The Plaid Model

Richard Evan Schwartz

Annals of Mathematics Studies Number 198

The Plaid Model

Richard Evan Schwartz

Copyright © 2019 by Princeton University Press
Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY

All Rights Reserved
LCCN: 2018942719
ISBN 978-0-691-181370
ISBN (pbk.) 978-0-691-18138-7
British Library Cataloging-in-Publication Data is available
Editorial: Vickie Kearn, Lauren Bucca, and Susannah Shoemaker Production Editorial: Nathan Carr
Production: Jacquie Poirier
Publicity: Alyssa Sanford and Kathryn Stevens
This book has been composed in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
The publisher would like to acknowledge the author of this volume for providing the camera-ready copy from which this book was printed.

Printed on acid-free paper. ∞
press.princeton.edu
Printed in the United States of America
10987654321

Contents

Preface X
Introduction 1
0.1 Part 1: The Plaid Model and its Properties 5
0.2 Part 2: The Plaid PET 5
0.3 Part 3: The Graph PET 6
0.4 Part 4: Plaid-Graph Correspondence 7
0.5 Part 5: The Distribution of Orbits 9
0.6 Companion Program 10
PART 1. THE PLAID MODEL 12
Chapter 1. Definition of the Plaid Model 15
1.1 Chapter Overview 15
1.2 Basic Quantities and Notation 15
1.3 Six Families of Lines 15
1.4 Capacity, Mass, and Sign 17
1.5 Light Points 18
1.6 Transverse Directions for the Light Points 21
1.7 Main Definition 23
Chapter 2. Properties of the Model 25
2.1 Chapter Overview 25
2.2 Symmetries 25
2.3 The Number of Intersection Points 28
2.4 The Meaning of Capacity 30
2.5 A Subtle Symmetry 32
Chapter 3. Using the Model 35
3.1 Chapter Overview 35
3.2 The Big Polygon 35
3.3 Hierarchical Information 37
3.4 A Subdivision Algorithm 39
3.5 Comparing Different Parameters 42
Chapter 4. Particles and Spacetime Diagrams 45
4.1 Chapter Overview 45
4.2 Remote Adjacency 46
4.3 Horizontal Particles 46
4.4 Vertical Particles 48
4.5 Spacetime Diagrams and Their Symmetries 51
4.6 The Bad Tile Lemma 53
Chapter 5. Three-Dimensional Interpretation 57
5.1 Chapter Overview 57
5.2 Stacking the Blocks 57
5.3 Pixelated Spacetime Diagrams 58
5.4 Tile Compatibility 60
5.5 Spacetime Plaid Surfaces 63
5.6 Discussion and Speculation 66
Chapter 6. Pixellation and Curve Turning 71
6.1 Chapter Overview 71
6.2 Orienting the Worldlines 71
6.3 The Sparseness of Worldlines 73
6.4 Curve Turning Theorem: Vertical Case 74
6.5 Curve Turning Theorem: Horizontal Case 76
6.6 Two Applications 78
Chapter 7. Connection to the Truchet Tile System 81
7.1 Chapter Overview 81
7.2 Truchet Tilings 81
7.3 The Truchet Comparison Theorem 83
7.4 The Fundamental Surface 85
7.5 A Result from Elementary Number Theory 86
7.6 Proof of the Truchet Comparison Theorem 88
PART 2. THE PLAID PET 91
Chapter 8. The Plaid Master Picture Theorem 93
8.1 Chapter Overview 93
8.2 The Spaces 94
8.3 The Checkerboard Partition 94
8.4 The Classifying Map 98
8.5 The Main Result 100
Chapter 9. The Segment Lemma 103
9.1 Chapter Overview 103
9.2 The Anchor Point 105
9.3 A Computational Tool 105
9.4 The Vertical Case 107
9.5 The Horizontal Case 108
Chapter 10. The Vertical Lemma 111
10.1 Chapter Overview 111
10.2 Using Symmetry 112
10.3 Translating the Picture 113
10.4 Some Useful Formulas 113
10.5 The Undirected Result 115
10.6 Determining the Directions 117
Chapter 11. The Horizontal Lemma 119
11.1 Chapter Overview 119
11.2 Using Symmetry 120
11.3 Translating the Picture 121
11.4 Two Easy Technical Lemmas 122
11.5 The Undirected Result 123
11.6 Determining the Directions 123
Chapter 12. Proof of the Main Result 125
12.1 Chapter Overview 125
12.2 Prism Structure 125
12.3 Some Extra Symmetry 127
12.4 The Vertical Case 128
12.5 The Horizontal Case 130
PART 3. THE GRAPH PET 133
Chapter 13. Graph Master Picture Theorem 135
13.1 Chapter Overview 135
13.2 Special Orbits 135
13.3 The Arithmetic Graph 136
13.4 A Preliminary Result 137
13.5 The PET Structure 139
13.6 The Fundamental Polytopes 141
Chapter 14. Pinwheels and Quarter Turns 143
14.1 Chapter Overview 143
14.2 The Pinwheel Map 143
14.3 Outer Billiards and the Pinwheel Map 145
14.4 Quarter Turn Compositions 146
14.5 The Pinwheel Map as a QTC 147
14.6 The Case of Kites 151
Chapter 15. Quarter Turn Compositions and PETs 153
15.1 Chapter Overview 153
15.2 A Result from Linear Algebra 154
15.3 The Map 154
15.4 Compactifying Shears 156
15.5 Compactifying Quarter Turn Maps 156
15.6 The End of the Proof 159
Chapter 16. The Nature of the Compactification 161
16.1 Chaper Overview 161
16.2 The Singular Directions 162
16.3 The First Parallelotope 163
16.4 The Second Parallelotope 165
16.5 The General Master Picture Theorem 166
16.6 Structure of the PET 167
16.7 The Case of Kites 168
PART 4. THE PLAID-GRAPH CORRESPONDENCE 171
Chapter 17. The Orbit Equivalence Theorem 173
17.1 Chapter Overview 173
17.2 The Prisms 174
17.3 The Map 175
17.4 Characterizing the Image 176
17.5 The Clean Partition 177
17.6 The Main Proof 178
17.7 Computational Techniques 180
17.8 The Calculations 182
Chapter 18. The Quasi-Isomorphism Theorem 185
18.1 Chapter Overview 185
18.2 The Canonical Affine Transformation 186
18.3 The Graph Grid 187
18.4 The Intertwining Lemma 188
18.5 The Correspondence of Orbits 189
18.6 The End of the Proof 192
18.7 The Projection Theorem 193
18.8 Renormalization Interpretation 194
Chapter 19. Geometry of the Graph Grid 195
19.1 Chapter Overview 195
19.2 The Grid Geometry Lemma 195
19.3 The Graph Reconstruction Lemma 197
Chapter 20. The Intertwining Lemma 199
20.1 Chapter Overview 199
20.2 A Resume of Transformations 200
20.3 Injectivity of the Map 201
20.4 Calculating a Single Point 201
20.5 Dissecting the Set 202
20.6 The Induction Step 204
20.7 Discussion 206
20.8 The Diagonal Case 206
PART 5. THE DISTRIBUTION OF ORBITS 210
Chapter 21. Existence of Infinite Orbits 213
21.1 Chapter Overview 213
21.2 Definedness Criterion 214
21.3 Spacetime Diagrams Revisited 214
21.4 Taking a Limit 215
21.5 Associated Paths 216
21.6 Sketch of an Alternate Proof 217
Chapter 22. Existence of Many Large Orbits 219
22.1 Chapter Overview 219
22.2 Equidistribution Properties 220
22.3 The Ubiquity Lemma 221
22.4 The Rectangle Lemma 222
22.5 Proof of the Main Result 222
22.6 The Continued Fraction Length 223
22.7 The End of the Proof 225
Chapter 23. Infinite Orbits Revisited 227
23.1 Chapter Overview 227
23.2 The Approximating Sequence 227
23.3 The Copy Theorem 229
23.4 The End of the Proof 231
23.5 The Copy Lemma 232
23.6 Proof of the Box Theorem 234
23.7 Proof of the Copy Theorem 235
23.8 Hidden Symmetries 237
Chapter 24. Some Elementary Number Theory 239
24.1 Chapter Overview 239
24.2 A Structural Result 239
24.3 Unfinished Business 242
Chapter 25. The Weak and Strong Case 245
25.1 Chapter Overview 245
25.2 The First Two Statements 245
25.3 A Technical Lemma 246
25.4 The Mass and Capacity Sequences 247
25.5 Vertical Intersection Points 248
25.6 A Matching Criterion 249
25.7 Verifying the Matching Criterion 250
Chapter 26. The Core Case 253
26.1 Chapter Overview 253
26.2 The First Two Statements 254
26.3 Geometric and Arithmetic Alignment 254
26.4 Geometric Alignment 255
26.5 Alignment of the Capacity Sequences 256
26.6 A Technical Lemma 257
26.7 The Mass Sequences: Central Case 260
26.8 The Mass Sequences: Peripheral Case 262
26.9 The End of the Proof 263
Appendix References 265
Index 267

Preface

The purpose of this monograph is to study a construction, based on elementary geometry and number theory, which produces for each rational parameter (satisfying some parity conditions) a cube filled with polyhedral surfaces. When the surfaces are sliced in one direction, the resulting curves encode all the essential information about the so-called special outer billiards orbits with respect to kites. When the surfaces are sliced in two other directions, they encode all the essential information in a 1-parameter family of the Truchet tile systems defined in $[\mathbf{H}]$.

I call the construction the plaid model. The reason for the name is that plaid shirts involve a network of horizontal and vertical lines, but the underlying weave in this shirt is slanting. The definition of the plaid model involves these kinds of lines. Also, a very plaid-like pattern of lines appears when one does calculations with the model. See Figure 3.3.

The plaid model grew out of my work in [S1], where I gave an affirmative answer to the Moser-Neumann question about outer billiards: Does there exist an outer billiards system with an unbounded orbit? The main result of [S1] is that outer billiards has unbounded orbits relative to any irrational kite - a bilaterally symmetric convex quadrilateral which is not affinely equivalent to a lattice polygon. This monograph is in some ways a sequel to $[\mathbf{S 1}]$, though it can be read independently from $[\mathbf{S 1}]$.

At least to me, the plaid model has a physical feel, with properties that seem like conservation laws, interacting particles, spacetime diagrams, and even an exclusion principle. (I don't claim that the plaid model actually models something in the physical world.) The plaid model also has an overtly hierarchical structure, which causes it to exhibit properties such as selfsimilarity and scaling limits. Finally, it has an interpretation in terms of a higher dimensional polytope exchange transformation.

This monograph establishes some of the basic properties of the plaid model: the connection to outer billiards and to Truchet tilings, the connection to polytope exchange transformations, and some results about the size and distribution of the polygons in the slices of the model. I hope that this monograph brings out the beauty, depth, and surprise of the plaid model and also suggests topics for further study.

A novel feature of the monograph is that it comes with a companion computer program which illustrates all the main results and constructions. At the end of the introduction I give instructions for downloading the program, and throughout the monograph I make comments on how to use the program
to see the relevant points discussed in the text.
I thank the National Science Foundation for their continued support, and also the Simons Foundation for a Simons Sabbatical Fellowship during which I worked on this monograph. I also thank Peter Doyle, Pat Hooper, John Smillie, Sergei Tabachnikov, and Ren Yi for a number of conversations related to the plaid model.

Introduction

The plaid model grew out of my attempt in $[\mathbf{S 1}]$ to understand outer billiards on kites. A kite is a convex quadrilateral having a line of symmetry that is also a diagonal. In particular, let K_{A} be the kite with vertices

$$
\begin{equation*}
(-1,0), \quad(0,1), \quad(0,-1), \quad(A, 0) \tag{1}
\end{equation*}
$$

Figure 0.1: Outer billiards on the kite K_{A}.
Figure 0.1 shows outer billiards on K_{A} for $A=4 / 9$. Given $p_{0} \in \boldsymbol{R}^{2}-K_{A}$, we define a map $p_{0} \rightarrow p_{1}$ by the rule that the line segment $\overline{p_{0} p_{1}}$ is tangent to K_{A} at its midpoint, and K_{A} is on the right-hand side as one walks along the segment from p_{0} to p_{1}. We then consider the orbit $p_{0} \rightarrow p_{1} \rightarrow p_{2} \ldots$. See [S1] for an extensive discussion of outer billiards and a long bibliography.

We call an outer billiards orbit on K_{A} special if it lies in the union

$$
\begin{equation*}
\boldsymbol{R} \times\{ \pm 1, \pm 3, \pm 5, \ldots\} \tag{2}
\end{equation*}
$$

of odd-integer horizontal lines. The orbit shown in Figure 0.1 is special. In [S1] I proved the following result.

Theorem 0.1 When A is irrational, outer billiards on K_{A} has an unbounded special orbit.

Theorem 0.1 is an affirmative answer to the Moser-Neumann problem, from 1960, which asks whether an outer billiards system can have an unbounded orbit. The orbits in Theorem 0.1 are quite complicated. They return infinitely often to every neighborhood of the vertices of K_{A}. I called such orbits erratic.

The key step in understanding the special orbits on K_{A} is to associate an embedded lattice polygonal path to each special orbit. This path encodes
the symbolic dynamics associated to the second return map to the union $\boldsymbol{R} \times\{-1,1\}$ of lines. These lines are partially shown in Figure 0.1. When $A=p / q$ is rational, it is possible to consider the union of all these lattice paths at once. I call this union the arithmetic graph and denote it by Γ_{A}. When $p q$ is even, every component of Γ_{A} is an embedded lattice polygon. Part 3 of the monograph has a detailed description.

One of the key results in $[\mathbf{S} 1]$ is the Hexagrid Theorem. This result gives large-scale structural information about Γ_{A}. Basically, it says that Γ_{A} must intersect certain lines in certain places, and must avoid certain lines in certain places. Some years later I discovered that the Hexagrid Theorem is just the first in a series of results which allowed this large-scale structure to extend down to increasingly fine scales. When all these results are assembled into one package, the result is the plaid model.

We will formally define the plaid model in the next chapter. The plaid model is a rule for assigning a square tiling of the plane to each parameter $A=p / q \in(0,1)$ with $p q$ even. We call such parameters even rational. There is a similar construction when $p q$ is odd, but the details are sufficiently different that we do not treat it here. Here we give a rough feel for the plaid model. Based on the parameter A we assign even integers to the lines of the usual infinite grid of integer-spaced vertical and horizontal lines. We call these integers capacities. At the same time, we define a second grid of slanting lines and we assign odd integers to these lines. We call these odd integers masses. We then place a light point at every intersection of the form $\sigma \cap \tau$ where

- σ is a slanting line.
- τ is a horizontal or vertical line.
- The mass of σ has the same sign as the capacity of τ and smaller absolute value.

Figure 0.2 illustrates the rule on a made-up example. The pictures in the next chapter show the real rules.

Figure 0.2: A caricature of the plaid model.
The horizontal and vertical lines divide the plane into unit integer squares. It turns out that each such square Q has either 0 or 2 edges containing an
odd number of light points. In the former case we associate the empty set to Q. In the latter case, we associate to Q a directed edge e_{Q} which joins the centers of the two sides having an odd number of light points. (We will explain later how the edge direction is determined.) Figure 0.2 shows a made-up example of the assignment $Q \rightarrow e_{Q}$.

The edges fit together to form an infinite family $P L_{A}$ of polygons in the plane which we call the plaid polygons. Again $A=p / q \in(0,1)$ and $p q$ is even. The lines of capacity 0 divide the plane into larger squares of side length $p+q$, which we call blocks. No polygon crosses the boundaries of these blocks. Figure 0.3 shows two of the blocks associated to $P L_{4 / 9}$. We do not show the orientations of the edges but they are consistently oriented around each polygon, one way or the other.

Figure 0.3: Two blocks of $P L_{4 / 9}$.
Here is a concrete connection between the plaid model and outer billiards.
Theorem 0.2 (Projection) Let $A \in(0,1)$ be an even rational parameter. Modulo the vertical translations which preserve $P L_{A}$, there is a bijection between the polygons in $P L_{A}$ that lie in the right half-plane and the special outer billiards orbits relative to the kite K_{A}. Moreover, the plaid polygon π may be (monotonically) parameterized as $\pi=\left\{\left(x_{t}, y_{t}\right) \mid t \in[0, N]\right\}$ in such a way that the point $2 x_{k}$ lies within 3 units of the k th point of

$$
S_{\pi}=O_{\pi} \cap\left(\boldsymbol{R}_{+} \times\{-1,1\}\right)
$$

for all $k \in\{1, \ldots, N\}$. Here O_{π} is the special orbit associated to π and N is the number of points S_{π}.

In other words, if you put your finger on one of the polygons π of $P L_{A}$ (that lies to the right of the Y-axis) and trace around it at the correct speed, the horizontal motion of your hand will track the first return map of the corresponding special outer billiards orbit up to a factor of 2 and an error of at most 3 units. Note, however, that π typically does not have N vertices and x_{k} need not be a vertex of π.

The Projection Theorem is a consequence of the Quasi-Isomorphism Theorem below, which gives a more precise result about the connection between $P L_{A}$ and Γ_{A}. The Quasi-Isomorphism Theorem is the multiscale extension of the Hexagrid Theorem from $[\mathbf{S 1}]$.

The plaid model has a three-dimensional interpretation which reveals connections to Pat Hooper's Truchet tile system $[\mathbf{H}]$. When we forget the orientations on the polygons, it turns out that there are $p+q$ distinct blocks modulo translation symmetry of the tiling. (When we remember the orientations there are twice as many.) We will take $p+q$ such blocks, one representative from each translation equivalence class, and stack them on top of each other in a special order. We will then canonically interpolate between the polygons at consecutive heights in the stack to form polyhedral surfaces. The result is a cubical array of $(p+q)^{3}$ unit integer cubes that is filled with pairwise disjoint embedded polyhedral surfaces.

By construction, the slices of the 3D polyhedral surfaces at integer heights in the $X Y$ direction are the plaid model polygons discussed above. When the surfaces in the plaid model are sliced in the other coordinate directions, namely the $X Z$ and $Y Z$ directions, what emerges (at least for some slices) is a pattern of curves that is combinatorially isomorphic to the curves produced by Pat Hooper's system. Figure 0.4 gives an example. The plaid parameter is $4 / 9$ and the Truchet parameter is $\alpha=\beta=3 / 8$. Theorem 7.2, the Truchet Comparison Theorem, establishes a combinatorial isomorphism like this for all even rational parameters. Thus, the plaid model is a kind of marriage between outer billiards on kites and the Truchet tile system.

Figure 0.4: A YZ slice for $4 / 9$ compared to a Truchet tile.
Another curious connection between the plaid model and the Truchet tile system is that the left edge of the figure on the left side of Figure 0.3, which shows the union of plaid polygons in a certain block for the parameter $4 / 9$, exactly matches the left edge of the left side of Figure 0.4, which shows a special $Y Z$ slice for the same parameter $4 / 9$. This seems to happen for every parameter. We will give several plausible explanations in $\S 23.8$, but we will stop short of giving a proof.

The monograph has 5 parts. The rest of this introduction is a detailed description of these parts.

0.1 PART 1: THE PLAID MODEL AND ITS PROPERTIES

In Part 1, I will define the plaid model and study its properties. One technical claim, Theorem 1.4, will not be apparent from any of the definitions. This result basically says that each unit integer square has 0 or 2 sides containing exactly one light point. I will assume Theorem 1.4 in Part 1 and will deduce it in Part 2 as an immediate corollary of Theorem 8.2.

After studying the basic properties of the model, I will explain how one can use the hierarchical nature to get information about the large-scale structure of the tilings in an algorithmic way. In particular, I will give a heuristic explanation of why the model exhibits coarse self-similarity and rescaling phenomena.

After giving the basic definitions, I will explain how to assemble the twodimensional blocks into embedded polyhedral surfaces. Finally, I will establish the connection between the $X Z$ and $Y Z$ slices of these surfaces and the Truchet tilings. Again, the main result is the Truchet Comparison Theorem from §7.3.

Part 1 is rather long and involved, but most of the material is not needed for Parts 2-4. The (dis)interested reader can skip to Part 2 after reading §1, $\S 2.2, \S 2.3, \S 4.2, \S 4.3, \S 4.4$, and $\S 5.2$.

0.2 PART 2: THE PLAID PET

Let Π denote the set of unit integer squares. For each parameter $A=p / q$, the union of plaid polygons $P L_{A}$ defines a dynamical system on Π. We simply follow the directed edge in each tile and move to the tile into which the edge points. When the tile is empty, we do not move at all. We call this dynamical system the $P L_{A^{-}}$dynamics. This system is similar to the curve-following dynamics defined in $[\mathbf{H}]$.

In Part 2, I will connect this dynamical system to higher dimensional polytope exchange transformations. The parity claim from Part 1 will follow from this. Let X be a flat torus. A polytope exchange transformation (or $P E T)$ on X is given by a partition of X into polytopes

$$
\begin{equation*}
X=\bigcup A_{i}=\bigcup B_{i} \tag{3}
\end{equation*}
$$

so that there are translations T_{i} such that $T_{i}\left(A_{i}\right)=B_{i}$ for all i. Such a system gives rise to a global and almost everywhere defined map $T: X \rightarrow X$ defined so that $\left.T\right|_{A_{i}}=T_{i}$. This map is not defined on the boundaries of the polytopes of the partition. However, it is an invertible piecewise defined translation.

Now we describe what we mean by a fibered integral affine PET. Let

$$
\widehat{X}=\boldsymbol{R}^{3} \times(0,1) .
$$

We will work with a quotient of the form $X=\widehat{X} / \Lambda$, where Λ is a discrete group of affine transformations acting on \widehat{X}. The quotient X is topologically
the product of a 3 -torus and $(0,1)$. The group Λ preserves each slice $\boldsymbol{R}^{3} \times\{P\}$ and acts there as a group of translations. The quotient $X_{P}=\left(\boldsymbol{R}^{3} \times\{P\}\right) / \Lambda$ is a flat torus whose isometry type depends on P.

In a fibered integral affine PET, we have the same partitions as above, except that each map T_{i} is a locally affine map, and we have the following additional features:

- The linear part of T_{i} is independent of i.
- T_{i} preserves each slice X_{P}.
- The restriction of each T_{i} to X_{P} is a translation.
- All vertices of all lifts of all polytopes in the partitions have integer coordinates.

Theorem 0.3 (Plaid Master Picture) There is a 4-dimensional fibered integral affine PET X with the following property: When A is even rational and $P=2 A /(1+A)$, there is a locally affine map $\Phi_{A}: \Pi \rightarrow X_{P}$ which conjugates the $P L_{A}$-dynamics on Π to the PET dynamics on X_{P}.

Remarks: (i) Since Π is a discrete set of points, we have to say what we mean by a locally affine map from Π into X_{P}. We mean a restriction of a planar affine map to Π.
(ii) The Plaid Master Picture Theorem says that the $P L_{A}$-dynamics encodes the symbolic dynamics associated to a certain 3 -dimensional PET, X_{P}. Here $P=2 A /(1+A)$. It might seem a bit funny to use the parameter P instead of A but this change of coordinates turns out to be useful and natural.
(iii) The Plaid Master Picture Theorem also says that these individual slices $\left\{X_{P}\right\}$ fit together into a 4-dimensional fibered integral affine PET. This shows a kind of coherence between the plaid model at one parameter and the plaid model at a different parameter, even though the plaid model polygons themselves vary wildly from parameter to parameter.

0.3 PART 3: THE GRAPH PET

In Part 3 we do for the arithmetic graph what we did for the plaid polygons in Part 2. When $A=p / q$ is rational, the arithmetic graph Γ_{A} defines a dynamical system on \boldsymbol{Z}^{2}. We just move from vertex to vertex according to the oriented polygons. We call this system the $\Gamma_{A^{-}}$dynamics. Here is our main result.

Theorem 0.4 (Graph Master Picture) There is a 4-dimensional fibered integral affine PET Y with the following property. When $A=(0,1)$ is rational, there is a locally affine map $\Psi_{A}^{\prime}: \boldsymbol{Z}^{2} \rightarrow Y_{A}$ which conjugates the Γ_{A}-dynamics on \boldsymbol{Z}^{2} to the PET dynamics on Y_{A}.

Remarks: (i) In this result, A need not be even rational.
(ii) We will see that there is a change of coordinates that conjugates Ψ_{A}^{\prime} to a map Ψ_{A} with a nicer formula. That is the reason for our notation.

I will explain Theorem 0.4 in two ways. First, I will deduce Theorem 0.4 from [S1, Master Picture Theorem], which is presented here (with a few cosmetic changes) as Theorem 13.2.

Second, I will follow [S2] and my unpublished preprint [S3], and prove a very general version of Theorem 0.4 , namely Theorem 16.9 , which works for any polygon without parallel sides. (The no-parallel-sides condition is not really essential, but it makes the argument easier.) Since Theorem 0.4 already follows from Theorem 13.2, I will not give a formal proof that the PET produced by Theorem 16.9, in the case of special orbits on kites, is identical to the PET from Theorem 0.4. However, in $\S 16.7$ I will explain precisely how to match up the two PETs, and I will explain how to see a computer demonstration of the match-up.

I'd like to mention that I had many helpful and interesting discussions with John Smillie about this general topic, and he has a different way to view these kinds of compactifications in terms of Dehn-invariant like constructions involving the tensor product.

0.4 PART 4: PLAID-GRAPH CORRESPONDENCE

In this part of the monograph we relate the plaid model to outer billiards. Our next result says that the combinatorially defined plaid model gives a uniformly accurate model of the dynamically defined outer billiards special orbits. When the time comes, we will deduce the Projection Theorem above as a consequence.

Theorem 0.5 (Quasi-Isomorphism) For each even rational parameter A, there exists an affine transformation $T_{A}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$, and a bijection between the components of $T_{A}\left(\Gamma_{A}\right)$ and the components of $P L_{A}$ with the following property. If $\gamma \in T_{A}\left(\Gamma_{A}\right)$ and $\pi \in P L_{A}$ are corresponding components then there is a homeomorphism $h: \gamma \rightarrow \pi$ which moves points by no more than 2 units.

Figure 0.5 below shows the Quasi-Isomorphism Theorem in action for the parameter $A=3 / 8$. The grey polygons are the components of $T_{A}\left(\Gamma_{A}\right)$ in $[0,11]^{2}$ and the black polygons are components of $P L_{A}$ in $[0,11]^{2}$.

One thing that is surprising about the Quasi-Isomorphism Theorem is that the grid Π of half-integer points associated to the plaid model sits in a funny way with respect to the grid $G_{A}=T_{A}\left(\boldsymbol{Z}^{2}\right)$ which contains the vertices of $T_{A}\left(\Gamma_{A}\right)$. The grid G_{A} has co-area $1+A$ whereas Π has co-area 1. When A is irrational, these grids are incommensurable. The homeomorphism from the Quasi-Isomorphism Theorem does not map vertices to vertices but nonetheless the two sets of polygons are close to each other.

Figure 0.5: The Quasi-Isomorphism Theorem in action.
The Quasi-Isomorphism Theorem is a consequence of an orbit equivalence between our two PETs. Call a subset $Z \subset X$ dynamically large if every nontrivial orbit on X intersects Z.

Theorem 0.6 (Orbit Equivalence) There is a dynamically large subset $Z \subset X$ and a map $\Omega: Z \rightarrow Y$ with the following property. For any $\zeta \in Z$ with a well-defined orbit the following three statements hold:

1. There is some $k=k(\zeta) \in\{1,2\}$ such that

$$
\begin{equation*}
\Omega \circ F_{X}^{k}(\zeta)=F_{Y} \circ \Omega(\zeta) \tag{4}
\end{equation*}
$$

2. If $F_{X}(\zeta) \in Z$ then there is some $\ell=\ell(\zeta) \in\{0,1\}$ such that

$$
\begin{equation*}
\Omega \circ F_{X}(\zeta)=F_{Y}^{\ell} \circ \Omega(\zeta) \tag{5}
\end{equation*}
$$

3. ζ is a fixed point of F_{X} if and only if $\Omega(\zeta)$ is a fixed point of F_{Y}.

The set Z is a union of 2 open convex integral prism quotients and the restriction of Ω to each one is an integral projective transformation that maps the slice Z_{P} into the slice Y_{A}, where $P=2 A /(1+A)$. Finally, Ω is at most 2-to-1 and $\Omega(Z)$ is open dense in Y and contains all the well-defined F_{Y}-orbits.

A prism quotient is the quotient of a set of the form $H \times \boldsymbol{R} \times[0,1]$ under the $\operatorname{map}(x, y, z, P) \rightarrow(x, y, z+2, P)$, where H is a convex polygon. The prism quotient is convex integral if H has integer vertices. The Orbit Equivalence Theorem is saying roughly that the graph PET is a renormalization of the plaid PET. We will explain this point of view in $\S 18.8$.

0.5 PART 5: THE DISTRIBUTION OF ORBITS

Part 5 concerns the distribution and geometry of orbits in the plaid model.
We will explain how to assign a polygonal path π to an orbit O of the plaid PET which lies in a slice X_{A} where A is not even rational. The path π is unique up to translation. We call π the plaid path associated to O. One could view π as the geometric (i.e., Hausdorff topology) limit of plaid polygons associated to a sequence of orbits $\left\{O_{n}\right\}$ in even rational slices.

We say that a path π in the plane is thin if it is contained in an infinite strip. Otherwise we say that π is fat. For instance, a parabola is fat. The bulk of Part 5 is devoted to proving the following result.

Theorem 0.7 For every irrational parameter A, the slice X_{A} of the plaid PET has an infinite orbit whose associated plaid path π is fat. More precisely, the projection of π onto the X-axis is the set $[1 / 2, \infty)$ and the union of vertices of π having first coordinate $1 / 2$ contains a large-scale Cantor set.

By a large-scale Cantor set, we mean a set of the form

$$
\begin{equation*}
\{1 / 2\} \times \bigcup_{\beta}\left(\sum_{j} \beta_{j} Y_{j}\right) \tag{6}
\end{equation*}
$$

The union takes place over all finite binary sequences β, the sequence $\left\{Y_{j}\right\}$ is unbounded, and the ordering on the points in the union coincides with the lexicographic ordering $(0,1,10,11,100 \ldots)$ on the finite binary strings.

Figure 0.6: Cantor-set like properties of the left edge.
Figure 0.6 shows the picture of a particular plaid polygon for the parameter $169 / 408$. The square here has side length 577 . The extra lines (making a tic-tac-toe pattern) have significance we will explain in the proof of Theorem 3.1. One can see a kind of finite version of a large-scale Cantor set going up along the left edge of the figure. The curve π from Theorem 0.7 is a geometric limit of these finite curves taken with respect to a continued-fraction-like approximating sequence of rational numbers.

Theorem 0.7 combines with the Projection Theorem to give another proof of Theorem 0.1 . At the same time, one can extract Theorem 0.7 from the main results in $[\mathbf{S 1}]$ and from the Quasi-Isomorphism Theorem. See $\S 21.6$. The ideas underlying our proof here are similar to what we do in [S1]. However, by going through the details here we can give a proof that is independent from [S1].

We will combine the proof of Theorem 0.7 with some results we prove in Part 1 to get some additional information about the distribution of orbits that goes beyond what we could do in $[\mathbf{S 1}]$. Say that a polygon is N-fat if it is not contained in a strip of width N.

Theorem 0.8 Let $\left\{p_{k} / q_{k}\right\} \subset(0,1)$ be any sequence of even rational numbers with a limit that is neither rational nor quadratic irrational. Let $\left\{B_{k}\right\}$ be any sequence of associated blocks. Let N be any fixed integer. Then the number of N-fat plaid polygons in B_{k} is greater than N provided that k is sufficiently large.

Remark: The restriction that the limit not be quadratic irrational is probably just an artifact of the proof rather than a necessary hypothesis.

The Projection Theorem lets us translate Theorem 0.8 into the language of outer billiards. Say that the essential diameter of a special outer billiards orbit on K_{A} is the diameter of its intersection with the set

$$
[0, \infty) \times\{-1,1\}
$$

A special orbit of diameter D essentially fills out an octagon-shaped "annulus" of width D.

Corollary 0.9 Let $\left\{p_{k} / q_{k}\right\} \subset(0,1)$ be any sequence of even rational numbers with a limit that is neither rational nor quadratic irrational. Let $\omega_{k}=$ $p_{k}+q_{k}$. Let $\left\{I_{k}\right\}$ be any sequence of intervals of the form $\left[n \omega_{k}, n \omega_{k}+\omega_{k}\right]$. Let N be any fixed integer. Then there are more than N distinct orbits in the interval $I_{k} \times\{1\}$ which have essential diameter at least N provided that k is sufficiently large.

0.6 COMPANION PROGRAM

The monograph comes with several companion computer programs which illustrate most of the results. You can download these from the following location.

https://press.princeton.edu/titles/13339.html

At least in the short run, the same programs can also be found at the following location.

http://www.math.brown.edu/~res/Java/PLAID.tar

Once you download the tarred directory, you untar it. The unpacked files live in a directory called Plaid. This directory has several sub-directories and a README file. The README file has further instructions. One of the programs can also be run directly on the web. At least in the short run, the web version can also be accessed from the following location.

http://www.math.brown.edu/~res/Javascript/Plaid/Main.html

This web program gives a quick view of the 3D plaid model and the plaid surfaces.

I discovered all the results in this monograph using the program, and I have extensively checked my proofs against the output of the program. While this monograph mostly stands on its own, the reader will get much more out of it by using the program while reading. I would say that the program relates to the material here the way a cooked meal relates to a recipe. Throughout the text, I have indicated computer tie-ins which give instructions for operating the computer program so that it illustrates the relevant phenomena. I consider these computer tie-ins to be a vital component of the monograph.

Part 1. The Plaid Model

Chapter One

Definition of the Plaid Model

1.1 CHAPTER OVERVIEW

The goal of this chapter is to define the plaid model. The input to the plaid model is a rational $A=p / q \in(0,1)$ with $p q$ even. The output is the union $P L_{A}$ of plaid polygons. Our pictures show the case $A=2 / 5$ in detail.

In $\S 1.2$, we define some auxiliary quantities associated to the parameter. In $\S 1.3$ we define 6 families of parallel lines. The first two families are the horizontal and vertical lines comprising the boundary of the integer square grid, and we call these grid lines. The remaining 4 families we call slanting lines. In $\S 1.4$, we explain the assignment of masses and capacities to the lines. In $\S 1.5$ we define the concept of a light point. The light points are certain intersections between slanting lines and grid lines. We will actually give two different definitions and prove that they are equivalent. The two definitions highlight different features of the model. In §1.6 we assign unit vectors to the light particles. Finally, in $\S 1.7$ we put everything together and give the definition of $P L_{A}$.

1.2 BASIC QUANTITIES AND NOTATION

We fix an even rational p / q as above. Here are the main auxiliary quantities associated to these parameters.

$$
\begin{equation*}
\omega=p+q, \quad P=\frac{2 p}{\omega}, \quad Q=\frac{2 q}{\omega} . \tag{1.1}
\end{equation*}
$$

Note that $P+Q=2$ and $P / Q=p / q$.
We define $\widehat{\tau} \in(0, \omega)$ and $\tau \in(0, \omega / 2)$ to be such that

$$
\begin{equation*}
2 p \widehat{\tau} \equiv 1 \bmod \omega, \quad \tau=\min (\widehat{\tau}, \omega-\widehat{\tau}) \tag{1.2}
\end{equation*}
$$

Congruence Notation: Given some integer N and some integer a, we define $(a)_{2 N}$ to be the representative of $a \bmod 2 N$ in $(-N, N)$. If $a \equiv N$ $\bmod 2 N$ we define $a_{2 N}=* N$, a symbol which denotes the set $\{N,-N\}$.

1.3 SIX FAMILIES OF LINES

We consider 6 infinite families of lines.

- \mathcal{H} consists of horizontal lines having integer y-coordinate.
- \mathcal{V} consists of vertical lines having integer x-coordinate.
- $\mathcal{P}_{ \pm}$is the set of lines of slope $\pm P$ having integer Y-intercept.
- $\mathcal{Q}_{ \pm}$is the set of lines of slope $\pm Q$ having integer Y-intercept.

We call the lines in \mathcal{H} and \mathcal{V} the grid lines, and we call the other lines the slanting lines. Until $\S 1.5$ we only use the 4 families $\mathcal{V}, \mathcal{H}, \mathcal{P}_{-}$and \mathcal{Q}_{-}. We set $\mathcal{P}=\mathcal{P}_{-}$and $\mathcal{Q}=\mathcal{Q}_{-}$in order to simplify the notation. Figure 1.1 shows these lines inside $[0,7]^{2}$ for $p / q=2 / 5$. In this case, $P=4 / 7$ and $Q=10 / 7$.

Figure 1.1: The 4 line families for $p / q=2 / 5$.
Fixing the parameter p / q, we define a block to be the image of a unit integer square under the dilation $(x, y) \rightarrow \omega(x, y)$. For instance, $[0, \omega]^{2}$ is a block. The pattern of lines we have defined is precisely the same in each block.

Say that a horizontal block segment is the intersection of a block with a horizontal grid line. Note that there are two slanting lines meeting at the endpoints and the midpoint of each horizontal block segment. We call these points double points.

Computer Tie-In: Open up the main program. When the main program is running, open up the planar window. On the plaid model control panel, turn off all the features except grid, (+) slant lines and (-)slant lines. This will show you the 6 families of lines. You can choose other parameters either by pressing the random button at the top right or else by clicking on the blue box at the top right and then entering a fraction with the keyboard. (If you open the document window and click on the question box in the top right corner, you can learn more about entering parameters.) Click the left/right mouse buttons or (z, c) arrow keys to zoom into the picture in the planar window.

