

Programming Windows
Presentation Foundation

Chris Sells and Ian Griffiths

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming Windows Presentation Foundation
by Chris Sells and Ian Griffiths

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn

Development Editor: Michael Weinhardt

Production Editor: Sanders Kleinfeld

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Windows Presentation Foundation, the image of a kudu, and related
trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, the .NET logo, Visual Basic .NET, Visual Studio .NET, ADO.NET, Windows, and Windows
2000 are registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-10113-9

[C] [11/05]

iii

Table of Contents

Preface . vii

1. Hello, WPF . 1
WPF from Scratch 1
Navigation Applications 11
Content Model 15
Layout 18
Controls 21
Data Binding 21
Dependency Properties 26
Resources 26
Styles and Control Templates 29
Graphics 32
Application Deployment 33
Where Are We? 35

2. Layout . 37
Layout Basics 37
DockPanel 39
StackPanel 44
Grid 47
Canvas 60
Viewbox 62
Text Layout 64
Common Layout Properties 73
When Content Doesn’t Fit 78
Custom Layout 80
Where Are We? 83

iv | Table of Contents

3. Controls . 84
What Are Controls? 84
Handling Input 86
Built-In Controls 99
Where Are We? 117

4. Data Binding . 118
Without Data Binding 118
Data Binding 126
Binding to List Data 135
Data Sources 148
Master-Detail Binding 158
Where Are We? 165

5. Styles and Control Templates . 166
Without Styles 166
Inline Styles 170
Named Styles 170
Element-Typed Styles 178
Data Templates and Styles 180
Triggers 184
Control Templates 192
Where Are We? 199

6. Resources . 200
Creating and Using Resources 200
Resources and Styles 211
Binary Resources 216
Global Applications 219
Where Are We? 224

7. Graphics . 225
Graphics Fundamentals 225
Shapes 235
Brushes and Pens 255
Transformations 274
Visual-Layer Programming 277
Video and 3-D 280
Where Are We? 282

Table of Contents | v

8. Animation . 283
Animation Fundamentals 283
Timelines 288
Storyboards 304
Key Frame Animations 314
Creating Animations Procedurally 318
Where Are We? 319

9. Custom Controls . 321
Custom Control Basics 321
Choosing a Base Class 322
Custom Functionality 324
Templates 331
Default Visuals 336
Where Are We? 337

10. ClickOnce Deployment . 338
A Brief History of Windows Deployment 338
ClickOnce: Local Install 340
The Pieces of ClickOnce 345
Publish Properties 346
Deploying Updates 348
ClickOnce: Express Applications 350
Choosing Local Install versus Express 355
Signing ClickOnce Applications 355
Programming for ClickOnce 360
Security Considerations 363
Where Are We? 365

A. XAML . 367

B. Interoperability . 393

C. Asynchronous and Multithreaded Programming in WPF Applications . . . 409

Index . 420

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

vii

Preface

It’s been a long road to Windows Presentation Foundation, better known to many as
Avalon, the in-house Microsoft code name for the new Windows Vista presentation
framework.

I learned to program Windows from Programming Windows 3.1 by Charles Petzold
(Microsoft Press). In those days, programming for Windows was about windows,
menus, dialogs and child controls. To make it all work, we had WndProcs (windows
procedure functions) and messages. We dealt with the keyboard and the mouse. If
we got fancy, we would do some nonclient work. Oh, and there was the stuff in the
big blank space in the middle that I could fill however I wanted with the graphics
device interface (GDI), but my 2-D geometry had better be strong to get it to look
right, let alone perform adequately.

Later, I moved to MFC (the Microsoft Foundation Classes), where we had this thing
called a “document” which was separate from the “view.” The document could be
any old data I wanted it to be, and the view, well, the view was the big blank space in
the middle that I could fill however I wanted with the MFC wrappers around GDI.

Later still, there was this thing called DirectX, which was finally about providing
tools for filling in the space with hardware-accelerated 3-D polygons, but DirectX
was built for writing full-screen games, so building content visualization and man-
agement applications just made my head hurt.

Windows Forms, on the other hand, was such a huge productivity boost and I loved
it so much that I wrote a book about it (as did my co-author). Windows Forms was
built on top of .NET, a managed environment that took a lot of programming minu-
tiae off my hands so that I could concentrate on the content. Plus, Windows Forms
itself gave me all kinds of great tools for laying out my windows, menus, dialogs and
child controls. And the inside of the windows where I showed my content? Well, if
the controls weren’t already there to do what I wanted, I could draw the content
however I wanted using the GDI+ wrappers in System.Drawing, which was essentially

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

viii | Preface

the same drawing model Windows programmers had been using for the last 20
years, before even hardware graphics acceleration in 2-D, let alone 3-D.

In the meantime, a whole other way of interacting with content came along: HTML
was great at letting me arrange my content, both text and graphics, and it would flow
it and reflow it according to the preferences of the user. Further, with the recent
emergence of AJAX (Asynchronous Java And XML), this environment got even more
capable. Still, HTML isn’t great if you want to control more of the user experience
than just the content or if you want to do anything Windows-specific—both things
that even Windows 3.1 programmers took for granted.

More recently, Windows Presentation Foundation (WPF) happened. Initially it felt
like another way to create my windows, menus, dialogs and child controls. How-
ever, WPF shares a much deeper love for content than has yet been provided by any
other Windows programming framework.

To support content at the lowest levels, WPF merges controls and graphics into one
programming model; both are placed into the same element tree in the same way.
And while these primitives are built on top of DirectX to leverage the 3-D hardware
acceleration that’s dormant when you’re not running the latest twitch game, they’re
also built in .NET, providing the same productivity boost to WPF programmers that
Windows Forms programmers enjoy.

One level up, WPF provides its “content model,” which allows any control to host
any group of other controls. You don’t have to build special BitmapButton or
IconComboBox classes; you put as many images, shapes, videos, 3-D models or what-
ever into a Button or a ComboBox as suit your fancy.

To arrange the content, whether in fixed or flow layout, WPF provides container ele-
ments that implement various layout algorithms in a way that is completely indepen-
dent of the content they’re holding.

To visualize the content, WPF provides data binding, styles and animation. Data
binding produces and synchronizes visual elements on the fly based on your con-
tent. Styles allows you to replace the complete look of a control while maintaining its
behavior. Animation brings your application to life, giving your users immediate
feedback as they interact with it. These features give you the power to produce data
visualizations so far beyond the capabilities of the data grid, the pinnacle most appli-
cations aspire to, that even Edward Tufte would be proud.

Combine these features with ClickOnce for the deployment and update of your WPF
applications, both as standalone clients and as applications blended with your web
site inside the browser, and you’ve got the foundation of the next generation of Win-
dows applications.

The next generation of applications is going to blaze a trail into the unknown. WPF
represents the best of the control-based Windows and content-based web worlds,
combined with the performance of DirectX and the deployment capabilities of

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | ix

ClickOnce, building for us a vehicle just itching to be taken for a spin. And, like the
introduction of fonts to the PC, which produced “ransom note” office memos, and
the invention of HTML, which produced blinking online brochures, WPF is going to
produce its own accidents along the road. Before we learn just what we’ve got in
WPF, we’re going to see a lot of strange and wonderful sights. I can’t tell you where
we’re going to end up, but, with this book, I hope to fill your luggage rack so that
you can make the journey.

Who This Book Is For
As much as I love the designers of the world, who are going to go gaga over WPF,
this book is aimed squarely at my people: developers. We’re not teaching program-
ming here, so experience with some programming environment is a must before
reading this book. Programming in .NET and C# are pretty much required; Win-
dows Forms, XML and HTML are all recommended.

How This Book Is Organized
Here’s what each chapter of this book will cover:

Chapter 1, Hello, WPF
This chapter introduces the basics of WPF. It then provides a whirlwind tour of
all the features that will be covered in the following chapters, so you can see how
everything fits together before we delve into the details.

Chapter 2, Layout
WPF provides a powerful set of tools for managing the visual layout of your
applications. This chapter shows how to use this toolkit, and how to extend it.

Chapter 3, Controls
Controls are the building blocks of a user interface. This chapter describes the
controls built into the WPF framework and shows how to make your applica-
tion respond when the user interacts with controls.

Chapter 4, Data Binding
All applications need to present information to the user. This chapter shows
how to use WPF’s data-binding features to connect the user interface to your
underlying data.

Chapter 5, Styles and Control Templates
WPF provides an astonishing level of flexibility in how you can customize the
appearance of your user interface and the controls it contains. Chapter 5 exam-
ines the customization facilities and shows how the styling and template mecha-
nisms allow you to wield this power without compromising the consistency of
your application’s appearance.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

Chapter 6, Resources
This chapter describes WPF’s resource-handling mechanisms, which are used for
managing styles, themes, and binary resources such as graphics.

Chapter 7, Graphics
WPF offers a powerful set of drawing primitives. It also offers an object model
for manipulating drawings once you have created them.

Chapter 8, Animation
This chapter describes WPF’s animation facilities, which allow most visible
aspects of a user interface—such as size, shape, color, and position—to be
animated.

Chapter 9, Custom Controls
This chapter shows how to write custom controls and other custom element
types. It shows how to take full advantage of the WPF framework to build con-
trols as powerful and flexible as the built-in controls.

Chapter 10, ClickOnce Deployment
ClickOnce allows applications to take full advantage of WPF’s rich visual and
interactive functionality while enjoying the benefits of web deployment.

Appendix A, XAML
The eXtensible Application Markup Language, XAML, is an XML-based lan-
guage that can be used to represent the structure of n WPF user interface. This
appendix describes how XAML is used to create trees of objects.

Appendix B, Interoperability
WPF is able to coexist with old user-interface technologies, enabling developers
to take advantage of WPF without rewriting their existing applications. This
appendix describes the interoperability features that make this possible.

Appendix C, Asynchronous and Multithreaded Programming in WPF Applications
Multithreaded code and asynchronous programming are important techniques
for making sure your application remains responsive to user input at all times.
This appendix explains WPF’s threading model and shows how to make sure
your threads coexist peacefully with a WPF UI.

That’s not to say that we’ve covered everything there is to know about WPF in this
book. As of this writing, WPF is still pre-beta, so not everything is working as well as
we’d like, some things are just plain missing, and still other things would require
entire other books to get their just due. In this book, you will find little or no cover-
age of the following topics, among others: printing, “Metro,” 3-D, video, UI automa-
tion, binding to relational data, and “eDocs.”

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

What You Need to Use This Book
This book was produced with WinFX Beta 1, which includes WPF and WCF, and
Visual Studio 2005 Beta 2. WPF is supported on Windows XP, Windows Server
2003, and, eventually, Longhorn.

By the time you read these words, Microsoft will have moved beyond these versions
and provided new community technology previews of one or more of both of these
technologies. However, I can say with certainty that the vast majority of the ideas
and implementation details will be the same. For those that aren’t, you should look
at this book’s web site for errata information, which we’ll try to keep updated at
major releases of WPF, right up until we release a new edition of this book at the
release of WPF 1.0.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms and filenames.

Constant width
Indicates code, commands, options, switches, variables, attributes, keys, func-
tions, types, classes, namespaces, methods, modules, properties, parameters, val-
ues, objects, events, event handlers, XML tags, HTML tags, macros, the contents
of files, and the output from commands.

Constant width bold
Shows code or other text that should be noted by the reader.

Constant width elipses (...)
Shows code or other text not relevant to the current discussion.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Windows Presenta-
tion Foundation, by Chris Sells and Ian Griffiths. Copyright 2005 O’Reilly Media,
Inc., 0-596-10113-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

How to Contact Us
For the code samples associated with this book and errata—especially as WPF
changes between the Beta 1 against which this book was written and major mile-
stones before the release of WPF 1.0—visit the web site maintained by the authors at
http://www.sellsbrothers.com/writing/avbook.

O’Reilly also maintains a web page for this book, where we list errata, examples, and
any additional information. You can access this page at:

http://www.oreilly.com/catalog/avalon

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Ian Griffiths:

http://www.interact-sw.co.uk/iangblog/

Chris Sells:

http://sellsbrothers.com

Ian’s Acknowledgments
Writing this book wouldn’t have been possible without the support and feedback
generously provided by a great many people. I would like to thank the following:

The readers, without whom this book would have a rather sad, lonely, and pointless
existence.

My coauthor, Chris Sells, both for getting me involved in writing about WPF in the
first place, and for his superb feedback and assistance.

Tim Sneath, both for his feedback and for providing me with the opportunity to
meet and work with many members of the WPF team.

Microsoft employees and contractors, for producing a technology I like so much that
I just had to write a book about it. And in particular, thank you to those people at
Microsoft who gave their time to answer my questions or review draft chapters,
including Chris Anderson, Marjan Badiei, Jeff Bogdan, Mark Boulter, Ben Carter,
Dennis Cheng, Karen Corby, Beatriz de Oliveira Costa, Vivek Dalvi, Nathan Dunlap
Ifeanyi Echeruo, Pablo Fernicola, Filipe Fortes, Aaron Goldfeder, John Gossman,
Mark Grinols, Namita Gupta, Henry Hahn, Robert Ingebretson, Kurt Jacob, Karsten
Januszewski, David Jenni, Michael Kallay, Amir Khella, Nick Kramer, Lauren
Lavoie, Daniel Lehenbauer, Kevin Moore, Elizabeth Nelson, Seema Ramchandani,
Rob Relyea, Chris Sano, Eli Schleifer, Adam Smith, Eric Stollnitz, Zhanbo Sun,
David Teitlebaum, Stephen Turner, and Dawn Wood.

John Osborn and Caitrin McCullough at O’Reilly for their support throughout the
writing process.

The technical review team: Matthew Adams, Craig Andera, Ryan Dawson, Glyn
Griffiths, Adam Kinney, Drew Marsh, Dave Minter, and Brian Noyes. And particu-
lar thanks to Mike Weinhardt for his extensive and thoughtful feedback.

Finally, I especially want to thank Abi Sawyer for all her support, and for putting up
with me while I wrote this book—thank you!

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Chris’s Acknowledgments
I’d like to thank the following people, without whom I wouldn’t have been able to
write this book:

First and foremost, the readers. When you’ve got something to say, you’ve got to
have someone to say it to. I’ve been writing about WPF in various forums for more
than 18 months, and you guys have always pushed and encouraged me further.

My coauthor, Ian Griffiths. Ian’s extensive background in all things graphical and
video-related, including technologies so deep I can’t understand him half the time,
plus his wonderful writing style, made him the perfect co-author on this book. I
couldn’t have asked for better.

Microsoft employees and contractors (in order that I found them in my WPF email
folder): Lauren Lavoie, Lars Bergstrom, Amir Khella, Kevin Kennedy, David Jenni,
Elizabeth Nelson, Beatriz de Oliveira Costa, Nick Kramer, Allen Wagner, Chris
Sano, Tim Sneath, Steve White, Matthew Adams, Eli Schleifer, Karsten Januszewski,
Rob Relyea, Mark Boulter, Namita Gupta, John Gossman, Kiran Kumar, Filipe
Fortes, Guy Smith, Zhanbo Sun, Ben Carter, Joe Marini, Dwayne Need, Brad
Abrams, Feng Yuan, Dawn Wood, Vivek Dalvi, Jeff Bogdan, Steve Makofsky, Kenny
Lim, Dmitry Titov, Joe Laughlin, Arik Cohen, Eric Stollnitz, Pablo Fernicola, Henry
Hahn, Jamie Cool, Sameer Bhangar, and Brent Rector. I regularly spammed a wide
range of my Microsoft brethren, and instead of snubbing me, they answered my
email questions, helped me make things work, gave me feedback on the chapters,
sent me additional information without an explicit request, and, in the case of John
Gossman, forwarded the chapters along to folks with special knowledge so that they
could give me feedback. This is the first book I’ve written “inside,” and with the
wealth of information and conscientious people available, it’d be very, very hard to
go back to writing “outside.”

The external reviewers, who provide an extremely important mainstream point of
view that Microsoft insiders can’t: Craig Andera, Ryan Dawson, Glyn Griffiths (Ian’s
dad was an excellent reviewer!), Adam Kinney, Drew Marsh, Dave Minter and Brian
Noyes.

Christine Morin for her work on the shared source Windows Forms version of soli-
taire and James Kovacs for his work extracting a UI independent engine from it so
that I could build WPF Solitaire on top of it; this is the app that opened my eyes to
the wonder and power of WPF. Also, to Peter Stern and Chris Mowrer who pro-
duced the faces and backs of the WPF Solitaire cards long before the technology was
ready to support such a thing.

Caitrin McCullough and John Osborn from O’Reilly for supporting me in breaking a
bunch of the normal ORA procedures and guidelines to publish the book I wanted to
write.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

Shawn Morrissey for letting me make writing a part of my first two years at Microsoft
and even giving me permission to use some of that material to seed this book. Shawn
put up with me, trusting me to do my job remotely when very few Microsoft manag-
ers would. Also, Sara Williams for hiring me from my home in Oregon in spite of the
overwhelming pressure to move all new employees to Washington.

Don Box for setting my initial writing quality bar and hitting me squarely between
the eyes until I could clear it. Of course, thank you for the cover quote and for acting
as my soundboard on this preface. You’re an invaluable resource and dear friend.

Barbara Box for putting me up in the Chez Box clubhouse while I balance work and
family in a way that wouldn’t be possible without you.

Tim Ewald for that critical eye at the most important spots.

Michael Weinhardt as the primary developmental editor on this book. His feedback
is probably the single biggest factor in whatever quality we’ve been able to cram into
this book. As if that weren’t enough, he produced many of the figures in my chapters.

Chris Anderson, architect on WPF, for a ton of illuminating conversations even after
he started a competing book (although I’m convinced he’d be willing to talk to
almost anyone once he’d entered the deadly “writer avoidance mode”).

My family. This was the first book I’ve ever written while holding a full-time job and,
worse than that, while I was learning a completely new job. Frankly, I neglected my
family pretty thoroughly for about three solid months, but they understood and sup-
ported me, like they have all of my endeavors over the years. I am very much looking
forward to getting back to them.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Hello, WPF

Windows Presentation Foundation (or WPF, as we will refer to it throughout this
book) is a completely new presentation framework, integrating the capabilities of
those frameworks that preceded it, including User, GDI, GDI+, and HTML, and
heavily influenced by toolkits targeted at the Web, such as Macromedia Flash, and
popular Windows applications such as Microsoft Word. This chapter is meant to
give you the basics of WPF from scratch and then take you on a whirlwind tour of
the things you’ll read about in detail in the chapters that follow.

I know that “Avalon” is now officially the “Windows Presentation Foundation,” but
that’s quite a mouthful and “WPF” is something I’m still getting used to, so during
this difficult transition, please don’t think less of me when I use the term “Avalon.”

WPF from Scratch
Example 1-1 is pretty much the smallest WPF application you can write in C#.

Example 1-1. Minimal C# WPF application

// MyApp.cs
using System;
using System.Windows; // the root WPF namespace

namespace MyFirstAvalonApp {
 class MyApp {
 [STAThread]
 static void Main() {
 // the WPF message box
 MessageBox.Show("Hello, Avalon");
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Hello, WPF

If you’re not familiar with the STAThread attribute, it’s a signal to .NET
that when COM is initialized on the application’s main thread, to
make sure it’s initialized to be compatible with single-threaded UI
work, as required by WPF applications.

Building Applications
Building this application is a matter of firing off the C# compiler from a command
shell with the appropriate environment variables,* as in Example 1-2.

Here, we’re telling the C# compiler that we’d like to create a Windows application
(instead of a Console application, which we get by default), putting the result, 1st.exe,
into the current folder, bringing in the three main WPF assemblies (WindowsBase,
PresentationCore and PresentationFramework), along with the core .NET System
assembly, and compiling the MyApp.cs source file.

Running the resulting 1st.exe produces the world’s lamest WPF application, as
shown in Figure 1-1.

In anticipation of less lame WPF applications, refactoring the compilation command
line into an msbuild project file is recommended, as in Example 1-3.

* Start ➝ Programs ➝ Microsoft WinFX SDK ➝ Debug Build Environment or Release Build Environment.

Example 1-2. Building a WPF application manually

C:\1st>csc /target:winexe /out:.\1st.exe
 /r:System.dll
 /r:c:\WINDOWS\Microsoft.NET\Windows\v6.0.4030\WindowsBase.dll
 /r:c:\WINDOWS\Microsoft.NET\Windows\v6.0.4030\PresentationCore.dll
 /r:c:\WINDOWS\Microsoft.NET\Windows\v6.0.4030\PresentationFramework.dll
 MyApp.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00.50215.44
for Microsoft (R) Windows (R) 2005 Framework version 2.0.50215
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

Figure 1-1. A lame WPF application

Example 1-3. A minimal msbuild project file

<!-- 1st.csproj -->
<Project

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

WPF from Scratch | 3

Msbuild is a .NET 2.0 command-line tool that understands XML files in the form
shown in Example 1-3. The file format is shared between msbuild and Visual Studio
2005 so that you can use the same project files for both command-line and IDE
builds. In this .csproj file (which stands for “C# Project”), we’re saying the same
things that we said to the C# compiler—i.e., that we’d like a Windows application,
that we’d like the output to be 1st.exe in the current folder, and that we’d like to ref-
erence the main WPF assemblies while compiling the MyApp.cs file. The actual
smarts of how to turn these minimal settings into a compiled WPF application are
contained in the .NET 2.0 Microsoft.CSharp.targets file that imported at the bottom
of the file.

Executing msbuild.exe on the 1st.csproj file looks like Example 1-4.

 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <OutputType>winexe</OutputType>
 <OutputPath>.\</OutputPath>
 <Assembly>1st.exe</Assembly>
 </PropertyGroup>
 <ItemGroup>
 <Compile Include="MyApp.cs" />
 <Reference Include="System" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 </ItemGroup>
 <Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
</Project>

Example 1-4. Building using msbuild

C:\1st>msbuild 1st.csproj
Microsoft (R) Build Engine Version 2.0.50215.44
[Microsoft .NET Framework, Version 2.0.50215.44]
Copyright (C) Microsoft Corporation 2005. All rights reserved.

Build started 7/6/2005 8:20:39 PM.
__ _ _
Project "C:\1st\1st.csproj" (default targets):

Target PrepareForBuild:
 Creating directory "obj\Release\".
Target CompileRdlFiles:
 Skipping target "CompileRdlFiles" because it has no inputs.
Target CoreCompile:
 Csc.exe /noconfig /nowarn:"1701;1702" /reference:C:\WINDOWS\Microsoft.net\Wi
ndows\v6.0.4030\PresentationCore.dll /reference:C:\WINDOWS\Microsoft.net\Windows
\v6.0.4030\PresentationFramework.dll /reference:C:\WINDOWS\Microsoft.NET\Framewo
rk\v2.0.50215\System.dll /reference:C:\WINDOWS\Microsoft.net\Windows\v6.0.4030\W

Example 1-3. A minimal msbuild project file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Hello, WPF

As I mentioned, msbuild and Visual Studio 2005 share a project file format, so load-
ing the project file into VS is as easy as double-clicking on 1st.csproj, which provides
us all of the rights and privileges thereof (as shown in Figure 1-2).

Unfortunately, as nice as the project file makes building our WPF application, the
application itself is still lame.

The Application Object
A real WPF application is going to need more than a message box. WPF applica-
tions have an instance of the Application class from the System.Windows namespace.
The Application class provides events like StartingUp and ShuttingDown for tracking
lifetime; methods like Run for starting the application; and properties like Current,

indowsBase.dll /out:obj\Release\1st.exe /target:winexe MyApp.cs
Target CopyAppConfigFile:
 Skipping target "CopyAppConfigFile" because it has no outputs.
Target CopyFilesToOutputDirectory:
 Copying file from "obj\Release\1st.exe" to ".\1st.exe".
 1st -> C:\1st\1st.exe

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:00.98

Figure 1-2. Loading the minimal msbuild project file into Visual Studio

Example 1-4. Building using msbuild (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

WPF from Scratch | 5

ShutdownMode, and MainWindow for finding the global application object, choosing
when it shuts down, and getting the application’s main window. Typically, the
Application class serves as a base for custom application-wide behavior, as in
Example 1-5.

Here, our MyApp class derives from the Application base class. In Main, we create an
instance of the MyApp class, add a handler to the StartingUp event, and kick things off
with a call to the Run method, passing the command-line arguments passed to Main.
Those same command-line arguments are available in the StartingUpCancelEventArgs
passed to the StartingUp event handler. (The StartingUp event handler will show its
value as we move responsibility for the application’s entry point to WPF later in this
chapter.)

Our StartingUp handler creates our sample’s top-level window, which is an instance
of the built-in WPF Window class, making our sample WPF application more interest-
ing from a developer point of view, although visually less so, as shown in Figure 1-3.

Example 1-5. A less minimal WPF application

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstAvalonApp {
 class MyApp : Application {
 [STAThread]
 static void Main(string[] args) {
 MyApp app = new MyApp();
 app.StartingUp += app.AppStartingUp;
 app.Run(args);
 }

 void AppStartingUp(object sender, StartingUpCancelEventArgs e) {
 // By default, when all top level windows
 // are closed, the app shuts down
 Window window = new Window();
 window.Text = "Hello, Avalon";
 window.Show();
 }
 }
}

Figure 1-3. A less lame WPF application

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Hello, WPF

While we can create instances of the built-in classes of WPF like Window, populating
them and wiring them up from the application, it’s much more encapsulating (not to
mention abstracting) to create custom classes for such things, like the Window1 class
in Example 1-6.

In addition to setting its caption text, an instance of our Window1 class will include a
button with its Content, Width, and Height properties set and its Click event handled.
With this initialization handled in the Window1 class itself, our app’s startup code
looks a bit simpler (even though the application itself has gotten “richer”), as in
Example 1-7.

Example 1-6. Window class declaring its own controls

// Window1.cs
using System;
using System.Windows;
using System.Windows.Controls; // Button et al

namespace MyFirstAvalonApp {
 class Window1 : Window {
 public Window1() {
 this.Text = "Hello, Avalon";

 // Do something interesting (sorta...)
 Button button = new Button();
 button.Content = "Click me, baby, one more time!";
 button.Width = 200;
 button.Height = 25;
 button.Click += button_Click;

 this.AddChild(button);
 }

 void button_Click(object sender, RoutedEventArgs e) {
 MessageBox.Show(
 "You've done that before, haven't you...",
 "Nice!");
 }
 }
}

Example 1-7. Simplified Application instance

// MyApp.cs
using System;
using System.Windows;

namespace MyFirstAvalonApp {
 class MyApp : Application {
 [STAThread]
 static void Main(string[] args) {
 MyApp app = new MyApp();

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

WPF from Scratch | 7

The results, shown in Figure 1-4, are unlikely to surprise you much.

As the Window1 class gets more interesting, we’re mixing two very separate kinds of
code: the “look,” represented by the initialization code that sets the window and
child window properties, and the “behavior,” represented by the event-handling
code. As the look is something that you’re likely to want handled by someone with
artistic sensibilities (a.k.a. “turtleneck-wearing designer types”), whereas the behav-
ior is something you’ll want to leave to the coders (a.k.a. “pocket-protector-wearing
engineer types”), separating the former from the latter would be a good idea. Ideally,
we’d like to move the imperative “look” code into a declarative format suitable for
tools to create with some drag ’n’ drop magic. For WPF, that format is XAML.

XAML
XAML is an XML-based language for creating and initializing .NET objects. It’s used
in WPF as a serialization format for objects from the WPF presentation stack,
although it can be used for a much larger range of objects than that. Example 1-8
shows how our Window-derived class is declared using XAML.

 app.StartingUp += app.AppStartingUp;
 app.Run(args);
 }

 void AppStartingUp(object sender, StartingUpCancelEventArgs e) {
 // Let the Window1 initialize itself
 Window window = new Window1();
 window.Show();
 }
 }
}

Figure 1-4. A slightly more interesting WPF application

Example 1-8. Declaring a Window in XAML

<!-- Window1.xaml -->
<Window

Example 1-7. Simplified Application instance (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Hello, WPF

The root element, Window, is used to declare a portion of a class, the name of which is
contained in the Class attribute from the XAML XML namespace (declared with a
prefix of “x” using the “xmlns” XML namespace syntax). The two XML namespace
declarations pull in two commonly used namespaces for XAML work, the one for
XAML itself and the one for WPF. You can think of the XAML in Example 1-8 as
creating the partial class definition* in Example 1-9.

XAML was built to be as direct a mapping from XML to .NET as possible. Gener-
ally, every XAML element is a .NET class name and every XAML attribute is the
name of a property or an event on that class. This makes XAML useful for more than
just WPF classes; pretty much any old .NET class that exposes a default constructor
can be initialized in a XAML file.

Notice that we don’t have the definition of the click event handler in this generated
class. For event handlers and other initialization and helpers, a XAML file is meant to

 x:Class="MyFirstAvalonApp.Window1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 Text="Hello, Avalon">
 <Button
 x:Name="button"
 Width="200"
 Height="25"
 Click="button_Click">Click me, baby, one more time!</Button>
</Window>

* Partial classes are a new feature in C# 2.0 that allow you to split class definitions between multiple files.

Example 1-9. C# equivalent of XAML from Example 1-8

namespace MyFirstAvalonApp {
 partial class Window1 : Window {
 Button button;

 void InitializeComponent() {
 // Initialize Window1
 this.Text = "Hello, Avalon";

 // Initialize button
 button = new Button();
 button.Width = 200;
 button.Height = 25;
 button.Click += button_Click;

 this.AddChild(button);
 }
 }
}

Example 1-8. Declaring a Window in XAML (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

WPF from Scratch | 9

be matched with a corresponding code-behind file, which is a .NET language code file
that implements behavior “behind” the look defined in the XAML. Traditionally, this
file is named with a .xaml.cs extension and contains only the things not defined in
the XAML. With the XAML from Example 1-9 in place, our single-buttoned main
window code-behind file can be reduced to the code in Example 1-10.

Notice the partial keyword modifying the Window1 class, which signals to the compiler
that the XAML-generated class is to be paired with this human-generated class to form
one complete class, each depending on the other. The partial Window1 class defined in
XAML depends on the code-behind partial class to call the InitializeComponent
method and to handle the click event. The code-behind class depends on the partial
Window1 class defined in XAML to implement InitializeComponent, thereby providing
the look of the main window (and related child controls).

Further, as I mentioned, XAML is not just for visuals. For example, there’s nothing
stopping us from moving most of the definition of our custom MyApp class into a
XAML file, as in Example 1-11.

This reduces the MyApp code-behind file to the event handler in Example 1-12.

Example 1-10. C# code-behind file

// Window1.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

namespace MyFirstAvalonApp {
 public partial class Window1 : Window {
 public Window1() {
 InitializeComponent();
 }

 void button_Click(object sender, RoutedEventArgs e) {
 MessageBox.Show(...);
 }
 }
}

Example 1-11. Declaring an Application in XAML

<!-- MyApp.xaml -->
<Application
 x:Class="MyFirstAvalonApp.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 StartingUp="AppStartingUp">
</Application>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Hello, WPF

You may have noticed that we no longer have a Main entry point to create the
instance of the application-derived class and call its Run method. That’s because WPF
has a special project setting to specify the XAML file that defines the application
class, which appears in the msbuild project file, as in Example 1-13.

The combination of the ApplicationDefinition element and the WinFX-specific
Microsoft.WinFX.targets file produces an application entry point that will create our
application for us. Also notice in Example 1-13 that we’ve replaced the MyApp.cs file
with the MyApp.xaml.cs file, added the Window1.xaml.c file, and included the two
corresponding XAML files as Page elements. The XAML files will be compiled into
partial class definitions using the instructions in the Microsoft.WinFX.targets file.

Example 1-12. Application code-behind file

// MyApp.xaml.cs
using System;
using System.Windows;

namespace MyFirstAvalonApp {
 public partial class MyApp : Application {
 void AppStartingUp(object sender, StartingUpCancelEventArgs e) {
 Window window = new Window1();
 window.Show();
 }
 }
}

Example 1-13. Specifying the application’s XAML in the project file

<!-- MyFirstAvalonApp.csproj -->
<Project ...>
 <PropertyGroup>
 <OutputType>winexe</OutputType>
 <OutputPath>.\</OutputPath>
 <Assembly>1st.exe</Assembly>
 </PropertyGroup>
 <ItemGroup>
 <ApplicationDefinition Include="MyApp.xaml" />
 <Compile Include="Window1.xaml.cs" />
 <Compile Include="MyApp.xaml.cs" />
 <Reference Include="System" />
 <Reference Include="WindowsBase" />
 <Reference Include="PresentationCore" />
 <Reference Include="PresentationFramework" />
 <Page Include="Window1.xaml" />
 <Page Include="MyApp.xaml" />
 </ItemGroup>
 <Import Project="$(MsbuildBinPath)\Microsoft.CSharp.targets" />
 <Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />
</Project>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Navigation Applications | 11

This basic arrangement of artifacts—i.e., application and main window each split
into a XAML and a code-behind file—is such a desirable starting point for a WPF
application that creating a new project using the Avalon Application project tem-
plate from within Visual Studio 2005 gives you just that initial configuration, as
shown in Figure 1-5.

Navigation Applications
If you create a new WPF application using Visual Studio, you may notice that a few
icons down from the Avalon Application icon is another project template called Ava-
lon Navigation Application, as shown in Figure 1-6.

Figure 1-5. The result of running the Avalon Application project template

Figure 1-6. The Avalon Navigation Application project template in Visual Studio

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Hello, WPF

WPF itself was created as a unified presentation framework, meant to enable build-
ing Windows applications with the best features from existing Windows application
practice and existing web application practice. One of the nice things that web appli-
cations generally provide is a single window showing the user one page of content/
functionality at a time, allowing for navigation between the pages. For some applica-
tions, including Internet Explorer, the Shell Explorer, Microsoft Money and a bunch
of Control Panels, this is thought to be preferable to the more common Windows
application practice of showing more than one window at a time.

To enable more of these kinds of applications in Windows, WPF provides the
NavigationApplication in Example 1-14 to serve as the base of your custom applica-
tion class instead of the Application class.

The NavigationApplication itself derives from the Application class and provides
additional services such as navigation, history, and tracking the initial page to show
when the application first starts, which is specified in the application’s XAML file, as
in Example 1-15.

In addition to the StartupUri, which specifies the first XAML page to show in our
navigation application, notice that the NavigationApplication element doesn’t have
a Text property. In fact, if you were to set one, that would cause a compilation error,
because a navigation application’s main window title is set by the current page. A
page in a WPF navigation application is a class that derives from the Page class, e.g.,
the XAML in Example 1-16.

Example 1-14. The C# portion of a navigation application

// MyApp.xaml.cs
using System;
using System.Windows;
using System.Windows.Navigation;

namespace MyNavApp {
 public partial class MyApp : NavigationApplication {}
}

Example 1-15. The XAML portion of a navigation application

<!-- MyApp.xaml.cs -->
<NavigationApplication
 x:Class="MyNavApp.MyApp"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 StartupUri="Page1.xaml">
</NavigationApplication>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Navigation Applications | 13

Remember that the root element of a XAML file defines the base class, so this Page
root element defines a class (MyNavApp.Page1) that derives from the WPF Page class.
The Text property of the page will be the thing that shows in the caption as the user
navigates from page to page.

Navigation
The primary way to allow the user to navigate is via the Hyperlink element, setting
the NavigateUri to a relative URL of another page XAML in the project. The first
page of our sample navigation application looks like Figure 1-7.

In Figure 1-7, the hyperlinked text is underlined in blue, and if you were to move
your mouse cursor over the hyperlink, it would show up as red. Further, the page’s
Text property is set as the window caption, as well as on the toolbar across the top.
This toolbar is provided for navigation applications for the sole purpose of providing
the back and forward buttons. The act of navigation through the application will
selectively enable and disable these buttons, as well as fill in the history drop-down
maintained by each button.

Example 1-16. A sample navigation page

<!-- Page1.xaml -->
<Page
 x:Class="MyNavApp.Page1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 Text="Page 1">
 <TextBlock FontSize="72" TextWrap="Wrap">
 Check out
 <Hyperlink NavigateUri="page2.xaml">page 2</Hyperlink>,
 too.
 </TextBlock>
</Page>

Figure 1-7. A sample navigation page in action

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Hello, WPF

Let’s define page2.xaml, as shown in Example 1-17.

Clicking on the hyperlink on page 1 navigates to page 2, as shown in Figure 1-8.

Notice in Figure 1-8 that the history for the back button shows page 1, which is
where we were just before going to page 2. Also notice the three buttons, which are
implemented in Example 1-18 to demonstrate navigating to a specific page, navigat-
ing backward, and navigating forward.

Example 1-17. Another sample navigation page

<!-- Page2.xaml -->
<Page
 x:Class="MyNavApp.Page2"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 Text="Page 2">
 <TextBlock FontSize="72" TextWrap="Wrap">
 Hello, and welcome to page 2.
 <Button FontSize="72" Click="page1Button_Click">Page 1</Button>
 <Button FontSize="72" Click="backButton_Click">Back</Button>
 <Button FontSize="72" Click="forwardButton_Click">Forward</Button>
 </TextBlock>
</Page>

Figure 1-8. Navigation history and custom navigation controls

Example 1-18. Custom navigation code

// Page2.xaml.cs
using System;
using System.Windows;
using System.Windows.Navigation;

namespace MyNavApp {
 public partial class Page2 : Page {
 void page1Button_Click(object sender, RoutedEventArgs e) {
 NavigationService.GetNavigationService(this).
 Navigate(new Uri("page1.xaml", UriKind.Relative));
 }

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Content Model | 15

Example 1-18 shows the use of static methods on the NavigationService class to nav-
igate manually just as the hyperlink, back and forward buttons do automatically.

Content Model
While the different kinds of WPF application styles are interesting, the core of any
presentation framework is in the presentation elements themselves. Fundamentally,
we have “bits of content and behavior” and “containers of bits of content and behav-
ior.” We’ve already seen both kinds; e.g., a Button is a control, providing content and
behavior and a Window is a container. There are two things that may surprise you
about content containment in WPF, however.

The first is that you don’t need to put a string as the content of a Button; it will take
any .NET object. For example, you’ve already seen a string as a button’s content,
which looks like Figure 1-9, created with the code in Example 1-19.

However, you can also use an image, as in Figure 1-10 and implemented in
Example 1-20.

 void backButton_Click(object sender, RoutedEventArgs e) {
 NavigationService.GetNavigationService(this).GoBack();
 }

 void forwardButton_Click(object sender, RoutedEventArgs e) {
 NavigationService.GetNavigationService(this).GoForward();
 }
 }
}

Figure 1-9. A button with string content

Example 1-19. A button with string content

<Window ...>
 <Button Width="100" Height="100">Hi</Button>
</Window>

Example 1-18. Custom navigation code (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Hello, WPF

You can even use an arbitrary control, like a TextBox, as shown in Figure 1-11 and
implemented in Example 1-21.

Further, as you’ll see in Chapters 2 and 5, you can get fancy and show a collection of
nested elements in a Button or even use nonvisual objects as the content of a Button.
The reason that the Button can take any object as content is because it’s derived ulti-
mately from a class called ContentControl, as are many other WPF classes—e.g.,
Label, ListBoxItem, ToolTip, CheckBox, RadioButton and, in fact, Window itself.

Figure 1-10. A button with image content

Example 1-20. A button with image content

<Window ...>
 <Button Width="100" Height="100">
 <Image Source="tom.png" />
 </Button>
</Window>

Figure 1-11. A button with control content

Example 1-21. A button with control content

<Window ...>
 <Button Width="100" Height="100">
 <TextBox Width="75">edit me</TextBox>
 </Button>
</Window>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Content Model | 17

A ContentControl knows how to hold anything that’s able to be rendered, not just a
string. A ContentControl gets its content from the Content property, so you could
specify a Button’s content like so (this is the longhand version of Example 1-19):

<Button Width="100" Height="100" Content="Hi" />

ContentControls are especially useful, because you get all of the behavior of the
“thing,”—e.g., Button, Window, or ListBoxItem—but you can display whatever you
like in it without having to build yourself a special class—e.g., ImageButton,
TextBoxListBoxItem, etc.

XAML Property-Element Syntax
Still, while setting the Content property as a string attribute in XAML works just fine
for specifying a string as content, it doesn’t work at all well for specifying an object
as content, such as in the image example. For this reason, XAML defines the
property-element syntax, which uses nested Element.Property elements for specifying
objects as property values. Example 1-22 shows the property-element syntax to set a
string as a button’s content.

Example 1-23 is another example using an image:

Since XML attributes can only contain one thing, property-element syntax is espe-
cially useful when you’ve got more than one thing to specify. For example, you might
imagine a button with a string and an image, defined in Example 1-24.

Example 1-22. Property element syntax with a string

<Button Width="100" Height="100">
 <Button.Content>Hi</Button.Content>
</Button>

Example 1-23. Property element syntax with an Image

<Button Width="100" Height="100">
 <Button.Content>
 <Image Source="tom.png" />
 </Button.Content>
</Button>

Example 1-24. Can’t have multiple things in a ContentControl

<Button Width="100" Height="100">
 <!-- WARNING: doesn't work! -->
 <Button.Content>
 <TextBlock>Tom: </TextBlock>
 <Image Source="tom.png" />
 </Button.Content>
</Button>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Hello, WPF

While normally the property-element syntax would be useful for this kind of thing,
in this particular case, it doesn’t work at all. This brings us to the second thing that
may surprise you about content containment in WPF: while Button can take any old
thing as content, as can a Window, both of them can only take a single thing which,
without additional instructions, WPF will center and fill up the element’s entire cli-
ent area. For more than one content element or a richer layout policy, you’ll need a
panel.

Layout
Taking another look at Example 1-24 with the TextBlock and the Image as content for
the Button, we don’t really have enough information to place them inside the area of
the button. Should they be stacked left-to-right or top-to-bottom? Should one be
docked on one edge and one docked to the other? How are things stretched or
arranged if the button resizes? These are questions best answered with a panel.

A panel is a control that knows how to arrange its content. WPF comes with the
general-purpose panel controls listed in Table 1-1.

Grid Layout
The most flexible panel by far is the grid, which arranges content elements in rows
and columns and includes the ability to span multiple rows and columns, as shown
in Example 1-25.

Table 1-1. Main panel types

Panel type Usage

DockPanel Allocates an entire edge of the panel area to each child; useful for defining the rough layout of simple
applications at a coarse scale.

StackPanel Lays out children in a vertical or horizontal stack; extremely simple, useful for managing small scale
aspects of layout.

Grid Arranges children within a grid; useful for aligning items without resorting to fixed sizes and positions.
The most powerful of the built-in panels.

Canvas Performs no layout logic—puts children where you tell it to; allows you to take complete control of the
layout process.

Example 1-25. A sample usage of the Grid panel

<Window ...>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Layout | 19

Example 1-25 used the XAML property-element syntax to define a grid with three
rows and three columns inside the RowDefinition and ColumnDefinition elements. In
each element, we’ve specified the Grid.Row and Grid.Column properties so that the
grid knows which elements go where (the grid can have multiple elements in the
same cell). One of the elements spans two rows, and one spans two columns, as
shown in Figure 1-12.

Using the grid, we can be explicit about how we want to arrange an image with a text
caption, as in Example 1-26.

 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2">A</Button>
 <Button Grid.Row="0" Grid.Column="2">C</Button>
 <Button Grid.Row="1" Grid.Column="0" Grid.RowSpan="2">D</Button>
 <Button Grid.Row="1" Grid.Column="1">E</Button>
 <Button Grid.Row="1" Grid.Column="2">F</Button>
 <Button Grid.Row="2" Grid.Column="1">H</Button>
 <Button Grid.Row="2" Grid.Column="2">I</Button>
 </Grid>
</Window>

Figure 1-12. A sample Grid panel in action

Example 1-26. Arranging an image and text in a grid

<Button Width="100" Height="100">
 <Button.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Source="tom.png" />
 <TextBlock
 Grid.Row="1"

Example 1-25. A sample usage of the Grid panel (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Hello, WPF

Figure 1-13 shows how the grid arranges the image and text for us.

Since we’re just stacking one element on top of another, we could’ve used the stack
panel, but the grid is so general-purpose that many WPF programmers find them-
selves using it for most layout configurations.

XAML Attached Property Syntax
You may have noticed that in setting up the Grid.Row and Grid.Panel attributes of
the Button elements, we used another dotted syntax, similar to the property-element
syntax, but this time on the attribute instead of on the element. This is the attached-
property syntax and is used to set a property as associated with a particular ele-
ment— e.g., a Button—but as defined by another element—e.g., a Grid.

The attached-property syntax is used in WPF as an extensibility mechanism. We
don’t want the Button class to have to know that it’s being arranged in a Grid, but we
do want to specify Grid-specific attributes on it. If the Button were being hosted in a
Canvas, the Grid properties wouldn’t make any sense, so building Row and Column
properties into the Button class isn’t such a great idea. Further, when we define our
own custom panel that the WPF team never considered—e.g., HandOfCards—we
want to be able to apply the HandOfCards attached properties to arbitrary elements it
contains.

This kind of extensibility is what the attached-property syntax was designed for, and
it is common when arranging content on a panel.

For the nitty-gritty of layout, including the other panels and text composition that I
didn’t show, you’ll want to read Chapter 2.

 HorizontalAlignment="Center">Tom</TextBlock>
 </Grid>
 </Button.Content>
</Button>

Figure 1-13. A grid arranging an image and a text block

Example 1-26. Arranging an image and text in a grid (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Binding | 21

Controls
While the layout panels provide the container, the controls are the important things
you’ll be arranging. So far, you’ve already seen examples of creating instances of con-
trols, setting properties, and handling events. You’ve also seen the basics of the con-
tent model that makes controls in WPF special. However, for the details of event
routing, command handling, mouse/keyboard input and an enumeration of the con-
trols in WPF, you’ll want to check out Chapter 3. Further, for information about
packaging up custom UI and behavior, as well as the techniques discussed in the rest
of this chapter and the rest of this book, you’ll want to read Chapter 9.

Data Binding
Once we’ve got a set of controls and a way to lay them out, we still need to fill them
with data and keep that data in sync with wherever the data actually lives. (Controls
are a great way to show data but a poor place to keep it.)

For example, imagine that we’d like to build an actual WPF application for keeping
track of people’s nicknames. Something like Figure 1-14 would do the trick.

In Figure 1-14, we’ve got two TextBox controls, one for the name and one for the
nickname; the actual nickname entries in a ListBox in the middle; and a Button to
add new entries. The core data of such an application could easily be built with a
class, as shown in Example 1-27.

Figure 1-14. Data binding to a collection of custom types

Example 1-27. A custom type with data binding support

public class Nickname : INotifyPropertyChanged {
 // INotifyPropertyChanged Member
 public event PropertyChangedEventHandler PropertyChanged;
 protected void OnPropertyChanged(string propName) {
 if(PropertyChanged != null) {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }

 string name;

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Hello, WPF

This class knows nothing about data binding, but it does have two public properties
that expose the data, and it implements the standard INotifyPropertyChanged inter-
face to let consumers of this data know when it has changed.

In the same way that we have a standard interface for notifying consumers of objects
when they change, we also have a standard way to notify consumers of collections of
changes called INotifyCollectionChanged. WPF provides an implementation of this
interface called ObservableCollection, which we’ll use to fire the appropriate event
when Nickname objects are added or removed, as in Example 1-28.

Around these classes, we could build nickname-management logic that looks like
Example 1-29.

 public string Name {
 get { return name; }
 set {
 name = value;
 OnPropertyChanged("Name"); // notify consumers
 }
 }

 private string nick;
 public string Nick {
 get { return nick; }
 set {
 nick = value;
 OnPropertyChanged("Nick"); // notify consumers
 }
 }

 public Nickname() : this("name", "nick") { }
 public Nickname(string name, string nick) {
 this.name = name;
 this.nick = nick;
 }
}

Example 1-28. A custom collection type with data binding support

 // Notify consumers
 public class Nicknames : ObservableCollection<Nickname> { }

Example 1-29. Making ready for data binding

// Window1.xaml.cs
...
namespace DataBindingDemo {
 public class Nickname : INotifyPropertyChanged {...}
 public class Nicknames : ObservableCollection<Nickname> { }

 public partial class Window1 : Window {

Example 1-27. A custom type with data binding support (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Binding | 23

Notice the window’s class constructor provides a click event handler to add a new
nickname and creates the initial collection of nicknames. However, the most useful
thing that the Window1 constructor does is set its DataContext property so as to make
the nickname data available for data binding.

Data binding is about keeping object properties and collections of objects synchro-
nized with one or more controls’ view of the data. The goal of data binding is to save
you the pain and suffering associated with writing the code to update the controls
when the data in the objects change and with writing the code to update the data
when the user edits the data in the controls. The synchronization of the data to the
controls depends on the INotifyPropertyChanged and INotifyCollectionChanged inter-
faces that we’ve been careful to use in our data and data-collection implementations.

For example, because the collection of our sample nickname data and the nickname
data itself both notify consumers when there are changes, we can hook up controls
using WPF data binding, as in Example 1-30.

 Nicknames names;

 public Window1() {
 InitializeComponent();
 this.addButton.Click += addButton_Click;

 // create a nickname collection
 this.names = new Nicknames();

 // make data available for binding
 dockPanel.DataContext = this.names;
 }

 void addButton_Click(object sender, RoutedEventArgs e) {
 this.names.Add(new Nickname());
 }
 }
}

Example 1-30. An example of data binding

<!-- Window1.xaml -->
<Window x:Class="DataBindingDemo.Window1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 Text="Nicknames">
 <DockPanel x:Name="dockPanel">
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <TextBlock VerticalAlignment="Center">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock VerticalAlignment="Center">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </StackPanel>

Example 1-29. Making ready for data binding (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Hello, WPF

This XAML lays out the controls as shown in Figure 1-14, using a dock panel to
arrange things top-to-bottom and a stack panel to arrange the editing controls. The
secret sauce that takes advantage of data binding is the {Binding} values in the con-
trol attributes instead of hardcoded values. By setting the Text property of the
TextBox to {Binding Path=Name}, we’re telling the TextBox to use data binding to peek
at the Name property out of the current Nickname object. Further, if the data changes in
the Name TextBox, the Path is used to poke the new value back in.

The current Nickname object is determined by the ListBox because of the
IsSynchronizedWithCurrentItem property, which keeps the TextBox controls showing
the same Nickname object as the one that’s currently selected in the ListBox. The
ListBox is bound to its data by setting the ItemsSource attribute to {Binding} with-
out a Path statement. In the ListBox, we’re not interested in showing a single prop-
erty on a single object, but rather all of the objects at once.

But how do we know that both the ListBox and the TextBox controls are sharing the
same data? That’s where setting the dock panel’s DataContext comes in. In the
absence of other instructions, when a control’s property is set using data binding, it
looks at its own DataContext property for data. If it doesn’t find any, it looks at its
parent and then that parent’s parent, and so on, all the way up the tree. Because the
ListBox and the TextBox controls have a common parent that has a DataContext prop-
erty set (the DockPanel), all of the data-bound controls will share the same data.

XAML Markup-Extension Syntax
Before we take a look at the results of our data binding, let’s take a moment to discuss
the XAML markup-extension syntax, which is what you’re using when you set an
attribute to something inside of curly braces—e.g., Text="{Binding Path=Name}". The
markup-extension syntax adds special processing to XAML attribute values. For
example, the BindingExtension class creates an instance of the Binding class, populat-
ing its properties with the parsed string that comes afterward. Logically, the following:

<TextBox Text="{Binding Path=Name}" />

turns into the following:

Binding binding = new Binding();
binding.Path = "Name";
textbox1.Text =
 binding.ProvideValue(textbox1, TextBox.TextProperty);

 <Button DockPanel.Dock="Bottom" x:Name="addButton">Add</Button>
 <ListBox
 ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True" />
 </DockPanel>
</Window>

Example 1-30. An example of data binding

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Binding | 25

In fact, the binding-extension syntax is just a shortcut for the following (which you’ll
recognize as the property-element syntax):

<TextBox.Text>
 <Binding Path="Name" />
</TextBox.Text>

For a complete discussion of markup extensions, as well as the rest of the XAML
syntax, you’ll want to read Appendix A.

Data Templates
With the data-binding markup syntax explained, let’s turn back to our sample data-
binding application, which so far doesn’t look quite like what we had in mind, as
seen in Figure 1-15.

It’s clear that the data is making its way into the application, since the currently
selected name and nickname are shown for editing. The problem is that, unlike the
TextBox controls which were each given a specific field of the Nickname object to
show, the ListBox is expected to show the whole thing. Lacking special instructions,
the ListBox calling the ToString method of each object, which only results in the
name of the type. To show the data, we need to compose a data template, as shown
in Example 1-31.

Figure 1-15. ListBox showing objects of a custom type without special instructions

Example 1-31. Using a data template

<ListBox
 ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True">

 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock>
 <TextBlock TextContent="{Binding Path=Name}" />:
 <TextBlock TextContent="{Binding Path=Nick}" />
 </TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>

</ListBox>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Hello, WPF

The ListBox control has an ItemTemplate property that expects a data template: a
template of elements that should be inserted for each listbox item, instead of the
results of the call to ToString. In Example 1-31, we’ve composed a data template
from a text block that flows together two other text blocks, each bound to a prop-
erty on a Nickname object separated by a colon, as shown in Figure 1-16.

At this point, we’ve got a completely data-bound application. As data in the collec-
tion or the individual objects changes, the UI will be updated and vice versa. How-
ever, there is a great deal more to say on this topic, not least of which is pulling in
XML as well as object data, which are covered in Chapter 4.

Dependency Properties
While our data-source Nickname object made its data available via standard .NET
properties, we need something special to support data binding on the target ele-
ment. While the TextContent property of the TextBlock element is exposed with a
standard property wrapper, for it to integrate with WPF services such as data bind-
ing, styling and animation, it also needs to be a dependency property. A dependency
property provides several features not present in .NET properties, including the abil-
ity to inherit its value from a container element, support externally set defaults, pro-
vide for object-independent storage (providing a potentially huge memory savings),
and change tracking.

Most of the time, you won’t have to worry about dependency properties versus .NET
properties, but when you need the details, you can read about them in the Chapter 9.

Resources
Resources are named chunks of data defined separately from code and bundled with
your application or component. .NET provides a great deal of support for resources,
a bit of which we already used when we referenced tom.png from our XAML button
earlier in this chapter. WPF also provides special support for resources scoped to ele-
ments defined in the tree.

Figure 1-16. How a ListBox shows objects of a custom type with a data template

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Resources | 27

As an example, let’s declare some default instances of our custom Nickname objects in
XAML in Example 1-32.

Notice the Window.Resources, which is property-element syntax to set the Resources
property of the Window1 class. Here, we can add as many named objects as we like,
with the name coming from the Key attribute and the object coming from the XAML
elements (remember that XAML elements are just a mapping to .NET class names).
In this example, we’re creating a Nicknames collection named names to hold three
Nickname objects, each constructed with the default constructor, and then setting
each of the Name and Nick properties.

Also notice the use of the StaticResource markup extension to reference the names
resource as the collection to use for data binding. With this XAML in place, our win-
dow construction reduces to the code in Example 1-33.

Example 1-32. Declaring objects in XAML

<!-- Window1.xaml -->
<?Mapping XmlNamespace="local" ClrNamespace="DataBindingDemo" ?>
<Window
 x:Class="DataBindingDemo.Window1"
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"
 xmlns:local="local"
 Text="Nicknames">
 <Window.Resources>
 <local:Nicknames x:Key="names">
 <local:Nickname Name="Don" Nick="Naked" />
 <local:Nickname Name="Martin" Nick="Gudge" />
 <local:Nickname Name="Tim" Nick="Stinky" />
 </local:Nicknames>
 </Window.Resources>
 <DockPanel DataContext="{StaticResource names}">
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <TextBlock VerticalAlignment="Center">Name: </TextBlock>
 <TextBox Text="{Binding Path=Name}" />
 <TextBlock VerticalAlignment="Center">Nick: </TextBlock>
 <TextBox Text="{Binding Path=Nick}" />
 </StackPanel>
 ...
 </DockPanel>
</Window>

Example 1-33. Finding a resource in code

public partial class Window1 : Window {
 Nicknames names;

 public Window1() {
 InitializeComponent();
 this.addButton.Click += addButton_Click;

