
http://www.oreilly.com

http://www.oreilly.com
http://www.oreilly.com

Java 5.0 Tiger
A Developer’s

Notebook™

TITLE Page i Monday, October 25, 2004 12:03 PM

,TITLE.25190 Page ii Tuesday, June 8, 2004 3:06 PM

Java 5.0
Tiger

A Developer’s
Notebook™

Brett McLaughlin and David Flanagan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

TITLE Page iii Monday, October 25, 2004 12:03 PM

http://www.oreilly.com

Java 5.0 Tiger: A Developer’s Notebook™

by Brett McLaughlin and David Flanagan

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Production Editor: Reg Aubry

Cover Designer: Edie Freedman

Interior Designer: Melanie Wang

Printing History:
June 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Developer’s Notebook series designations, Java 5.0 Tiger: A Developer’s
Notebook, the look of a laboratory notebook, and related trade dress are trademarks of O’Reilly
Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-00738-6
[M] [2/08]

,COPYRIGHT.12369 Page iv Thursday, February 7, 2008 7:39 PM

mailto:corporate@oreilly.com

v

Contents

The Developer’s Notebook Series . ix

Preface . xiii

Chapter 1. What’s New? . 1
Working with Arrays 1
Using Queues 5
Ordering Queues Using Comparators 7
Overriding Return Types 9
Taking Advantage of Better Unicode 11
Adding StringBuilder to the Mix 12

Chapter 2. Generics . 15
Using Type-Safe Lists 15
Using Type-Safe Maps 18
Iterating Over Parameterized Types 19
Accepting Parameterized Types as Arguments 21
Returning Parameterized Types 22
Using Parameterized Types as Type Parameters 23
Checking for Lint 24
Generics and Type Conversions 25
Using Type Wildcards 29
Writing Generic Types 30
Restricting Type Parameters 32

,tigeradnTOC.fm.7756 Page v Friday, June 11, 2004 1:17 PM

vi Contents

Chapter 3. Enumerated Types. 35
Creating an Enum 35
Declaring Enums Inline 40
Iterating Over Enums 41
Switching on Enums 42
Maps of Enums 46
Sets of Enums 48
Adding Methods to an Enum 51
Implementing Interfaces with Enums 54
Value-Specific Class Bodies 55
Manually Defining an Enum 57
Extending an Enum 58

Chapter 4. Autoboxing and Unboxing 60
Converting Primitives to Wrapper Types 60
Converting Wrapper Types to Primitives 62
Incrementing and Decrementing Wrapper Types 63
Boolean Versus boolean 64
Conditionals and Unboxing 65
Control Statements and Unboxing 66
Method Overload Resolution 67

Chapter 5. varargs. 70
Creating a Variable-Length Argument List 71
Iterating Over Variable-Length Argument Lists 74
Allowing Zero-Length Argument Lists 76
Specify Object Arguments Over Primitives 78
Avoiding Automatic Array Conversion 79

Chapter 6. Annotations . 82
Using Standard Annotation Types 82
Annotating an Overriding Method 85
Annotating a Deprecated Method 87
Suppressing Warnings 88
Creating Custom Annotation Types 90
Annotating Annotations 93
Defining an Annotation Type’s Target 94
Setting the Retention of an Annotation Type 95
Documenting Annotation Types 96

,tigeradnTOC.fm.7756 Page vi Friday, June 11, 2004 1:17 PM

Contents vii

Setting Up Inheritance in Annotations 99
Reflecting on Annotations 101

Chapter 7. The for/in Statement 107
Ditching Iterators 107
Iterating over Arrays 110
Iterating over Collections 111
Avoiding Unnecessary Typecasts 113
Making Your Classes Work with for/in 115
Determining List Position and Variable Value 119
Removing List Items in a for/in Loop 121

Chapter 8. Static Imports .123
Importing Static Members 123
Using Wildcards in Static Imports 125
Importing Enumerated Type Values 126
Importing Multiple Members with the Same Name 128
Shadowing Static Imports 130

Chapter 9. Formatting. .132
Creating a Formatter 132
Writing Formatted Output 133
Using the format() Convenience Method 139
Using the printf() Convenience Method 140

Chapter 10. Threading .142
Handling Uncaught Exceptions in Threads 142
Using Thread-Safe Collections 146
Using Blocking Queues 148
Specifying Timeouts for Blocking 152
Separating Thread Logic from Execution Logic 154
Using Executor as a Service 156
Using Callable Objects 158
Executing Tasks Without an ExecutorService 160
Scheduling Tasks 161
Advanced Synchronizing 164
Using Atomic Types 165
Locking Versus Synchronization 167

Index .173

,tigeradnTOC.fm.7756 Page vii Friday, June 11, 2004 1:17 PM

,tigeradnTOC.fm.7756 Page viii Friday, June 11, 2004 1:17 PM

ix

The Developer’s Notebook
Series

So, you’ve managed to pick this book up. Cool. Really, I’m excited about
that! Of course, you may be wondering why these books have the odd-
looking, college notebook sort of cover. I mean, this is O’Reilly, right?
Where are the animals? And, really, do you need another series?
Couldn’t this just be a cookbook? How about a nutshell, or one of those
cool hacks books that seems to be everywhere? The short answer is that
a developer’s notebook is none of those things—in fact, it’s such an
important idea that we came up with an entirely new look and feel, com-
plete with cover, fonts, and even some notes in the margin. This is all a
result of trying to get something into your hands you can actually use.

It’s my strong belief that while the nineties were characterized by every-
one wanting to learn everything (Why not? We all had six-figure
incomes from dot-com companies), the new millennium is about informa-
tion pain. People don’t have time (or the income) to read through 600
page books, often learning 200 things, of which only about 4 apply to
their current job. It would be much nicer to just sit near one of the uber-
coders and look over his shoulder, wouldn’t it? To ask the guys that are
neck-deep in this stuff why they chose a particular method, how they
performed this one tricky task, or how they avoided that threading issue
when working with piped streams. The thinking has always been that
books can’t serve that particular need—they can inform, and let you
decide, but ultimately a coder’s mind was something that couldn’t really
be captured on a piece of paper.

This series says that assumption is patently wrong—and we aim to prove it.

,series_preface.7356 Page ix Friday, June 11, 2004 1:10 PM

x The Developer’s Notebook Series

A Developer’s Notebook is just what it claims to be: the often-frantic
scribbling and notes that a true-blue alpha geek mentally makes when
working with a new language, API, or project. It’s the no-nonsense code
that solves problems, stripped of page-filling commentary that often
serves more as a paperweight than an epiphany. It’s hackery, focused
not on what is nifty or might be fun to do when you’ve got some free
time (when’s the last time that happened?), but on what you need to
simply “make it work.” This isn’t a lecture, folks—it’s a lab. If you want a
lot of concept, architecture, and UML diagrams, I’ll happily and proudly
point you to our animal and nutshell books. If you want every answer to
every problem under the sun, our omnibus cookbooks are killer. And if
you are into arcane and often quirky uses of technology, hacks books
simply rock. But if you’re a coder, down to your core, and you just want
to get on with it, then you want a Developer’s Notebook. Coffee stains
and all, this is from the mind of a developer to yours, barely even
cleaned up enough for print. I hope you enjoy it...we sure had a good
time writing them.

Notebooks Are...
Example-driven guides

As you’ll see in the “Organization” section, developer’s notebooks are
built entirely around example code. You’ll see code on nearly every
page, and it’s code that does something—not trivial “Hello World!”
programs that aren’t worth more than the paper they’re printed on.

Aimed at developers
Ever read a book that seems to be aimed at pointy-haired bosses,
filled with buzzwords, and feels more like a marketing manifesto
than a programming text? We have too—and these books are the
antithesis of that. In fact, a good notebook is incomprehensible to
someone who can’t program (don’t say we didn’t warn you!), and
that’s just the way it’s supposed to be. But for developers...it’s as
good as it gets.

Actually enjoyable to work through
Do you really have time to sit around reading something that isn’t
any fun? If you do, then maybe you’re into thousand-page language
references—but if you’re like the rest of us, notebooks are a much
better fit. Practical code samples, terse dialogue centered around
practical examples, and even some humor here and there—these are
the ingredients of a good developer’s notebook.

,series_preface.7356 Page x Friday, June 11, 2004 1:10 PM

Organization xi

About doing, not talking about doing
If you want to read a book late at night without a computer nearby,
these books might not be that useful. The intent is that you’re cod-
ing as you go along, knee deep in bytecode. For that reason, note-
books talk code, code, code. Fire up your editor before digging in.

Notebooks Aren’t...
Lectures

We don’t let just anyone write a developer’s notebook—you’ve got to
be a bona fide programmer, and preferably one who stays up a little
too late coding. While full-time writers, academics, and theorists are
great in some areas, these books are about programming in the
trenches, and are filled with instruction, not lecture.

Filled with conceptual drawings and class hierarchies
This isn’t a nutshell (there, we said it). You won’t find 100-page
indices with every method listed, and you won’t see full-page UML
diagrams with methods, inheritance trees, and flow charts. What you
will find is page after page of source code. Are you starting to sense
a recurring theme?

Long on explanation, light on application
It seems that many programming books these days have three, four,
or more chapters before you even see any working code. I’m not sure
who has authors convinced that it’s good to keep a reader waiting
this long, but it’s not anybody working on this series. We believe
that if you’re not coding within ten pages, something’s wrong. These
books are also chock-full of practical application, taking you from an
example in a book to putting things to work on your job, as quickly
as possible.

Organization
Developer’s Notebooks try to communicate different information than
most books, and as a result, are organized differently. They do indeed
have chapters, but that’s about as far as the similarity between a note-
book and a traditional programming book goes. First, you’ll find that all
the headings in each chapter are organized around a specific task. You’ll
note that we said task, not concept. That’s one of the important things to
get about these books—they are first and foremost about doing some-
thing. Each of these headings represents a single lab. A lab is just what it
sounds like—steps to accomplish a specific goal. In fact, that’s the first

,series_preface.7356 Page xi Friday, June 11, 2004 1:10 PM

xii The Developer’s Notebook Series

heading you’ll see under each lab: “How do I do that?” This is the cen-
tral question of each lab, and you’ll find lots of down-and-dirty code and
detail in these sections.

Some labs have some things not to do (ever played around with potas-
sium in high school chemistry?), helping you avoid common pitfalls.
Some labs give you a good reason for caring about the topic in the first
place; we call this the “Why do I care?” section, for obvious reasons. For
those times when code samples don’t clearly communicate what’s going
on, you’ll find a “What just happened” section. It’s in these sections that
you’ll find concepts and theory—but even then, they are tightly focused
on the task at hand, not explanation for the sake of page count. Finally,
many labs offer alternatives, and address common questions about dif-
ferent approaches to similar problems. These are the “What about...”
sections, which will help give each task some context within the pro-
gramming big picture.

And one last thing—on many pages, you’ll find notes scrawled in the
margins of the page. These aren’t for decoration; they contain tips, tricks,
insights from the developers of a product, and sometimes even a little
humor, just to keep you going. These notes represent part of the overall
communication flow—getting you as close to reading the mind of the
developer-author as we can. Hopefully they’ll get you that much closer to
feeling like you are indeed learning from a master.

And most of all, remember—these books are...

All Lab, No Lecture

—Brett McLaughlin, Series Creator

,series_preface.7356 Page xii Friday, June 11, 2004 1:10 PM

xiii

Preface

Professional Java
Enterprise Java
Commercial Java

These are all terms that are commonplace in programming discussions
these days—and for good reason. Gone are the days when Java was con-
sidered a toy language for creating web games, futilely trying to catch up
to its “big brothers,” C and C++. While AWT and Swing (and now SWT)
are important parts of the Java language, Java has also evolved to take
on more far-ranging tasks—database interaction, financial management,
e-commerce, and more. Its speed is comparable to C, and its APIs are far-
reaching. As a result, the core language has undergone significant stabi-
lization, and Java 1.3, and then 1.4, were largely steps towards matur-
ing the platform, rather than radically changing it.

Enter Java 5.0—code-named Tiger. Actually, it’s Java 5, version 1.5. Well,
it’s the J2SE, which I suppose makes it Java 2, Standard Edition, 5, ver-
sion 1.5. Confusing enough for you? Thankfully, whatever the thing is
called, the additions are worthy of all the hubbub; this isn’t your father’s
Java (or to be more accurate, it’s not your slightly older brother’s Java)
anymore.

Looking more like a completely new product than just a revision of an
older language, Tiger is chock-full of dramatic changes to what you
know as simply Java. You can’t just read through the release notes and
figure this one out; and since the new features are a lot more important
than all the oddities about its versioning, I’ll just call it Tiger throughout
the book, and sidestep Java 2 version 5...er...version 1.5...well...as I said,
Tiger.

ch00 Page xiii Monday, October 25, 2004 10:45 AM

xiv Preface

Whatever Tiger ends up being called officially, it introduces so many new
features to the language that it took nearly 200 pages to cover them—
and you’ll find that each page of this book is dense with code, example,
and terse explanation. There isn’t any wasted space. In fact, that’s pre-
cisely what you’re holding in your hands—a concise crash course in the
next evolution of Java, Tiger. By the time you’re through, you’ll be typing
your lists, taking your overloading to an entirely new level, writing com-
pile-time checked annotations, and threading more efficiently than ever.
And that doesn’t take into account how much fun it is to type all sorts of
new characters into your source code. You haven’t lived until @, <, >, and
% are strewn throughout your editor...well, maybe that’s just me wanting
to have a little more fun at the workplace. Whatever your reason for get-
ting into Tiger, though, you’ll find more tools at your disposal than ever
before, and far more change in any version of Java since its initial 1.0
release. Fire up your code editor, buckle your seat belts, and get ready to
hit the ground running.

Let’s tame the Tiger.

Organization
This book is set up to be something of a cross between a learning exer-
cise (where you would read from front to back), and a cookbook (where
you can skip around without concern). For the most part, you can feel
free to look through the table of contents or index, and find what you’re
looking for. However, as many of the subjects in this book are interre-
lated (such as generics, the for/in statement, and autoboxing), you may
find yourself reading an article that assumes knowledge from a previous
section of the book. In these cases, just browse the referenced chapter,
and you should be all set. A little extra learning is a good thing anyway,
right?

How This Book Was Written
This book is the result of an unusual, but fruitful collaboration between
David Flanagan and Brett McLaughlin. David was at work on the fifth
edition of Java in a Nutshell, but was eager to get coverage of the major
language changes in Tiger out sooner than the production schedule for
that book allowed. Brett, meanwhile, was the driving editorial force
behind this innovative new series of Developer’s Notebooks, and was
eager to include a title on Tiger in the series.

,ch00.7880 Page xiv Friday, June 11, 2004 1:18 PM

Preface xv

The process went like this:

• David researched the new features of Tiger and wrote about them for
Java in a Nutshell. He sent drafts of his new material to Brett.

• Brett feverishly ripped those chapters apart, rewrote almost every-
thing, added new examples, and reassembled everything into the
Developer’s Notebook format.

The result is a book almost entirely written by Brett, based on research
done by David. The tone of the writing and the engaging style of the
book is Brett’s, and readers of this book and Java in a Nutshell will be
hard-pressed to find any duplication of prose. In a few cases, Brett has
used code samples that also appear in Java in a Nutshell, and in each
case that fact is mentioned in the margin.

About the Examples
This book has hundreds of code examples, spread throughout its pages.
While some complete code listings are shown in the text, other exam-
ples are shown only in part. While some readers may enjoy typing in
these programs on their own, many of us just don’t have the time.
Because of this, every single example, and almost all of the partial exam-
ples, are ready for compilation in Java source files, ready for download.

Additionally, the process of compilation (especially class path issues)
remains one of Java’s most problematic features. To help you out, an Ant
buildfile is included with the samples, called build.xml. You’ll need to
download and install Ant (available at http://ant.apache.org) to take
advantage of this buildfile, and I strongly urge you to do just that. Ant
installation is easy, and you can always refer to Ant: The Definitive Guide
(O’Reilly) if you need assistance. Your directory structure should look
something like this:

<basedir>
 |
 +--src (contains build.xml)
 |
 +--classes

T I P
This is all taken care of for you if you just download the code and
unzip it.

,ch00.7880 Page xv Friday, June 11, 2004 1:18 PM

http://ant.apache.org

xvi Preface

Navigate to your local src directory, and type ant. You’ll get an error if
you don’t have Ant set up properly. Otherwise, you should see some-
thing like the following:

${basedir}\code\src>ant
Buildfile: build.xml

compile:
 [echo] Compiling all Java files...
 [javac] Compiling 41 source files to code\classes
 [javac] Note: code\src\com\oreilly\tiger\ch06\DeprecatedTester.java
 uses or overrides a deprecated API.
 [javac] Note: Recompile with -Xlint:deprecation for details.
 [javac] Note: Some input files use unchecked or unsafe operations.
 [javac] Note: Recompile with -Xlint:unchecked for details.

BUILD SUCCESSFUL
Total time: 9 seconds

I’ll leave it to you to explore the other targets within build.xml; there are
also notes in most chapters about targets that apply to that chapter, or to
a specific example. All this code is heavily tested, and mildly docu-
mented. Just make sure you’ve got Tiger as the first Java compiler on
your classpath, or you’ll get all sorts of nasty errors!

You may download this sample code, as well as check out errata, view
related resources and online articles, and see the latest on this book, at
http://www.oreilly.com/catalog/javaadn/. Check this site often, as lots of
new content may be available as time goes by and we update the
examples.

Conventions Used in This Book
Italic is used for:

• Pathnames, filenames, program names, compilers, options, and com-
mands

• New terms where they are defined

• Internet addresses, such as domain names and URLs

Boldface is used for:

• Particular keys on a computer keyboard

• Names of user interface buttons and menus

,ch00.7880 Page xvi Friday, June 11, 2004 1:18 PM

http://www.oreilly.com/catalog/javaadn/

Preface xvii

Constant width is used for:

• Anything that appears literally in a JSP page or a Java program,
including keywords, data types, constants, method names, variables,
class names, and interface names

• Command lines and options that should be typed verbatim on the
screen

• All JSP and Java code listings

• HTML documents, tags, and attributes

Constant width italic is used for:

• General placeholders that indicate that an item is replaced by some
actual value in your own program

Constant width bold is used for:

• Text that is typed in code examples by the user

T I P
This icon designates a note, which is an important aside to the
nearby text.

W A R N I N G
This icon designates a warning relating to the nearby text.

How to Contact Us
Please address comments and questions concerning this book to the pub-
lisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

,ch00.7880 Page xvii Friday, June 11, 2004 1:18 PM

http://www.oreilly.com

xviii Preface

We have a web page for this book, where we list errata, examples, or
any additional information. You can access this page at:

http://www.oreilly.com/catalog/javaadn/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com/

Acknowledgments from Brett
The “I” you see in these pages is me—for better or for worse, I came up
with this series, and am thrilled to be able to bring one of the first books
in the series to you. But, that leads me to the enormously talented group
of folks who made that possible.

There was a time when I loved writing acknowledgements, because I got
to thank everybody involved in helping me get through another book. Of
course, now I realize that there are so many people I forget to thank, that
I’m a little scared...I guess that’s the Oscar-acceptance-paranoia working
itself out. In any case, any book such as this truly is a tremendous effort
by a ton of people, and I couldn’t go without at least trying to name most
of them.

To Mike Loukides, who edits most of my books (this being the excep-
tion), and Mike Hendrickson, who’s just all-around smart—thanks for pav-
ing the way for these new, inventive, cool little notebooks. I think you’ve
done the programming world a real service with them. I need to thank
David Flanagan for doing all the heavy lifting; the Sun folks, especially at
CAP, for letting me see JDK 1.5 early on; and guys like Hans Bergsten,
Bruce Perry, Bob McWhirter, and Steve Holzner for writing good books
and letting me spend less time editing than I deserve to.

Finally, in trying to keep things brief (you’ll think I’m funny because of
that, right?), I owe the biggest debt to my family, as is always the case.
My wife, Leigh, only gripes occasionally when I’m working at 9:00 at
night. Of course, that’s mostly because she’s exhausted from chasing the
two bits of inspiration I have; my older son, Dean, and my younger son,
Robbie. When you guys can read, you’ll see your names here, so thank
the readers for the college fund, OK?

,ch00.7880 Page xviii Friday, June 11, 2004 1:18 PM

http://www.oreilly.com/catalog/javaadn/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Preface xix

Acknowledgments from David
Thanks first and foremost to Brett for his enthusiasm, and for working
overtime and pulling this book together so quickly. Thanks also to Mike
Loukides for supporting the endeavor, and to Deb Cameron, my editor for
Java in a Nutshell, for allowing me the time to work on it.

,ch00.7880 Page xix Friday, June 11, 2004 1:18 PM

