


Annals of Mathematics Studies
Number 198





The Plaid Model

Richard Evan Schwartz

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

2019



Copyright c© 2019 by Princeton University Press

Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
3 Market Place, Woodstock, Oxfordshire OX20 1SY

All Rights Reserved

LCCN: 2018942719

ISBN 978-0-691-181370

ISBN (pbk.) 978-0-691-18138-7

British Library Cataloging-in-Publication Data is available

Editorial: Vickie Kearn, Lauren Bucca, and Susannah Shoemaker
Production Editorial: Nathan Carr
Production: Jacquie Poirier
Publicity: Alyssa Sanford and Kathryn Stevens

This book has been composed in LATEX

The publisher would like to acknowledge the author of this volume for pro-
viding the camera-ready copy from which this book was printed.

Printed on acid-free paper. ∞

press.princeton.edu

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.press.princeton.edu


Contents

Preface x

Introduction 1

0.1 Part 1: The Plaid Model and its Properties 5
0.2 Part 2: The Plaid PET 5
0.3 Part 3: The Graph PET 6
0.4 Part 4: Plaid-Graph Correspondence 7
0.5 Part 5: The Distribution of Orbits 9
0.6 Companion Program 10

PART 1. THE PLAID MODEL 12

Chapter 1. Definition of the Plaid Model 15

1.1 Chapter Overview 15
1.2 Basic Quantities and Notation 15
1.3 Six Families of Lines 15
1.4 Capacity, Mass, and Sign 17
1.5 Light Points 18
1.6 Transverse Directions for the Light Points 21
1.7 Main Definition 23

Chapter 2. Properties of the Model 25

2.1 Chapter Overview 25
2.2 Symmetries 25
2.3 The Number of Intersection Points 28
2.4 The Meaning of Capacity 30
2.5 A Subtle Symmetry 32

Chapter 3. Using the Model 35

3.1 Chapter Overview 35
3.2 The Big Polygon 35
3.3 Hierarchical Information 37
3.4 A Subdivision Algorithm 39
3.5 Comparing Different Parameters 42

Chapter 4. Particles and Spacetime Diagrams 45

4.1 Chapter Overview 45



vi CONTENTS

4.2 Remote Adjacency 46
4.3 Horizontal Particles 46
4.4 Vertical Particles 48
4.5 Spacetime Diagrams and Their Symmetries 51
4.6 The Bad Tile Lemma 53

Chapter 5. Three-Dimensional Interpretation 57

5.1 Chapter Overview 57
5.2 Stacking the Blocks 57
5.3 Pixelated Spacetime Diagrams 58
5.4 Tile Compatibility 60
5.5 Spacetime Plaid Surfaces 63
5.6 Discussion and Speculation 66

Chapter 6. Pixellation and Curve Turning 71

6.1 Chapter Overview 71
6.2 Orienting the Worldlines 71
6.3 The Sparseness of Worldlines 73
6.4 Curve Turning Theorem: Vertical Case 74
6.5 Curve Turning Theorem: Horizontal Case 76
6.6 Two Applications 78

Chapter 7. Connection to the Truchet Tile System 81

7.1 Chapter Overview 81
7.2 Truchet Tilings 81
7.3 The Truchet Comparison Theorem 83
7.4 The Fundamental Surface 85
7.5 A Result from Elementary Number Theory 86
7.6 Proof of the Truchet Comparison Theorem 88

PART 2. THE PLAID PET 91

Chapter 8. The Plaid Master Picture Theorem 93

8.1 Chapter Overview 93
8.2 The Spaces 94
8.3 The Checkerboard Partition 94
8.4 The Classifying Map 98
8.5 The Main Result 100

Chapter 9. The Segment Lemma 103

9.1 Chapter Overview 103
9.2 The Anchor Point 105
9.3 A Computational Tool 105
9.4 The Vertical Case 107
9.5 The Horizontal Case 108

Chapter 10. The Vertical Lemma 111



CONTENTS vii

10.1 Chapter Overview 111
10.2 Using Symmetry 112
10.3 Translating the Picture 113
10.4 Some Useful Formulas 113
10.5 The Undirected Result 115
10.6 Determining the Directions 117

Chapter 11. The Horizontal Lemma 119

11.1 Chapter Overview 119
11.2 Using Symmetry 120
11.3 Translating the Picture 121
11.4 Two Easy Technical Lemmas 122
11.5 The Undirected Result 123
11.6 Determining the Directions 123

Chapter 12. Proof of the Main Result 125

12.1 Chapter Overview 125
12.2 Prism Structure 125
12.3 Some Extra Symmetry 127
12.4 The Vertical Case 128
12.5 The Horizontal Case 130

PART 3. THE GRAPH PET 133

Chapter 13. Graph Master Picture Theorem 135

13.1 Chapter Overview 135
13.2 Special Orbits 135
13.3 The Arithmetic Graph 136
13.4 A Preliminary Result 137
13.5 The PET Structure 139
13.6 The Fundamental Polytopes 141

Chapter 14. Pinwheels and Quarter Turns 143

14.1 Chapter Overview 143
14.2 The Pinwheel Map 143
14.3 Outer Billiards and the Pinwheel Map 145
14.4 Quarter Turn Compositions 146
14.5 The Pinwheel Map as a QTC 147
14.6 The Case of Kites 151

Chapter 15. Quarter Turn Compositions and PETs 153

15.1 Chapter Overview 153
15.2 A Result from Linear Algebra 154
15.3 The Map 154
15.4 Compactifying Shears 156
15.5 Compactifying Quarter Turn Maps 156
15.6 The End of the Proof 159



viii CONTENTS

Chapter 16. The Nature of the Compactification 161

16.1 Chaper Overview 161

16.2 The Singular Directions 162

16.3 The First Parallelotope 163

16.4 The Second Parallelotope 165

16.5 The General Master Picture Theorem 166

16.6 Structure of the PET 167

16.7 The Case of Kites 168

PART 4. THE PLAID-GRAPH CORRESPONDENCE 171

Chapter 17. The Orbit Equivalence Theorem 173

17.1 Chapter Overview 173

17.2 The Prisms 174

17.3 The Map 175

17.4 Characterizing the Image 176

17.5 The Clean Partition 177

17.6 The Main Proof 178

17.7 Computational Techniques 180

17.8 The Calculations 182

Chapter 18. The Quasi-Isomorphism Theorem 185

18.1 Chapter Overview 185

18.2 The Canonical Affine Transformation 186

18.3 The Graph Grid 187

18.4 The Intertwining Lemma 188

18.5 The Correspondence of Orbits 189

18.6 The End of the Proof 192

18.7 The Projection Theorem 193

18.8 Renormalization Interpretation 194

Chapter 19. Geometry of the Graph Grid 195

19.1 Chapter Overview 195

19.2 The Grid Geometry Lemma 195

19.3 The Graph Reconstruction Lemma 197

Chapter 20. The Intertwining Lemma 199

20.1 Chapter Overview 199

20.2 A Resume of Transformations 200

20.3 Injectivity of the Map 201

20.4 Calculating a Single Point 201

20.5 Dissecting the Set 202

20.6 The Induction Step 204

20.7 Discussion 206

20.8 The Diagonal Case 206



CONTENTS ix

PART 5. THE DISTRIBUTION OF ORBITS 210

Chapter 21. Existence of Infinite Orbits 213

21.1 Chapter Overview 213
21.2 Definedness Criterion 214
21.3 Spacetime Diagrams Revisited 214
21.4 Taking a Limit 215
21.5 Associated Paths 216
21.6 Sketch of an Alternate Proof 217

Chapter 22. Existence of Many Large Orbits 219

22.1 Chapter Overview 219
22.2 Equidistribution Properties 220
22.3 The Ubiquity Lemma 221
22.4 The Rectangle Lemma 222
22.5 Proof of the Main Result 222
22.6 The Continued Fraction Length 223
22.7 The End of the Proof 225

Chapter 23. Infinite Orbits Revisited 227

23.1 Chapter Overview 227
23.2 The Approximating Sequence 227
23.3 The Copy Theorem 229
23.4 The End of the Proof 231
23.5 The Copy Lemma 232
23.6 Proof of the Box Theorem 234
23.7 Proof of the Copy Theorem 235
23.8 Hidden Symmetries 237

Chapter 24. Some Elementary Number Theory 239

24.1 Chapter Overview 239
24.2 A Structural Result 239
24.3 Unfinished Business 242

Chapter 25. The Weak and Strong Case 245

25.1 Chapter Overview 245
25.2 The First Two Statements 245
25.3 A Technical Lemma 246
25.4 The Mass and Capacity Sequences 247
25.5 Vertical Intersection Points 248
25.6 A Matching Criterion 249
25.7 Verifying the Matching Criterion 250

Chapter 26. The Core Case 253

26.1 Chapter Overview 253
26.2 The First Two Statements 254
26.3 Geometric and Arithmetic Alignment 254
26.4 Geometric Alignment 255



x CONTENTS

26.5 Alignment of the Capacity Sequences 256
26.6 A Technical Lemma 257
26.7 The Mass Sequences: Central Case 260
26.8 The Mass Sequences: Peripheral Case 262
26.9 The End of the Proof 263

Appendix References 265

Index 267



Preface

The purpose of this monograph is to study a construction, based on el-
ementary geometry and number theory, which produces for each rational
parameter (satisfying some parity conditions) a cube filled with polyhedral
surfaces. When the surfaces are sliced in one direction, the resulting curves
encode all the essential information about the so-called special outer bil-
liards orbits with respect to kites. When the surfaces are sliced in two other
directions, they encode all the essential information in a 1-parameter family
of the Truchet tile systems defined in [H].
I call the construction the plaid model. The reason for the name is that

plaid shirts involve a network of horizontal and vertical lines, but the un-
derlying weave in this shirt is slanting. The definition of the plaid model
involves these kinds of lines. Also, a very plaid-like pattern of lines appears
when one does calculations with the model. See Figure 3.3.
The plaid model grew out of my work in [S1], where I gave an affirmative

answer to the Moser-Neumann question about outer billiards: Does there
exist an outer billiards system with an unbounded orbit? The main result of
[S1] is that outer billiards has unbounded orbits relative to any irrational kite
– a bilaterally symmetric convex quadrilateral which is not affinely equivalent
to a lattice polygon. This monograph is in some ways a sequel to [S1], though
it can be read independently from [S1].
At least to me, the plaid model has a physical feel, with properties that

seem like conservation laws, interacting particles, spacetime diagrams, and
even an exclusion principle. (I don’t claim that the plaid model actually
models something in the physical world.) The plaid model also has an overtly
hierarchical structure, which causes it to exhibit properties such as self-
similarity and scaling limits. Finally, it has an interpretation in terms of a
higher dimensional polytope exchange transformation.
This monograph establishes some of the basic properties of the plaid

model: the connection to outer billiards and to Truchet tilings, the con-
nection to polytope exchange transformations, and some results about the
size and distribution of the polygons in the slices of the model. I hope that
this monograph brings out the beauty, depth, and surprise of the plaid model
and also suggests topics for further study.
A novel feature of the monograph is that it comes with a companion com-

puter program which illustrates all the main results and constructions. At
the end of the introduction I give instructions for downloading the program,
and throughout the monograph I make comments on how to use the program
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to see the relevant points discussed in the text.
I thank the National Science Foundation for their continued support, and

also the Simons Foundation for a Simons Sabbatical Fellowship during which
I worked on this monograph. I also thank Peter Doyle, Pat Hooper, John
Smillie, Sergei Tabachnikov, and Ren Yi for a number of conversations re-
lated to the plaid model.



Introduction

The plaid model grew out of my attempt in [S1] to understand outer billiards
on kites. A kite is a convex quadrilateral having a line of symmetry that is
also a diagonal. In particular, let KA be the kite with vertices

(−1, 0), (0, 1), (0,−1), (A, 0). (1)

K

p

p
p

0

2
1

p
3

(0,1)

(0,-1)

(-1,0) (A,0)

Figure 0.1: Outer billiards on the kite KA.

Figure 0.1 shows outer billiards on KA for A = 4/9. Given p0 ∈ R2−KA,
we define a map p0 → p1 by the rule that the line segment p0p1 is tangent
to KA at its midpoint, and KA is on the right-hand side as one walks along
the segment from p0 to p1. We then consider the orbit p0 → p1 → p2.... See
[S1] for an extensive discussion of outer billiards and a long bibliography.
We call an outer billiards orbit on KA special if it lies in the union

R× {±1,±3,±5, ...} (2)

of odd-integer horizontal lines. The orbit shown in Figure 0.1 is special. In
[S1] I proved the following result.

Theorem 0.1 When A is irrational, outer billiards on KA has an un-
bounded special orbit.

Theorem 0.1 is an affirmative answer to the Moser-Neumann problem, from
1960, which asks whether an outer billiards system can have an unbounded
orbit. The orbits in Theorem 0.1 are quite complicated. They return in-
finitely often to every neighborhood of the vertices of KA. I called such
orbits erratic.
The key step in understanding the special orbits on KA is to associate an

embedded lattice polygonal path to each special orbit. This path encodes
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the symbolic dynamics associated to the second return map to the union
R × {−1, 1} of lines. These lines are partially shown in Figure 0.1. When
A = p/q is rational, it is possible to consider the union of all these lattice
paths at once. I call this union the arithmetic graph and denote it by ΓA.
When pq is even, every component of ΓA is an embedded lattice polygon.
Part 3 of the monograph has a detailed description.
One of the key results in [S1] is the Hexagrid Theorem. This result gives

large-scale structural information about ΓA. Basically, it says that ΓA must
intersect certain lines in certain places, and must avoid certain lines in certain
places. Some years later I discovered that the Hexagrid Theorem is just the
first in a series of results which allowed this large-scale structure to extend
down to increasingly fine scales. When all these results are assembled into
one package, the result is the plaid model.
We will formally define the plaid model in the next chapter. The plaid

model is a rule for assigning a square tiling of the plane to each parameter
A = p/q ∈ (0, 1) with pq even. We call such parameters even rational .
There is a similar construction when pq is odd, but the details are sufficiently
different that we do not treat it here. Here we give a rough feel for the plaid
model. Based on the parameter A we assign even integers to the lines of
the usual infinite grid of integer-spaced vertical and horizontal lines. We
call these integers capacities . At the same time, we define a second grid of
slanting lines and we assign odd integers to these lines. We call these odd
integersmasses . We then place a light point at every intersection of the form
σ ∩ τ where

• σ is a slanting line.

• τ is a horizontal or vertical line.

• The mass of σ has the same sign as the capacity of τ and smaller
absolute value.

Figure 0.2 illustrates the rule on a made-up example. The pictures in the
next chapter show the real rules.

+2

-6

0

+4

-++ 0

-5+3

+1

Q Q

eQ

Figure 0.2: A caricature of the plaid model.

The horizontal and vertical lines divide the plane into unit integer squares.
It turns out that each such square Q has either 0 or 2 edges containing an
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odd number of light points. In the former case we associate the empty set
to Q. In the latter case, we associate to Q a directed edge eQ which joins
the centers of the two sides having an odd number of light points. (We
will explain later how the edge direction is determined.) Figure 0.2 shows a
made-up example of the assignment Q→ eQ.

The edges fit together to form an infinite family PLA of polygons in the
plane which we call the plaid polygons . Again A = p/q ∈ (0, 1) and pq is
even. The lines of capacity 0 divide the plane into larger squares of side
length p + q, which we call blocks . No polygon crosses the boundaries of
these blocks. Figure 0.3 shows two of the blocks associated to PL4/9. We
do not show the orientations of the edges but they are consistently oriented
around each polygon, one way or the other.

Figure 0.3: Two blocks of PL4/9.

Here is a concrete connection between the plaid model and outer billiards.

Theorem 0.2 (Projection) Let A ∈ (0, 1) be an even rational parameter.
Modulo the vertical translations which preserve PLA, there is a bijection
between the polygons in PLA that lie in the right half-plane and the special
outer billiards orbits relative to the kite KA. Moreover, the plaid polygon π
may be (monotonically) parameterized as π = {(xt, yt)| t ∈ [0, N ]} in such a
way that the point 2xk lies within 3 units of the kth point of

Sπ = Oπ ∩ (R+ × {−1, 1})
for all k ∈ {1, ..., N}. Here Oπ is the special orbit associated to π and N is
the number of points Sπ.

In other words, if you put your finger on one of the polygons π of PLA

(that lies to the right of the Y -axis) and trace around it at the correct
speed, the horizontal motion of your hand will track the first return map
of the corresponding special outer billiards orbit up to a factor of 2 and an
error of at most 3 units. Note, however, that π typically does not have N
vertices and xk need not be a vertex of π.
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The Projection Theorem is a consequence of the Quasi-Isomorphism The-
orem below, which gives a more precise result about the connection between
PLA and ΓA. The Quasi-Isomorphism Theorem is the multiscale extension
of the Hexagrid Theorem from [S1].

The plaid model has a three-dimensional interpretation which reveals con-
nections to Pat Hooper’s Truchet tile system [H]. When we forget the ori-
entations on the polygons, it turns out that there are p + q distinct blocks
modulo translation symmetry of the tiling. (When we remember the ori-
entations there are twice as many.) We will take p + q such blocks, one
representative from each translation equivalence class, and stack them on
top of each other in a special order. We will then canonically interpolate
between the polygons at consecutive heights in the stack to form polyhedral
surfaces. The result is a cubical array of (p+ q)3 unit integer cubes that is
filled with pairwise disjoint embedded polyhedral surfaces.
By construction, the slices of the 3D polyhedral surfaces at integer heights

in the XY direction are the plaid model polygons discussed above. When
the surfaces in the plaid model are sliced in the other coordinate directions,
namely the XZ and Y Z directions, what emerges (at least for some slices) is
a pattern of curves that is combinatorially isomorphic to the curves produced
by Pat Hooper’s system. Figure 0.4 gives an example. The plaid parameter
is 4/9 and the Truchet parameter is α = β = 3/8. Theorem 7.2, the Truchet
Comparison Theorem, establishes a combinatorial isomorphism like this for
all even rational parameters. Thus, the plaid model is a kind of marriage
between outer billiards on kites and the Truchet tile system.

Figure 0.4: A YZ slice for 4/9 compared to a Truchet tile.

Another curious connection between the plaid model and the Truchet tile
system is that the left edge of the figure on the left side of Figure 0.3, which
shows the union of plaid polygons in a certain block for the parameter 4/9,
exactly matches the left edge of the left side of Figure 0.4, which shows a
special Y Z slice for the same parameter 4/9. This seems to happen for every
parameter. We will give several plausible explanations in §23.8, but we will
stop short of giving a proof.
The monograph has 5 parts. The rest of this introduction is a detailed

description of these parts.
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0.1 PART 1: THE PLAID MODEL AND ITS PROPERTIES

In Part 1, I will define the plaid model and study its properties. One technical
claim, Theorem 1.4, will not be apparent from any of the definitions. This
result basically says that each unit integer square has 0 or 2 sides containing
exactly one light point. I will assume Theorem 1.4 in Part 1 and will deduce
it in Part 2 as an immediate corollary of Theorem 8.2.
After studying the basic properties of the model, I will explain how one can

use the hierarchical nature to get information about the large-scale structure
of the tilings in an algorithmic way. In particular, I will give a heuristic
explanation of why the model exhibits coarse self-similarity and rescaling
phenomena.
After giving the basic definitions, I will explain how to assemble the two-

dimensional blocks into embedded polyhedral surfaces. Finally, I will estab-
lish the connection between the XZ and Y Z slices of these surfaces and the
Truchet tilings. Again, the main result is the Truchet Comparison Theorem
from §7.3.
Part 1 is rather long and involved, but most of the material is not needed

for Parts 2-4. The (dis)interested reader can skip to Part 2 after reading §1,
§2.2, §2.3, §4.2, §4.3, §4.4, and §5.2.

0.2 PART 2: THE PLAID PET

Let Π denote the set of unit integer squares. For each parameter A = p/q,
the union of plaid polygons PLA defines a dynamical system on Π. We
simply follow the directed edge in each tile and move to the tile into which
the edge points. When the tile is empty, we do not move at all. We call
this dynamical system the PLA-dynamics . This system is similar to the
curve-following dynamics defined in [H].
In Part 2, I will connect this dynamical system to higher dimensional

polytope exchange transformations. The parity claim from Part 1 will follow
from this. Let X be a flat torus. A polytope exchange transformation (or
PET ) on X is given by a partition of X into polytopes

X =
⋃
Ai =

⋃
Bi, (3)

so that there are translations Ti such that Ti(Ai) = Bi for all i. Such a
system gives rise to a global and almost everywhere defined map T : X → X
defined so that T |Ai = Ti. This map is not defined on the boundaries of
the polytopes of the partition. However, it is an invertible piecewise defined
translation.
Now we describe what we mean by a fibered integral affine PET . Let

X̂ = R3 × (0, 1).

We will work with a quotient of the form X = X̂/Λ, where Λ is a discrete

group of affine transformations acting on X̂. The quotient X is topologically
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the product of a 3-torus and (0, 1). The group Λ preserves each sliceR3×{P}
and acts there as a group of translations. The quotient XP = (R3×{P})/Λ
is a flat torus whose isometry type depends on P .
In a fibered integral affine PET, we have the same partitions as above,

except that each map Ti is a locally affine map, and we have the following
additional features:

• The linear part of Ti is independent of i.

• Ti preserves each slice XP .

• The restriction of each Ti to XP is a translation.

• All vertices of all lifts of all polytopes in the partitions have integer
coordinates.

Theorem 0.3 (Plaid Master Picture) There is a 4-dimensional fibered
integral affine PET X with the following property: When A is even rational
and P = 2A/(1 + A), there is a locally affine map ΦA : Π → XP which
conjugates the PLA-dynamics on Π to the PET dynamics on XP .

Remarks: (i) Since Π is a discrete set of points, we have to say what we
mean by a locally affine map from Π into XP . We mean a restriction of a
planar affine map to Π.
(ii) The Plaid Master Picture Theorem says that the PLA-dynamics encodes
the symbolic dynamics associated to a certain 3-dimensional PET,XP . Here
P = 2A/(1 +A). It might seem a bit funny to use the parameter P instead
of A but this change of coordinates turns out to be useful and natural.
(iii) The Plaid Master Picture Theorem also says that these individual slices
{XP } fit together into a 4-dimensional fibered integral affine PET. This
shows a kind of coherence between the plaid model at one parameter and the
plaid model at a different parameter, even though the plaid model polygons
themselves vary wildly from parameter to parameter.

0.3 PART 3: THE GRAPH PET

In Part 3 we do for the arithmetic graph what we did for the plaid polygons
in Part 2. When A = p/q is rational, the arithmetic graph ΓA defines a
dynamical system on Z2. We just move from vertex to vertex according to
the oriented polygons. We call this system the ΓA-dynamics . Here is our
main result.

Theorem 0.4 (Graph Master Picture) There is a 4-dimensional fibered
integral affine PET Y with the following property. When A = (0, 1) is ra-
tional, there is a locally affine map Ψ′A : Z2 → YA which conjugates the
ΓA-dynamics on Z2 to the PET dynamics on YA.
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Remarks: (i) In this result, A need not be even rational.
(ii) We will see that there is a change of coordinates that conjugates Ψ′A to
a map ΨA with a nicer formula. That is the reason for our notation.

I will explain Theorem 0.4 in two ways. First, I will deduce Theorem 0.4
from [S1, Master Picture Theorem], which is presented here (with a few
cosmetic changes) as Theorem 13.2.
Second, I will follow [S2] and my unpublished preprint [S3], and prove

a very general version of Theorem 0.4, namely Theorem 16.9, which works
for any polygon without parallel sides. (The no-parallel-sides condition is
not really essential, but it makes the argument easier.) Since Theorem 0.4
already follows from Theorem 13.2, I will not give a formal proof that the
PET produced by Theorem 16.9, in the case of special orbits on kites, is
identical to the PET from Theorem 0.4. However, in §16.7 I will explain
precisely how to match up the two PETs, and I will explain how to see a
computer demonstration of the match-up.
I’d like to mention that I had many helpful and interesting discussions

with John Smillie about this general topic, and he has a different way to view
these kinds of compactifications in terms of Dehn-invariant like constructions
involving the tensor product.

0.4 PART 4: PLAID-GRAPH CORRESPONDENCE

In this part of the monograph we relate the plaid model to outer billiards.
Our next result says that the combinatorially defined plaid model gives a
uniformly accurate model of the dynamically defined outer billiards special
orbits. When the time comes, we will deduce the Projection Theorem above
as a consequence.

Theorem 0.5 (Quasi-Isomorphism) For each even rational parameter
A, there exists an affine transformation TA : R2 → R2, and a bijection
between the components of TA(ΓA) and the components of PLA with the fol-
lowing property. If γ ∈ TA(ΓA) and π ∈ PLA are corresponding components
then there is a homeomorphism h : γ → π which moves points by no more
than 2 units.

Figure 0.5 below shows the Quasi-Isomorphism Theorem in action for the
parameter A = 3/8. The grey polygons are the components of TA(ΓA) in
[0, 11]2 and the black polygons are components of PLA in [0, 11]2.
One thing that is surprising about the Quasi-Isomorphism Theorem is

that the grid Π of half-integer points associated to the plaid model sits in
a funny way with respect to the grid GA = TA(Z

2) which contains the
vertices of TA(ΓA). The grid GA has co-area 1+A whereas Π has co-area 1.
When A is irrational, these grids are incommensurable. The homeomorphism
from the Quasi-Isomorphism Theorem does not map vertices to vertices but
nonetheless the two sets of polygons are close to each other.
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Figure 0.5: The Quasi-Isomorphism Theorem in action.

The Quasi-Isomorphism Theorem is a consequence of an orbit equivalence
between our two PETs. Call a subset Z ⊂ X dynamically large if every
nontrivial orbit on X intersects Z.

Theorem 0.6 (Orbit Equivalence) There is a dynamically large subset
Z ⊂ X and a map Ω : Z → Y with the following property. For any ζ ∈ Z
with a well-defined orbit the following three statements hold:

1. There is some k = k(ζ) ∈ {1, 2} such that

Ω ◦ F k
X(ζ) = FY ◦ Ω(ζ). (4)

2. If FX(ζ) ∈ Z then there is some 	 = 	(ζ) ∈ {0, 1} such that

Ω ◦ FX(ζ) = F �
Y ◦ Ω(ζ). (5)

3. ζ is a fixed point of FX if and only if Ω(ζ) is a fixed point of FY .

The set Z is a union of 2 open convex integral prism quotients and the
restriction of Ω to each one is an integral projective transformation that
maps the slice ZP into the slice YA, where P = 2A/(1+A). Finally, Ω is at
most 2-to-1 and Ω(Z) is open dense in Y and contains all the well-defined
FY -orbits.

A prism quotient is the quotient of a set of the formH×R×[0, 1] under the
map (x, y, z, P ) → (x, y, z + 2, P ), where H is a convex polygon. The prism
quotient is convex integral if H has integer vertices. The Orbit Equivalence
Theorem is saying roughly that the graph PET is a renormalization of the
plaid PET. We will explain this point of view in §18.8.
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0.5 PART 5: THE DISTRIBUTION OF ORBITS

Part 5 concerns the distribution and geometry of orbits in the plaid model.
We will explain how to assign a polygonal path π to an orbit O of the

plaid PET which lies in a slice XA where A is not even rational. The path
π is unique up to translation. We call π the plaid path associated to O.
One could view π as the geometric (i.e., Hausdorff topology) limit of plaid
polygons associated to a sequence of orbits {On} in even rational slices.

We say that a path π in the plane is thin if it is contained in an infinite
strip. Otherwise we say that π is fat . For instance, a parabola is fat. The
bulk of Part 5 is devoted to proving the following result.

Theorem 0.7 For every irrational parameter A, the slice XA of the plaid
PET has an infinite orbit whose associated plaid path π is fat. More precisely,
the projection of π onto the X-axis is the set [1/2,∞) and the union of
vertices of π having first coordinate 1/2 contains a large-scale Cantor set.

By a large-scale Cantor set , we mean a set of the form

{1/2} ×
⋃
β

(∑
j

βjYj

)
. (6)

The union takes place over all finite binary sequences β, the sequence {Yj}
is unbounded, and the ordering on the points in the union coincides with
the lexicographic ordering (0, 1, 10, 11, 100...) on the finite binary strings.

Figure 0.6: Cantor-set like properties of the left edge.

Figure 0.6 shows the picture of a particular plaid polygon for the parameter
169/408. The square here has side length 577. The extra lines (making a tic-
tac-toe pattern) have significance we will explain in the proof of Theorem 3.1.
One can see a kind of finite version of a large-scale Cantor set going up along
the left edge of the figure. The curve π from Theorem 0.7 is a geometric
limit of these finite curves taken with respect to a continued-fraction-like
approximating sequence of rational numbers.
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Theorem 0.7 combines with the Projection Theorem to give another proof
of Theorem 0.1. At the same time, one can extract Theorem 0.7 from the
main results in [S1] and from the Quasi-Isomorphism Theorem. See §21.6.
The ideas underlying our proof here are similar to what we do in [S1].
However, by going through the details here we can give a proof that is
independent from [S1].
We will combine the proof of Theorem 0.7 with some results we prove in

Part 1 to get some additional information about the distribution of orbits
that goes beyond what we could do in [S1]. Say that a polygon is N -fat if
it is not contained in a strip of width N .

Theorem 0.8 Let {pk/qk} ⊂ (0, 1) be any sequence of even rational num-
bers with a limit that is neither rational nor quadratic irrational. Let {Bk}
be any sequence of associated blocks. Let N be any fixed integer. Then the
number of N -fat plaid polygons in Bk is greater than N provided that k is
sufficiently large.

Remark: The restriction that the limit not be quadratic irrational is prob-
ably just an artifact of the proof rather than a necessary hypothesis.

The Projection Theorem lets us translate Theorem 0.8 into the language
of outer billiards. Say that the essential diameter of a special outer billiards
orbit on KA is the diameter of its intersection with the set

[0,∞)× {−1, 1}.
A special orbit of diameter D essentially fills out an octagon-shaped “annu-
lus” of width D.

Corollary 0.9 Let {pk/qk} ⊂ (0, 1) be any sequence of even rational num-
bers with a limit that is neither rational nor quadratic irrational. Let ωk =
pk + qk. Let {Ik} be any sequence of intervals of the form [nωk, nωk + ωk].
Let N be any fixed integer. Then there are more than N distinct orbits in
the interval Ik × {1} which have essential diameter at least N provided that
k is sufficiently large.

0.6 COMPANION PROGRAM

The monograph comes with several companion computer programs which
illustrate most of the results. You can download these from the following
location.

https://press.princeton.edu/titles/13339.html

At least in the short run, the same programs can also be found at the fol-
lowing location.

https://press.princeton.edu/titles/13339.html


INTRODUCTION 11

http://www.math.brown.edu/∼res/Java/PLAID.tar

Once you download the tarred directory, you untar it. The unpacked files
live in a directory called Plaid . This directory has several sub-directories
and a README file. The README file has further instructions. One of
the programs can also be run directly on the web. At least in the short run,
the web version can also be accessed from the following location.

http://www.math.brown.edu/∼res/Javascript/Plaid/Main.html

This web program gives a quick view of the 3D plaid model and the plaid
surfaces.
I discovered all the results in this monograph using the program, and

I have extensively checked my proofs against the output of the program.
While this monograph mostly stands on its own, the reader will get much
more out of it by using the program while reading. I would say that the pro-
gram relates to the material here the way a cooked meal relates to a recipe.
Throughout the text, I have indicated computer tie-ins which give instruc-
tions for operating the computer program so that it illustrates the relevant
phenomena. I consider these computer tie-ins to be a vital component of the
monograph.

http://www.math.brown.edu/~res/Java/PLAID.tar
http://www.math.brown.edu/~res/Javascript/Plaid/Main.html




Part 1. The Plaid Model





Chapter One

Definition of the Plaid Model

1.1 CHAPTER OVERVIEW

The goal of this chapter is to define the plaid model. The input to the plaid
model is a rational A = p/q ∈ (0, 1) with pq even. The output is the union
PLA of plaid polygons. Our pictures show the case A = 2/5 in detail.

In §1.2, we define some auxiliary quantities associated to the parameter.
In §1.3 we define 6 families of parallel lines. The first two families are the
horizontal and vertical lines comprising the boundary of the integer square
grid, and we call these grid lines . The remaining 4 families we call slanting
lines . In §1.4, we explain the assignment of masses and capacities to the
lines. In §1.5 we define the concept of a light point . The light points are
certain intersections between slanting lines and grid lines. We will actually
give two different definitions and prove that they are equivalent. The two
definitions highlight different features of the model. In §1.6 we assign unit
vectors to the light particles. Finally, in §1.7 we put everything together and
give the definition of PLA.

1.2 BASIC QUANTITIES AND NOTATION

We fix an even rational p/q as above. Here are the main auxiliary quantities
associated to these parameters.

ω = p+ q, P =
2p

ω
, Q =

2q

ω
. (1.1)

Note that P +Q = 2 and P/Q = p/q.
We define τ̂ ∈ (0, ω) and τ ∈ (0, ω/2) to be such that

2pτ̂ ≡ 1 mod ω, τ = min(τ̂ , ω − τ̂ ). (1.2)

Congruence Notation: Given some integer N and some integer a, we
define (a)2N to be the representative of a mod 2N in (−N,N). If a ≡ N
mod 2N we define a2N = ∗N , a symbol which denotes the set {N,−N}.

1.3 SIX FAMILIES OF LINES

We consider 6 infinite families of lines.
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• H consists of horizontal lines having integer y-coordinate.

• V consists of vertical lines having integer x-coordinate.

• P± is the set of lines of slope ±P having integer Y -intercept.

• Q± is the set of lines of slope ±Q having integer Y -intercept.

We call the lines in H and V the grid lines , and we call the other lines the
slanting lines . Until §1.5 we only use the 4 families V , H, P− and Q−. We
set P = P− and Q = Q− in order to simplify the notation. Figure 1.1 shows
these lines inside [0, 7]2 for p/q = 2/5. In this case, P = 4/7 and Q = 10/7.

Figure 1.1: The 4 line families for p/q = 2/5.

Fixing the parameter p/q, we define a block to be the image of a unit
integer square under the dilation (x, y) → ω(x, y). For instance, [0, ω]2 is
a block. The pattern of lines we have defined is precisely the same in each
block.
Say that a horizontal block segment is the intersection of a block with a

horizontal grid line. Note that there are two slanting lines meeting at the
endpoints and the midpoint of each horizontal block segment. We call these
points double points .

Computer Tie-In: Open up the main program. When the main program
is running, open up the planar window . On the plaid model control panel,
turn off all the features except grid , (+) slant lines and (-)slant lines . This
will show you the 6 families of lines. You can choose other parameters either
by pressing the random button at the top right or else by clicking on the blue
box at the top right and then entering a fraction with the keyboard. (If you
open the document window and click on the question box in the top right
corner, you can learn more about entering parameters.) Click the left/right
mouse buttons or (z,c) arrow keys to zoom into the picture in the planar
window .


