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Preface

THE PURPOSE OF THIS SHORT MONOGRAPH is to address recent advances in the
theory of mean field games (MFGs), which has met an amazing success since
the simultaneous pioneering works by Lasry and Lions and by Caines, Huang,
and Malhamé more than ten years ago. While earlier developments in the theory
have been largely spread out over the last decade, issues that are addressed in
this book require a new step forward in the analysis. The text evolved with the
objective to provide a self-contained study of the so-called master equation and
to answer the convergence problem, which has remained mainly open so far. As
the writing progressed, the manuscript became longer and longer and, in the
end, it turned out to be more relevant to publish the whole as a book.

There might be several reasons to explain the growing interest for MFGs.
From the technical point of view, the underpinning stakes fall within several
mathematical areas, including partial differential equations, probability theory,
stochastic analysis, optimal control, and optimal transportation. In particular,
several issues raised by the analysis of MFGs may be tackled by analytical or
probabilistic tools; sometimes, they even require a subtle implementation of
mixed arguments, which is precisely the case in this book. As a matter of fact,
researchers from different disciplines have developed an interest in the subject,
which has grown very quickly. Another explanation for the interest in the theory
is the wide range of applications that it offers. While they were originally inspired
by works in economics on heterogeneous agents, MFG models now appear under
various forms in several domains, which include, for instance, mathematical
finance, study of crowd phenomena, epidemiology, and cybersecurity.

Mean field games should be understood as games with a continuum of play-
ers, each of them interacting with the whole statistical distribution of the pop-
ulation. In this regard, they are expected to provide an asymptotic formulation
for games with finitely many players with mean field interaction. In most of
the related works, the connection between finite games and MFGs is addressed
in the following manner: It is usually shown that solutions of the asymptotic
problem generate an almost equilibrium, understood in the sense of Nash, to
the corresponding finite game, the accuracy of the equilibrium getting stronger
and stronger as the number of players in the finite game tends to infinity. The
main purpose of this book is to focus on the converse problem, which may be
formulated as follows: Do the equilibria of the finite games (if they exist) con-
verge to a solution of the corresponding MFG as the number of players becomes
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very large? Surprisingly, answering this question turns out to be much more
difficult than proving that any asymptotic solution generates an almost equilib-
rium. Though several works addressed this problem in specific cases, including
the case when the equilibria of the finite player game are taken over open loop
strategies, the general case when the agents play strategies in closed (Marko-
vian) feedback form has remained open so far. The objective here is to exhibit
a quite large class of MFGs for which the answer is positive and, to do so,
to implement a method that is robust enough to accommodate other sets of
assumption.

The intrinsic difficulty in proving the convergence of finite player equilibria
may be explained as follows. When taken over strategies in closed Markovian
form, Nash equilibria of a stochastic differential game with N players in a state
of dimension d may be described through a system of N quasilinear parabolic
partial differential equations in dimension N x d, which we refer to as the Nash
system throughout the monograph. As N becomes larger and larger, the system
obviously becomes more and more intricate. In particular, it seems especially
difficult to get any a priori estimate that could be helpful for passing to the limit
by means of a compactness argument. The strategy developed in the book is thus
to bypass any detailed study of the Nash system. Instead, we use a short cut and
focus directly on the expected limiting form of the Nash system. This limiting
form is precisely what we call the master equation in the title of the book. As a
result of the symmetry inherent in the mean field structure, this limiting form is
no longer a system of equations but reduces to one equation only, which makes it
simpler than the Nash system. It describes the equilibrium cost to one represen-
tative player in a continuum of players. Actually, to account for the continuum
of players underpinning the game, the master equation has to be set over the
Euclidean space times the space of probability measures; the state variable is
thus a pair that encodes both the private state of a single representative player
together with the statistical distribution of the states of all the players. Most
of the book is thus dedicated to the analysis of this master equation. One of
the key results in the book is to show that, under appropriate conditions on the
coefficients, the master equation is uniquely solvable in the classical sense for an
appropriate notion of differential calculus on the space of probability measures.
Among the assumptions we require, we assume the coefficients to be monotone
in the direction of the measure; as demonstrated earlier by Lasry and Lions, this
forces uniqueness of the solution to the corresponding MFG.

Smoothness of the solution then plays a crucial role in our program. It is
indeed the precise property we use next for proving the convergence of the finite
player equilibria to the solution of the limiting MFG. The key step is indeed to
expand the solution of the master equation along the “equilibrium trajectories”
of the finite player games, which requires enough regularity. As indicated earlier,
this methodology seems to be quite sharp and should certainly work under
different sets of assumptions.

Actually, the master equation was already introduced by Lions in his lectures
at College de France. It provides an alternative formulation to MFGs, different
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from the earlier (and most popular) one based on a coupled forward—backward
system, known as the MFG system, which is made of a backward Hamilton—
Jacobi equation and a forward Kolmogorov equation. Part of our program in
the book is then achieved by exploiting quite systematically the connection
between the MFG system and the master equation: In short, the MFG system
plays the role of characteristics for the master equation. In the text, we use this
correspondence heavily to establish, by means of a flow method, the smoothness
of the solution to the master equation.

Though the MFG system was extensively studied in earlier works, we provide
in the book a detailed analysis of it in the case when players in the finite game
are subject to a so-called common noise: Under the action of this common
noise, both the backward and forward equations in the MFG system become
stochastic, which makes it more complicated; as a result, we devote a whole
chapter to addressing the solvability of the MFG system under the presence of
such a common noise. Together with the study of the convergence problem, this
perspective is completely new in the literature.

The book is organized in six chapters, which include a detailed introduction
and are followed by an appendix. The guideline follows the aforementioned steps:
Part of the book is dedicated to the analysis of the master equation, including
the study of the MFG system with a common noise, and the rest concerns the
convergence problem. The main results obtained in the book are collected in
Chapter 2. Chapter 3 is a sort of warm-up, as it contains a preliminary analysis
of the master equation in the simpler case when there is no common noise. In
Chapter 4, we study the MFG system in the presence of a common noise, and the
corresponding analysis of the master equation is performed in Chapter 5. The
convergence problem is addressed in Chapter 6. We suggest the reader start with
the Introduction, which contains in particular a formal derivation of the master
equation, and then to carry on with Chapters 2 and 3. Possibly, the reader who is
interested only in MFGs without common noise may skip Chapters 4 and 5 and
switch directly to Chapter 6. In such a case, she/he has to set the parameter 3,
which stands for the intensity of the common noise throughout the book, equal
to 0. The Appendix contains several results on the differential calculus on the
space of probability measures together with an [t6’s formula for functionals of a
process taking values in the space of probability measures. We emphasize that,
for simplicity, most of the analysis provided in the book is on the torus, but, as
already explained, we feel that the method is robust enough to accommodate
the nonperiodic setting.

To conclude, we would like to thank our colleagues from our field for all the
stimulating discussions and work sessions we have shared with them. Some of
them have formulated very useful comments and suggestions on the preliminary
draft of the book. They include in particular Yves Achdou, Martino Bardi,
Alain Bensoussan, René Carmona, Jean-Francois Chassagneux, Markus Fischer,
Wilfrid Gangbo, Christine Griin, Daniel Lacker and Alessio Porretta. We are
also very grateful to the anonymous referees who examined the various versions
of the manuscript. Their suggestions helped us greatly in improving the text.
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Pierre Cardaliaguet, Paris
Francois Delarue, Nice
Jean-Michel Lasry, Paris
Pierre-Louis Lions, Paris



The Master Equation and the Convergence

Problem in Mean Field Games






Chapter One

Introduction

1.1 FROM THE NASH SYSTEM TO THE
MASTER EQUATION

Game theory formalizes interactions between “rational” decision makers. Its
applications are numerous and range from economics and biology to computer
science. In this monograph we are interested mainly in noncooperative games,
that is, in games in which there is no global planner: each player pursues his or
her own interests, which are partly conflicting with those of others.

In noncooperative game theory, the key concept is that of Nash equilibria,
introduced by Nash in [82]. A Nash equilibrium is a choice of strategies for
the players such that no player can benefit by changing strategies while the
other players keep theirs unchanged. This notion has proved to be particularly
relevant and tractable in games with a small number of players and action sets.
However, as soon as the number of players becomes large, it seems difficult to
implement in practice, because it requires that each player knows the strategies
the other players will use. Besides, for some games, the set of Nash equilibria is
huge and it seems difficult for the players to decide which equilibrium they are
going to play: for instance, in repeated games, the Folk theorem states that the
set of Nash equilibria coincides with the set of feasible and individually rational
payoffs in the one-shot game, which is a large set in general (see [93]).

In view of these difficulties, one can look for configurations in which the
notion of Nash equilibria simplifies. As noticed by Von Neumann and Morgen-
stern [96], one can expect that this is the case when the number of players be-
comes large and each player individually has a negligible influence on the other
players: it “is a well known phenomenon in many branches of the exact and
physical sciences that very great numbers are often easier to handle than those
of medium size [...]. This is of course due to the excellent possibility of applying
the laws of statistics and probabilities in the first case” (p. 14). Such nonatomic
games were analyzed in particular by Aumann [10] in the framework of cooper-
ative games. Schmeidler [91] (see also Mas-Colell [78])) extended the notion of
Nash equilibria to that setting and proved the existence of pure Nash equilibria.

In the book we are interested in games with a continuum of players, in con-
tinuous time and continuous state space. Continuous time, continuous space
games are often called differential games. They appear in optimal control prob-
lems in which the system is controlled by several agents. Such problems (for a
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finite number of players) were introduced at about the same time by Isaacs [59]
and Pontryagin [87]. Pontryagin derived optimality conditions for these games.
Isaacs, working on specific examples of two-player zero-sum differential games,
computed explicitly the solution of these games and established the formal con-
nection with the Hamilton—Jacobi equations. The rigorous justification of Isaacs
ideas for general systems took some time. The main difficulty arose from from
the set of strategies (or from the dependence on the cost of the players with re-
spect to these strategies), which is much more complex than for classical games:
indeed, the players have to observe the actions taken by the other players in
continuous time and choose their instantaneous actions accordingly. For two-
player, zero-sum differential games, the first general existence result of a Nash
equilibrium was established by Fleming [39]: in this case the Nash equilibrium
is unique and is called the value function (it is a function of time and space).
The link between this value function and the Hamilton—Jacobi equations was
made possible by the introduction of viscosity solutions by Crandall and Lions
[32] (see also [33] for a general presentation of viscosity solutions). The ap-
plication to zero-sum differential games are due to Evans and Souganidis [35]
(for determinist problems) and Fleming and Souganidis [40] (for stochastic
ones).

For non-zero-sum differential games, the situation is more complicated. One
can show the existence of general Nash equilibria thanks to an adaptation of
the Folk theorem: see Kononenko [64] (for differential games of first order) and
Buckdahn, Cardaliaguet, and Rainer [23] (for differential games with diffusion).
However, this notion of solution does not allow for dynamic programming: it
lacks time comnsistency in general. The existence of time-consistent Nash equi-
libria, based on dynamic programming, requires the solvability of a strongly
coupled system of Hamilton—Jacobi equations. This system, which plays a key
role in this book, is here called the Nash system. For problems without diffu-
sions, Bressan and Shen explain in [21,22] that the Nash system is ill-posed in
general. However, for systems with diffusions, the Nash system becomes a uni-
formly parabolic system of partial differential equations. Typically, for a game
with IV players and with uncontrolled diffusions, this backward in time system
takes the form

—0p'(t,x) — tr(a’(t,x) D*v™N (t,x)) + H'(t,x, Dv' (t,x),..., Dv™ (t,2)) =0
in [0,7] x (RN, ie{1,...,N},

V(T x) = G'(x) in (RN, (1.1)

The foregoing system describes the evolution in time of the value function v?
of agent 7 (i € {1,...,N}). This value function depends on the positions of
all the players « = (z1,...,2n), x; being the position of the state of player .
The second-order terms tr(a’(t, z) D?v™ (¢, x)) formalize the noises affecting the
dynamics of agent i. The Hamiltonian H* encodes the cost player i has to pay
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to control her state and reaching some goal. This cost depends on the positions
of the other players and on their strategies.

The relevance of such a system for differential games has been discussed
by Star and Ho [94] and Case [30] (for first-order systems) and by Friedman
[43] (1972) (for second-order systems); see also the monograph by Basar and
Olsder [11] and the references therein. The well-posedness of this system has
been established under some restrictions on the regularity and the growth of
the Hamiltonians: See in particular the monograph by Ladyzenskaja, Solonnikov,
and Ural’ceva [70] and the paper by Bensoussan and Frehse [14].

As for classical games, it is natural to investigate the limit of differential
games as the number of players tends to infinity. The hope is that in this limit
configuration the Nash system simplifies. This notion makes sense only for time-
consistent Nash equilibria, because no simplification occurs in the framework of
Folk’s theorem, where the player who deviates is punished by all the other
players.

Games in continuous space with infinitely many players were first introduced
in the economic literature (in discrete time) under the terminology of heteroge-
neous models. The aim was to formalize dynamic general equilibria in macroeco-
nomics by taking into account not only aggregate variables—GDP, employment,
the general price level, for example—but also the distributions of variables, say
the joint distribution of income and wealth or the size distribution of firms, and
to try to understand how these variables interact. We refer in particular to the
pioneering works by Aiyagari [6], Huggett [58], and Krusell and Smith [65], as
well as the presentation of the continuous-time counterpart of these models in [5].

In the mathematical literature, the theory of differential games with infinitely
many players, known as mean field games (MFGs), started with the works of
Lasry and Lions [71, 72, 74]; Huang, Caines, and Malhamé [53-57] presented
similar models under the name of the certainty equivalence principle. Since then
the literature has grown very quickly, not only for the theoretical aspects, but
also for the numerical methods and the applications: we refer to the monographs
[16,48] or the survey paper [49)].

This book focuses mainly on the derivation of the MFG models from games
with a finite number of players. In classical game theory, the rigorous link be-
tween the nonatomic games and games with a large but finite number of agents
is quite well-understood: one can show (1) that limits of Nash equilibria as the
number of agents tends to infinity is a Nash equilibrium of the nonatomic game
(Green [50]), and (2) that any optimal strategy in the nonatomic game pro-
vides an e-Nash equilibrium in the game with finitely many players, provided
the number of players is sufficiently large (Rashid [90]).

For MFGs, the situation is completely different. If the equivalent of question
(2) is pretty well understood, problem (1) turns out to be surprisingly difficult.
Indeed, passing from the MFG equilibria to the differential game with finitely
many problem relies mostly on known techniques in mean field theory: this
has been developed since the beginning of the theory in [54] and well studied
since then (see also, for instance, [25,62]). On the contrary, when one considers
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a sequence of solutions to the Nash systems with N players and one wants
to let N tend to infinity, the problem becomes extremely intricate. The main
reason is that, in classical game theory, this convergence comes from compactness
properties of the problem; this compactness is completely absent for differential
games. This issue is related to the difficulty of building time-consistent solutions
for these games. A less technical way to see this is to note that there is a change
of nature between the Nash system and its conjectured limit, the MFG. In the
Nash system, the players observe each other, and the deviation of a single player
could a priori change entirely the outcome of the game. On the contrary, in the
MFG, players react only to the evolving population density and therefore the
deviation of a single player has no impact at all on the system. The main purpose
of this book is to explain why this limit holds despite this change of nature.

1.1.1 Statement of the Problem

To explain our result further, we first need to specify the Nash system we are
considering. We assume that players control their own state and interact only
through their cost function. Then the Nash system (1.1) takes the more specific
form:

—9™Ni(t, x) ZA N - B Z Ter 2,V o™it x)
7,k=1
H(xl,DmlvN’(t x) +ZD H(zj, Dy, 0™ (t, @) - Dy, o™ (¢, ) (1.2)
‘ J#i
= FNi(x) in [0, 7] x (RH)N
VT x) = GN () in (RHN

As before, the above system is stated in [0, 7] x (R%)Y where a typical element
is denoted by (t,z) with * = (z1,...,2y) € (RY)YN. The unknowns are the
N maps (v™%);eq1,.. .~} (the value functions). The data are the Hamiltonian
H :R¥xR% — R, the maps FN!, GN:' : (R*)N — R, the nonnegative parameter
B, and the horizon T' > 0. In the second line, the symbol - denotes the inner
product in R?.

System (1.2) describes the Nash equilibria of an N-player differential game
(see Section 1.2 for a short description). In this game, the set of “optimal tra-
jectories” solves a system of N coupled stochastic differential equations (SDEs):

dX;y = —DypH(Xiy, D™ (t, X,))dt + V2dBj + /2B dW,,
tel0,T),ie{1,...,N}, (1.3)

where v™¥** is the solution to (1.2) and the ((Bf):ejo,r))i=1,...8 and (Wy)iejo,7]
are d-dimensional independent Brownian motions. The Brownian motions
((Bf)tefo,1))i=1,....n correspond to the individual noises, while the Brownian
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motion (Wy)¢ejo,) is the same for all the equations and, for this reason, is called
the common noise. Under such a probabilistic point of view, the collection of
random processes ((Xi t):e[0,1])i=1,...,~ forms a dynamical system of interacting
particles.

The aim of this book is to understand the behavior, as N tends to infinity,
of the value functions v™*. Another, but closely related, objective of our book is
to study the mean field limit of the ((Xi t)ie[0,17)i=1,...~ as IV tends to infinity.

1.1.2 Link with the Mean Field Theory

Of course, there is no chance to observe a mean field limit for (1.3) under a
general choice of the coefficients in (1.2). Asking for a mean field limit certainly
requires that the system has a specific symmetric structure in such a way that
the players in the differential game are somewhat exchangeable (when in equi-
librium). For this purpose, we suppose that, for each i € {1,..., N}, the maps
RHN 5z +— FNi(z) and (RN 5 x +— GN¥(x) depend only on x; and on the
empirical distribution of the variables (x;);;:

F¥' @) = F(z;,mz")  and  GY'(x) = G(zs,mg"), (1.4)

where m{ = - > j4i0z; is the empirical distribution of the (z;);.; and
where F,G : R? x P(R?) — R are given functions, P(R?) being the set of Borel
probability measures on R?. Under this assumption, the solution of the Nash
system indeed enjoys strong symmetry properties, which imply in particular
the required exchangeability property. Namely, vV** can be written in a form

similar to (1.4):
oMVt e) = oV (e, mg™), te[0,T], xe ®RDY, (1.5)

for a function v™(t,-,-) taking as arguments a state in R? and an empirical
distribution of size N — 1 over R%.

In any case, even under the foregoing symmetry assumptions, it is by no
means clear whether the system (1.3) can exhibit a mean field limit. The reason
is that the dynamics of the particles (X1, ..., Xn.t)iefo,) are coupled through
the unknown solutions v™>1, ... v to the Nash system (1.2), whose symmetry
properties (1.5) may not suffice to apply standard results from the theory of
propagation of chaos. Obviously, the difficulty is that the function vV on the
right-hand side of (1.5) precisely depends on N. Part of the challenge in the
text is thus to show that the interaction terms in (1.3) get closer and closer, as
N tends to the infinity, to some interaction terms with a much more tractable
and much more explicit shape.

To get a picture of the ideal case under which the mean-field limit can be
taken, one can choose for a while f = 0 in (1.3) and then assume that the
function v” in the right-hand side of (1.5) is independent of N. Equivalently, one
can replace in (1.3) the interaction function (R*)N > x — D, H (z;, vV (¢, x))
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by (RHN 3 x — b(x;,mL-?), for a map b : R? x P(R?) — R<. In such a case,
the coupled system of SDEs (1.3) turns into

1 |
dX,, = b(Xi,t,mszjyt)dt—i—\/idBt’, te0,7], i€ {1,...,N}, (L6)
J#i

the second argument in b being nothing but the empirical measure of the par-
ticle system at time ¢. Under suitable assumptions on b (e.g., if b is bounded
and Lipschitz continuous in both variables, the space of probability measures
being equipped with the Wasserstein distance) and on the initial distribution
of the ((Xit)i=1,....N)tejo,r], both the marginal law of (th)te[o,T] (or of any
other player) and the empirical distribution of the whole system converge to
the solution of the McKean—Vlasov equation:

Ogm — Am + div(m b(-, m)) =0.

(see, among many other references, McKean [77], Sznitman [92], Méléard [79]).
The standard strategy for establishing the convergence consists in a coupling
argument. Precisely, if one introduces the system of N independent equations

AY; s =b(Yie, L(Yiyg)) dt +V2dB;,  t€[0,T],i€{l,....,N},

(where £(Y; ;) is the law of Y; ;) with the same (chaotic) initial condition as that
of the processes ((Xi t):e[o,1])i=1,...,n, then it is known that (under appropriate
integrability conditions; see Fournier and Guillin [42])

_ 1
S[up ] E[| X1 — Y1l S ONT#5CT (Lggpoy + (1 + N)lgg—sy).
te[o,T

In comparison with (1.6), all the equations in (1.3) are subject to the common
noise (W;);epo,7], at least when 8 # 0. This makes a first difference between our
limit problem and the above McKean—Vlasov example of interacting diffusions,
but, for the time being, it is not clear how deeply this may affect the analysis.
Indeed, the presence of a common noise does not constitute a real challenge
in the study of McKean—Vlasov equations, the foregoing coupling argument
working in that case as well, provided that the distribution of Y is replaced by
its conditional distribution given the realization of the common noise. However,
the key point here is precisely that our problem is not formulated as a McKean—
Vlasov equation, as the drifts in (1.3) are not of the same explicit mean field
structure as they are in (1.6) because of the additional dependence on N in the
right-hand side of (1.5): obviously this is the second main difference between
(1.3) and (1.6). This makes rather difficult any attempt to guess the precise
impact of the common noise on the analysis. Certainly, as we already pointed
out, the major issue in analyzing (1.3) stems from the complex nature of the
underlying interactions. As the equations depend on one another through the
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nonlinear system (1.2), the evolution with N of the coupling between all of
them is indeed much more intricate than in (1.6). And once again, on the top of
that, the common noise adds another layer of difficulty. For these reasons, the
convergence of both (1.2) and (1.3) has been an open question since Lasry and
Lions’ initial papers on MFGs [71,72].

1.1.3 The Mean Field Game System

If one tries, at least in the simpler case 8 = 0, to describe—in a heuristic
way—the structure of a differential game with infinitely many indistinguishable
players, i.e., a “nonatomic differential game,” one finds a problem in which each
(infinitesimal) player optimizes his payoff, depending on the collective behavior
of the others, and, meanwhile, the resulting optimal state of each of them is
exactly distributed according to the state of the population. This is the “mean
field game system” (MFG system):

—0u — Au+ H(x, Dyu) = F(xz,m(t)) in [0, 7] x R,
oym — Am — div(mD,H (x, Dyu)) =0 in [0,T] x RY, (1.7)
U(Ta ‘T) = G(‘T7 m<T))? m<07 ) = M) in Rdv

where mg) denotes the initial state of the population. The system consists in
a coupling between a (backward) Hamilton—Jacobi equation, describing the dy-
namics of the value function of any of the players, and a (forward) Kolmogorov
equation, describing the dynamics of the distribution of the population. In that
framework, H reads as a Hamiltonian, F' is understood as a running cost, and
G as a terminal cost. Since its simultaneous introduction by Lasry and Lions
[74] and by Huang, Caines, and Malhamé [53], this system has been thor-
oughly investigated: its existence, under various assumptions, can be found in
[15, 25, 54-56, 62, 74, 76]. Concerning uniqueness of the solution, two regimes
were identified in [74]. Uniqueness holds under Lipschitz type conditions when
the time horizon T is short (or, equivalently, when H, F, and G are “small”),
but, as for finite-dimensional two-point boundary value problems, it may fail
when the system is set over a time interval of arbitrary length. Over long time
intervals, uniqueness is guaranteed under the quite fascinating condition that
F and G are monotone; i.e., if, for any measures m,m’, the following holds:

/d(F@m) — F(a,m)d(m —m’)(z) > 0
: (1.8)
and / (Gla,m) = G, m") d(m —m')(z) > 0.
Rd

The interpretation of the monotonicity condition is that the players dislike con-
gested areas and favor configurations in which they are more scattered; see
Remark 2.3.1 for an example. Generally speaking, condition (1.8) plays a key



8 CHAPTER 1

role throughout the text, as it guarantees not only uniqueness but also stability
of the solutions to (1.7).

As observed, a solution to the MFG system (1.7) can indeed be interpreted as
a Nash equilibrium for a differential game with infinitely many players: in that
framework, it plays the role of the Schmeidler noncooperative equilibrium. A
standard strategy to make the connection between (1.7) and differential games
consists in inserting the optimal strategies from the Hamilton—Jacobi equation
in (1.7) into finitely many player games in order to construct approximate Nash
equilibria: see [54], as well as [25, 55, 56, 62]. However, although it establishes
the interpretation of the system (1.7) as a differential game with infinitely many
players, this says nothing about the convergence of (1.2) and (1.3).

When g is positive, the system describing Nash equilibria within a population
of infinitely many players subject to the same common noise of intensity [
cannot be described by a deterministic system of the same form as (1.7). Owing
to the theory of propagation of chaos for systems of interacting particles (see the
short remark earlier), the unknown m in the forward equation is then expected
to represent the conditional law of the optimal state of any player given the
realization of the common noise. In particular, it must be random. This turns the
forward Kolmogorov equation into a forward stochastic Kolmogorov equation.
As the Hamilton—Jacobi equation depends on m, it renders u random as well. At
any rate, a key fact from the theory of stochastic processes is that the solution
to an SDE must be adapted to the underlying observation, as its values at some
time t cannot anticipate the future of the noise after ¢. At first sight, it seems
to be very demanding, as u is also required to match, at time T, G(-,m(T)),
which depends on the whole realization of the noise up until 7. The correct
formulation to accommodate both constraints is given by the theory of backward
SDEs, which suggests penalizing the backward dynamics by a martingale in
order to guarantee that the solution is indeed adapted. We refer the reader to
the monograph [84] for a complete account on the finite dimensional theory and
to the paper [85] for an insight into the infinite dimensional case. Denoting by
W “the common noise” (here, a d-dimensional Brownian motion) and by mq)
the initial distribution of the players at time ¢y, the MFG system with common
noise then takes the form (in which the unknowns are now (ug, m¢, vy))

dyuy = [—(1+ B)Auy + H(z, Dyuy) — F(a,my) — /28div(v,)] dt
+v, - AWy, in [0, 7] x R?,

dimy = [(1+ B)Amy + div(myDypH (z, Dyuy))]| dt (1.9)
—div(me\/28 dW3), in [0,7] x R%,

ur(z) = G(z,mr), mo = m(y, in R?

where we used the standard convention from the theory of stochastic processes
that consists in indicating the time parameter as an index in random functions.
As suggested immediately above, the map v; is a random vector field that forces
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the solution u; of the backward equation to be adapted to the filtration generated
by (Wi)tejo,r)- As far as we know, the system (1.9) has never been investigated
and part of this book will be dedicated to its analysis (see, however, [27] for
an informal discussion). Below, we call the system (1.9) the MFG system with
common noise.

Note that the aggregate equations (1.7) and (1.9) (see also the master equa-
tion (1.10)) are the continuous-time analogues of equations that appear in the
analysis of dynamic stochastic general equilibria in heterogeneous agent models
(Aiyagari [6], Bewley [19], and Huggett [58]). In this setting, the factor 8 de-
scribes the intensity of “aggregate shocks,” as discussed by Krusell and Smith
in the seminal paper [65]. In some sense, the limit problem studied in the text
is an attempt to deduce the macroeconomic models, describing the dynamics of
a typical (but heterogeneous) agent in an equilibrium configuration, from the
microeconomic ones (the Nash equilibria).

1.1.4 The Master Equation

Although the MFG system has been widely studied since its introduction in [74]
and [53], it has become increasingly clear that this system was not sufficient to
take into account the entire complexity of dynamic games with infinitely many
players. A case in point is that the original system (1.7) becomes much more
complex in the presence of a common noise (i.e., when 8 > 0); see the stochastic
version (1.9). In the same spirit, we may notice that the original MFG system
(1.7) does not accommodate MFGs with a major player and infinitely many
small players; see [52]. And, last but not least, the main limitation is that, so
far, the formulation based on the system (1.7) (or (1.9) when 8 > 0) has not
allowed establishment of a clear connection with the Nash system (1.2).

These issues led Lasry and Lions [76] to introduce an infinite dimensional
equation—the so-called “master equation”—that directly describes, at least for-
mally, the limit of the Nash system (1.2) and encompasses the foregoing com-
plex situations. Before writing down this equation, let us explain its main fea-
tures. One of the key observations has to do with the symmetry properties, to
which we already alluded, that are satisfied by the solution of the Nash system
(1.2). Under the standing symmetry assumptions (1.4) on the (FN:¥),_;  y and
(GN1);21,.. N, (1.5) says that the (vV+%);  n can be written into a form simi-
lar to (1.4), namely v™i(t, ) = vV (t, 2;,mY*) (where the empirical measures
mA+ are defined as in (1.4)), but with the obvious but major restriction that the
function vV that appears on the right-hand side of the equality now depends on
N. With such a formulation, the value function to player i reads as a function
of the private state of player i and of the empirical distribution formed by the
others. Then, one may guess, at least under the additional assumption that such
a structure is preserved as N — +oo, that the unknown in the limit problem
takes the form U = U(t,z,m), where x is the position of the (typical) small
player at time ¢ and m is the distribution of the (infinitely many) other agents.
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The question is then to write down the dynamics of U. Plugging U =
U(t,z;, mL+?) into the Nash system (1.2), one obtains—at least formally—an
equation stated in the space of measures (see Section 1.2 for a heuristic discus-

sion). This is the so-called master equation. It takes the form

_8tU - (1 + B)A(EU + H(.’l?, Da:U) - (1 + B) /

divy [D,, U] dm(y)
R4

+ - DU - DpH(ya DrU(, Y, ))dm(y)

98 [ div, DuUldm(y) 8 [ T [D2,0]dmy) 0
R R2d

= F(z,m) in [0, 7] x R? x P(RY),

U(T,z,m)=G(x,m) in R? x P(RY),

where 0,U, D, U, and A, U are understood as 0;U(t,z,m), D, U(t,z, m), and
AU (t,x,m); D U (-, y,-) is understood as D, U (t,y,m); and D,,U and D2 U
are understood as Dy, (t,z,m,y) and D2, U(t,z,m,y,y’).

In Eq. (1.10), 0:U, D,U, and A,U stand for the usual time derivative,
space derivatives, and Laplacian with respect to the local variables (¢, ) of the
unknown U, while D,,U and D2, U are the first- and second-order derivatives
with respect to the measure m. The precise definition of these derivatives is
postponed to Chapter 2. For the time being, let us just note that it is related to
the derivatives in the space of probability measures described, for instance, by
Ambrosio, Gigli, and Savaré in [7] and by Lions in [76]. It is worth mentioning
that the master equation (1.10) is not the first example of an equation studied in
the space of measures—by far: for instance, Otto [83] gave an interpretation of
the porous medium equation as an evolution equation in the space of measures,
and Jordan, Kinderlehrer, and Otto [60] showed that the heat equation was also a
gradient flow in that framework; notice also that the analysis of Hamilton—Jacobi
equations in metric spaces is partly motivated by the specific case in which the
underlying metric space is the space of measures (see in particular [8,36] and the
references therein). The master equation is, however, the first one to combine at
the same time the issue of being nonlocal, nonlinear, and of second order and,
moreover, without maximum principle.

Besides the discussion in [76], the importance of the master equation (1.10)
has been acknowledged by several contributions: see, for instance, the mono-
graph [16] and the companion papers [17] and [18], in which Bensoussan, Frehse,
and Yam generalize this equation to mean field type control problems and refor-
mulate it as a partial differential equation (PDE) set on an L? space, and [27],
where Carmona and Delarue interpret this equation as a decoupling field of
forward-backward SDE in infinite dimension.

If the master equation has been discussed and manipulated thoroughly in
the aforementioned references, it is mostly at a formal level: the well-posedness
of the master equation has remained, to a large extent, open until now. Besides,



