

FLASH
HACKSTM

Other resources from O’Reilly

Related titles Essential ActionScript 2.0

ActionScript Cookbook

ActionScript for Flash
MX: The Definitive
Guide

ActionScript for Flash
MX Pocket Reference

Flash Remoting: The
Definitive Guide

Hacks Series Home hacks.oreilly.com is a community site for developers
and power users of all stripes. Readers learn from each
other as they share their favorite tips and tools for Mac
OS X, Linux, Google, Windows XP, and more.

oreilly.com oreilly.com is more than a complete catalog of O’Reilly
books. You’ll also find links to news, events, articles,
weblogs, sample chapters, and code examples.

oreillynet.com is the essential portal for developers in-
terested in open and emerging technologies, including
new platforms, programming languages, and operat-
ing systems.

Conferences O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We spe-
cialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com
for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier on-
line reference library for programmers and IT
professionals. Conduct searches across more than
1,000 books. Subscribers can zero in on answers to
time-critical questions in a matter of seconds. Read the
books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free
trial.

FLASH
HACKS

Sham Bhangal

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

TM

Flash Hacks™

by Sham Bhangal

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Bruce Epstein

Series Editor: Rael Dornfest

Executive Editor: Dale Dougherty

Production Editor: Marlowe Shaeffer

Cover Designer: Hanna Dyer

Interior Designer: Melanie Wang

Printing History:
June 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, Flash Hacks, the image of a spotlight, “Hacks
100 Industrial-Strength Tips and Tools,” and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00645-4
[C] [9/05]

v

Contents

Foreword . ix

Credits . xiii

Preface . xvii

Chapter 1. Visual Effects . 1
1. Fake Per-Pixel Transitions 2

2. Per-Pixel Text Effects 9

3. Simulate Old Film Grain 13

4. Create SWFs from Animated GIFs 20

5. Animate Photoshop PSD Files with Flash 24

6. A Tree Grows in Brooklyn 30

7. Blowin’ in the Wind: Simulate Tree Movement 34

Chapter 2. Color Effects . 38
8. Video Color Effects 39

9. Video Fade to Black and Fade to White 44

10. A Custom Color Transform Class 48

11. Create and Organize Custom Swatches 53

12. Borrow Color Schemes from Nature 56

13. Simulate Sepia Effects 59

Chapter 3. Drawing and Masking . 64
14. Create Filled Circles Quickly at Runtime 65

15. Create Synthetic Art 70

16. Create Seamless Tiles 74

vi | Contents

17. Fill Areas with Patterns 77

18. Imitate Escher 81

19. Fix Alpha Property Inaccuracies 86

20. Use Complex Shapes as Masks 92

21. Interference Patterns and Ripple Effects 97

22. Feather Bitmap Edges 99

23. Add a Vector Edge to a Bitmap 102

24. Solve the Bitmap-Shift Bug 106

25. A Page-Turn Effect (Exploit Symmetry and Masking) 110

Chapter 4. Animation . 115
26. Smooth Scripted Motion 117

27. Time-Controlled Movement 119

28. Quick, Bandwidth-Efficient Character Animation 123

29. alt-Flash: Motion Graphics Alternatives 127

30. Deja New Animations 131

31. Hacking The Matrix 133

32. Computer-Generated Character Animation 137

33. Particle Effects 144

34. Shape Tweening Complex Shapes 147

Chapter 5. 3D and Physics . 151
35. Simulate 3D 152

36. Panoramic Images 157

37. An Optimized 3D Plotter 164

38. Use Acceleration to Simulate Gravity and Friction 170

39. Simulate a Throw 173

40. Detect Multiple Collisions 177

41. Turn Toward a Point 182

Chapter 6. Text . 187
42. Keep Text Legible 189

43. Autocomplete Text Fields 191

44. Store a List of All Input Words 198

45. Import Complex Formatting in Flash 203

46. HTML and CSS in Flash 209

Contents | vii

47. Use Accessibility Text as Help Text 216

48. Text Effect Framework 222

49. Typewriter Effect 227

50. Time-Based Text Effects 229

51. Timeline Text Effects 233

Chapter 7. Sound . 238
52. Create a Flash Speech Synthesizer 239

53. A Talking, Lip-Synched Avatar 246

54. The Ubiquitous Sound-Kicker Hack 250

55. Turn Low-Bandwidth Monaural Sounds into Stereo Sounds 253

56. Real-Time Sound Effects 256

57. Quickly Create UI Sounds 257

58. Optimize Sound 263

59. Sound Time Codes (Cue Points) 271

60. A Custom Sound Transform Class 274

Chapter 8. User Interface Elements . 278
61. Amit’s Dials (Interactive Testing) 280

62. Right and Middle Mouse Buttons 285

63. Button Movie Clips 287

64. Dude, Where’s My Scrollbar? 292

Chapter 9. Performance and Optimization . 295
65. Beat Flash File Bloat 297

66. Bandwidth Testing for Complex Sites 299

67. Hide Low-Quality Settings 302

68. Optimize Graphics for Performance 307

69. Benchmark Runtime Performance 309

70. Adjust the Animation Complexity Dynamically 311

71. Performance Budget 317

72. Substitute Bitmaps for Vectors 322

73. Optimize Component Downloading and Usage 325

Chapter 10. ActionScript . 328
74. External Script Editors 332

75. Strict Typing and Casual Scripters 337

viii | Contents

76. Code Hints 341

77. Clone an Object 343

78. An Idle Timer (Timeout Event) 348

79. Fast ActionScript Searches 351

80. Lock the actions Layer 354

81. Debug with trace() 357

82. Undocumented ActionScript 361

83. ASnative() Back Door 365

84. Obscure Operators 366

85. Import ASC Files as XML 372

Chapter 11. Browser Integration . 379
86. Keep Your Site Browser Friendly 381

87. A Universal Flash Plugin Sniffer 385

88. Test Multiple Flash Plugins 390

89. Preferences and Publishing Defaults 393

90. Center Your SWF Without Scaling 396

91. CSS-Based Browser Centering 397

92. Dynamically Resize Content 404

93. Create HTML Links in Flash 408

94. Integrate the Back Button with Flash 411

95. Give the Flash SWF Keyboard Focus 417

96. Add Key Shortcuts to Your Site 418

Chapter 12. Security . 425
97. Recover Content from a SWF 432

98. Protect and Obfuscate Your Flash Files 439

99. Make Your SWF Phone Home 442

100. Review Compiled ActionScript 445

Index . 453

ix

0

Foreword

About seven years ago, I started working with Macromedia Flash—Version
2.0 to be precise. The client for my first Flash project was Levi’s Canada, the
world-famous apparel company. Levi’s was looking for the proverbial
“really cool web site.” I guess corporations, like any other living entity, have
an aversion to death, and Levi’s was keen to renew its lease on life by
attracting a new generation of customers (read: teenagers). But kids, said
Levi’s, don’t like clothing web sites; to a kid, a clothing web site is a boring
shopping catalog with a Buy button. The solution? Make the new Levi’s site
an interactive comic strip, where the stories of the characters lead to Levi’s
products. Fill the comic with action, romance, drama, and intrigue...kids
love that stuff.

At the initial project meetings, the creative director presented the animated
web site concept while we, the HTML jockeys and web designers, shud-
dered at the thought of trying to implement it. As envisioned, the site even
included—hold onto your hat—actual sounds for the characters’ voices!
(Remember this was 1997; audio and animation on web sites was almost
unheard of.) In our first technical plan for the site, we proposed the use of
animated GIF images, WAV sound files, and JavaScript image rollovers. We
knew the site wouldn’t be as spectacular as the creative director had
described, but we were accustomed to playing the developer scapegoat. We
would be the ones to break the news to the client: web browsers can’t really
do animated cartoons; the creative director’s description of the site was con-
ceptual, intended merely as inspiration, not to be taken literally.

But the creative director had seen animations on the Web; he was sure of it.
He asked us how Disney’s web site did its cartoons. We told him with Mac-
romedia Flash. For him, the name of the software and technical details were
irrelevant. The Levi’s site had to be animated at any cost. So we did the
Levi’s site in Flash (see it at http://moock.org/webdesign/portfolio/levisite).

x | Foreword

Shortly after we completed the Levi’s site, the web design industry went crazy
over Gabocorp and EYE4U, two self-promotional web agency sites with ani-
mated Flash interfaces. By today’s standards, these two sites look comically
simple and naïve. (See for yourself—as of April 2004 the original EYE4U site
is still live at http://www.eye4u.com.) Gabocorp and EYE4U consisted of
nearly no programming, arguably gaudy design, some moving shapes, and
some balls flying around the screen. So what made them popular?

Like the Levi’s site, they proved that you could hack the system.

As a browser add-on, Flash is one of the largest scale hacks of the past
decade. Since its inception, Flash has breathed life into the somewhat sterile
web browser. Flash lets the creative community explore what the Web can
be: a cartoon network, a game platform, an OS-style environment for con-
nected applications, an electronic art gallery, a video chat, a collaborative
multiuser environment, a remote meeting room, an MP3 music player—or
pretty much anything you can dream up. Fitting that ideal, Macromedia
used “What the Web can be” as its marketing slogan a few years back.

Accordingly, it’s no surprise that Flash is pervasively flexible, a veritable
hacker’s playground. In fact, Flash’s “hackability” is arguably the key to its
success. Here, I’m using the word “hack” to mean “a creative exploration,
using any means possible (even ugly), that leads to some desirable (even
exhilarating) result.” Flash grew from a humble animation toy to the expan-
sive “Rich Internet Application” tool it is today, largely in response to the
hacks introduced by the development community.

I remember people using Flash 3 to create games like Whack-a-Mole, Leo’s
Great Day (http://www.pepworks.com/leoenglish.swf), and even crude proto-
types of Pacman and chess. Mind you, all without a single line of code. Flash
3 had no scripting language! In response to this hacked demand for greater
interactivity, Macromedia introduced a very simplistic version of Action-
Script in Flash 4. Little did they know it would fuel a motion graphics move-
ment that would influence design in print, television, and movies for years.
Months after Flash 4 shipped, sites like Mono-craft (http://www.yugop.com),
PrayStation (http://www.praystation.com), Levitated Design & Code (http://
www.levitated.net), and Presstube (http://www.presstube.com) became
famous for their creative explorations in real-time audio/visual expression
(in other words, for their hacks!).

People use Flash to explore things that are hard or impossible to do in other
media. It’s hard to do motion graphics in HTML, but you can dream about
a motion graphics web with Flash. It’s hard to do expressive, customized
user interfaces in traditional desktop applications, but you can see branded
Flash applications today on thousands of web sites. As I write this fore-

Foreword | xi

word, I’m finishing up a web site in which you can observe other connected
users interacting with the site’s interface (see http://moock.org/unity/clients/
uPresence). Meanwhile Marcos Weskamp is working on Version 2 of his
remote control car application (http://www.marumushi.com/apps/
remotedriver2), in which anyone in the world can drive a physical remote
control car via a Flash-based web interface. It’s hard to imagine building
these things with any tool but Flash.

So Flash is a hacker’s paradise. It lets you play. It gives you the freedom to
explore your ideas. And it forces you to pull some zany tricks to get what
you want. For a long time, the tricks and hacks of Flash have circulated
throughout the online development community. Many of them, new and
old, are now committed to print in this book, in a quality and style deserv-
ing of the O’Reilly name.

I consider this book both a service and a challenge.

The service: use what you find in these pages to your advantage on what-
ever you’re building. There’s tons of great info here, bound to be of help on
nearly any project. You’ll benefit from Sham Bhangal’s considerable experi-
ence in the field and a clarity of expression I truly believe only Bruce Epstein
(this book’s editor) can guarantee.

The challenge: remember that exploration and invention are your greatest
tools. Before there were books on Flash and before there were established
tricks and methodologies, there was a vision of what could be and the
clever, bullish, tinkering desire to make it so.

—Colin Moock
April 2004

xiii

0

Credits

About the Author
Sham Bhangal began on the route to web design in 1991, designing and
specifying information screens for safety-critical computer systems, as used
in places like nuclear power plant control rooms. He soon discovered more
conventional interface design, animation, and multimedia tools, such as 3D
Studio Max, Photoshop, and Flash. He has been writing books on them
since the turn of the century.

Contributors
The following people contributed their hacks, writing, and inspiration to the
book:

• Anthony “Ant” Eden (a.k.a. arseiam) has worked for several high-profile
clients including Microsoft, Disney, and Adobe. He spends his spare
time creating wild and quirky effects with ActionScript, which can be
sampled at http://www.arseiam.com.

• Zeh Fernando has been working with Macromedia Flash since Version
2. Currently working at Brazilian-based design studio Grafikonstruct
(http://www.grafikonstruct.com.br), he creates real-world Flash-based
web sites daily and is searching for better ways to do it in his free time.

• Edwin “XemonerdX” Heijmen is a professional Flash developer living in
the Netherlands who also moderates several ActionScript forums. He
enjoys combining mathematics and code, some results of which can be
seen at http://www.poeticterror.com. Besides ActionScript, he also enjoys
coding PHP, ColdFusion, Python, and every obscure language he can
get his hands on. Other passions include his wonderful girlfriend,
underground metalcore, open source software, Russian literature, and
his friends.

xiv | Credits

• Adam Phillips is the award-winning animator behind biteycastle.com,
hitchHiker, and the Brackenwood series of Flash movies. He was a
Flash Forward Cartoon category winner in NYC 2003 and again a final-
ist in SF 2004. With a desire to tell stories and more than 10 years of tra-
ditional 2D animation experience with the Walt Disney Company,
Adam continues to produce his own short movies, 13 of which can be
found at http://www.biteycastle.com.

• Grant Skinner (http://www.gskinner.com) is an internationally recog-
nized Flash developer with experience fusing code, interface design,
usability, marketing, and business logic. He works with top agencies
and progressive corporate clients on Flash application conceptualiza-
tion, architecture, and implementation. Grant has won multiple top
Flash awards, has had work featured in the SIGGRAPH Web Expo of
“The finest web-graphics work of 2003,” and participates regularly in
numerous conferences and publications.

• Stickman has asked that his real name be kept secret to protect the inno-
cent, but we can divulge that he works in web design for a large content
site in the UK and is also a freelance writer. Oh, he is also tall and thin.
You can catch up with his online persona at http://www.the-stickman.com.

Acknowledgments
This book has been a long time in the making, and thanks go out to all who
stayed on for the ride. I guess it’s been a strange trip for all involved!

Thanks, of course, go to Macromedia for creating Flash and to the contribu-
tors for contributing hacks.

Thanks to Colin Moock (http://www.moock.org) for his great books, techni-
cal assistance, and insightful Foreword.

Thanks to the review team for querying and correcting: Marc Garrett, David
Humphreys, Chafic Kazoun, Marc Majcher, Sam Neff, Darron Schall, Jesse
Warden, and Edoardo Zubler.

Thanks also to the folks at O’Reilly, including Tim O’Reilly for the initial
comments and Rael Dornfest for putting the “hack” into Flash Hacks.
Thanks also to Brian Sawyer and Claire Cloutier for production assistance,
to Rob Romano for converting the numerous screenshots, and to Norma
Emory for her detailed copy editing. Special thanks to Bruce Epstein for his
death-defying nerves of steel in the face of insurmountable deadlines, super-
human editing strength, and time for a chat. Thanks also to my agent, Carole
McClendon, at Waterside Productions.

Credits | xv

Thanks to the designers within the Flash community who have provided
helpful advice on third-party tools, including Igor Kogan, Dave Hayden,
Damian Morten (Flasm), and Alex Blum (Flash Plugin Switcher). Thanks to
Alessandro Capozzo (http://www.ghostagency.net) for allowing me to repro-
duce some of his images created in Processing. Thanks also to the large
number of developers, designers, and dreamers whose work has directly or
indirectly inspired portions of this book; they include Josh Davis (http://
joshdavis.com), Branden Hall (http://waxpraxis.org), Erik Natzke (http://
www.natzke.com), James Paterson (http://www.presstube.com), Amit Pitaru
(http://www.pitaru.com), and Hardino (http://www.hardino.com).

Finally, thanks to Brian Molko and company (http://www.brian-molko.com)
for the first four lines of “Pure Morning.” Stuff like that keeps me smiling all
day as I’m writing. Pure genius.

xvii

0

Preface

Macromedia Flash’s ancestor started out as a core component of the pen
computer, a keyboardless machine that used a pen stylus for input, making
it much more portable than traditional keyboard-based designs and ideal for
handheld devices. The system featured a vector-based drawing engine,
which was more suited to input via a pen than more traditional bitmap-
based systems.

The idea didn’t take off, but a new avenue was beginning to present itself—
the Web. The pen-based vector drawing program became FutureSplash,
which was released around 1995 as a web-centric vector animation tool.
FutureSplash was soon bought by Macromedia, and the first version of the
renamed application, Flash, was released in 1996.

Late in 2003, Macromedia released Flash MX 2004 (and Flash MX Profes-
sional 2004) and the corresponding Flash Player 7 browser plugin and
ActiveX control. In recent years, Flash has gained a number of important
features, including multimedia handling capabilities (sound, images, video)
and a full-fledged scripting language (ActionScript) to create nonlinear ani-
mation or client-side processing, as well as interfacing with remote data or
server-side scripts.

Flash is now the standard web multimedia delivery platform. The Flash
Player (the browser plugin that plays back Flash SWF files) is ubiquitous,
and Flash can also create desktop applications. Web design continues to
move away from traditional HTML and toward the interactivity and multi-
media features offered by Flash. And Macromedia continues to expand the
Flash platform with products like Macromedia Central (a personal browser
for occasionally connected Flash-based content), Flash Communication
Server MX (a real-time video and audio server), and Flash Remoting
(enhanced remote connectivity to web services and server-side applications).

xviii | Preface

Why Flash Hacks?
The term “hacking” has a bad reputation in the popular media. They use it
to refer to breaking into systems or wreaking havoc using computers as
weapons. Among people who write code, though, the term “hack” refers to
a quick and dirty solution to a problem or a clever way to get something
done. And the term “hacker” is taken very much as a compliment, referring
to someone as being creative and having the technical chops to get things
done. The Hacks series is an attempt the reclaim the word, document the
good ways people are hacking, and pass the hacker ethic of creative partici-
pation on to the uninitiated. Seeing how others approach systems and prob-
lems is often the quickest way to learn about a new technology.

Flash Hacks is about coming up with new ideas for your Flash web designs,
ActionScript, and Flash content.

Flash authoring is all about creativity, in both design and coding, and push-
ing the envelope of what is possible. Although multimedia scripting has
become more structured and formalized, there is still plenty of room (and
need) for hacks and workarounds when the standard routes fail.

When I first opened up the Flash application and started reading the official
documentation, it took me a while to understand how Flash is really sup-
posed to be used, and from feedback I have received since, this is a common
problem.

Flash is thus an area in which experimenting, hacking around limitations, and
knowing a lot of design tricks is part of the workflow because the aim is often
to create something original and engaging. Reading the Macromedia Flash
documentation will take you only so far before you need to start looking for
clever hacks and inside tricks that overcome many of Flash’s limitations.

Therefore, this book is not just about showing you some interesting hacks, it
is about showing you some of the nonobvious techniques and ideas that will
make your Flash designs more original and your applications more effective.

Of course, this also means that you won’t be using many of the hacks pre-
sented here as-is, but instead will use them as starting points for further
exploration and development. Experimentation is to be promoted—it is
what Flash and the Flash community are all about. This book borrows much
from the rich tradition of the Flash community but also presents many origi-
nal ideas to teach, entertain, and inspire you.

Preface | xix

Who This Book Is For
Okay, let’s face it. O’Reilly is better known for its technical references than
for edgier books like the Hacks series. O’Reilly has published some of the
most advanced books on ActionScript development available, including the
well-respected ActionScript for Flash MX: The Definitive Guide and the hard-
core object-oriented programming guide Essential ActionScript 2.0, both by
Colin Moock. O’Reilly’s ActionScript Cookbook, by Joey Lott, presents more
than 300 practical recipes for a wide range of ActionScript problems, and
Flash Remoting: The Definitive Guide, by Tom Muck, covers high-end appli-
cation development and remote connectivity.

I think it is safe to say that this book is substantially different from those
books, which is appropriate since the books serve different purposes, even if
their audiences overlap. Whereas those are serious, traditional program-
ming books speaking to well-structured code and best practices, this tome is
full of exploration and whimsy. Whereas those books speak of productivity
to experienced programmers, this book speaks of adventure to the young at
heart. If you’re new to Flash, this book is as tantalizing as the aroma of a
warm apple pie. If you are experienced with Flash, and perhaps a bit bored
with it, it might remind you why you fell in love with Flash in the first place.
That said, hard-core developers will find lots of serious coding advice, opti-
mization techniques, and tips and tricks for application development.

Frankly, if you’ve never used Flash, some of the hacks will confuse you, but
many will not, as there is something here for everyone. In early chapters, I
make an effort to explain occasional operational basics, such as creating a
new empty layer (Insert ➝ Timeline ➝ Layer) and attaching code to a frame
(select the frame in the Timeline panel and open the Actions panel using F9
or Window ➝ Development Panels ➝ Actions). We’ll be placing most of our
scripts on a dedicated actions layer [Hack #80] but some scripts must go in
external .as files [Hack #10].

Because this book is predominantly geared toward readers with some famil-
iarity with Flash, if you’ve never used Flash, you should probably pick up
one of the many fine tutorial books available from (gasp!) other publishers.
(O’Reilly is coming out with a Flash tutorial book—Flash Out of the Box by
Robert Hoekman—in the second half of 2004.) If you don’t have a copy of
the Flash authoring tool, you can download a trial version from Macrome-
dia (http://www.macromedia.com/cfusion/tdrc/index.cfm?product=flash) and
go through some of the included tutorials to learn the basics, too.

That said, many of the hacks in this book can be appreciated even if you’ve
never picked up Flash. I certainly hope this book inspires the uninitiated to
try Flash and those who know Flash to appreciate it anew.

xx | Preface

If you’re a traditional programmer new to Flash or a serious application
developer, be forewarned. This book isn’t about best practices or object-
oriented programming or Rich Internet Application (RIA) development. And
if you’re prejudiced against Flash, the large number of hacks covering ani-
mation, drawing, and motion graphics may turn you off to Flash forever.
That would be a shame. What is presented here is but a small slice of the
Flash universe, my own personal corner in fact (with a little help from
friends and contributors). Skip around and you’ll find not just eye candy
and ear candy but lots of ActionScript examples, too. You’ll learn some-
thing, even if it wasn’t what you set out to learn.

The Flash universe is both vast and diverse and this book doesn’t try to be
all things to all people. But almost every developer, whether an experienced
Flasher, a beginning scripter, or a hard-core coder, will find more than a few
interesting techniques and tips. If you were ever a child, if you were ever in
love, if you like drive-in movies or howling at the moon, this book will
remind you a little bit of all those things. And that, to me, seems like a very
good thing.

So read all the other Flash and ActionScript books you can get your hands
on, but leave a place on the shelf or your desk for this one, too.

How to Use This Book
If you read the book from cover to cover, you’ll find many technical tidbits
in unlikely places that you’d miss if you judge a hack by its title alone. For
those who prefer to pick an interesting hack from the table of contents and
dive right in, be sure to skim the remaining hacks to see what you might be
missing. Be sure to read through the chapter headings regardless of whether
you are a newbie or an expert in a given topic, as you’re sure to find some-
thing both useful and interesting at almost every turn.

If you want to get some quick ideas for new directions in your designs, the
first four chapters look at the core techniques that affect the look and feel of
a site, such as drawing, animation, and effects. Chapters 5, 6, 7, and 8
revolve around media and content, so visit them for inspiration and infor-
mation pertaining to 3D, text, sound, or UI elements. Chapters 9, 10, 11,
and 12 cover specialized topics such as browser integration, optimization,
and security (plus a healthy dose of ActionScript for good measure). You
should peruse them for answers to question like, “How do I center the Flash
Stage in the browser?” or “Someone ripped off my site design! How can I
prevent it from happening again?”

Preface | xxi

How This Book Is Organized
Flash is a versatile authoring tool and consists of a number of separate areas
that usually need to be combined to produce the finished effect or piece, so
don’t take the chapter titles and synopses as anything other than broad
headings. For example, many chapters contain some element of animation,
and most hacks contain ActionScript because it lets you do some really cool
things. Regardless, we have straitjacketed the 100 hacks into something
resembling sensible groupings. So there are chapters on drawing, sound,
optimization, and a whole lot more.

Chapter 1, Visual Effects
This chapter looks at ways you can make your graphic content more
interesting by adding various snazzy effects and transitions.

Chapter 2, Color Effects
The savvy designer uses color in addition to animation. Color is often
overlooked, but this chapter shows how color changes can transform
the atmosphere of a piece or add video-like effects, such as fades and
wipes.

Chapter 3, Drawing and Masking
Combining Flash’s graphic animation facilities with ActionScript
increases your creative horizons considerably. This chapter shows
graphic effects created at both authoring time and runtime. Masking,
which underlies many of the graphics tricks and techniques, is also
discussed.

Chapter 4, Animation
The hacks in this chapter offer content creation shortcuts for manually
drawn animation, plus ways to optimize animation created under
ActionScript control.

Chapter 5, 3D and Physics
This chapter provides a number of hacks that bypass Flash’s perfor-
mance limitations to add physics simulations and 3D effects to your
repertoire.

Chapter 6, Text
This chapter covers ways to store, display, and manipulate text, as well
as create animated text effects.

Chapter 7, Sound
Without sound, your carefully crafted content will feel flat and unin-
spired. This chapter helps the audio-challenged create and manipulate
sound effects and music.

xxii | Preface

Chapter 8, User Interface Elements
This chapter covers hacks related to user interface issues, such as but-
tons, scrollbars, and mouse input.

Chapter 9, Performance and Optimization
This chapter includes hacks to keep your filesizes small and your appli-
cations speedy.

Chapter 10, ActionScript
Although almost every hack in the book includes some ActionScript,
this chapter covers ways to get the most out of ActionScript, including
undocumented goodies.

Chapter 11, Browser Integration
This chapter looks at ways of maximizing browser compatibility so you
can maximize the audience and enhance their enjoyment of your content.

Chapter 12, Security
This chapter provides a few ways to protect your content and designs,
despite the vulnerability of the SWF format.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accel-
erators (such as Alt and Ctrl).

Italic

Indicates new terms, function names, method names, class names, event
names, package names, layer names, URLs, email addresses, filenames,
file extensions, pathnames, and directories. In addition to being itali-
cized in the body text, method and function names are also followed by
parentheses, such as setInterval().

Constant width

Indicates code samples, movie clip instance names, symbol names, sym-
bol linkage identifiers, frame labels, commands, variables, attributes,
properties, parameters, values, objects, XML tags, HTML tags, the con-
tents of files, or the output from commands.

Constant width bold
Shows commands or other text that should be entered literally by the
user. It is also used within code examples for emphasis, such as to high-
light an important line of code in a larger example.

Preface | xxiii

Constant width italic
Shows text that should be replaced with user-supplied values. It is also
used to emphasize variable, property, method, and function names ref-
erenced in comments within code examples.

Color
The second color is used to indicate a cross-reference within the text.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

The thermometer icons, found next to each hack, indicate the relative com-
plexity of the hack:

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Flash Hacks,
by Sham Bhangal. Copyright 2004 O’Reilly Media, Inc., 0-596-00645-4.”

If you feel your use of code examples falls outside fair use or the preceding
permission, feel free to contact us at permissions@oreilly.com.

Getting the Code Examples Working
The most common reason for being unable to get a code example to work
(assuming you haven’t made any typos) is a failure to set up the Flash file
according to the instructions. Reread the surrounding text and follow the

beginner moderate expert

xxiv | Preface

steps carefully. Be sure to place the code where it belongs (usually in the first
frame of the actions layer or in an external .as file). Be sure you’ve set the
compiler version to ActionScript 2.0 under File ➝ Publish Settings ➝ Flash ➝

ActionScript Version.

Any code example that accesses movie clips, buttons, or text fields via
ActionScript won’t work unless you set the item’s instance name properly.
To set the instance name for a movie clip, button, or text field, select it on
stage and enter the instance name on the left side of the Properties panel
(Window ➝ Properties) where you see the placeholder “<Instance Name>”.

Another common source of problems is failure to set a symbol’s linkage
identifier properly, as is necessary when accessing Library symbols from
ActionScript. To set the linkage identifier for a symbol, check the Export for
Actionscript and Export in First Frame checkboxes in the Symbol Properties
or Linkage Properties dialog box. (These are accessible by selecting a sym-
bol in the Library (Window ➝ Library) and choosing either Properties or
Linkage from the Library panel’s pop-up Options menu.) Then enter the
identifier in the field labeled Identifier (which isn’t active until Export for
ActionScript is checked).

Read the instructions carefully to make sure you haven’t confused a movie
clip instance name with a symbol linkage identifier.

If you still can’t get it working, download the examples from this book’s
web site, contact O’Reilly book support, or check the book’s errata page. If
all else fails, get a tutorial book on Flash or ask an experienced Flasher for
help.

Many of the longer examples and sample files can be down-
loaded from this book’s web page at http://examples.oreilly.
com/flashhks.

ActionScript 1.0 Versus ActionScript 2.0
Many of the hacks presented in this book are written in ActionScript 2.0,
which requires the Flash MX 2004 or Flash MX Professional 2004 author-
ing environment. You can use either of these authoring tools (see http://
www.macromedia.com/software/flash/productinfo/features/comparison for a
comparison of the two) because we don’t use any features that are exclusive
to the Professional edition. To make sure the examples compile, you should
set the ActionScript Version to ActionScript 2.0 under File ➝ Publish Set-
tings ➝ Flash. All examples have been tested in Flash Player 7.

Preface | xxv

Where noted, ActionScript 2.0 class definitions must be placed in external .as
files. For example, the custom Transform class [Hack #10] must be placed in an
external plain-text file named Transform.as (both the capitalization of the
name and the .as extension are mandatory). You can create and edit such a
file in Flash MX Professional 2004 if you select File ➝ New ➝ ActionScript
File. If using Flash MX 2004, you’ll need an external text editor [Hack #74].

We can’t give a full course on object-oriented programming (OOP) and
ActionScript 2.0 here, although we do try to provide pointers throughout
the book. For many more details on ActionScript 2.0 classes and object-
oriented development, see Essential ActionScript 2.0 by Colin Moock
(O’Reilly).

Most examples can also be exported in Flash Player 6 format from Flash MX
2004 (standard or Professional edition), by setting the Export format to
Flash Player 6 under File ➝ Publish Settings ➝ Flash.

However, methods that are new to Flash MX 2004 and Flash Player 7 won’t
work if you are exporting to Flash Player 6 format. For example, where we
use MovieClip.getNextHighestDepth() in the code examples, you’ll have to
substitute it with a unique depth or it won’t work in Flash Player 6.

The previous version of the Flash authoring tool, Flash MX, does not sup-
port ActionScript 2.0. However, many of the hacks and example code will
work in Flash MX. If you have Flash MX and want to try out an Action-
Script 2.0 hack, you can convert most of the examples to ActionScript 1.0 by
simply removing the ActionScript 2.0 datatyping as shown next.

For example, here is the ActionScript 2.0 code using datatypes (shown in
bold):

// ActionScript 2.0 with datatypes
// Requires Flash MX 2004 authoring environment
// configured to compile ActionScript 2.0
function myFunction(x:Number):Number {
 var y:Number = 2 * x;
 return y;
}
var myString:String = "hello";
var myClip:MovieClip = this.createEmptyMovieClip("myClip", 0);
var double:Number = myFunction(2);
trace(double);

And here is the ActionScript 1.0 version without datatypes:

// ActionScript 1.0 (untyped)
// Works in Flash MX authoring environment (and later)
function myFunction(x) {
 var y = 2 * x;
 return y;

xxvi | Preface

}
var myString = "hello";
var myClip = this.createEmptyMovieClip("myClip", 0);
var double = myFunction(2);
trace(double);

This book uses a lot of timeline-based code, which, although it is not neces-
sarily a best practice, is supported for both ActionScript 1.0 and Action-
Script 2.0. We made this choice because most of the examples don’t lend
themselves readily to custom ActionScript 2.0 classes. This also makes the
examples easier to follow and implement in both Flash MX and Flash MX
2004.

Some of the class-based OOP examples written in ActionScript 2.0 won’t
compile in ActionScript 1.0 and require Flash MX 2004 (standard or Profes-
sional edition). If you are still using ActionScript 1.0 in Flash MX 2004, con-
sider this as an opportunity to broaden your horizons. See Chapters 10 and
12 for additional details and resources on the ActionScript differences
between Flash Player 6 and Flash Player 7.

Case-Sensitivity
Many developers continue to be confused by the case-sensitivity rules in
Flash MX 2004. Realize first that we are talking about two different issues:
compile-time case-sensitivity and runtime case-sensitivity. The ActionScript
1.0 compiler is not case-sensitive, whereas the ActionScript 2.0 compiler is.
However, runtime case-sensitivity is a function of the version of the SWF file
format to which you export, not the ActionScript version used at compile
time nor the version of the Flash Player plugin in which the file is played.

Runtime case-sensitivity is summarized in Table P-1, reproduced from Colin
Moock’s excellent book, Essential ActionScript 2.0 (O’Reilly).

Table P-1. Runtime case-sensitivity support by language, file format, and Flash Player
version

Movie compiled as either
ActionScript 1.0 or 2.0 and Played in Flash Player 6 Played in Flash Player 7

Flash Player 6-format .swf file Case-insensitivea

a Identifiers (i.e., variable and property names), function names, frame labels, and symbols
export IDs are case-insensitive in Flash Player 6-format .swf files. But reserved words such as
if are case-sensitive, even in Flash Player 6.

Case-insensitivea

Flash Player 7-format .swf file Not supportedb

b Flash Player 6 cannot play Flash Player 7-format .swf files.

Case-sensitive

Preface | xxvii

Comments and Questions
Please address comments and questions concerning this book to the pub-
lisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/flashhks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our web site at:

http://www.oreilly.com

1

Chapter 1 C H A P T E R O N E

Visual Effects
Hacks 1–7

This book assumes you are familiar with the basics of using Flash to create
visual effects and animations using the timeline. If you aren’t comfortable
with Flash, you might still find the techniques employed here interesting.
Once you’ve learned some Flash basics via either Flash’s online help or a
tutorial book, you can revisit the hacks that piqued your curiosity. I consid-
ered beginning the book with tips on optimization, security, and similar top-
ics. But I decided to defer those until later, hoping that the hacks in this
chapter would get you excited about the book and expand your horizons
while remaining true to the hacker ethic: “Show me the cool stuff first.”

So, in this chapter, I’ve grouped hacks that show you how to achieve some
effects you might not have known about or might have seen and not known
how to reproduce. As with all the hacks presented in this book, I hope they
educate and ultimately inspire you—not in the sense of “inspiration,” as
when one views a great piece of art, but in the sense of “motivation.” Thus, I
hope you are motivated to try these hacks and inspired to create some of
your own.

The hacks in this chapter are grouped together because they are all loosely
associated with visual effects. Later chapters in this book deal with addi-
tional visual effects using transitions and colorization, 3D, masking, and the
Drawing API. This chapter includes pixel effects and converting from ani-
mated GIFs and Photoshop files to Flash .fla and .swf files (the source docu-
ment and distribution formats used by Flash). I close the chapter with two
hacks that show you how to generate a tree and make it sway in the breeze.

Although Chapter 3 makes the heaviest use of masks, masks are so ubiqui-
tous in Flash [Hack #1] that hacks in other chapters use them as well. So for
readers unfamiliar with masks, here is a brief introduction.

2 | Chapter 1, Visual Effects

#1 Fake Per-Pixel Transitions
HACK

Flash animations are created by superimposing one or more layers in an ani-
mation (similar to layers as you’d find in Photoshop and other graphics pro-
grams). The Timeline panel contains the main timeline, which organizes the
layers and displays their contents over time. Masks are traditionally used to
create visual effects, such as a spotlight effect, in which one layer is viewed
through the “hole” created by the masking layer. That is, the masking layer
defines the area of the underlying masked layer that is visible (the remainder
is “masked off” and therefore invisible). To create a masking layer (or sim-
ply “mask layer”) in the authoring tool, insert a new layer in the timeline
(using Insert ➝ Timeline ➝ Layer) in front of the layer you want masked.
Then set the mask layer’s Type to Mask in the Layer Properties dialog box,
accessible under Modify ➝ Timeline ➝ Layer Properties. Then, on the mask
layer, create the shape to use as the mask. In Flash, areas with pixels in the
mask layer allow the masked layer to show through. Areas in the mask layer
without pixels block (mask off) the masked layer. For example, if you want
to create a spotlight effect in which the masked layer shows through the cir-
cle, you could use the drawing tools (Window ➝ Tools) to create a black cir-
cle as the mask.

Flash MX added the ability to create scripted masks in which a mask defined
by one movie clip is used to mask another movie clip’s contents. A scripted
mask, as the name implies, is a mask applied dynamically at runtime with
ActionScript via the MovieClip.setMask() method. Applying a runtime mask
is akin to creating a mask layer during authoring time, except that it affords
much more flexibility. The mask used over a given clip can be changed at
runtime, and new masks can be created at runtime. Although you can ani-
mate a mask layer in the authoring tool, again, you can create more sophisti-
cated animations by animating the mask at runtime via ActionScript. I hope
this brief introduction to masking allows you to get the most out of the vari-
ous hacks in this book that use author-time and runtime (scripted) masks.
For more information on masks see the online Help topic How Do I ➝ Basic
Flash ➝ Work with Layers ➝ Add a Mask Layer, or search the online Help
for the term “Mask.”

Without further ado, on to the cool stuff.

H A C K

#1
Fake Per-Pixel Transitions Hack #1

Simulate pixel-based fades and wipes, as supported in Macromedia Director.

Flash doesn’t have built-in support for pixel-based transitions. This hack
can be used with other video-friendly hacks [Hack #8] to make your static bit-
maps more interesting [Hack #3].

Fake Per-Pixel Transitions #1

Chapter 1, Visual Effects | 3

HACK

Flash uses a vector-based rendering engine, which doesn’t allow direct
access to the individual screen pixels. This hack depends on the fact that
pixels are small, and when you make something small, it looks like anything
else that is small.

The per-pixel transition effect is shown in Figure 1-1.

The transition hides (masks) pixels in the first image over time so that the
image disappears a few pixels at a time. Masking off the first image reveals a
second image that is positioned below it, thus creating the transition effect
from the first image to the second image. The masks used to create the pre-
ceding effect are shown in Figure 1-2. Note that for black pixels, the mask
effect shows the first (topmost) image; for white pixels (no mask), it shows
the second (bottom) image.

As we shallsee, we can make much more complex transitions with little
change.

This hack requires three steps:

1. Make the fake pixel. In this hack we will create a little 4 × 4 rectangle.

Figure 1-1. Simulated per-pixel transition, steps 1 through 4

4 | Chapter 1, Visual Effects

#1 Fake Per-Pixel Transitions
HACK

2. Find a way to make lots of fake pixels. This is done very easily in Flash
using MovieClip.attachMovie().

3. Create a transition by creating a script that makes each dot disappear
after a certain time. By using all the dots as a large mask, we create the
transition between two images (or video clips), as seen in Figure 1-1.

The problem here is that we will have thousands of fake pixels, and we can’t
use anything as processor-extravagant as thousands of onEnterFrame()
scripts running every frame for the duration of the effect. Instead, we will
use setInterval(), which reduces our processing overhead significantly by
running code only once per fake pixel for the duration of the effect.

Make the Pixels
Making a pixel mask is as simple as creating a rectangle:

1. Create a new Flash document (File ➝ New ➝ Flash Document).

2. Use Modify ➝ Document to set the Stage area bigger than 200 × 200 pix-
els and specify a white background (any light color will allow you to see
the black rectangle in Step 3).

Figure 1-2. Masks for simulated per-pixel transition, steps 1 through 4

Fake Per-Pixel Transitions #1

Chapter 1, Visual Effects | 5

HACK

3. Draw a black rectangle with no stroke (the stroke wouldn’t be seen but
would still slow down our effect).

4. Using the Properties panel (Window ➝ Properties), set the rectangle’s
height and width to 4. Set the X and Y coordinates to 0. You can see the
result just next to the registration point in Figure 1-3.

ActionScript gurus might want to draw the mask using the
Drawing API, but it would take too long for Flash to dynam-
ically draw all the rectangles we would need for this effect.

5. Convert the rectangle into a movie clip symbol by selecting it (with the
Selection tool) and pressing F8 (Modify ➝ Convert to Symbol), which
brings up the Symbol Properties dialog box. Name the movie clip symbol
dot and make sure you have the export options set up as shown in
Figure 1-4 (click the Advanced button if you don’t see the Linkage options).

You can delete the movie clip instance from the Stage, since we will use the
MovieClip.attachMovie() method to dynamically attach the Library symbol
to the main timeline at runtime. If you want to avoid creating and then
deleting the movie clip from the Stage, you can use Insert ➝ New Symbol
(Ctrl-F8 orc-F8) to create the movie clip symbol directly in the Library.

The effect uses a large mask consisting of these 4 × 4 squares. The mask is
applied to the first image, and the effect works by masking additional rect-
angles over time, causing the second image (which is below the first) to
show through the gaps.

Make Lots of Pixels
On the main timeline, add a new layer and name it actions [Hack #80].

In the actions layer of the main timeline, select frame 1 and attach the fol-
lowing script using the Actions panel (F9):

function drawGrid (theWidth:Number, theHeight:Number):Void {
 var initDot:Object = new Object();
 var k:Number = 0;

Figure 1-3. A 4 × 4 pixel mask with its registration point

6 | Chapter 1, Visual Effects

#1 Fake Per-Pixel Transitions
HACK

 for (var i:Number = 0; i < theWidth; i += 4) {
 for (var j:Number = 0; j < theHeight; j += 4) {
 var dotName:String = "dot" + i + "_" + j;
 initDot._x = i;
 initDot._y = j;
 this.attachMovie("dot", dotName, k, initDot);
 k++;
 }
 }
}
drawGrid(200, 200);

The preceding code creates a 200 × 200-pixel square consisting of our 4 × 4
movie clips (you can invoke the drawGrid() function with different dimen-
sions to create a grid of a different size). Each pixel is placed at position (i, j)
and depth k on the Stage and has instance name doti_j. The first instance
name (situated at the top left of the square) is dot0_0 and the last one is
dot199_199 (bottom right). You can see the movie clips created if you run the
code in Debug Movie mode (Control ➝ Debug Movie), but be aware that
the debugger will take some time to display all your movie clips (although it
may look as if Flash has hung up, give it a few seconds!).

Figure 1-4. The Symbol Properties dialog box

Fake Per-Pixel Transitions #1

Chapter 1, Visual Effects | 7

HACK

This effect creates a large number of movie clips; (200/4)2 =
2500. Flash seems to become very sluggish if more than 3000
to 4000 movie clips appear on the screen at the same time
(even if you are not moving the clips), so you are advised not
to go far beyond 2500. If you need to mask a larger area than
the one we are working with (200 pixels square), consider
making the constituent rectangles bigger rather than adding
more of them.

Control the Pixels
The trick now is to make the dots disappear on demand. The way to do this
is via setInterval(object, "method", timer), which invokes the function
object.method() every timer milliseconds. Add the following code after
initDot._y = j; in the preceding script:

initDot.timer = 1000 + Math.ceil(Math.random()*800);

The preceding line creates a property, timer, which stores an integer
between 1000 and 1800 for each dot clip. The 1000 specifies the pause
before the effect starts, and the 800 is the duration of the effect. Both values
are in milliseconds, the standard measure of time in ActionScript.

This hack is based on a mask effect, but Flash allows only one mask per
movie clip. The easy way around this limitation is to create all our dot movie
clips inside another one that acts as the mask. We also pass in the name of
the clip to be masked as a parameter to the drawGrid() function (changes
are shown in bold):

function drawGrid(theWidth:Number, theHeight:Number,
 imageClip:MovieClip):Void {

 var initDot = new Object();
 var k:Number = 0;
// Create a mask clip to hold all the dots
this.createEmptyMovieClip("mask", 1);

 // Assign it as the masking clip
 imageClip.setMask(mask);
 for (var i:Number = 0; i < theWidth; i += 4) {
 for (var j:Number = 0; j < theHeight; j += 4) {
 var dotName:String = "dot" + i + "_" + j;
 initDot._x = i;
 initDot._y = j;

initDot.timer = 1000 + Math.ceil(Math.random()*800);
 // Place the masking dots within the container mask clip
 mask.attachMovie("dot", dotName, k, initDot);
 k++;
 }
 }
}
drawGrid(200, 200, image1_mc);

8 | Chapter 1, Visual Effects

#1 Fake Per-Pixel Transitions
HACK

So now we have all our dot clips inside another movie clip named mask,
which we use as the mask for a movie clip whose name is passed in as a
parameter to the drawGrid() function. In this case, we use a clip named
image1_mc, which we create later in the section “Using the Effect.” First
though, let’s finish off the dot movie clips.

Create the Timers
We already have a timer property for each dot movie clip. Now let’s write
the code to make our dots disappear.

Edit the dot movie clip symbol and add a new layer named actions (the first
layer of a timeline is traditionally named scripts or actions and used exclu-
sively to hold your timeline-based scripts).

In the first frame of the actions layer, add the following code:

removeMe = function () {
 clearInterval(countDown);
 this.removeMovieClip();
};
var countDown = setInterval(this, "removeMe", timer);

The last line of the preceding code uses setInterval() to create a timer named
countdown for each dot. It calls the removeMe() function when the timer
expires. The removeMe() function clears the interval and then removes the
current dot clip, which creates our “disappearing pixels” transition effect.

If setInterval() is passed a function reference as the first
parameter, such as setInterval(removeMe, timer);, the value
of the keyword this would be undefined within the
removeMe() function. Therefore we use the alternative form
setInterval(this, “removeMe”, timer) in which we pass an
object and a method name as the first two parameters. (In
this case, the keyword this is the object passed as the first
argument.) When removeMe() is invoked, the keyword this
is in scope, so we can invoke this.removeMovieClip() to
remove the clip.

Using the Effect
To use the effect, you need to have the two things you want to transition
between on two separate layers, with the first image or video clip on the top
layer, as shown in Figure 1-5. You should give the first clip the instance
name image1_mc using the Properties panel. The second image can be called
anything since it is never referred to in the code.

You can see the effect in action by downloading pixelMask.fla from this
book’s web site.

Per-Pixel Text Effects #2

Chapter 1, Visual Effects | 9

HACK

Extend the Effect
By changing the time interval before each dot disappears, you can create dif-
ferent transition effects. For example, changing the timer values based on
the position of the dots serves as the basis for many common pixel-based
transitions:

// Left-to-right wipe
initDot.timer = 1000 + (Math.random()*(initDot._x)*10);
// Diagonal wipe
initDot.timer = 1000 + (Math.random()*(initDot._x + initDot._y)*5);

Final Thoughts
Masking is a very underutilized feature of Flash. It’s one of those features
that seems to have no real use until you delve deeper. No surprise then that
many of the coolest effects [Hack #21] seem to use it extensively!

H A C K

#2
Per-Pixel Text Effects Hack #2

Create advanced text effects and transitions that operate on the per-pixel
level.

The problem in simulating per-pixel effects in Flash is that potential perfor-
mance degradation limits how many fake pixels you use. You have two ways

Figure 1-5. Setting up a transition between two layers

10 | Chapter 1, Visual Effects

#2 Per-Pixel Text Effects
HACK

to keep this number small: keep to small images (as we did in the per-pixel
transition effect hack [Hack #1]), or use the effect on an image with lots of
background pixels (which you can ignore to reduce the number of fake pix-
els needed).

Although it’s probably obvious in hindsight, it took me ages to realize that
text fits the “lots of background pixels” criterion. A quick trawl on the Web
suggests that it really isn’t obvious because nobody else seems to be using
this hack.

In this hack, we’ll make the text appear to coalesce from pixels spread out
over the screen. Of course, you can implement various effects using differ-
ent calculations for the mask pixels’ positions.

The hack comes in two parts:

• Converting the text block’s shape into 1 × 1 squares (i.e., our “fake
pixels”)

• Animating the fake pixels

Here are the steps:

1. Create a text field and enter some text.

2. Press Ctrl-B (Windows) or c-B (Mac) or choose Modify ➝ Break Apart
twice to turn the text field into a primitive shape.

3. With the text still selected, press F8, and convert it into a movie clip
symbol named text. Make sure the Export for ActionScript checkbox is
checked and specify the linkage identifier as text. (Delete the clip
instance from the Stage, as we’ll be adding it at runtime from the
Library with MovieClip.attachMovie().)

4. For the effect to work, the movie clip’s registration point must be at the
top left of the text. Enter Edit in Place mode by double-clicking the
movie clip; then to select all the text choose Edit ➝ Select All and enter
0 for X and Y values in the Properties panel, as shown in Figure 1-6.

Figure 1-6. Setting the registration point for the selected text symbol

Per-Pixel Text Effects #2

Chapter 1, Visual Effects | 11

HACK

You must turn your text into a primitive shape for this hack to work using
the Modify ➝ Break Apart command (we’ll see why later), which is not ideal
because it adds to the filesize. For a lot of text, it can bloat the filesize con-
siderably. One way around this is to include each letter in your font as a sep-
arate clip containing a primitive shape and form them into sentences at
runtime. Although this sounds like a lot of additional bytes to add to your
SWF, remember that Flash effectively does the same thing when you save
font outlines to your SWF, which you have to do whenever you want to
treat font characters as graphic elements.

You also need to create a second movie clip with linkage identifier dot. The
dot clip should consist of a 1 × 1 rectangle, with X and Y positions both set
to 0 as shown in Figure 1-7 (use the Properties panel to set these because the
dot will be too small to see).

This code replicates the “zoom in from the sides with blur” effect, but this
time the text really does blur (the effect is usually simulated with alpha), as
shown in Figure 1-8, because we are splitting the text into pixels as part of
the effect.

Figure 1-7. The 1 × 1 pixel mask

Figure 1-8. Per-pixel text effect, steps 1 through 4

12 | Chapter 1, Visual Effects

#2 Per-Pixel Text Effects
HACK

function mover() {
 this._x -= (this._x - this.x) / 4;
 this._y -= (this._y - this.y) / 4;
}

function lastMover() {
 this._x -= (this._x - this.x) / 4;
 this._y -= (this._y - this.y) / 4;
 if ((this._x - this.x) < 0.1) {
 dotHolder.removeMovieClip();
 textClip._visible = true;
 }
}
// Place the text on the Stage and hide it
textClip = this.attachMovie("text", "textClip", 0);
textClip._x = 200;
textClip._y = 100;
textClip._visible = false;
// Initialize variables, including height and width
var dots = 1;
var distance = 10000;
var stopDot = true;
var height = textClip._y + textClip._height;
var width = textClip._x + textClip._width;
// Create a dot clip for every pixel in the text
var dotHolder = this.createEmptyMovieClip("holder", 1);
for (var j = textClip._y; j < height; j++) {
 for (var i = textClip._x; i < width; i++) {
 if (textClip.hitTest(i, j, true)) {
 var clip = dotHolder.attachMovie("dot", "dot" + dots, dots);
 if (stopDot) {
 clip._x = distance;
 clip.onEnterFrame = lastMover;
 stopDot = false;
 } else {
 clip._x = Math.random() * distance - distance/2;
 clip.onEnterFrame = mover;
 }
 // Store the position that the dot clip has
 // to get to (clip.x, clip.y) and move it off screen
 clip.x = i;
 clip.y = j;
 clip._y = j;
 dots++;
 }
 }
}

Ignoring the mover() and lastMover() function definitions for a moment,
the remaining code places the text on the Stage and hides it. The code then
initializes several variables, including those that define the height and width
of our text.

Simulate Old Film Grain #3

Chapter 1, Visual Effects | 13

HACK

The subsequent for loop uses MovieClip.hitTest() to find all nonempty pix-
els in the text and create a dot movie clip corresponding to each. Each of
these dots is given an onEnterFrame() handler to animate the overall effect.
(Instead, we could use setInterval() to animate the effect [Hack #1].)

Two hacks are at work in this loop code.

The first hack, using hitTest(), is the reason we had to break apart our text.
The hitTest() method always returns false when used with a dynamic text
field (in which case it treats all pixels as empty).

The second hack is the way we check that all pixels are in their final posi-
tions. Most of our pixels are placed randomly on the screen and controlled
by the event handler mover(). The first pixel, however, is placed furthest
away and also given a slightly more complicated event handler, lastMover().
This event stops the effect when the associated pixel has moved to its final
position, by which time the others will also have reached their final posi-
tions (given that they all have less distance to travel).

Although a bit of a kludge, this hack is far more perfor-
mance-friendly than forcing each pixel to perform a similar
check.

Final Thoughts
Although Flash text effects are all over the Web, I don’t know of any that
use per-pixel transitions. The cool thing about using our fake pixels is that
you can use any other particle effect (such as the snow, waterfall, or star
field effects [Hack #33]) for the pixel movement routine.

H A C K

#3
Simulate Old Film Grain Hack #3

Create the effect of old film grain using Photoshop and Flash.

Flash’s vector graphic engine has a lot going for it, but sometimes you want
something a little less clean-edged. Adding an old film grain effect is one of
the easiest ways to add instant atmosphere or a grungy hard edge to an other-
wise crisp and clean clip. It can be combined with video colorization [Hack #8]

or sepia tone colorization [Hack #13] for more dramatic and specialized effects.

The most obvious way to add a film grain effect is to add random vector
lines and dots to an image. That reproduces the effect, but it doesn’t really
reproduce the atmosphere of old film; we still end up with a crisp render-
ing. In this hack we use a bitmap, which allows us to avoid the clean effect
of vectors.

14 | Chapter 1, Visual Effects

#3 Simulate Old Film Grain
HACK

The hack has two parts: creating the film grain bitmap in Photoshop and
then importing and using it in Flash. (We could of course use Fireworks in
place of Photoshop; the principles are the same.)

Create the Film Grain Bitmap
Dirt, scratches, and dropouts add a real-world edge to a photograph. Dust,
dirt, and hair or lint that has made its way onto the film or negative appear
as dark patches and lines. Scratches appear as white lines.

To begin adjusting the image in Photoshop:

1. Open Photoshop.

2. Press D to reset to the default background and foreground colors.

3. Press X to switch background and foreground colors. This will give you
a background color of black and a foreground color of white.

4. Create a new Photoshop file called grain.psd using File ➝ New. Select a
bitmap size that is longer than it is wide. I created a file 800 × 400 pixels
for demonstration purposes, but you can go much smaller (typically 400
× 200).

5. Check the Background Color option in the Contents section of the New
Document dialog box, as shown in Figure 1-9. This creates a rectangu-
lar black canvas.

Figure 1-9. Setting the Background Color option in Photoshop

Simulate Old Film Grain #3

Chapter 1, Visual Effects | 15

HACK

6. Add a new layer using the Create a New Layer icon at the bottom of the
Layers tab. We will be drawing only on the new layer, so ensure Layer 1
is always selected in the Layers tab, as shown in Figure 1-10.

We now need to draw our effects. Three types of noise are seen on old film:

Hairlines
Hairlines are caused by dark strands in the film.

Dots and patches
Dark dots are caused by specks of dirt or other material on the film, and
light dots are caused by scratches or dropouts in the film.

Scratches
These are caused by scratches in the film that erase part of the film image.

Using the Photoshop tools (typically the Pencil and Brush tools), add the
three types of effect on Layer 1. In Figure 1-11, I have created small dots to
the left, large patches in the middle, and scratches to the right. I have also
created hairlines at the top and bottom.

Using Photoshop’s Eraser tool with a medium opacity, fade some of your
pixels. On real film, deep scratches and other effects appear white, but many
imperfections affect the film surface only partially, and this is what we are
simulating in Figure 1-12.

Although we have used only white, many effects on old film are black, so we
also need to simulate those:

1. Select some areas of your white pixels using Photoshop’s Selection tool.

2. Invert the selection using Image ➝ Adjustments ➝ Invert. Although your
selected pixels will seem to disappear, this is because you are creating
black pixels on a black background; they are still there, you just can’t
see them.

Figure 1-10. The newly created layer selected in Photoshop

16 | Chapter 1, Visual Effects

#3 Simulate Old Film Grain
HACK

3. Delete the background layer (click-drag it in the Layers tab, and release
it over the trashcan icon at the bottom of the tab).

You should end up with something like the image shown in Figure 1-13 (the
checkerboard background is Photoshop’s way of representing zero alpha, or
no pixels).

Save the image as a PNG file. Do not optimize it for the Web in any way.

Many designers optimize their graphics at this point, given that they are
about to be loaded into a web design package (Flash). There is really no

Figure 1-11. Simulated imperfections in Photoshop

Figure 1-12. Simulating shallow scratches

Simulate Old Film Grain #3

Chapter 1, Visual Effects | 17

HACK

need to do so; leaving the optimization until the point you create the SWF in
Flash always gives you more flexibility.

For example, if the client decides she wants a high-bandwidth version of the
site, you simply change the bitmap export settings in Flash. If you had opti-
mized your bitmaps before importing them into Flash, you would have to go
to Photoshop and reexport the images at the new setting. Then, you would
have to swap all instances of the old bitmap on the Flash timeline for the
new one. Obviously, then, importing full-quality bitmaps into Flash, and let-
ting Flash optimize them, can be a real time-saver compared to the alterna-
tives. For those who prefer working in Fireworks, its integration with Flash
(i.e., its launch and edit feature) can also speed your workflow.

Using a Bitmap in Flash
Once you’ve exported the bitmap as a PNG file from Photoshop, you still
need to use it in Flash:

1. Import the PNG file into Flash using File ➝ Import ➝ Import to Library.

2. Select the bitmap in the Library.

3. Right-click (Windows) or c-click (Mac) in the Library panel, and select
Properties from the context menu that appears (also known as the pop-
up Options menu).

4. Change the Bitmap Properties, as shown in Figure 1-14: select a low
JPEG compression ratio and remove smoothing (Flash handles bitmaps
faster if you disable smoothing).

Figure 1-13. Simulating drop outs

18 | Chapter 1, Visual Effects

#3 Simulate Old Film Grain
HACK

Note that we have created an image that has both JPEG
compression and an alpha channel! You cannot have a JPEG
image with an associated alpha channel as a standalone file,
but Flash doesn’t seem to mind, which is very useful to
know when you want to overlay Flash vectors with a bitmap.

Drag the bitmap onto the Stage, then press F8 (Modify ➝ Convert to Sym-
bol) and convert the bitmap into a movie clip symbol named grain.

All you have to do now is overlay a quick-moving version of our movie clip
onto a video, bitmap, or vector animation. In Figure 1-15, I have overlain it
over a static image, making the image appear as if it is a section of video.

I have also used a mask to hide areas of the grain clip that don’t appear over
the image. The final effect is shown in Figure 1-16 (or take a look at grain.fla,
which is downloadable from this book’s web site).

Final Thoughts
Not only can this technique add interest to a section of video that isn’t doing
much, it can also:

• Hide imperfections in the video (such as pixelation caused by high com-
pression rates).

• Give movement to static images, making them appear as if they are a
video clip.

Figure 1-14. Bitmap properties in the Flash Library

Simulate Old Film Grain #3

Chapter 1, Visual Effects | 19

HACK

• Hide discontinuities. If you are mixing video and still images (such as a
main video section and vector-based opening or closing titles), you can
hide this by adding a grain effect over the whole production.

Figure 1-15. Simulating old video, steps 1 through 3

Figure 1-16. Using a mask to complete the effect

20 | Chapter 1, Visual Effects

#4 Create SWFs from Animated GIFs
HACK

H A C K

#4
Create SWFs from Animated GIFs Hack #4

Quickly repurpose animated GIFs for use in Flash effects.

I thought it would be fun to show how you can enhance a GIF by reproduc-
ing it in Flash. So I went to the O’Reilly home page (http://www.oreilly.com)
where I was greeted by the little critter—I’m told it’s a tarsier—shown in
Figure 1-17. The filename is oreilly_header1.gif, which is typical of slices cre-
ated for an HTML-based table, so I knew I had a GIF I could work with.
Anyway, I kept looking at him, given that he looks so cute, and then I
blinked. He blinked back. After the surprise and obligatory double take, I
realized he’s an animated GIF.

So I started thinking...doing a Flash version of this critter would be a good
example of the difference between Flash and traditional HTML design. This
hack shows how you can reduce filesizes by using Flash instead of your ani-
mated GIFs. Once the 2D blinking tarsier animation is in Flash, you can
modify it to simulate a 3D blinking tarsier [Hack #35].

The GIF Animated Critter
We can obtain a copy of our animated friend using a web browser’s Save
option. In Internet Explorer on Windows, for example, we right-click on the
GIF and select Save Picture As from the pop-up menu to download the
image to our local drive.

Another advantage of Flash animations over animated GIFs is that you can
make them harder to steal than this critter was from O’Reilly’s site by obfus-
cating the SWF [Hack #98] in the browser cache, which is where users ordi-
narily look for downloaded SWFs.

If you open the O’Reilly GIF file in an image editor (such as Fireworks or
Photoshop/ImageReady), you will see that the blink animation runs every 12
seconds (the first frame has a delay of 12 seconds), and the animation is 12
seconds in total. One thing worth noticing is that an awful lot of pixels in

Figure 1-17. The O’Reilly tarsier mascot on oreilly.com

