow some hidden pattern? How did the Babylonians find

10 ❖ Chapter 1
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Figure 1.4. The cosecant of an angle: csc A = c/a

those particular numbers that form Pythagorean triples? And why were they
interested in these numbers—and in particular, in the ratio (c/a)2—in the first
place? The first question is relatively easy to answer: if we compare the values
of (c/a)2 line by line, we discover that they decrease steadily from 1.983 to
1.387, so it seems likely that the order of entries was determined by this se-
quence. Moreover, if we compute the square root of each entry in column 4—
that is, the ratio c/a = csc A—and then find the corresponding angle A, we dis-
cover that A increases steadily from just above 45° to 58°. It therefore seems
that the author of this text was not only interested in finding Pythagorean
triples, but also in determining the ratio c/a of the corresponding right trian-
gles. This hypothesis may one day be confirmed if the missing part of the tablet
shows up, as it may well contain the missing columns for a and c/a. If so,
Plimpton 322 will go down as history’s first trigonometric table.

As to how the Babylonian mathematicians found these triples—including
such enormously large ones as (4601, 4800, 6649)—there is only one plausi-
ble explanation: they must have known an algorithm which, 1,500 years later,
would be formalized in Euclid’s Elements: Let u and v be any two positive in-
tegers, with u > v; then the three numbers

a = 2uv, b = u2 − v2, c = u2 + v2 (1)

form a Pythagorean triple. (If in addition we require that u and v are of oppo-
site parity—one even and the other odd—and that they do not have any com-
mon factor other than 1, then (a, b, c) is a primitive Pythagorean triple, that is,
a, b, and c have no common factor other than 1.) It is easy to confirm that the
numbers a, b, and c as given by equations (1) satisfy the equation a2 + b2 = c2:

a2 + b2 = (2uv)2 + (u2 − v2)2

= 4u2v2 + u4 − 2u2v2 + v4

= u4 + 2u2v2 + v4

= (u2 + v2)2 = c2.

The converse of this statement—that every Pythagorean triple can be found in
this way—is a bit harder to prove (see Appendix B).

Plimpton 322 thus shows that the Babylonians were not only familiar with
the Pythagorean theorem, but that they knew the rudiments of number theory
and had the computational skills to put the theory into practice—quite remark-
able for a civilization that lived a thousand years before the Greeks produced
their first great mathematician.

Notes and Sources

1. For a discussion of how the Babylonians approximated the value of , see Ap-
pendix A.

2. The text that follows is adapted from Trigonometric Delights and is based on

2

Mesopotamia, 1800 BCE ❖ 11

125-80746_Maor_PythagoreanTheorem_3P.indd   10 7/31/19   8:42 PM



Again, in line 13 we have b = 7,12,1 = 7 × 602 + 12 × 60 + 1 = 25 921 and c =
4,49 = 4 × 60 + 49 = 289, and these do not form a Pythagorean triple; but we
may notice that 25 921 is the square of 161, and the numbers 161 and 289 do
form the triple (161, 240, 289). It seems the scribe simply forgot to take the
square root of 25 921. And in row 15 we find c = 53, whereas the correct entry
should be twice that number, that is, 106 = 1,46, producing the triple (56, 90,
106).4 These errors leave one with a sense that human nature has not changed
over the past four thousand years; our anonymous scribe was no more guilty
of negligence than a student begging his or her professor to ignore “just a little
stupid mistake” on the exam.5

The leftmost column is the most intriguing of all. Its heading again men-
tions the word “diagonal,” but the exact meaning of the remaining text is not
entirely clear. However, when one examines its entries a startling fact comes
to light: this column gives the square of the ratio c/a, that is, the value of csc2 A,
where A is the angle opposite side a and csc is the cosecant function studied in
trigonometry (fig. 1.4). Let us verify this for line 1. We have b = 1,59 = 119
and c = 2,49 = 169, from which we find a = 120. Hence (c/a)2 = (169/120)2 =
1.983, rounded to three places. And this indeed is the corresponding entry in
column 4: 1;59,0,15 = 1 + 59/60 + 0/602 + 15/603 = 1.983. (We should note
again that the Babylonians did not use a symbol for the “empty slot” and
therefore a number could be interpreted in many different ways; the correct in-
terpretation must be deduced from the context. In the example just cited, we
assume that the leading 1 stands for units rather than sixties.) The reader may
check other entries in this column and confirm that they are equal to (c/a)2.

Several questions immediately arise: Is the order of entries in the table ran-
dom, or does it follow some hidden pattern? How did the Babylonians find

10 ❖ Chapter 1

b
A

c a

Figure 1.4. The cosecant of an angle: csc A = c/a

those particular numbers that form Pythagorean triples? And why were they
interested in these numbers—and in particular, in the ratio (c/a)2—in the first
place? The first question is relatively easy to answer: if we compare the values
of (c/a)2 line by line, we discover that they decrease steadily from 1.983 to
1.387, so it seems likely that the order of entries was determined by this se-
quence. Moreover, if we compute the square root of each entry in column 4—
that is, the ratio c/a = csc A—and then find the corresponding angle A, we dis-
cover that A increases steadily from just above 45° to 58°. It therefore seems
that the author of this text was not only interested in finding Pythagorean
triples, but also in determining the ratio c/a of the corresponding right trian-
gles. This hypothesis may one day be confirmed if the missing part of the tablet
shows up, as it may well contain the missing columns for a and c/a. If so,
Plimpton 322 will go down as history’s first trigonometric table.

As to how the Babylonian mathematicians found these triples—including
such enormously large ones as (4601, 4800, 6649)—there is only one plausi-
ble explanation: they must have known an algorithm which, 1,500 years later,
would be formalized in Euclid’s Elements: Let u and v be any two positive in-
tegers, with u > v; then the three numbers

a = 2uv, b = u2 − v2, c = u2 + v2 (1)

form a Pythagorean triple. (If in addition we require that u and v are of oppo-
site parity—one even and the other odd—and that they do not have any com-
mon factor other than 1, then (a, b, c) is a primitive Pythagorean triple, that is,
a, b, and c have no common factor other than 1.) It is easy to confirm that the
numbers a, b, and c as given by equations (1) satisfy the equation a2 + b2 = c2:

a2 + b2 = (2uv)2 + (u2 − v2)2

= 4u2v2 + u4 − 2u2v2 + v4

= u4 + 2u2v2 + v4

= (u2 + v2)2 = c2.

The converse of this statement—that every Pythagorean triple can be found in
this way—is a bit harder to prove (see Appendix B).

Plimpton 322 thus shows that the Babylonians were not only familiar with
the Pythagorean theorem, but that they knew the rudiments of number theory
and had the computational skills to put the theory into practice—quite remark-
able for a civilization that lived a thousand years before the Greeks produced
their first great mathematician.

Notes and Sources

1. For a discussion of how the Babylonians approximated the value of , see Ap-
pendix A.

2. The text that follows is adapted from Trigonometric Delights and is based on

2

Mesopotamia, 1800 BCE ❖ 11

125-80746_Maor_PythagoreanTheorem_3P.indd   11 7/31/19   8:42 PM


