

ActionScript for Flash MX
Pocket Reference

Colin Moock

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.11762 Page 1 Thursday, July 6, 2006 9:24 AM

ActionScript for Flash MX Pocket Reference
by Colin Moock

Copyright © 2003 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational,
business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Bruce Epstein
Production Editor: Emily Quill
Cover Designer: Emma Colby
Interior Designer: David Futato

Printing History:
March 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, ActionScript Flash MX Pocket Reference,
the image of a siren, and related trade dress are trademarks of O’Reilly
Media, Inc. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

0-596-00514-8
[C] [10/04]

,COPYRIGHT.11883 Page 1 Thursday, July 6, 2006 9:24 AM

iii

Contents

Introduction 1

Authoring ActionScript Code 1
Outputting Debug Messages 3
Code Placement Best Practices 3
Finding Code 4

Using Movie Clips 5
Movie Clip Depths 8
Referring to Movie Clips 9

ActionScript Syntax 9
Comments 9
Whitespace 10
Statement Terminators (Semicolons) 10
Case Sensitivity 10
Identifiers 11
Keywords 11

Variables 12
Timeline Variables 12
Global Variables 13
Local Variables 14
Code Hinting 14

iv | Contents

Datatypes 15
Datatype Conversion Rules 16
Explicit Datatype Conversion 18
Determining Datatype and Class 20
The number Datatype 20
The string Datatype 21
The boolean Datatype 23
The null and undefined Datatypes 24
The object Datatype 24
The function Datatype 24
The movieclip Datatype 24

Arrays 25

Operators 26

Conditionals and Loops 29
The if–else if–else Statements 29
The switch Statement 30
The while Statement 31
The do-while Statement 32
The for Statement 32
The for-in Statement 33
The break and continue Statements 34
Loops, Screen Updates, and Maximum Iterations 34

Creating and Using Functions 35

Event Handling 38
Event Handler Properties 38
Event Listeners 39
The onClipEvent() and on() Event Handlers 40

Object-Oriented ActionScript 44

Contents | v

Working with Graphics 47

Working with Text 48

GUIs and Components 50

Working with External Media and Data 52
Loading Images and .swf Files 53
Loading Sounds 53
Loading Web Pages 54
Loading Variables 55
Loading XML 56
Persistent Socket Connections 57
Security Restrictions 58

Working with Web Browsers 59
JavaScript Communication 61

Finding Help, Examples, and Code Libraries 61

ActionScript Language Reference 62

Index 133

1

ActionScript for Flash MX
Pocket Reference

Introduction
ActionScript is Macromedia Flash’s scripting language, used
to create everything from graphic user interfaces and games
to sound sequencers and animated screensavers. Syntacti-
cally, ActionScript is nearly identical to JavaScript (both are
based on the ECMA-262 specification), but it is tailored to
Flash content rather than HTML content. ActionScript also
resembles Java and C++, using many of the same state-
ments, operators, and punctuation found in those lan-
guages. ActionScript supports both procedural and object-
oriented programming or any mix of the two.

This book provides “just the facts” coverage of ActionScript
for Flash MX (the sixth version of the software). Differences
from ActionScript for Flash 5 (the first official version of
ActionScript) are covered at http://www.moock.org/
webdesign/lectures/newInMX/. For exhaustive coverage of
ActionScript, consult O’Reilly’s ActionScript for Flash MX:
The Definitive Guide.

Authoring ActionScript Code
All code in a Flash document (a .fla file) must be attached to
either a keyframe on the timeline, or a button or movie clip
on the Stage.

2 | ActionScript for Flash MX Pocket Reference

To attach code to a keyframe:

1. Select the keyframe in the timeline (by clicking it)

2. Open the Actions panel (Window ➝ Actions or F9)

3. Add the desired code to the right side of the panel (called
the Script pane)

NOTE

The Actions panel has two different modes of operation,
Normal Mode (menu-driven code creation) and Expert
Mode (manual typing). To change the mode, use the pop-
up Options menu in the upper-right corner of the panel,
as shown in Figure 1.

During playback, Flash executes the code on a keyframe
before displaying the contents of that frame (allowing the
code to manipulate elements on the Stage before they are dis-
played). To add a new keyframe to a timeline, select a frame
in the timeline and choose Insert ➝ Keyframe.

To attach code to a button or movie clip:

1. Select the button or movie clip on the Stage

2. Open the Actions panel

3. Add the desired code to the right side of the panel

Code attached to buttons or movie clips must be contained
within event handlers, which determine when the code

Figure 1. Setting the Actions panel to Expert Mode

Authoring ActionScript Code | 3

should execute at runtime. For example, to invoke the func-
tion submitForm() when a button is clicked, attach the fol-
lowing code to the button:

on (release) {
 submitForm();
}

Similarly, to reposition a movie clip five pixels to the left as the
playhead advances through the timeline (i.e., once for every
tick of the frame rate), attach the following code to the clip:

onClipEvent (enterFrame) {
 this._x -= 5;
}

For information on button and movie clip events, see “Event
Handling.”

Outputting Debug Messages
The Flash authoring tool provides a “Test Movie” mode
(Control ➝ Test Movie), which is used to compile a Flash
document (a .fla file) into a Flash movie (a .swf file) for test-
ing in a debugging environment. To display text in the Test
Movie mode’s Output window, use the trace() function:

trace("Testing...testing...");

Text sent to the Output window appears in Test Movie
mode only; to create a .swf file suitable for distribution (e.g.,
for display in a web browser), check the Omit Trace Actions
option under File ➝ Publish Settings ➝ Flash, and click the
Publish button in the Publish Settings dialog box. For details
on embedding a .swf file in an HTML page, see “Working
with Web Browsers.” Use a dynamic text field to display text
in the standalone or browser versions of the Flash Player.

Code Placement Best Practices
As a general rule, most code should reside on the main time-
line of a project’s main .fla file, on a frame labeled “main”.

4 | ActionScript for Flash MX Pocket Reference

The “main” frame is not usually the first frame; instead, it
typically follows any preloader code, which waits for the
movie to load. Classes, long blocks of code, and large func-
tions should be stored in external .as files (which are plain
text files saved with the .as extension). Incorporate .as files
into the document via the #include directive.

For example, a typical Flash application setup would be:

// PRELOADER ON FRAME 2 OF MAIN TIMELINE
if (this._framesloaded == this._totalframes) {
 this.gotoAndStop("main");
}

// CODE ON FRAME 3 OF MAIN TIMELINE
this.gotoAndPlay(2);

// CODE ON FRAME LABELED "main" OF THE MAIN TIMELINE
#include "SomeClass.as"
#include "SomeOtherClass.as"

init();

function init() {
 // ...start up application
}

For information on preloading code and content, see http://
design.oreilly.com/news/action_0501.html. For more best
practices, see http://www.macromedia.com/desdev/mx/flash/
whitepapers/actionscript_standards.pdf.

Finding Code
If you’re faced with a movie that seems to be missing impor-
tant code, open the Actions panel and try these techniques
for finding it:

• To search the current scene for ActionScript code, use
the Movie Explorer search option (Window ➝ Movie
Explorer).

• With the Actions panel open, click on any frame in the
timeline that contains a little “a” icon, which indicates

Using Movie Clips | 5

the presence of ActionScript code (the “a” may look like
a tiny circle).

• Look for, and select, any white circle with a black out-
line on stage. Such circles indicate empty movie clips,
which often contain code. If there’s no code on the
empty clip itself, double-click the clip to edit it, and
investigate its frames.

• Select each button in the movie, one at a time. Some pro-
grammers place long, important scripts directly on but-
tons, instead of centralizing their code.

• Check the timeline for hidden or masked layers. A layer
with a red X icon next to it is hidden during authoring,
but may contain clips and buttons with code. Similarly,
masked layers may also contain obscured objects that
bear code. Unlock masked layers to reveal their contents.

• Unlock all layers. Empty movie clips (the little circles
with black outlines) are hidden when the layer they’re on
is locked.

• In the Actions panel, use Ctrl+F (Windows) or Com-
mand+F (Macintosh) to open the Find dialog box. This
is useful for searching large scripts for the specified text.
(Use the Movie Explorer to search across all scripts.)

Using Movie Clips
Every Flash document contains a Stage, on which we place
shapes, text, and other visual elements, and a main timeline,
through which we define changes to the Stage’s contents
over time. The main timeline (i.e., the main movie) can con-
tain independent submovies called movie clips (or clips for
short). Each movie clip has its own independent timeline and
canvas (the Stage is the canvas of the main movie) and can
even contain other movie clips. A clip contained within
another clip is called a nested clip. A clip that contains
another clip is the nested clip’s parent clip. The playhead rep-
resents the current slice in time (i.e., the active frame in a

6 | ActionScript for Flash MX Pocket Reference

timeline). The duration of a frame is called a tick. For exam-
ple, if the frame rate is 30 frames per second, a tick is 1/30 of
a second.

A single Flash document can contain a hierarchy of inter-
related movie clips. For example, the main movie may con-
tain a mountainous landscape. A separate movie clip
containing an animated character can be moved across the
landscape to give the illusion that the character is walking.
Each movie clip maintains a numbered content stack that
governs how individual elements are layered visually at runt-
ime (see “Movie Clip Depths”).

ActionScript offers detailed control over movie clips. Each
movie clip in a movie is an instance of the MovieClip class, so
we can programmatically play a clip, stop it, move its play-
head within its timeline, set its properties (such as its size,
rotation, transparency level, and position on the Stage), and
manipulate it as a true programming object. For a complete
list of MovieClip properties and methods, consult the refer-
ence section in the latter half of this book.

Movie clips can be thought of as the raw material used to
produce programmatically generated content in Flash. For
example, a movie clip can serve as the ball or paddle in a
pong game, as a drop-down list in an order form, or as a con-
tainer for background sounds in an animation. Even Flash’s
built-in GUI components are created with movie clips.

Just as all object instances are based on a class, all movie clip
instances are based on a template movie clip, called a symbol.
Movie clip symbols live in the Library of each Flash docu-
ment (.fla file).

To make a new, blank symbol, follow these steps:

1. Select Insert ➝ New Symbol. The Create New Symbol
dialog box appears.

2. In the Name field, type an identifier (i.e., a name) for the
symbol.

Using Movie Clips | 7

3. For Behavior, select the Movie Clip radio button.

4. Click OK.

To make a new instance of a movie clip symbol at authoring
time, click the symbol in the Library and drag it to the Stage.
An instance created in this way should be named manually
via the Property inspector. A movie clip’s instance name is the
identifier used to refer to it from ActionScript. Clips without
instance names are given an automatic name that is not easily
accessible via ActionScript. A clip’s instance name should not
be confused with the name of the symbol from which the clip
was created, nor confused with the symbol’s linkage identifier.

To set a symbol’s linkage identifier (a.k.a. exporting the sym-
bol), follow these steps:

1. In the Library, select the desired symbol.

2. In the Library’s pop-up Options menu, select Linkage.
The Linkage Properties dialog box appears.

3. Select the Export For ActionScript checkbox.

4. In the Identifier field, supply a unique name for the clip
symbol. The name can be any string—often simply the
same name as the symbol itself—but should be different
from all other exported clip symbols.

To make a new instance of a movie clip symbol at runtime,
use MovieClip.attachMovie(). For example, the following
code creates a new instance of the symbol whose linkage
identifier is boxSymbol and names the instance box_mc, plac-
ing it on depth 0 of the main timeline (see the next section,
“Movie Clip Depths,” for details on depths).

_root.attachMovie("boxSymbol", "box_mc", 0);

Be sure to set the symbol’s linkage identifier (here,
boxSymbol) before creating instances of it with attachMovie().

To make a new generic movie clip instance (i.e., one with no
symbol) at runtime, use MovieClip.createEmptyMovieClip(),
which has the following syntax:

theClip.createEmptyMovieClip(newName, depth);

