

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Julie C. Meloni

SamsTeachYourself

HTML, CSS
and JavaScript

All
inOne

Sams Teach Yourself HTML, CSS, and JavaScript All in One

Copyright © 2012 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33332-3
ISBN-10: 0-672-33332-5

Library of Congress Cataloging-in-Publication data is on file.

First Printing November 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Acquisitions Editor

Mark Taber

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Project Editor

Seth Kerney

Copy Editor

Mike Henry

Indexer

Ken Johnson

Proofreader

Jovana San Nicolas-

Shirley

Technical Editor

Phil Ballard

Publishing Coordinator

Cindy Teeters

Book Designer

Gary Adair

Compositor

Trina Wurst

Contents at a Glance

PART I: Getting Started on the Web
CHAPTER 1: Publishing Web Content
CHAPTER 2: Understanding HTML and XHTML

Connections
CHAPTER 3: Understanding Cascading Style

Sheets
CHAPTER 4: Understanding JavaScript

PART II: Building Blocks of Practical
Web Design

CHAPTER 5: Working with Fonts, Text Blocks, and
Lists

CHAPTER 6: Using Tables to Display Information
CHAPTER 7: Using External and Internal Links
CHAPTER 8: Working with Colors, Images, and

Multimedia

PART III: Advanced Web Page Design
with CSS

CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating

CHAPTER 10: Understanding the CSS Box Model
and Positioning

CHAPTER 11: Using CSS to Do More with Lists,
Text, and Navigation

CHAPTER 12: Creating Fixed or Liquid Layouts

PART IV: Getting Started with Dynamic
Web Sites

CHAPTER 13: Understanding Dynamic Websites
CHAPTER 14: Getting Started with JavaScript

Programming
CHAPTER 15: Working with the Document Object

Model (DOM)
CHAPTER 16: Using JavaScript Variables, Strings,

and Arrays
CHAPTER 17: Using JavaScript Functions and

Objects
CHAPTER 18: Controlling Flow with Conditions

and Loops
CHAPTER 19: Responding to Events
CHAPTER 20: Using Windows and Frames

PART V: Advanced JavaScript
Programming

CHAPTER 21: Using Unobtrusive JavaScript
CHAPTER 22: Using Third-Party Libraries
CHAPTER 23: Greasemonkey: Enhancing the Web

with JavaScript
CHAPTER 24: AJAX: Remote Scripting

PART VI: Advanced Website
Functionality and Management

CHAPTER 25: Creating Print-Friendly Web Pages
CHAPTER 26: Working with Web-Based Forms
CHAPTER 27: Organizing and Managing a

Website
CHAPTER 28: Helping People Find Your Web
Pages
Index

Table of Contents
CHAPTER 1: Publishing Web Content 1
A Brief History of HTML and the World
Wide Web . 1
Creating Web Content . 2
Understanding Web Content Delivery 3
Selecting a Web Hosting Provider . 6
Testing with Multiple Web Browsers. 8
Creating a Sample File . 9
Using FTP to Transfer Files . 10
Distributing Content Without a Web Server 18
Tips for Testing Web Content . 19

CHAPTER 2: Understanding HTML and
XHTML Connections 25

Getting Prepared . 25
Getting Started with a Simple Web Page 26
HTML Tags Every XHTML Web Page Must Have . . 29
Organizing a Page with Paragraphs and Line
Breaks . 31
Organizing Your Content with Headings 34
Validating Your Web Content . 36
The Scoop on HTML, XML, XHTML, and HTML5 . . 38

CHAPTER 3: Understanding Cascading Style
Sheets 45

How CSS Works . 46
A Basic Style Sheet . 47
A CSS Style Primer . 52
Using Style Classes . 57
Using Style IDs. 59
Internal Style Sheets and Inline Styles 59

CHAPTER 4: Understanding JavaScript 65
Learning Web Scripting Basics . 65
How JavaScript Fits into a Web Page 67
Exploring JavaScript’s Capabilities 70
Displaying Time with JavaScript. 71
Beginning the Script . 71
Adding JavaScript Statements . 72
Creating Output . 73
Adding the Script to a Web Page . 73
Testing the Script . 74

CHAPTER 5: Working with Fonts, Text Blocks,
and Lists 81

Boldface, Italics, and Special Text Formatting 82
Tweaking the Font . 85
Working with Special Characters . 89
Aligning Text on a Page . 92
The Three Types of HTML Lists . 95
Placing Lists Within Lists . 97

CHAPTER 6: Using Tables to Display
Information 107

Creating a Simple Table . 107
Controlling Table Sizes. 110
Alignment and Spanning Within Tables 113
Page Layout with Tables . 116

CHAPTER 7: Using External and Internal
Links 123

Using Web Addresses . 123
Linking Within a Page Using Anchors 126
Linking Between Your Own Web Content 129
Linking to External Web Content 131
Linking to an Email Address . 132
Opening a Link in a New Browser Window 134
Using CSS to Style Hyperlinks . 134

CHAPTER 8: Working with Colors,
Images, and Multimedia 141

Best Practices for Choosing Colors 141
Understanding Web Colors . 143
Using Hexadecimal Values for Colors 145
Using CSS to Set Background, Text, and
Border Colors . 146
Choosing Graphics Software . 148
The Least You Need to Know About Graphics . . 149
Preparing Photographic Images . 150
Creating Banners and Buttons . 155
Reducing the Number of Colors in an Image. . . . 157
Working with Transparent Images 158
Creating Tiled Backgrounds . 159
Creating Animated Web Graphics 160
Placing Images on a Web Page . 161
Describing Images with Text . 163
Specifying Image Height and Width 165
Aligning Images . 165

Turning Images into Links . 169
Using Background Images . 171
Using Imagemaps . 173
Integrating Multimedia into Your Website 178

CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating 191

Using Margins . 192
Padding Elements . 199
Keeping Everything Aligned. 203
Understanding the Float Property 204

CHAPTER 10: Understanding the CSS Box
Model and Positioning 209

The CSS Box Model . 209
The Whole Scoop on Positioning 213
Controlling the Way Things Stack Up 217
Managing the Flow of Text . 220

CHAPTER 11: Using CSS to Do More with
Lists, Text, and Navigation 225

HTML List Refresher . 226
How the CSS Box Model Affects Lists 226
Placing List Item Indicators . 229
Creating Image Maps with List Items and
CSS . 231
How Navigation Lists Differ from Regular
Lists . 235
Creating Vertical Navigation with CSS 236
Creating Horizontal Navigation with CSS 245

CHAPTER 12: Creating Fixed or Liquid
Layouts 253

Understanding Fixed Layouts . 254
Understanding Liquid Layouts . 255
Creating a Fixed/Liquid Hybrid Layout 258

CHAPTER 13: Understanding Dynamic
Websites 273

Understanding the Different Types of Scripting273
Including JavaScript in HTML . 274
Displaying Random Content . 276
Understanding the Document Object Model . . 280
Changing Images Based on User Interaction . . 281

CHAPTER 14: Getting Started with JavaScript
Programming 287

Basic Concepts . 287
JavaScript Syntax Rules . 291
Using Comments . 293
Best Practices for JavaScript . 293

CHAPTER 15: Working with the Document
Object Model (DOM) 299

Understanding the Document Object
Model (DOM) . 299
Using window Objects . 300
Working with the document Object. 300
Accessing Browser History . 303
Working with the location Object 305
More About the DOM Structure . 306
Working with DOM Nodes . 309
Creating Positionable Elements (Layers) 311
Hiding and Showing Objects . 316
Modifying Text Within a Page . 317
Adding Text to a Page . 319

CHAPTER 16: Using JavaScript Variables,
Strings, and Arrays 325

Using Variables . 325
Understanding Expressions and Operators 328
Data Types in JavaScript . 330
Converting Between Data Types 331
Using String Objects . 332
Working with Substrings. 335
Using Numeric Arrays . 337
Using String Arrays . 338
Sorting a Numeric Array . 340

CHAPTER 17: Using JavaScript Functions
and Objects 347

Using Functions . 347
Introducing Objects . 352
Using Objects to Simplify Scripting 354
Extending Built-in Objects . 356
Using the Math Object . 360
Working with Math Functions . 361
Using the with Keyword . 363
Working with Dates . 364

CHAPTER 18: Controlling Flow with
Conditions and Loops 369

The if Statement. 369
Using Shorthand Conditional Expressions. 372
Testing Multiple Conditions with if and else . . 373
Using Multiple Conditions with switch 375
Using for Loops . 377
Using while Loops . 379
Using do...while Loops . 380
Working with Loops . 380
Looping Through Object Properties 382

CHAPTER 19: Responding to Events 389
Understanding Event Handlers . 389
Using Mouse Events . 394
Using Keyboard Events . 397
Using the onLoad and onUnload Events 399
Using onclick to Change <div> Appearance. . . . 400

CHAPTER 20: Using Windows and Frames 409
Controlling Windows with Objects 409
Moving and Resizing Windows . 413
Using Timeouts . 414
Displaying Dialog Boxes . 417
Working with Frames . 418
Building a Frameset . 420
Linking Between Frames and Windows 423
Using Inline Frames . 426

CHAPTER 21: Using Unobtrusive
JavaScript 433

Scripting Best Practices . 433
Reading Browser Information . 440
Cross-Browser Scripting . 443
Supporting Non-JavaScript Browsers 445

CHAPTER 22: Using Third-Party Libraries 453
Using Third-Party Libraries . 453
Other Libraries . 456

CHAPTER 23: Greasemonkey: Enhancing
the Web with JavaScript 463

Introducing Greasemonkey . 463
Working with User Scripts . 466
Creating Your Own User Scripts. 468

CHAPTER 24: AJAX: Remote Scripting 479
Introducing AJAX . 479
Using XMLHttpRequest . 483
Creating a Simple AJAX Library . 485
Creating an AJAX Quiz Using the Library 487
Debugging AJAX Applications . 491

CHAPTER 25: Creating Print-Friendly
Web Pages 499

What Makes a Page Print-Friendly? 500
Applying a Media-Specific Style Sheet 503
Designing a Style Sheet for Print Pages 505
Viewing a Web Page in Print Preview 508

CHAPTER 26: Working with Web-Based
Forms 513

How HTML Forms Work . 513
Creating a Form . 514
Accepting Text Input . 519
Naming Each Piece of Form Data 519
Exploring Form Input Controls . 521
Submitting Form Data . 527
Accessing Form Elements with JavaScript 528
Displaying Data from a Form . 528
Sending Form Results by Email . 530

CHAPTER 27: Organizing and Managing
a Website 537

When One Page Is Enough . 538
Organizing a Simple Site . 540
Organizing a Larger Site . 543
Writing Maintainable Code . 546
Thinking About Version Control . 548

CHAPTER 28: Helping People Find Your
Web Pages 553

Publicizing Your Website. 553
Listing Your Pages with the Major
Search Sites . 555
Providing Hints for Search Engines 556
Additional Tips for Search Engine
Optimization. 562

INDEX 567

About the Author
Julie C. Meloni is the Lead Technologist and Architect in the Online Library Environment at the
University of Virginia. Before coming to the library, she worked for more than 15 years in web appli-
cation development for various corporations large and small in Silicon Valley. She has written sev-
eral books and articles on Web-based programming languages and database topics, including the
bestselling Sams Teach Yourself PHP, MySQL, and Apache All in One.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we’re doing right, what we could do better, what areas you’d like to see
us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and editors
who worked on the book.

Email: feedback@samspublishing

Mail: Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Before learning the intricacies of HTML (Hypertext Markup Language),
CSS (Cascading Style Sheets), and JavaScript, it is important that you gain
a solid understanding of the technologies that help transform these plain-
text files to the rich multimedia displays you see on your computer or
handheld device when browsing the World Wide Web. For example, a file
containing markup and client-side code HTML and CSS is useless without
a web browser to view it, and no one besides yourself will see your content
unless a web server is involved. Web servers make your content available
to others who, in turn, use their web browsers to navigate to an address
and wait for the server to send information to them. You will be intimately
involved in this publishing process because you must create files and then
put them on a server to make them available in the first place, and you
must ensure that your content will appear to the end user as you intended.

A Brief History of HTML and the
World Wide Web
Once upon a time, back when there weren’t any footprints on the moon,
some farsighted folks decided to see whether they could connect several
major computer networks together. I’ll spare you the names and stories
(there are plenty of both), but the eventual result was the “mother of all
networks,” which we call the Internet.

Until 1990, accessing information through the Internet was a rather techni-
cal affair. It was so hard, in fact, that even Ph.D.-holding physicists were
often frustrated when trying to swap data. One such physicist, the now-
famous (and knighted) Sir Tim Berners-Lee, cooked up a way to easily
cross-reference text on the Internet through hypertext links.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. A very brief history of the
World Wide Web

. What is meant by the term
web page, and why that
term doesn’t always reflect
all the content involved

. How content gets from your
personal computer to some-
one else’s web browser

. How to select a web host-
ing provider

. How different web
browsers and device types
can affect your content

. How to transfer files to
your web server using FTP

. Where files should be
placed on a web server

. How to distribute web con-
tent without a web server

. How to use other publish-
ing methods such as blogs

. Tips for testing the appear-
ance and functionality of
web content.

CHAPTER 1
Publishing Web Content

2 CHAPTER 1 Publishing Web Content

This wasn’t a new idea, but his simple HTML managed to thrive while
more ambitious hypertext projects floundered. Hypertext originally meant
text stored in electronic form with cross-reference links between pages. It is
now a broader term that refers to just about any object (text, images, files,
and so on) that can be linked to other objects. Hypertext Markup Language is
a language for describing how text, graphics, and files containing other
information are organized and linked together.

By 1993, only 100 or so computers throughout the world were equipped to
serve up HTML pages. Those interlinked pages were dubbed the World
Wide Web (WWW), and several web browser programs had been written to
allow people to view web pages. Because of the growing popularity of the
Web, a few programmers soon wrote web browsers that could view graph-
ical images along with text. From that point forward, the continued devel-
opment of web browser software and the standardization of the HTML—
and XHTML—languages has lead us to the world we live in today, one in
which more than 110 million web servers answer requests for more than 25
billion text and multimedia files.

These few paragraphs really are a brief history of what has been a remark-
able period. Today’s college freshmen have never known a time in which
the Web didn’t exist, and the idea of always-on information and ubiquitous
computing will shape all aspects of our lives moving forward. Instead of
seeing web content creation and management as a set of skills possessed
only by a few technically oriented folks (okay, call them geeks if you will),
by the end of this book, you will see that these are skills that anyone can
master, regardless of inherent geekiness.

Creating Web Content
You might have noticed the use of the term web content rather than web
pages—that was intentional. Although we talk of “visiting a web page,”
what we really mean is something like “looking at all the text and the
images at one address on our computer.” The text that we read, and the
images that we see, are rendered by our web browsers, which are given
certain instructions found in individual files.

Those files contain text that is marked up, or surrounded by, HTML codes
that tell the browser how to display the text—as a heading, as a paragraph,
in a red font, and so on. Some HTML markup tells the browser to display

NOTE

For more information about the
history of the World Wide Web,
see the Wikipedia article on
this topic: http://en.wikipedia.
org/wiki/History_of_the_Web.

http://en.wikipedia.org/wiki/History_of_the_Web
http://en.wikipedia.org/wiki/History_of_the_Web

Understanding Web Content Delivery 3

an image or video file rather than plain text, which brings me back to the
point: Different types of content are sent to your web browser, so simply
saying web page doesn’t begin to cover it. Here we use the term web content
instead, to cover the full range of text, image, audio, video, and other
media found online.

In later chapters, you will learn the basics of linking to or creating the vari-
ous types of multimedia web content found in websites. All you need to
remember at this point is that you are in control of the content a user sees
when visiting your website. Beginning with the file that contains text to
display or codes that tell the server to send a graphic along to the user’s
web browser, you have to plan, design, and implement all the pieces that
will eventually make up your web presence. As you will learn throughout
this book, it is not a difficult process as long as you understand all the little
steps along the way.

In its most fundamental form, web content begins with a simple text file
containing HTML or XHTML markup. XHTML is another flavor of HTML;
the “X” stands for eXtensible, and you will learn more about it as you con-
tinue through the chapters. The most important thing to know from the
outset is that all the examples in this book are HTML 4 and XHTML com-
patible, meaning that they will be rendered similarly both now and in the
future by any newer generations of web browsers. That is one of the bene-
fits of writing standards-compliant code: You do not have to worry about
going back to your code sometime in the future and changing it because it
doesn’t work. Your code will likely always work for as long as web
browsers adhere to standards (hopefully a long time).

Understanding Web Content
Delivery
Several processes occur, in many different locations, to eventually produce
web content that you can see. These processes occur very quickly—on the
order of milliseconds—and occur behind the scenes. In other words,
although we might think all we are doing is opening a web browser, typ-
ing in a web address, and instantaneously seeing the content we requested,
technology in the background is working hard on our behalf. Figure 1.1
shows the basic interaction between a browser and a server.

4 CHAPTER 1 Publishing Web Content

However, there are several steps in the process—and potentially several
trips between the browser and server—before you see the entire content of
the site you requested.

Suppose you want to do a Google search, so you dutifully type
http://www.google.com in the address bar or select the Google bookmark
from your bookmarks list. Almost immediately, your browser will show
you something like what’s shown in Figure 1.2.

FIGURE 1.1
A browser request and a server
response.

FIGURE 1.2
Visiting www.google.com.

Figure 1.2 shows a website that contains text plus one image (the Google
logo). A simple version of the processes that occurred to retrieve that text
and image from a web server and display it on your screen is as follows:

1. Your web browser sends a request for the index.html file located at
the http://www.google.com/ address. The index.html file does not
have to be part of the address that you type in the address bar; you’ll
learn more about the index.html file further along in this chapter.

http://www.google.com
www.google.com
http://www.google.com/

Understanding Web Content Delivery 5

2. After receiving the request for a specific file, the web server process
looks in its directory contents for the specific file, opens it, and sends
the content of that file back to your web browser.

3. The web browser receives the content of the index.html file, which is
text marked up with HTML codes, and renders the content based on
these HTML codes. While rendering the content, the browser hap-
pens upon the HTML code for the Google logo, which you can see in
Figure 1.2. The HTML code looks like this:

<img src=”/logos/logo.gif” width=”384” height=”121” border=”0”
alt=”Google”/>

The tag provides attributes that tell the browser the file source loca-
tion (src), width (width), height (height), border type (border), and
alternative text (alt) necessary to display the logo. You will learn
more about attributes throughout later chapters.

4. The browser looks at the src attribute in the tag to find the
source location. In this case, the image logo.gif can be found in the
logos directory at the same web address (www.google.com) from
which the browser retrieved the HTML file.

5. The browser requests the file at the
http://www.google.com/logos/logo.gif web address.

6. The web server interprets that request, finds the file, and sends the
contents of that file to the web browser that requested it.

7. The web browser displays the image on your monitor.

As you can see in the description of the web content delivery process, web
browsers do more than simply act as picture frames through which you
can view content. Browsers assemble the web content components and
arrange those parts according to the HTML commands in the file.

You can also view web content locally, or on your own hard drive, without
the need for a web server. The process of content retrieval and display is
the same as the process listed in the previous steps in that a browser looks
for and interprets the codes and content of an HTML file, but the trip is
shorter; the browser looks for files on your own computer’s hard drive
rather than on a remote machine. A web server is needed to interpret any
server-based programming language embedded in the files, but that is out-
side the scope of this book. In fact, you could work through all the chap-
ters in this book without having a web server to call your own, but then
nobody but you could view your masterpieces.

www.google.com
http://www.google.com/logos/logo.gif

6 CHAPTER 1 Publishing Web Content

Selecting a Web Hosting Provider
Despite just telling you that you can work through all the chapters in this
book without having a web server, having a web server is the recommend-
ed method for continuing on. Don’t worry—obtaining a hosting provider
is usually a quick, painless, and relatively inexpensive process. In fact, you
can get your own domain name and a year of web hosting for just slightly
more than the cost of the book you are reading now.

If you type web hosting provider in your search engine of choice, you will
get millions of hits and an endless list of sponsored search results (also
known as ads). There are not this many web hosting providers in the
world, although it might seem like there are. Even if you are looking at a
managed list of hosting providers, it can be overwhelming—especially if
all you are looking for is a place to host a simple website for yourself or
your company or organization.

You’ll want to narrow your search when looking for a provider and choose
one that best meets your needs. Some selection criteria for a web hosting
provider include the following”

. Reliability/server “uptime”—If you have an online presence, you
want to make sure people can actually get there consistently.

. Customer service—Look for multiple methods for contacting cus-
tomer service (phone, email, and chat) as well as online documenta-
tion for common issues.

. Server space—Does the hosting package include enough server
space to hold all the multimedia files (images, audio, and video) you
plan to include in your website (if any)?

. Bandwidth—Does the hosting package include enough bandwidth
so that all the people visiting your site and downloading files can do
so without you having to pay extra?

. Domain name purchase and management—Does the package
include a custom domain name, or must you purchase and maintain
your domain name separately from your hosting account?

. Price—Do not overpay for hosting. You will see a wide range of prices
offered and should immediately wonder “what’s the difference?”
Often the difference has little to do with the quality of the service and
everything to do with company overhead and what the company
thinks they can get away with charging people. A good rule of thumb
is that if you are paying more than $75 per year for a basic hosting
package and domain name, you are probably paying too much.

Selecting a Web Hosting Provider 7

Here are three reliable web hosting providers whose basic packages con-
tain plenty of server space and bandwidth (as well as domain names and
extra benefits) at a relatively low cost. If you don’t go with any of these
web hosting providers, you can at least use their basic package descrip-
tions as a guideline as you shop around.

. A Small Orange (http://www.asmallorange.com)—The “Tiny” and
“Small” hosting packages are perfect starting places for the new web
content publisher.

. DailyRazor (http://www.dailyrazor.com)—Even its Rookie hosting
package is full featured and reliable.

. LunarPages (http://www.lunarpages.com)—The Basic hosting pack-
age is suitable for many personal and small business websites.

One feature of a good hosting provider is that it provides a “control panel”
for you to manage aspects of your account. Figure 1.3 shows the control
panel for my own hosting account at Daily Razor. Many web hosting
providers offer this particular control panel software, or some control
panel that is similar in design—clearly labeled icons leading to tasks you
can perform to configure and manage your account.

NOTE
I have used all these providers
(and then some) over the years
and have no problem recom-
mending any of them; predomi-
nantly, I use DailyRazor as a
web hosting provider, especially
for advanced development envi-
ronments.

FIGURE 1.3
A sample control panel.

http://www.asmallorange.com
http://www.dailyrazor.com
http://www.lunarpages.com

8 CHAPTER 1 Publishing Web Content

You might never need to use your control panel, but having it available to
you simplifies the installation of databases and other software, the viewing
of web statistics, and the addition of email addresses (among many other
features). If you can follow instructions, you can manage your own web
server—no special training required.

Testing with Multiple Web Browsers
Having just discussed the process of web content delivery and the acquisi-
tion of a web server, it might seem a little strange to step back and talk
about testing your websites with multiple web browsers. However, before
you go off and learn all about creating websites with HTML and CSS, do so
with this very important statement in mind: Every visitor to your website
will potentially use hardware and software configurations that are different
than your own. Their device types (desktop, laptop, netbook, smartphone,
or iPhone), their screen resolutions, their browser types, their browser win-
dow sizes, and their speed of connections will be different—remember that
you cannot control any aspect of what your visitors use when they view
your site. So, just as you’re setting up your web hosting environment and
getting ready to work, think about downloading several different web
browsers so that you have a local test suite of tools available to you. Let me
explain why this is important.

Although all web browsers process and handle information in the same
general way, there are some specific differences among them that result in
things not always looking the same in different browsers. Even users of the
same version of the same web browser can alter how a page appears by
choosing different display options or changing the size of their viewing
windows. All the major web browsers allow users to override the back-
ground and fonts specified by the web page author with those of their own
choosing. Screen resolution, window size, and optional toolbars can also
change how much of a page someone sees when it first appears on their
screens. You can ensure only that you write standards-compliant HTML
and CSS.

Do not, under any circumstances, spend hours on end designing some-
thing that looks perfect on your own computer—unless you are willing to
be disappointed when you look at it on your friend’s computer, on your
tablet, or on your iPhone.

You should always test your websites with as many of these web browsers
as possible:

Creating a Sample File 9

. Apple Safari (http://www.apple.com/safari/) for Mac and Windows

. Google Chrome (http://www.google.com/chrome) for Windows

. Mozilla Firefox (http://www.mozilla.com/firefox/) for Mac,
Windows, and Linux

. Microsoft Internet Explorer (http://www.microsoft.com/ie) for
Windows

. Opera (http://www.opera.com/) for Mac, Windows, and
Linux/UNIX

Now that you have a development environment set up, or at least some
idea of the type you’d like to set up in the future, let’s move on to creating a
test file.

Creating a Sample File
Before we begin, take a look at Listing 1.1. This listing represents a simple
piece of web content—a few lines of HTML that print “Hello World!
Welcome to My Web Server.” in large, bold letters on two lines centered
within the browser window.

LISTING 1.1 Our Sample HTML File
<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1 style=”text-align: center”>Hello World!
Welcome to My Web
➥Server.</h1>
</body>
</html>

To make use of this content, open a text editor of your choice, such as Notepad
(on Windows) or TextEdit (on a Mac). Do not use WordPad, Microsoft Word,
or other full-featured word-processing software because those programs create
different sorts of files than the plain-text files we use for web content.

Type the content that you see in Listing 1.1, and then save the file using
sample.html as the filename. The .html extension tells the web server that
your file is, indeed, full of HTML. When the file contents are sent to the web
browser that requests it, the browser will also know that it is HTML and
will render it appropriately.

NOTE

You will learn a bit about text
editors in Chapter 2,
“Understanding HTML and
XHTML Connections.” Right
now, I just want you to have a
sample file that you can put on
a web server!

http://www.apple.com/safari/
http://www.google.com/chrome
http://www.mozilla.com/firefox/
http://www.microsoft.com/ie
http://www.opera.com/

10 CHAPTER 1 Publishing Web Content

Now that you have a sample HTML file to use—and hopefully somewhere
to put it, such as a web hosting account—let’s get to publishing your web
content.

Using FTP to Transfer Files
As you’ve learned so far, you have to put your web content on a web serv-
er to make it accessible to others. This process typically occurs by using
File Transfer Protocol (FTP). To use FTP, you need an FTP client—a program
used to transfer files from your computer to a web server.

FTP clients require three pieces of information to connect to your web serv-
er; this information will have been sent to you by your hosting provider
after you set up your account:

. The hostname, or address, to which you will connect

. Your account username

. Your account password

After you have this information, you are ready to use an FTP client to
transfer content to your web server.

Selecting an FTP Client
Regardless of the FTP client you use, FTP clients generally use the same
type of interface. Figure 1.4 shows an example of FireFTP, which is an FTP
client used with the Firefox web browser. The directory listing of the local
machine (your computer) appears on the left of your screen and the direc-
tory listing of the remote machine (the web server) appears on the right.
Typically, you will see right-arrow and left-arrow buttons—as shown in
Figure 1.4. The right arrow sends selected files from your computer to your
web server; the left arrow sends files from the web server to your comput-
er. Many FTP clients also enable you to simply select files, and then drag
and drop those files to the target machines.

There are many FTP clients freely available to you, but you can also trans-
fer files via the web-based File Manager tool that is likely part of your web
server’s control panel. However, that method of file transfer typically
introduces more steps into the process and isn’t nearly as streamlined (or
simple) as installing an FTP client on your own machine.

Using FTP to Transfer Files 11

Here are some popular free FTP clients:

. Classic FTP (http://www.nchsoftware.com/classic/) for Mac and
Windows

. Cyberduck (http://cyberduck.ch/) for Mac

. Fetch (http://fetchsoftworks.com/) for Mac

. FileZilla (http://filezilla-project.org/) for all platforms

. FireFTP (http://fireftp.mozdev.org/) Firefox extension for all plat-
forms

When you have selected an FTP client and installed it on your computer, you
are ready to upload and download files from your web server. In the next
section, you’ll see how this process works using the sample file in Listing 1.1.

Using an FTP Client
The following steps show how to use Classic FTP to connect to your web
server and transfer a file. However, all FTP clients use similar, if not exact,
interfaces. If you understand the following steps, you should be able to use
any FTP client.

Remember, you first need the hostname, the account username, and the
account password.

1. Start the Classic FTP program and click the Connect button. You will
be prompted to fill out information for the site to which you want to
connect, as shown in Figure 1.5.

FIGURE 1.4
The FireFTP interface.

http://www.nchsoftware.com/classic/
http://cyberduck.ch/
http://fetchsoftworks.com/
http://filezilla-project.org/
http://fireftp.mozdev.org/

12 CHAPTER 1 Publishing Web Content

2. Fill in each of the items shown in Figure 1.5 as follows:

. The site Label is the name you’ll use to refer to your own site.
Nobody else will see this name, so enter whatever you want.

. The FTP Server is the FTP address of the web server to which
you need to send your web pages. This address will have been
given to you by your hosting provider. It will probably be
yourdomain.com, but check the information you received when
you signed up for service.

. The User Name field and the Password field should also be
completed using information given to you by your hosting
provider.

. Don’t change the values for Initial Remote Directory on First
Connection and Initial Local Directory on First Connection
until you are used to using the client and have established a
workflow.

3. When you’re finished with the settings, click OK to save the settings
and establish a connection with the web server.

You will see a dialog box indicating that Classic FTP is attempting to
connect to the web server. Upon successful connection, you will see
an interface similar to Figure 1.6, showing the contents of the local
directory on the left and the contents of your web server on the right.

FIGURE 1.5
Connecting to a new site in
Classic FTP.

Using FTP to Transfer Files 13

4. You are now almost ready to transfer files to your web server. All that
remains is to change directories to what is called the document root of
your web server. The document root of your web server is the directo-
ry that is designated as the top-level directory for your web content—
the starting point of the directory structure, which you will learn
more about later in this chapter. Often, this directory will be named
public_html (as shown in Figure 1.6), www (also shown in Figure 1.6,
as www has been created as an alias for public_html), or htdocs. This
is not a directory that you will have to create because your hosting
provider will have created it for you.

Double-click the document root directory name to open it. The dis-
play shown on the right of the FTP client interface should change to
show the contents of this directory. (It will probably be empty at this
point, unless your web hosting provider has put placeholder files in
that directory on your behalf.)

5. The goal is to transfer the sample.html file you created earlier from
your computer to the web server. Find the file in the directory listing
on the left of the FTP client interface (navigate around if you have to)
and click it once to highlight the filename.

FIGURE 1.6
A successful connection to a
remote web server via Classic FTP.

14 CHAPTER 1 Publishing Web Content

6. Click the right-arrow button in the middle of the client interface to
send the file to the web server. After the file transfer is completed,
the right side of the client interface should refresh to show you that
the file has made it to its destination.

7. Click the Disconnect button to close the connection, and then exit out
of the Classic FTP program.

These steps are conceptually similar to the steps you will take anytime you
want to send files to your web server via FTP. You can also use your FTP
client to create subdirectories on the remote web server. To create a subdi-
rectory using Classic FTP, click the Remote menu, and then click New
Folder. Different FTP clients will have different interface options to achieve
the same goal.

Understanding Where to Place Files
on the Web Server
An important aspect of maintaining web content is determining how you
will organize that content—not only for the user to find, but also for you to
maintain on your server. Putting files in directories will help you to man-
age those files.

Naming and organizing directories on your web server, and developing
rules for file maintenance, is completely up to you. However, maintaining
a well-organized server simply makes your management of its content
more efficient in the long run.

Basic File Management
As you browse the Web, you might have noticed that URLs change as you
navigate through websites. For instance, if you’re looking at a company’s
website and you click on graphical navigation leading to the company’s
products or services, the URL will probably change from

http://www.companyname.com/

to

http://www.companyname.com/products/

or

http://www.companyname.com/services/

http://www.companyname.com/
http://www.companyname.com/products/
http://www.companyname.com/services/

Understanding Where to Place Files on the Web Server 15

In the previous section, I used the term document root without really
explaining what that is all about. The document root of a web server is
essentially the trailing slash in the full URL. For instance, if your domain is
yourdomain.com and your URL is http://www.yourdomain.com/, the docu-
ment root is the directory represented by the trailing slash (/). The docu-
ment root is the starting point of the directory structure you create on your
web server; it is the place where the web server begins looking for files
requested by the web browser.

If you put the sample.html file in your document root as previously direct-
ed, you will be able to access it via a web browser at the following URL:

http://www.yourdomain.com/sample.html

If you were to enter this URL into your web browser, you would see the
rendered sample.html file, as shown in Figure 1.7.

FIGURE 1.7
The sample.html file accessed via
a web browser.

However, if you created a new directory within the document root and put
the sample.html file in that directory, the file would be accessed at this URL:

http://www.yourdomain.com/newdirectory/sample.html

If you put the sample.html file in the directory you originally saw upon
connecting to your server—that is, you did not change directories and
place the file in the document root—the sample.html file would not be
accessible from your web server at any URL. The file will still be on the
machine that you know as your web server, but because the file is not in
the document root—where the server software knows to start looking for
files—it will never be accessible to anyone via a web browser.

http://www.yourdomain.com/newdirectory/sample.html
http://www.yourdomain.com/sample.html
http://www.yourdomain.com/

16 CHAPTER 1 Publishing Web Content

The bottom line? Always navigate to the document root of your web server
before you start transferring files.

This is especially true with graphics and other multimedia files. A common
directory on web servers is called images, where, as you can imagine, all
the image assets are placed for retrieval. Other popular directories include
css for stylesheet files (if you are using more than one) and js for external
JavaScript files. Or, if you know you will have an area on your website
where visitors can download many different types of files, you might sim-
ply call that directory downloads.

Whether it’s a ZIP file containing your art portfolio or an Excel spreadsheet
with sales numbers, it’s often useful to publish files on the Internet that
aren’t simply web pages. To make a file available on the Web that isn’t an
HTML file, just upload the file to your website as if it were an HTML file,
following the instructions provided earlier in this chapter for uploading.
After the file is uploaded to the web server, you can create a link to it (as
you’ll learn in later chapters). In other words, your web server can serve
much more than HTML.

Here’s a sample of the HTML code that you will learn more about later in
this book. The following code would be used for a file named artfolio.zip,
located in the downloads directory of your website, and link text that
reads “Download my art portfolio!”:

Download my art portfolio!

Using an Index Page
When you think of an index, you probably think of the section in the back
of a book that tells you where to look for various keywords and topics. The
index file in a web server directory can serve that purpose—if you design
it that way. In fact, that’s where the name originates.

The index.html file (or just index file, as it’s usually referred to) is the name
you give to the page you want people to see as the default file when they
navigate to a specific directory in your website. If you’ve created that page
with usability in mind, your users will be able to get to all content in that
section from the index page.

For example, Figure 1.8 shows the drop-down navigation and left-side
navigation both contain links to three pages: Solutions Overview (the sec-
tion index page itself), Connection Management, and Cost Management.

Understanding Where to Place Files on the Web Server 17

The content of the page itself—called index.html and located within the
solutions directory—also has links to those two additional pages in the
solutions section. When users arrive at the index page of the “solutions”
section in this particular website (at least at the time of the snapshot), they
can reach any other page in that section (and in three different ways!).

Another function of the index page is that when users visit a directory on
your site that has an index page, but they do not specify that page, they will
still land on the main page for that section of your site—or for the site itself.

For instance, in the previous example, a user could have typed either of the
following URLs and landed on the main page of the solutions section of
that website:

http://www.ipass.com/solutions/

http://www.ipass.com/solutions/index.html

Had there been no index.html page in the solutions directory, the results
would depend on the configuration of the web server. If the server is con-
figured to disallow directory browsing, the user would have seen a
“Directory Listing Denied” message when attempting to access the URL
without a specified page name. However, if the server is configured to
allow directory browsing, the user would have seen a list of the files in
that directory.

FIGURE 1.8
Showing a good section index
page.

http://www.ipass.com/solutions/
http://www.ipass.com/solutions/index.html

18 CHAPTER 1 Publishing Web Content

These server configuration options will have already been determined for
you by your hosting provider. If your hosting provider enables you to
modify server settings via a control panel, you can change these settings so
that your server responds to requests based on your own requirements.

Not only is the index file used in subdirectories, it’s used in the top-level
directory (or document root) of your website as well. The first page of your
website—or home page or main page, or however you like to refer to the web
content you want users to see when they first visit your domain—should
be named index.html and placed in the document root of your web server.
This will ensure that when users type http://www.yourdomain.com/ into
their web browsers, the server will respond with content you intended
them to see (rather than “Directory Listing Denied” or some other unin-
tended consequence).

Distributing Content Without a Web
Server
Publishing HTML and multimedia files online is obviously the primary
reason to learn HTML and create web content. However, there are also sit-
uations in which other forms of publishing simply aren’t viable. For exam-
ple, you might want to distribute CD-ROMs, DVD-ROMs, or USB drives at
a trade show with marketing materials designed as web content—that is,
hyperlinked text viewable through a web browser, but without a web serv-
er involved. You might also want to include HTML-based instructional
manuals on removable media for students at a training seminar. These are
just two examples of how HTML pages can be used in publishing scenar-
ios that don’t involve the Internet.

This process is also called creating local sites; even though there’s no web
server involved, these bundles of hypertext content are still called sites. The
local term comes into play because your files are accessed locally and not
remotely (via a web server).

Publishing Content Locally
Let’s assume you need to create a local site that you want to distribute on a
USB drive. Even the cheapest USB drives hold so much data these days—
and basic hypertext files are quite small—that you can distribute an entire
site and a fully functioning web browser all on one little drive.

NOTE

Distributing a web browser isn’t
required when creating and dis-
tributing a local site, although
it’s a nice touch. You can rea-
sonably assume that users
have their own web browsers
and will open the index.html file
in a directory to start browsing
the hyperlinked content.
However, if you would like to
distribute a web browser on the
USB drive, go to http://www.
portableapps.com/ and look for
Portable Firefox.

http://www.portableapps.com/
http://www.portableapps.com/
http://www.yourdomain.com/

Tips for Testing Web Content 19

Simply think of the directory structure of your USB drive just as you would
the directory structure of your web server. The top-level of the USB drive
directory structure can be your document root. Or if you are distributing a
web browser along with the content, you might have two directories—for
example, one named browser and one named content. In that case, the
content directory would be your document root. Within the document
root, you could have additional subfolders in which you place content and
other multimedia assets.

It’s as important to maintain good organization with a local site as it is
with a remote website so that you avoid broken links in your HTML files.
You will learn more about the specifics of linking together files in a later
chapter.

Publishing Content on a Blog
You might have a blog hosted by a third-party, such as Blogger or
WordPress (among others), and thus have already published content with-
out having a dedicated web server or even knowing any HTML. These
services offer visual editors in addition to source editors, meaning that you can
type your words and add visual formatting such as bold, italics, or font col-
ors without knowing the HTML for these actions. But still, the content
becomes actual HTML when you click the Publish button in these editors.

However, with the knowledge you will acquire throughout this book, your
blogging will be enhanced because you will able to use the source editor
for your blog post content and blog templates, thus affording you more
control over the look and feel of that content. These actions occur different-
ly from the process you learned for creating an HTML file and uploading it
via FTP to your own dedicated web server, but I would be remiss if I did
not note that blogging is, in fact, a form of web publishing.

Tips for Testing Web Content
Whenever you transfer files to your web server or place them on remov-
able media for local browsing, you should immediately test every page
thoroughly. The following checklist will help ensure that your web content
behaves the way you expected. Note that some of the terms might be unfa-
miliar to you at this point, but come back to this checklist as you progress
through this book and create larger projects:

20 CHAPTER 1 Publishing Web Content

. Before you transfer your files, test them locally on your machine to
ensure that the links work and the content reflects the visual design
you intended. After you transfer the pages to a web server or remov-
able device, test them all again.

. Perform these tests with as many browsers that you can—Chrome,
Firefox, Internet Explorer, Opera, and Safari is a good list—and on
both Mac and Windows platforms. If possible, check at low resolu-
tion (800×600) and high resolution (1600×1200).

. Turn off auto image loading in your web browser before you start
testing so that you can see what each page looks like without the
graphics. Check your alt tag messages, and then turn image loading
back on to load the graphics and review the page carefully again.

. Use your browser’s font size settings to look at each page in various
font sizes to ensure that your layout doesn’t fall to pieces if users
override your font specifications with their own.

. Wait for each page to completely finish loading, and then scroll all
the way down to make sure that all images appear where they
should.

. Time how long it takes each page to load. Does it take more than a
few seconds to load? If so, is the information on that page valuable
enough to keep users from going elsewhere before the page finishes
loading? Granted, broadband connections are common, but that
doesn’t mean you should load up your pages with 1MB images.

If your pages pass all those tests, you can rest easy; your site is ready for
public viewing.

Summary
This chapter introduced you to the concept of using HTML to mark-up text
files to produce web content. You also learned that there is more to web
content than just the “page”—web content also includes image, audio, and
video files. All of this content lives on a web server—a remote machine
often far away from your own computer. On your computer or other
device, you use a web browser to request, retrieve, and eventually display
web content on your screen.

You learned the criteria you should consider when determining if a web
hosting provider fits your needs. After you have a web hosting provider,

Summary 21

you can begin to transfer files to your web server using an FTP client. You
also learned a little bit about web server directory structures and file man-
agement, as well as the very important purpose of the index.html file in a
given web server directory. You discovered that you can distribute web
content on removable media, and how to go about structuring the files and
directories to achieve the goal of viewing content without using a remote
web server. Finally, you learned the importance of testing your work in
multiple browsers after you’ve placed it on a web server. Writing valid,
standards-compliant HTML and CSS will help ensure your site looks rea-
sonably similar for all visitors, but you still shouldn’t design without
receiving input from potential users outside your development team—it is
even more important to get input from others when you are a design team
of one!

22 CHAPTER 1 Publishing Web Content

Q&A
Q. I’ve looked at the HTML source of some web pages on the Internet

and it looks frighteningly difficult to learn. Do I have to think like a
computer programmer to learn this stuff?

A. Although complex HTML pages can indeed look daunting, learning HTML
is much easier than learning actual software programming languages
(such as C++ or Java). HTML is a markup language rather than a pro-
gramming language; you mark-up text so that the text can be rendered
a certain way by the browser. That’s a completely different set of
thought processes than developing a computer program. You really
don’t need any experience or skill as a computer programmer to be a
successful web content author.

One of the reasons the HTML behind many commercial websites looks
complicated is because it was likely created by a visual web design
tool—a “what you see is what you get” or “WYSIWYG” editor that will
use whatever markup its software developer told it to use in certain cir-
cumstances—as opposed to being hand-coded, in which you are com-
pletely in control of the resulting markup. In this book, you are taught
fundamental coding from the ground up, which typically results in clean,
easy-to-read source code. Visual web design tools have a knack for
making code difficult to read and for producing code that is convoluted
and non-standards compliant.

Q. All the tests you recommend would take longer than creating my
pages! Can’t I get away with less testing?

A. If your pages aren’t intended to make money or provide an important
service, it’s probably not a big deal if they look funny to some users or
produce errors once in a while. In that case, just test each page with a
couple of different browsers and call it a day. However, if you need to
project a professional image, there is no substitute for rigorous testing.

Q. Seriously, who cares how I organize my web content?

A. Believe it or not, the organization of your web content does matter to
search engines and potential visitors to your site—you’ll learn more
about this in Chapter 28, “Helping People Find Your Web Pages.” But
overall, having an organized web server directory structure will help you
keep track of content that you are likely to update frequently. For
instance, if you have a dedicated directory for images or multimedia,
you will know exactly where to look for a file you want to update—no
need to hunt through directories containing other content.

Workshop 23

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. How many files would you need to store on a web server to produce a

single web page with some text and two images on it?

2. What are some of the features to look for in a web hosting provider?

3. What three pieces of information do you need to connect to your web
server via FTP?

4. What is the purpose of the index.html file?

5. Does your website have to include a directory structure?

Answers
1. You would need three: one for the web page itself, which includes the

text and the HTML markup, and one for each of the two images.

2. Look for reliability, customer service, web space and bandwidth, domain
name service, site management extras, and price.

3. The hostname, your account username, and your account password.

4. The index.html file is typically the default file for a directory within a
web server. It allows users to access http://www.yourdomain.com/
somedirectory/ without using a trailing file name and still end up in the
appropriate place.

5. No. Using a directory structure for file organization is completely up to
you, although it is highly recommended to use one because it simplifies
content maintenance.

http://www.yourdomain.com/somedirectory/
http://www.yourdomain.com/somedirectory/

24 CHAPTER 1 Publishing Web Content

Exercises
. Get your web hosting in order—are you going to go through the chap-

ters in this book by viewing files locally on your own computer, or are
you going to use a web hosting provider? Note that most web hosting
providers will have you up and running the same day you purchase your
hosting plan.

. If you are using an external hosting provider, and then using your FTP
client, create a subdirectory within the document root of your website.
Paste the contents of the sample.html file into another file named
index.html, change the text between the <title> and </title> tags to
something new, and change the text between the <h1> and </h1> tags
to something new. Save the file and upload it to the new subdirectory.
Use your web browser to navigate to the new directory on your web
server and see that the content in the index.html file appears. Then,
using your FTP client, delete the index.html file from the remote subdi-
rectory. Return to that URL with your web browser, reload the page, and
see how the server responds without the index.html file in place.

. Using the same set of files created in the previous exercise, place
these files on a removable media device—a CD-ROM or a USB drive, for
example. Use your browser to navigate this local version of your sample
website, and think about the instructions you would have to distribute
with this removable media so that others could use it.

The first chapter gave you a basic idea of the process behind creating web
content and viewing it online (or locally, if you do not yet have a web host-
ing provider). In this chapter, we’ll get down to the business of explaining
the various elements that must appear in an HTML file so that it is dis-
played appropriately in your web browser.

By the end of the chapter, you’ll learn how HTML differs from XHTML and
why there are two different languages designed to do the same thing—
create web content. In general, this chapter provides a quick summary of
HTML and XHTML basics and gives some practical tips to make the most
of your time as a web page author and publisher. It’s not all theory, howev-
er; you do get to see a real web page and the HTML code behind it.

Getting Prepared
Here’s a review of what you need to do before you’re ready to use the rest
of this book:

1. Get a computer. I used a computer running Ubuntu (Linux) to test
the sample web content and capture the figures in this book, but you
can use any Windows, Macintosh, or Linux/UNIX machine to create
and view your web content.

2. Get a connection to the Internet. Whether you have a dial-up, wire-
less, or broadband connection doesn’t matter for the creation and
viewing of your web content, but the faster the connection, the better
for the overall experience. The Internet service provider (ISP), school,
or business that provides your Internet connection can help you with
the details of setting it up properly. Additionally, many public spaces
such as coffee shops, bookstores, and libraries offer free wireless
Internet service that you can use if you have a laptop computer with
Wi-Fi network support.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to create a simple
web page in HTML

. How to include all the
HTML Tags that every web
page must have

. How to organize a page
with paragraphs and line
breaks

. How to organize your con-
tent with headings

. How to validate your web
content

. How to differentiate
between HTML, XML,
XHTML, and HTML5

CHAPTER 2
Understanding HTML and XHTML

Connections

26 CHAPTER 2 Understanding HTML and XHTML Connections

3. Get web browser software. This is the software your computer needs
to retrieve and display web content. As you learned in the first chap-
ter, the most popular browser software (in alphabetical order) is
Apple Safari, Google Chrome, Microsoft Internet Explorer, Mozilla
Firefox, and Opera. It’s a good idea to install several of these
browsers so that you can experiment and make sure that your con-
tent looks consistent across them all; you can’t make assumptions
about the browsers other people are using.

4. Explore! Use a web browser to look around the Internet for websites
that are similar in content or appearance to those you’d like to create.
Note what frustrates you about some pages, what attracts you and
keeps you reading others, and what makes you come back to some
pages over and over again. If there is a particular topic that interests
you, consider searching for it using a popular search engine such as
Google (http://www.google.com/) or Bing (http://www.bing.com/).

Getting Started with a Simple Web
Page
In the first chapter, you learned that a web page is just a text file that is
marked up by (or surrounded by) HTML codes that tell the browser how
to display the text. To create these text files, use a text editor such as
Notepad (on Windows) or TextEdit (on a Mac)—do not use WordPad,
Microsoft Word, or other full-featured word-processing software because
those create different sorts of files than the plain-text files we use for web
content.

Before you begin working, you should start with some text that you want
to put on a web page:

1. Find (or write) a few paragraphs of text about yourself, your family,
your company, your softball team, or some other subject in which
you’re interested.

2. Save this text as plain, standard ASCII text. Notepad and most sim-
ple text editors always save files as plain text, but if you’re using
another program, you might need to choose this file type as an
option (after selecting File, Save As).

As you go through this chapter, you will add HTML markup (called tags)
to the text file, thus making it into web content.

NOTE

Not sure how to find an ISP?
The best way is to comparison-
shop online (using a friend’s
computer or a public computer
that’s already connected to the
Internet). You’ll find a compre-
hensive list of national and
regional ISPs at http://www.
thelist.com/.

CAUTION

Although all web browsers
process and handle information
in the same general way, there
are some specific differences
among them that result in
things not always looking the
same in different browsers. Be
sure to check your web pages
in multiple browsers to make
sure that they look reasonably
consistent.

NOTE

As discussed in the first chap-
ter, if you plan to put your web
content on the Internet (as
opposed to publishing it on CD-
ROM or a local intranet), you’ll
need to transfer it to a comput-
er that is connected to the
Internet 24 hours a day. The
same company or school that
provides you with Internet
access might also provide web
space; if not, you might need to
pay a hosting provider for the
service.

http://www.google.com/
http://www.bing.com/
http://www.thelist.com/
http://www.thelist.com/

Getting Started with a Simple Web Page 27

When you save files containing HTML tags, always give them a name end-
ing in .html. This is important: If you forget to type the .html at the end of
the filename when you save the file, most text editors will give it some
other extension (such as .txt). If that happens, you might not be able to find
the file when you try to look at it with a web browser; if you find it, it cer-
tainly won’t display properly. In other words, web browsers expect a web
page file to have a file extension of .html.

When visiting websites, you might also encounter pages with a file exten-
sion of .htm, which is also an acceptable file extension to use. You might
find other file extensions used on the Web, such as .jsp (Java Server Pages),
.asp (Microsoft Active Server Pages), or .php (PHP: Hypertext
Preprocessor), but these file types use server-side technologies that are
beyond the scope of HTML and the chapters throughout this book.
However, these files also contain HTML in addition to the programming
language; although the programming code in those files is compiled on the
server side and all you would see on the client side is the HTML output, if
you were to look at the source files, you would likely see some intricate
weaving of programming and markup codes.

Listing 2.1 shows an example of text you can type and save to create a sim-
ple HTML page. If you opened this file with Firefox, you would see the
page shown in Figure 2.1. Every web page you create must include the
<html></html>, <head></head>, <title></title>, and <body></body> tag
pairs.

LISTING 2.1 The <html>, <head>, <title>, and <body> Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The First Web Page</title>

</head>

<body>
<p>
In the beginning, Tim created the HyperText Markup Language. The Internet
was without form and void, and text was upon the face of the monitor and
the Hands of Tim were moving over the face of the keyboard. And Tim said,
Let there be links; and there were links. And Tim saw that the links were
good; and Tim separated the links from the text. Tim called the links

CAUTION
To reiterate, because it is very
important both to the outcome
and the learning process itself:
Do not create your first HTML
file with Microsoft Word or any
other HTML-compatible word
processor; most of these pro-
grams attempt to rewrite your
HTML for you in strange ways,
potentially leaving you totally
confused. Additionally, I recom-
mend that you do not use a
graphical, what-you-see-is-what-
you-get (WYSIWYG) editor, such
as Microsoft FrontPage or Adobe
Dreamweaver. You’ll likely find it
easier and more educational to
start out with a simple text edi-
tor while you’re just learning
HTML. You can move to visual
tools (such as FrontPage and
Dreamweaver) after you have a
better understanding of what’s
going on under the hood.

NOTE
If you’re using TextEdit on a
Macintosh computer, the steps
for creating an HTML file are a
little different than for using
Notepad on a Windows comput-
er. Both are popular text editors,
but with the latter, you must
first click on the Format menu,
select Make Plain Text, and then
change the preferences under
the Saving header by uncheck-
ing the box for Append ‘.txt’
Extension to Plain Text Files.
Also, the default preferences
are set to show .html docu-
ments as they would appear in
a browser, which won’t allow you
to edit them. To fix this, check
Ignore Rich Text Commands in
HTML Files under the Rich Text
Processing header.

28 CHAPTER 2 Understanding HTML and XHTML Connections

Anchors, and the text He called Other Stuff. And the whole thing together
was the first Web Page.

</p>
</body>

</html>

LISTING 2.1 Continued

FIGURE 2.1
When you save the text in Listing
2.1 as an HTML file and view it
with a web browser, only the actual
title and body text are displayed.

In Listing 2.1, as in every HTML page, the words starting with < and end-
ing with > are actually coded commands. These coded commands are
called HTML tags because they “tag” pieces of text and tell the web brows-
er what kind of text it is. This allows the web browser to display the text
appropriately.

The first few lines of code in the web page serve as standard boilerplate
code that you will include in all of your pages. This code actually identifies
the page as a valid XHTML 1.1 document, which means that, technically,
the web page is an XHTML page. All the pages developed throughout the
book are XHTML 1.1 pages. Because XHTML is a more structured version
of HTML, it’s still okay to generally refer to all the pages in the book as
HTML pages. By targeting XHTML 1.1 with your code, you are developing
web pages that adhere to the very latest web standards. This is a good
thing!

NOTE

Technically speaking, HTML5
will be the next web standard
but it’s not quite at the point of
full adoption. Current estimates
put the full adoption of HTML
sometime in 2011. However, as
you learn about important fea-
tures of HTML and XHTML in
this book, I will include notes
about how HTML5 features
might differ.

HTML Tags Every XHTML Web Page Must Have 29

If you have obtained a web hosting account, you could use FTP at this
point to transfer the firstpage.html file to the web server. In fact, from this
chapter forward, the instructions will assume you have a hosting provider
and are comfortable sending files back and forth via FTP; if that is not the
case, please review the first chapter before moving on. Or, if you are con-
sciously choosing to work with files locally (without a web host), be pre-
pared to adjust the instructions to suit your particular needs (such as
ignoring the commands “transfer the files” and “type in the URL”).

HTML Tags Every XHTML Web Page
Must Have
The time has come for the secret language of HTML tags to be revealed to
you. When you understand this language, you will have creative powers
far beyond those of other humans. Don’t tell the other humans, but it’s
really pretty easy.

Creating and Viewing
a Basic Web Page

Before you learn the meaning of the HTML tags used in Listing 2.1, you might
want to see exactly how I went about creating and viewing the document
itself. Follow these steps:

1. Type all the text in Listing 2.1, including the HTML tags, in Windows
Notepad (or use Macintosh TextEdit or another text editor of your
choice).

2. Select File, Save As. Be sure to select plain text (or ASCII text) as the
file type.

3. Name the file firstpage.html.

4. Choose the folder on your hard drive where you would like to keep your
web pages—and remember which folder you choose! Click the Save or
OK button to save the file.

5. Now start your favorite web browser. (Leave Notepad running, too, so
you can easily switch between viewing and editing your page.)

In Internet Explorer, select File, Open and click Browse. If you’re using Firefox,
select File, Open File. Navigate to the appropriate folder and select the
firstpage.html file. Some browsers and operating systems will also enable you
to drag and drop the firstpage.html file onto the browser window to view it.

Voilà! You should see the page shown in Figure 2.1.

TRY IT YOURSELF ▼

NOTE
You don’t need to be connected to
the Internet to view a web page
stored on your own computer. By
default, your web browser tries to
connect to the Internet every time
you start it, which makes sense
most of the time. However, this can
be a hassle if you’re developing
pages locally on your hard drive
(offline) and you keep getting errors
about a page not being found. If
you have a full-time web connection
via a LAN, cable modem, or DSL,
this is a moot point because the
browser will never complain about
being offline. Otherwise, the appro-
priate disciplinary action will
depend on your breed of browser;
check the options under your
browser’s Tools menu.

30 CHAPTER 2 Understanding HTML and XHTML Connections

Before you get into the HTML tags, let’s first address the messy-looking
code at the top of Listing 2.1. The first line indicates that the HTML docu-
ment is, in fact, an XML document:

<?xml version=”1.0” encoding=”UTF-8”?>

The version of XML is set to 1.0, which is fairly standard, as is the type of
character encoding (UTF-8).

The second and third lines of code in Listing 2.1 are even more complicat-
ed looking:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Again, the specifics of this code aren’t terribly important as long as you
remember to include the code at the start of your pages. This code identi-
fies the document as being XHTML 1.1, which then allows web browsers
to make sure the code meets all the requirements of XHTML 1.1.

Most HTML tags have two parts: an opening tag, which indicates where a
piece of text begins, and a closing tag, which indicates where the piece of
text ends. Closing tags start with a / (forward slash) just after the < sym-
bol.

Another type of tag is the empty tag, which is unique in that it doesn’t
include a pair of matching opening and closing tags. Instead, an empty tag
consists of a single tag that starts with a < and ends with a / just before the
> symbol.

Following is a quick summary of these three tags just to make sure you
understand the role each plays:

. An opening tag is an HTML tag that indicates the start of an HTML
command; the text affected by the command appears after the open-
ing tag. Opening tags always begin with < and end with >, as in
<html>.

. A closing tag is an HTML tag that indicates the end of an HTML com-
mand; the text affected by the command appears before the closing
tag. Closing tags always begin with </ and end with >, as in </html>.

. An empty tag is an HTML tag that issues an HTML command with-
out enclosing any text in the page. Empty tags always begin with <
and end with />, as in
 and .

NOTE

It isn’t terribly important that you
understand concepts such as
character encoding at this point.
What is important is that you
include the appropriate boiler-
plate code in your pages so that
they adhere to the latest web
standards. As of this writing,
XHTML 1.1 is a web standard.
HTML5 is not yet a web stan-
dard, but if you were creating an
HTML5 document, these lines at
the beginning of your HTML file
would not be necessary.

NOTE

The XML/XHTML boilerplate
code isn’t strictly required for
you to create web pages. You
can delete the opening lines of
code in the example so that the
page starts with the <html>
tag and it will still open fine in
a web browser. The extra code
is included to ensure your
pages are up to date with the
current web standards.
Additionally, the extra code
enables you to validate your
web pages for accuracy, which
you’ll learn how to do a bit later
in this chapter.

Organizing a Page with Paragraphs and Line Breaks 31

For example, the <body> tag in Listing 2.1 tells the web browser where the
actual body text of the page begins, and </body> indicates where it ends.
Everything between the <body> and </body> tags will appear in the main
display area of the web browser window, as shown in Figure 2.1.

The very top of the browser window (refer to Figure 2.1) shows title text,
which is any text that is located between <title> and </title>. The title
text is also used to identify the page on the browser’s Bookmarks or
Favorites menu, depending on which browser you use. It’s important to
provide titles for your pages so that visitors to the page can properly book-
mark them for future reference.

You will use the <body> and <title> tag pairs in every HTML page you
create because every web page needs a title and body text. You will also
use the <html> and <head> tag pairs, which are the other two tags shown
in Listing 2.1. Putting <html> at the very beginning of a document simply
indicates that the document is a web page. The </html> at the end indi-
cates that the web page is over.

Within a page, there is a head section and a body section. Each section is
identified by <head> and <body> tags. The idea is that information in the
head of the page somehow describes the page but isn’t actually displayed
by a web browser. Information placed in the body, however, is displayed
by a web browser. The <head> tag always appears near the beginning of
the HTML code for a page, just after the opening <html> tag.

The <title> tag pair used to identify the title of a page appears within the
head of the page, which means it is placed after the opening <head> tag
and before the closing </head> tag. In upcoming chapters, you’ll learn
about some other advanced header information that can go between
<head> and </head>, such as style sheet rules that are used to format the
page, as well as the JavaScript you’ll learn to write and embed.

The <p> tag used in Listing 2.1 encloses a paragraph of text. You should
enclose your chunks of text in the appropriate container tags whenever
possible.

Organizing a Page with Paragraphs
and Line Breaks
When a web browser displays HTML pages, it pays no attention to line
endings or the number of spaces between words. For example, the top ver-
sion of the poem shown in Figure 2.2 appears with a single space between

NOTE

You no doubt noticed in Listing
2.1 that there is some extra
code associated with the
<html> tag. This code consists
of two attributes (xmlns and
xml:lang), which are used to
specify additional information
related to the tag. These two
attributes are standard require-
ments of all XHTML web pages;
the former defines the XML
namespace, whereas the latter
defines the language of the
content. Throughout this book,
a standard namespace is
defined, and the English lan-
guage is used. If you are writing
in a different language, replace
the “en” (for English) with the
language identifier relevant to
you.

TIP

You might find it convenient to
create and save a bare-bones
page (also known as a skeleton
page, or template) with just the
opening and closing <html>,
<head>, <title>, and <body>
tags, similar to the document
used in Listing 2.1. You can
then open that document as a
starting point whenever you
want to make a new web page
and save yourself the trouble of
typing all those obligatory tags
every time.

32 CHAPTER 2 Understanding HTML and XHTML Connections

all words, even though that’s not how it’s entered in Listing 2.2. This is
because extra whitespace in HTML code is automatically reduced to a sin-
gle space. Additionally, when the text reaches the edge of the browser win-
dow, it automatically wraps to the next line, no matter where the line
breaks were in the original HTML file.

FIGURE 2.2
When the HTML in Listing 2.2 is
viewed as a web page, line and
paragraph breaks only appear
where there are
 and <p>
tags.

LISTING 2.2 HTML Containing Paragraph and Line Breaks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The Advertising Agency Song</title>

</head>

<body>
<p>
When your client’s hopping mad,
put his picture in the ad.

If he still should prove refractory,
add a picture of his factory.

</p>

<hr />

<p>
When your client’s hopping mad,

put his picture in the ad.

Organizing a Page with Paragraphs and Line Breaks 33

</p>
<p>
If he still should prove refractory,

add a picture of his factory.

</p>
</body>

</html>

You must use HTML tags if you want to control where line and paragraph
breaks actually appear. When text is enclosed within the <p></p> container
tags, a line break will be assumed after the closing tag. In later chapters,
you will learn to control the height of the line break using CSS. The

tag forces a line break within a paragraph. Unlike the other tags you’ve
seen so far,
 doesn’t require a closing </br> tag—this is one of those
empty tags discussed earlier. Although HTML 4 does not require the / in
empty tags, XHTML does and future standards will, so it’s important for
you to stick to the latest standards and create web pages that are coded
properly. Always code empty tags so that they end with />.

The poem in Listing 2.2 and Figure 2.2 shows the
 and <p> tags
being used to separate the lines and verses of an advertising agency song.
You might have also noticed the <hr /> tag in the listing, which causes a
horizontal rule line to appear on the page (see Figure 2.2). Inserting a hori-
zontal rule with the <hr /> tag also causes a line break, even if you don’t
include a
 tag along with it. Like
, the <hr /> horizontal rule
tag is an empty tag and therefore never gets a closing </hr> tag.

LISTING 2.2 Continued

CAUTION

You might come across a lot of
web content that includes

instead of
. Or you
might see other content that
does not include the closing
</p> tag. Just remember there
is a lot of antiquated web con-
tent floating around the
Internet, and just because you
see it in use doesn’t mean it’s
correct. Save yourself a lot of
future work and frustration by
adhering to the standards you
learn in this book. Developing
clean HTML coding habits is a
very important part of becoming
a successful web designer.

Formatting Text in
HTML

Take a passage of text and try your hand at formatting it as proper HTML.

1. Add <html><head><title>My Title</title></head><body> to the
beginning of the text (using your own title for your page instead of My
Title). Also include the boilerplate code at the top of the page that
takes care of meeting the requirements of XHTML.

2. Add </body></html> to the very end of the text.

3. Add a <p> tag at the beginning of each paragraph and a </p> tag at the
end of each paragraph.

4. Use
 tags anywhere you want single-spaced line breaks.

5. Use <hr /> to draw horizontal rules separating major sections of text,
or wherever you’d like to see a line across the page.

TRY IT YOURSELF ▼

34 CHAPTER 2 Understanding HTML and XHTML Connections

Organizing Your Content with
Headings
When you browse through web pages on the Internet, you’ll notice that
many of them have a heading at the top that appears larger and bolder
than the rest of the text. Listing 2.3 is sample code and text for a simple
web page containing an example of a heading as compared to normal
paragraph text. Any text between <h1> and </h1> tags will appear as a
large heading. Additionally, <h2> and <h3> make progressively smaller
headings, and so on as far down as <h6>.

LISTING 2.3 Heading Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>My Widgets</title>

</head>

<body>
<h1>My Widgets</h1>
<p>My widgets are the best in the land. Continue reading to
learn more about my widgets.</p>

<h2>Widget Features</h2>
<p>If I had any features to discuss, you can bet I’d do
it here.</p>

<h3>Pricing</h3>
<p>Here, I would talk about my widget pricing.</p>

TRY IT YOURSELF▼

Formatting Text in
HTML
continued

CAUTION

If you are using a word proces-
sor to create the web page, be
sure to save the HTML file in
plain-text or ASCII format.

6. Save the file as mypage.html (using your own filename instead of
mypage).

7. Open the file in a web browser to see your web content. (Send the file
via FTP to your web hosting account, if you have one.)

8. If something doesn’t look right, go back to the text editor to make cor-
rections and save the file again (and send it to your web hosting
account, if applicable). You then need to click Reload/Refresh in the
browser to see the changes you made.

Organizing Your Content with Headings 35

<h3>Comparisons</h3>
<p>Here, I would talk about how my widgets compare to my
competitor’s widgets.</p>

</body>
</html>

As you can see in Figure 2.3, the HTML that creates headings couldn’t be
simpler. In this example, the phrase “My Widgets” is prominently dis-
played using the <h1> tag. To create the biggest (level 1) heading, just put
an <h1> tag at the beginning and a </h1> tag at the end of the text you
want to use as a heading. For a slightly smaller (level 2) heading—for
information that is of lesser importance than the title— use the <h2> and
</h2> tags around your text. For content that should appear even less
prominently than a level 2 heading, use the <h3> and </h3> tags around
your text.

However, bear in mind that your headings should follow a content hierar-
chy; use only one level 1 heading, have one (or more) level 2 headings after
the level 1 heading, use level 3 headings directly after level 2 headings,
and so on. Do not fall into the trap of assigning headings to content just to
make that content display a certain way. Instead, ensure that you are cate-
gorizing your content appropriately (as a main heading, a secondary head-
ing, and so on), while using display styles to make that text render a par-
ticular way in a web browser.

LISTING 2.3 Continued NOTE

By now you’ve probably caught
on to the fact that HTML code
is often indented by its author
to reveal the relationship
between different parts of the
HTML document. This indenta-
tion is entirely voluntary—you
could just as easily run all the
tags together with no spaces or
line breaks and they would still
look fine when viewed in a
browser. The indentations are
for you so that you can quickly
look at a page full of code and
understand how it fits together.
Indenting your code is a very
good web design habit and ulti-
mately makes your pages easi-
er to maintain.

FIGURE 2.3
The use of three levels of head-
ings shows the hierarchy of con-
tent on this sample product page.

36 CHAPTER 2 Understanding HTML and XHTML Connections

Theoretically, you can also use <h4>, <h5>, and <h6> tags to make progres-
sively less important headings, but these aren’t used very often. Web
browsers seldom show a noticeable difference between these headings and
the <h3> headings anyway, and content usually isn’t displayed in such a
manner as to need six levels of headings to show the content hierarchy.

It’s important to remember the difference between a title and a heading.
These two words are often interchangeable in day-to-day English, but
when you’re talking HTML, <title> gives the entire page an identifying
name that isn’t displayed on the page itself; it’s displayed only on the
browser window’s title bar. The heading tags, on the other hand, cause
some text on the page to be displayed with visual emphasis. There can be
only one <title> per page and it must appear within the <head> and
</head> tags, whereas you can have as many <h1>, <h2>, and <h3> head-
ings as you want, in any order that suits your fancy. However, as I men-
tioned before, you should use the heading tags to keep tight control over
content hierarchy; do not use headings as a way to achieve a particular
look because that’s what CSS is for.

You’ll learn to take complete control over the appearance of text on your
web pages in Parts II and III of this book. Short of taking exacting control
of the size, family, and color of fonts, headings provide the easiest and
most popular way to draw extra attention to important text.

Validating Your Web Content
In the first chapter, I discussed ways to test your pages; one very important
way to test your pages is to validate them. Think of it this way: It’s one
thing to design and draw a beautiful set of house plans, but it’s quite
another for an architect to stamp it as a safe structure suitable for construc-
tion. Validating your web pages is a similar process; in this case, however,
the architect is an application—not a person.

In brief, validation is the process of testing your pages with a special appli-
cation that searches for errors and makes sure your pages follow the strict
XHTML standard. Validation is simple. In fact, the standards body respon-
sible for developing web standards—the World Wide Web Consortium
(W3C)—offers an online validation tool you can use. To validate a page,
follow this URL: http://validator.w3.org/. The W3C Markup Validation
Service is shown in Figure 2.4.

NOTE

On many web pages nowadays,
graphical images of ornately
rendered letters and logos are
often used in place of the ordi-
nary text headings discussed in
this chapter. However, using
text headings is one of many
search engine optimization
(SEO) tips that you will learn
about in Chapter 28, “Helping
People Find Your Web Pages.”
Search engines look at heading
tags to see how you organize
your content; they give higher
preference to content that you
have indicated is more impor-
tant (for example, a level 1
heading) versus content that
you indicate is of lesser impor-
tance (lower-level headings).

CAUTION

Don’t forget that anything
placed in the head of a web
page is not intended to be
viewed on the page, whereas
everything in the body of the
page is intended for viewing.

http://validator.w3.org/

Validating Your Web Content 37

FIGURE 2.4
The W3C Markup Validation Service enables you to validate an HTML (XHTML) docu-
ment to ensure it has been coded accurately.

If you’ve already published a page online, you can use the Validate by URI
tab. Use the Validate by File Upload tab to validate files stored on your
local computer file system. The Validate by Direct Input tab enables you to
paste the contents of a file from your text editor. If all goes well, your page
will get a passing report (see Figure 2.5).

If the W3C Markup Validation Service encounters an error in your web
page, it will provide specific details (including the line numbers of the
offending code). This is a great way to hunt down problems and rid your
pages of buggy code. Validation not only informs you whether your pages
are constructed properly, it also assists you in finding and fixing problems
before you post pages for the world to see.

Peeking at Other
Designers’ Pages
Given the visual and sometimes
audio pizzazz present in many
popular web pages, you proba-
bly realize that the simple
pages described in this chapter
are only the tip of the HTML ice-
berg. Now that you know the
basics, you might surprise your-
self with how much of the rest
you can pick up just by looking
at other people’s pages on the
Internet. You can see the HTML
for any page by right-clicking
and selecting View Source in
any web browser.

Don’t worry if you aren’t yet
able to decipher what some
HTML tags do or exactly how to
use them yourself. You’ll find
out about all those things in
the next few chapters. However,
sneaking a preview now will
show you the tags that you do
know in action and give you a
taste of what you’ll soon be
able to do with your web pages.

TIP

Some web development tools
include built-in validation features
you can use in lieu of the W3C
Markup Validation Service. Some
examples include browser exten-
sions such as Firebug (http://
getfirebug.com/) and HTML
Validator (http://users.skynet.
be/mgueury/mozilla/), but many
other programs offer similar
functionality; check your user
documentation.

http://getfirebug.com/
http://getfirebug.com/
http://users.skynet.be/mgueury/mozilla/
http://users.skynet.be/mgueury/mozilla/

38 CHAPTER 2 Understanding HTML and XHTML Connections

The Scoop on HTML, XML, XHTML,
and HTML5
In its early days, HTML was great because it allowed scientists to share
information over the Internet in an efficient and relatively structured man-
ner. It wasn’t until later that graphical web browsers were created and
HTML started being used to code more than scientific papers. HTML
quickly went from a tidy little markup language for researchers to an
online publishing language. After it was established that HTML could be
jazzed up for graphical browsing, the creators of web browsers went crazy
by adding lots of nifty features to the language. Although these new fea-
tures were neat at first, they compromised the original design of HTML
and introduced inconsistencies when it came to how browsers displayed
web pages; new features worked on only one browser or another, and you
were out of luck if you happened to be running the wrong browser. HTML
started to resemble a bad remodeling job of a house—a job done by too
many contractors and without proper planning. As it turns out, some of
the browser-specific features created during this time have now been
adopted as standards whereas others have been dropped completely.

As with most revolutions, the birth of the Web was very chaotic, and the
modifications to HTML reflected that chaos. Over the years, a significant

FIGURE 2.5
If a page passes the W3C Markup
Validation Service, you know it is
ready for prime time.

The Scoop on HTML, XML, XHTML, and HTML5 39

effort has been made to reel in the inconsistencies of HTML and restore
some order to the language. The problem with disorder in HTML is that it
results in web browsers having to guess at how a page is to be displayed,
which is not a good thing. Ideally, a web page designer should be able to
define exactly how a page is to look and have it look the same regardless
of what kind of browser or operating system someone is using. Better still,
a designer should be able to define exactly what a page means and have
that page look consistent across different browsers and platforms. This
utopia is still off in the future somewhere, but a markup language called
XML (Extensible Markup Language) began to play a significant role in
leading us toward it.

XML is a general language used to create specific languages, such as
HTML. It might sound a little strange, but it really just means that XML
provides a basic structure and set of rules to which any markup language
must adhere. Using XML, you can create a unique markup language to
describe just about any kind of information, including web pages.
Knowing that XML is a language for creating other markup languages, you
could create your own version of HTML using XML. You could even create
a markup language called BCCML (Bottle Cap Collection Markup
Language), for example, which you could use to create and manage your
extensive collection of rare bottle caps. The point is that XML lays the
ground rules for organizing information in a consistent manner, and that
information can be anything from web pages to bottle caps.

You might be thinking that bottle caps don’t have anything to do with the
Web, so why mention them? The reason is that XML is not entirely about
web pages. XML is actually broader than the Web in that it can be used to
represent any kind of information on any kind of computer. If you can
visualize all the information whizzing around the globe among computers,
mobile phones, handheld computers, televisions, and radios, you can start
to understand why XML has much broader applications than just cleaning
up web pages. However, one of the first applications of XML is to restore
some order to the Web, which is why XML is relevant to learning HTML.

If XML describes data better than HTML, does it mean that XML is set to
upstage HTML as the markup language of choice for the Web? No. XML is
not a replacement for HTML; it’s not even a competitor of HTML. XML’s
impact on HTML has to do with cleaning up HTML. HTML is a relatively
unstructured language that benefits from the rules of XML. The natural merg-
er of the two technologies resulted in HTML’s adherence to the rules and
structure of XML. To accomplish this merger, a new version of HTML was

40 CHAPTER 2 Understanding HTML and XHTML Connections

formulated that follows the stricter rules of XML. The new XML-compliant
version of HTML is known as XHTML. Fortunately for you, you’ll actually be
learning XHTML throughout this book because it is really just a cleaner ver-
sion of HTML.

You might have heard about HTML5, which is touted as the next web stan-
dard. It will be, but not quite yet. When it does become a web standard, it
will not render XHTML useless—HTML5 is not a replacement for XHTML,
but instead is a major revision of HTML 4. In other words, XHTML and
HTML5 can coexist on the Web, and web browsers that currently support
XHTML will also (one day) support HTML5 as well.

The goal of this book is to guide you through the basics of web publishing,
using XHTML and CSS as the core languages of those pages. However,
whenever possible, I will note elements of the languages that are not pres-
ent in HTML5, should you want to design your content for even further
sustainability. If you gain a solid understanding of web publishing and the
ways in which CSS works with the overall markup language of the page
(be it XHTML or HTML5), you will be in a good position if you decide you
want to move from XHTML to HTML5.

Summary
This chapter introduced the basics of what web pages are and how they
work, including the history and differences between HTML and XHTML.
You learned that coded HTML commands are included in a text file, and
that typing HTML text yourself is better than using a graphical editor to
create HTML commands for you—especially when you’re learning HTML.

You were introduced to the most basic and important HTML tags. By
adding these coded commands to any plain-text document, you can quick-
ly transform it into a bona fide web page. You learned that the first step in
creating a web page is to put a few obligatory HTML tags at the beginning
and end, including a title for the page. You then mark where paragraphs
and lines end and add horizontal rules and headings if you want them.
Table 2.1 summarizes all the tags introduced in this chapter.

Summary 41

TABLE 2.1 HTML Tags Covered in Chapter 2

Tag Function

<html>...</html> Encloses the entire HTML document.

<head>...</head> Encloses the head of the HTML document. Used with-
in the <html> tag pair.

<title>...</title> Indicates the title of the document. Used within the
<head> tag pair.

<body>...</body> Encloses the body of the HTML document. Used with-
in the <html> tag pair.

<p>...</p> A paragraph; skips a line between paragraphs.

 A line break.

<hr /> A horizontal rule line.

<h1>...</h1> A first-level heading.

<h2>...</h2> A second-level heading.

<h3>...</h3> A third-level heading.

<h4>...</h4> A fourth-level heading (seldom used).

<h5>...</h5> A fifth-level heading (seldom used).

<h6>...</h6> A sixth-level heading (seldom used).

Finally, you learned about XML and XHTML, how they relate to HTML,
and what HTML5 means in relation to what it is you’re learning here.

42 CHAPTER 2 Understanding HTML and XHTML Connections

Q&A
Q. I’ve created a web page, but when I open the file in my web browser, I

see all the text including the HTML tags. Sometimes I even see weird
gobbledygook characters at the top of the page! What did I do wrong?

A. You didn’t save the file as plain text. Try saving the file again, being
careful to save it as Text Only or ASCII Text. If you can’t quite figure out
how to get your word processor to do that, don’t stress. Just type your
HTML files in Notepad or TextEdit instead and everything should work
just fine. (Also, always make sure that the filename of your web page
ends in .html or .htm.)

Q. I’ve seen web pages on the Internet that don’t have <html> tags at the
beginning. You said pages always have to start with <html>. What’s
the deal?

A. Many web browsers will forgive you if you forget to include the <html>
tag and will display the page correctly anyway. However, it’s a very good
idea to include it because some software does need it to identify the
page as valid HTML. Besides, you want your pages to be bona fide
XHTML pages so that they conform to the latest web standards.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What four tags are required in every HTML page?

2. What HTML tags and text would you use to produce the following web
content:

. A small heading with the words We are Proud to Present

. A horizontal rule across the page

. A large heading with the one word Orbit

. A medium-sized heading with the words The Geometric Juggler

. Another horizontal rule

Workshop 43

3. What code would you use to create a complete HTML web page with
the title Foo Bar, a heading at the top that reads Happy Hour at the
Foo Bar, followed by the words Come on down! in regular type?

Answers
1. <html>, <head>, <title>, and <body> (along with their closing tags,

</html>, </head>, </title>, and </body>).

2. Your code would look like this:

<h3>We are Proud to Present</h3>
<hr />
<h1>Orbit</h1>
<h2>The Geometric Juggler</h2>
<hr />

3. Your code would look like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Foo Bar</title>

</head>

<body>
<h1>Happy Hour at the Foo Bar</h1>
<p>Come on Down!</p>

</body>
</html>

Exercises
. Even if your main goal in reading this book is to create web content for

your business, you might want to make a personal web page just for
practice. Type a few paragraphs to introduce yourself to the world and
use the HTML tags you’ve learned in this chapter to make them into a
web page.

. Throughout the book, you’ll be following along with the code examples
and making pages of your own. Take a moment now to set up a basic
document template containing the XML declaration, doctype declara-
tion, and tags for the core HTML document structure. That way, you can
be ready to copy and paste that information whenever you need it.

This page intentionally left blank

In the previous chapter, you learned the basics of HTML and XHTML,
including how to set up a skeletal HTML template for all your web con-
tent. In this chapter, you will learn how to fine-tune the display of your
web content using Cascading Style Sheets (CSS).

The concept behind style sheets is simple: You create a style sheet docu-
ment that specifies the fonts, colors, spacing, and other characteristics that
establish a unique look for a website. You then link every page that should
have that look to the style sheet, instead of specifying all those styles
repeatedly in each separate document. Therefore, when you decide to
change your official corporate typeface or color scheme, you can modify all
your web pages at once just by changing one or two entries in your style
sheet rather than changing them in all of your static web files. So, a style
sheet is a grouping of formatting instructions that controls the appearance
of several HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics,
including exacting typeface controls, letter and line spacing, and margins
and page borders, just to name a few. Style sheets also enable sizes and
other measurements to be specified in familiar units, such as inches, mil-
limeters, points, and picas. You can also use style sheets to precisely posi-
tion graphics and text anywhere on a web page, either at specific coordi-
nates or relative to other items on the page.

In short, style sheets bring a sophisticated level of display to the Web. And
they do so—you’ll pardon the expression—with style.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to create a basic style
sheet

. How to use style classes

. How to use style IDs

. How to construct internal
style sheets and inline
styles

CHAPTER 3
Understanding Cascading Style

Sheets

NOTE

If you have three or more web
pages that share (or should
share) similar formatting and
fonts, you might want to create
a style sheet for them as you
read this chapter. Even if you
choose not to create a com-
plete style sheet, you’ll find it
helpful to apply styles to individ-
ual HTML elements directly
within a web page.

46 CHAPTER 3 Understanding Cascading Style Sheets

How CSS Works
The technology behind style sheets is called CSS, which stands for
Cascading Style Sheets. CSS is a language that defines style constructs such
as fonts, colors, and positioning, which are used to describe how informa-
tion on a web page is formatted and displayed. CSS styles can be stored
directly in an HTML web page or in a separate style sheet file. Either way,
style sheets contain style rules that apply styles to elements of a given
type. When used externally, style sheet rules are placed in an external style
sheet document with the file extension .css.

A style rule is a formatting instruction that can be applied to an element on
a web page, such as a paragraph of text or a link. Style rules consist of one
or more style properties and their associated values. An internal style sheet is
placed directly within a web page, whereas an external style sheet exists in a
separate document and is simply linked to a web page via a special tag—
more on this tag in a moment.

The cascading part of the name CSS refers to the manner in which style
sheet rules are applied to elements in an HTML document. More specifical-
ly, styles in a CSS style sheet form a hierarchy in which more specific styles
override more general styles. It is the responsibility of CSS to determine
the precedence of style rules according to this hierarchy, which establishes
a cascading effect. If that sounds a bit confusing, just think of the cascading
mechanism in CSS as being similar to genetic inheritance, in which general
traits are passed from parents to a child, but more specific traits are entire-
ly unique to the child. Base style rules are applied throughout a style sheet
but can be overridden by more specific style rules.

A quick example should clear things up. Take a look at the following code
to see whether you can tell what’s going on with the color of the text:

<div style=”color:green”>
This text is green.
<p style=”color:blue”>This text is blue.</p>
<p>This text is still green.</p>

</div>

In the previous example, the color green is applied to the <div> tag via the
color style property. Therefore, the text in the <div> tag is colored green.
Because both <p> tags are children of the <div> tag, the green text style

NOTE

You might notice that I use the
term element a fair amount in
this chapter (and I will for the
rest of the book, for that mat-
ter). An element is simply a
piece of information (content) in
a web page, such as an image,
a paragraph, or a link. Tags are
used to code elements, and
you can think of an element as
a tag complete with descriptive
information (attributes, text,
images, and so on) within the
tag.

A Basic Style Sheet 47

cascades down to them. However, the first <p> tag overrides the color style
and changes it to blue. The end result is that the first line (not surrounded
by a paragraph tag) is green, the first official paragraph is blue, and the
second official paragraph retains the cascaded green color.

If you made it through that description on your own, congratulations. If
you understood it after I explained it in the text, congratulations to you as
well. Understanding CSS isn’t like understanding rocket science, although
many people will try to convince you that it is (so that they can charge
high consultation fees, most likely!).

Like many web technologies, CSS has evolved over the years. The original
version of CSS, known as Cascading Style Sheets Level 1 (CSS1) was created
in 1996. The later CSS 2 standard was created in 1998, and CSS 2 is still in
use today. All modern web browsers support CSS 2, and you can safely use
CSS 2 style sheets without too much concern. So when I talk about CSS
throughout the book, I’m referring to CSS 2.

You’ll find a complete reference guide to CSS at http://www.w3.org/
Style/CSS/. The rest of this chapter explains how to put CSS to good use.

A Basic Style Sheet
Despite their intimidating power, style sheets can be simple to create.
Consider the web pages shown in Figure 3.1 and Figure 3.2. These pages
share several visual properties that could be put into a common style sheet:

. They use a large, bold Verdana font for the headings and a normal
size and weight Verdana font for the body text.

. They use an image named logo.gif floating within the content and on
the right side of the page.

. All text is black except for subheadings, which are purple.

. They have margins on the left side and at the top.

. There is vertical space between lines of text.

. The footnotes are centered and in small print.

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/

48 CHAPTER 3 Understanding Cascading Style Sheets

Listing 3.1 shows the code for the style sheet specifying these properties.

FIGURE 3.1
This page uses a style sheet to
fine-tune the appearance and
spacing of the text and images.

FIGURE 3.2
This page uses the same style
sheet as the one shown in Figure
3.1, thus maintaining a consistent
look and feel.

A Basic Style Sheet 49

LISTING 3.1 A Single External Style Sheet
body {
font-size: 10pt;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
color: black;
line-height: 14pt;
padding-left: 5pt;
padding-right: 5pt;
padding-top: 5pt;

}

h1 {
font: 14pt Verdana, Geneva, Arial, Helvetica, sans-serif;
font-weight: bold;
line-height: 20pt;

}

p.subheader {
font-weight: bold;
color: #593d87;

}

img {
padding: 3pt;
float: right;

}

a {
text-decoration: none;

}

a:link, a:visited {
color: #8094d6;

}

a:hover, a:active {
color: #FF9933;

}

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

}

This might initially appear to be a lot of code, but if you look closely, you’ll
see that there isn’t a lot of information on each line of code. It’s fairly stan-
dard to place individual style rules on their own line to help make style

50 CHAPTER 3 Understanding Cascading Style Sheets

sheets more readable, but that is a personal preference; you could put all
the rules on one line as long as you kept using the semicolon to separate
each rule (more on that in a bit). Speaking of code readability, perhaps the
first thing you noticed about this style sheet code is that it doesn’t look
anything like normal HTML code. CSS uses a language all its own to speci-
fy style sheets.

Of course, the listing includes some familiar HTML tags. As you might
guess, body, h1, p, img, a, and div in the style sheet refer to the correspon-
ding tags in the HTML documents to which the style sheet will be applied.
The curly braces after each tag name contain the specifications for how all
content within that tag should appear.

In this case, the style sheet says that all body text should be rendered at a
size of 10 points, in the Verdana font (if possible), with the color black, and
14 points between lines. If the user does not have the Verdana font
installed, the list of fonts in the style sheet represents the order in which
the browser should search for fonts to use: Geneva, then Arial, and then
Helvetica. If the user has none of those fonts, the browser will use whatev-
er default sans serif font is available. Additionally, the page should have
left, right, and top margins of 5 points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a
size of 14 points. Moving on, any paragraph that uses only the <p> tag will
inherit all the styles indicated by the body element. However, if the <p> tag
uses a special class named subheader, the text will appear bold and in the
color #593d87 (a purple color).

The pt after each measurement in Listing 3.1 means points (there are 72
points in an inch). If you prefer, you can specify any style sheet measure-
ment in inches (in), centimeters (cm), pixels (px), or widths-of-a-letter-m,
which are called ems (em).

You might have noticed that each style rule in the listing ends with a semi-
colon (;). Semicolons are used to separate style rules from each other. It is
therefore customary to end each style rule with a semicolon, so you can
easily add another style rule after it.

To link this style sheet to HTML documents, include a <link /> tag in the
<head> section of each document. Listing 3.2 shows the HTML code for the
page shown in Figure 3.1. It contains the following <link /> tag:

<link rel=”stylesheet” type=”text/css” href=”styles.css” />

NOTE

You can specify font sizes as
large as you like with style
sheets, although some display
devices and printers will not
correctly handle fonts larger
than 200 points.

A Basic Style Sheet 51

This assumes that the style sheet is stored under the name styles.css in
the same folder as the HTML document. As long as the web browser sup-
ports style sheets—and all modern browsers do support style sheets—the
properties specified in the style sheet will apply to the content in the page
without the need for any special HTML formatting code. This confirms the
ultimate goal of XHTML, which is to provide a separation between the
content in a web page and the specific formatting required to display that
content.

LISTING 3.2 HTML Code for the Page Shown in Figure 3.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About BAWSI</title>
<link rel=”stylesheet” type=”text/css” href=”styles.css” />

</head>
<body>

<h1>About BAWSI</h1>
<p>The Bay Area Women’s
Sports Initiative (BAWSI) is a public benefit, nonprofit
corporation with a mission to create programs and partnerships
through which women athletes bring health, hope and wholeness to
our community. Founded in 2005 by Olympic and World Cup soccer
stars Brandi Chastain and Julie Foudy and Marlene Bjornsrud,
former general manager of the San Jose CyberRays women’s
professional soccer team, BAWSI provides a meaningful path for
women athletes to become a more visible and valued part of the
Bay Area sports culture.</p>
<p class=”subheader”>BAWSI’s History</p>
<p>The concept of BAWSI was inspired by one of the most
spectacular achievements in women’s sports history and born out
of one its biggest disappointments... </p>
<p>[continue reading]</p>
<div class=”footer”>Copyright © 2005-2009 BAWSI
(www.bawsi.org). All rights reserved. Used with permission.</div>

</body>
</html>

The code in Listing 3.2 is interesting because it contains no formatting of
any kind. In other words, there is nothing in the HTML code that dictates
how the text and images are to be displayed—no colors, no fonts, nothing.
Yet the page is carefully formatted and rendered to the screen, thanks to
the link to the external style sheet, styles.css. The real benefit to this

TIP

In most web browsers, you can
view the style rules in a style
sheet by opening the .css file
and choosing Notepad or anoth-
er text editor as the helper
application to view the file. (To
determine the name of the .css
file, look at the HTML source of
any web page that links to it.)
To edit your own style sheets,
just use a text editor.

NOTE

Although CSS is widely support-
ed in all modern web browsers,
it hasn’t always enjoyed such
wide support. Additionally, not
every browser’s support of CSS
is flawless. To find out about
how major browsers compare to
each other in terms of CSS sup-
port, take a look at this website:
http://www.quirksmode.org/css/
contents.html.

http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html

52 CHAPTER 3 Understanding Cascading Style Sheets

approach is that you can easily create a site with multiple pages that main-
tains a consistent look and feel. And you have the benefit of isolating the
visual style of the page to a single document (the style sheet) so that one
change impacts all pages.

TRY IT YOURSELF▼

Create a Style Sheet
of Your Own

Starting from scratch, create a new text document called mystyles.css and
add some style rules for the following basic HTML tags: <body>, <p>, <h1>,
and <h2>. After your style sheet has been created, make a new HTML file that
contains these basic tags. Play around with different style rules and see for
yourself how simple it is to change entire blocks of text in paragraphs with
one simple change in a style sheet file.

A CSS Style Primer
You now have a basic knowledge of CSS style sheets and how they are
based on style rules that describe the appearance of information in web
pages. The next few sections of this chapter provide a quick overview of
some of the most important style properties and allow you to get started
using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors,
alignment, and margins, to name just a few. The style properties in CSS can
be generally grouped into two major categories:

. Layout properties—Consist of properties that affect the positioning
of elements on a web page, such as margins, padding, alignment,
and so on

. Formatting properties—Consist of properties that affect the visual
display of elements within a website, such as the font type, size,
color, and so on

Layout Properties
CSS layout properties are used to determine how content is placed on a
web page. One of the most important layout properties is the display
property, which describes how an element is displayed with respect to
other elements. There are four possible values for the display property:

