




second edition

CJKV Information Processing

Ken Lunde

                    Běijīng  ·  Boston  ·  Farnham  ·  Sebastopol  ·  Tōkyō



CJKV Information Processing, Second Edition
by Ken Lunde

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.

A significant portion of this book previously appeared in Understanding Japanese Information Processing, 
Copyright © 1993 O’Reilly Media, Inc.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472 USA.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are 
also available for most titles (safaribooksonline.com). For information, contact our corporate/institutional 
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editors: Ken Lunde and Rachel Monaghan
Copyeditor: Mary Brady
Proofreader: Genevieve d’Entremont
Indexer: Ken Lunde

Production Services: Ken Lunde
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History: 
January 1999:	 First Edition.
December 2008:	 Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of 
O’Reilly Media, Inc. CJKV Information Processing, the image of a blowfish, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no 
responsibility for errors or omissions, or for damages resulting from the use of the information contained 
herein.

ISBN: 978-0-596-51447-1
[LSI]



This book is dedicated to the four incredible women who have touched—and con-
tinue to influence—my life in immeasurable ways:

My mother, Jeanne Mae Lunde, for bringing me into this world and for putting me 
on the path I am on.

My mother-in-law, Sadae Kudo, for unknowingly bringing together her daughter 
and me.

My wife, friend, and partner, Hitomi Kudo, for her companionship, love, and 
support, and for constantly reminding me about what is truly important.

Our daughter, Ruby Mae Lunde, for showing me that actions and decisions made 
today impact and influence our future generations.

I shall be forever in their debt….





vii

Contents

Foreword.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Preface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

CJKV Information Processing Overview1.	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Writing Systems and Scripts	 2
Character Set Standards	 6
Encoding Methods	 8

Data Storage Basics	 8
Input Methods	 11
Typography	 13
Basic Concepts and Terminology FAQ	 14

What Are All These Abbreviations and Acronyms?	 14
What Are Internationalization, Globalization, and Localization?	 17
What Are the Multilingual and Locale Models?	 18
What Is a Locale?	 18
What Is Unicode?	 19
How Are Unicode and ISO 10646 Related?	 19
What Are Row-Cell and Plane-Row-Cell?	 19
What Is a Unicode Scalar Value?	 20
Characters Versus Glyphs: What Is the Difference?	 20
What Is the Difference Between Typeface and Font?	 24
What Are Half- and Full-Width Characters?	 25
Latin Versus Roman Characters	 27
What Is a Diacritic Mark?	 27
What Is Notation?	 27



viii  |  Contents

What Is an Octet?	 28
What Are Little- and Big-Endian?	 29
What Are Multiple-Byte and Wide Characters?	 30

Advice to Readers	 31

Writing Systems and Scripts2.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Latin Characters, Transliteration, and Romanization	 33

Chinese Transliteration Methods	 34
Japanese Transliteration Methods	 37
Korean Transliteration Methods	 43
Vietnamese Romanization Methods	 47

Zhuyin/Bopomofo	 49
Kana	 51

Hiragana	 52
Katakana	 54
The Development of Kana	 55

Hangul	 58
Ideographs	 60

Ideograph Readings	 65
The Structure of Ideographs	 66
The History of Ideographs	 70
Ideograph Simplification	 73

Non-Chinese Ideographs	 74
Japanese-Made Ideographs—Kokuji	 75
Korean-Made Ideographs—Hanguksik Hanja	 76
Vietnamese-Made Ideographs—Chữ Nôm	 77

Character Set Standards3.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
NCS Standards	 80

Hanzi in China	 80
Hanzi in Taiwan	 81
Kanji in Japan	 82
Hanja in Korea	 84

CCS Standards	 84
National Coded Character Set Standards Overview	 85
ASCII	 89
ASCII Variations	 90



Contents  |  ix

CJKV-Roman	 91
Chinese Character Set Standards—China	 94
Chinese Character Set Standards—Taiwan	 111
Chinese Character Set Standards—Hong Kong	 124
Chinese Character Set Standards—Singapore	 130
Japanese Character Set Standards	 130
Korean Character Set Standards	 143
Vietnamese Character Set Standards	 151

International Character Set Standards	 153
Unicode and ISO 10646	 154
GB 13000.1-93	 175
CNS 14649-1:2002 and CNS 14649-2:2003	 175
JIS X 0221:2007	 176
KS X 1005-1:1995	 176

Character Set Standard Oddities	 177
Duplicate Characters	 177
Phantom Ideographs	 178
Incomplete Ideograph Pairs	 178
Simplified Ideographs Without a Traditional Form	 179
Fictitious Character Set Extensions	 179
Seemingly Missing Characters	 180
CJK Unified Ideographs with No Source	 180
Vertical Variants	 180

Noncoded Versus Coded Character Sets	 181
China	 181
Taiwan	 182
Japan	 182
Korea	 184

Information Interchange and Professional Publishing	 184
Character Sets for Information Interchange	 184
Character Sets for Professional and Commercial Publishing	 185

Future Trends and Predictions	 186
Emoji	 186
Genuine Ideograph Unification	 187

Advice to Developers	 188
The Importance of Unicode	 189



x  |  Contents

Encoding Methods4.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Unicode Encoding Methods	 197

Special Unicode Characters	 198
Unicode Scalar Values	 199
Byte Order Issues	 199
BMP Versus Non-BMP	 200
Unicode Encoding Forms	 200
Obsolete and Deprecated Unicode Encoding Forms	 212
Comparing UTF Encoding Forms with Legacy Encodings	 219

Legacy Encoding Methods	 221
Locale-Independent Legacy Encoding Methods	 221
Locale-Specific Legacy Encoding Methods	 255

Comparing CJKV Encoding Methods	 273
Charset Designations	 275

Character Sets Versus Encodings	 275
Charset Registries	 276

Code Pages	 278
IBM Code Pages	 278
Microsoft Code Pages	 281

Code Conversion	 282
Chinese Code Conversion	 284
Japanese Code Conversion	 285
Korean Code Conversion	 288
Code Conversion Across CJKV Locales	 288
Code Conversion Tips, Tricks, and Pitfalls	 289

Repairing Damaged or Unreadable CJKV Text	 290
Quoted-Printable Transformation	 290
Base64 Transformation	 291
Other Types of Encoding Repair	 294

Advice to Developers	 295
Embrace Unicode	 296
Legacy Encodings Cannot Be Forgotten	 297
Testing	 298



Contents  |  xi

Input Methods5.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Transliteration Techniques	 301

Zhuyin Versus Pinyin Input	 301
Kana Versus Transliterated Input	 304
Hangul Versus Transliterated Input	 306

Input Techniques	 308
The Input Method	 309
The Conversion Dictionary	 311
Input by Reading	 312
Input by Structure	 315
Input by Multiple Criteria	 318
Input by Encoding	 319
Input by Other Codes	 320
Input by Postal Code	 321
Input by Association	 321

User Interface Concerns	 322
Inline Conversion	 322

Keyboard Arrays	 322
Western Keyboard Arrays	 323
Ideograph Keyboard Arrays	 325
Chinese Input Method Keyboard Arrays	 326
Zhuyin Keyboard Arrays	 330
Kana Keyboard Arrays	 332
Hangul Keyboard Arrays	 340
Latin Keyboard Arrays for CJKV Input	 342
Mobile Keyboard Arrays	 346

Other Input Hardware	 353
Pen Input	 353
Optical Character Recognition	 354
Voice Input	 354

Input Method Software	 355
CJKV Input Method Software	 355
Chinese Input Method Software	 356
Japanese Input Method Software	 356
Korean Input Method Software	 361



xii  |  Contents

Font Formats, Glyph Sets, and Font Tools6.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Typeface Design	 364
How Many Glyphs Can a Font Include?	 367

Composite Fonts Versus Fallback Fonts	 368
Breaking the 64K Glyph Barrier	 369

Bitmapped Font Formats	 370
BDF Font Format	 371
HBF Font Format	 374

Outline Font Formats	 375
PostScript Font Formats	 377
TrueType Font Formats	 396
OpenType—PostScript and TrueType in Harmony	 400

Glyph Sets	 408
Static Versus Dynamic Glyph Sets	 409
CID Versus GID	 409
Std Versus Pro Designators	 410
Glyph Sets for Transliteration and Romanization	 411
Character Collections for CID-Keyed Fonts	 412

Ruby Glyphs	 427
Generic Versus Typeface-Specific Ruby Glyphs	 428

Host-Installed, Printer-Resident, and Embedded Fonts	 429
Installing and Downloading Fonts	 429
The PostScript Filesystem	 430
Mac OS X	 431
Mac OS 9 and Earlier	 432
Microsoft Windows—2000, XP, and Vista	 437
Microsoft Windows—Versions 3.1, 95, 98, ME, and NT4	 437
Unix and Linux	 439
X Window System	 440
Font and Glyph Embedding	 442
Cross-Platform Issues	 443

Font Development Tools	 444
Bitmapped Font Editors	 444
Outline Font Editors	 445
Outline Font Editors for Larger Fonts	 446
AFDKO—Adobe Font Development Kit for OpenType	 447



Contents  |  xiii

TTX/FontTools	 451
Font Format Conversion	 451

Gaiji Handling	 452
The Gaiji Problem	 453
SING—Smart INdependent Glyphlets	 455
Ideographic Variation Sequences	 460
XKP, A Gaiji Handling Initiative—Obsolete	 460
Adobe Type Composer (ATC)—Obsolete	 461
Composite Font Functionality Within Applications	 463
Gaiji Handling Techniques and Tricks	 464
Creating Your Own Rearranged Fonts	 466
Acquiring Gaiji Glyphs and Gaiji Fonts	 470

Advice to Developers	 471

Typography7.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Rules, Principles, and Techniques	 474

JIS X 4051:2004 Compliance	 475
GB/T 15834-1995 and GB/T 15835-1995	 476

Typographic Units and Measurements	 476
Two Important Points—Literally	 477
Other Typographic Units	 478

Horizontal and Vertical Layout	 480
Nonsquare Design Space	 482
The Character Grid	 483
Vertical Character Variants	 484
Dedicated Vertical Characters	 492
Vertical Latin Text	 493

Line Breaking and Word Wrapping	 496
Character Spanning	 501
Alternate Metrics	 502

Half-Width Symbols and Punctuation	 502
Proportional Symbols and Punctuation	 505
Proportional Kana	 507
Proportional Ideographs	 508
Kerning	 510

Line-Length Issues	 512



xiv  |  Contents

Manipulating Symbol and Punctuation Metrics	 513
Manipulating Inter-Glyph Spacing	 513
JIS X 4051:2004 Character Classes	 514

Multilingual Typography	 516
Latin Baseline Adjustment	 516
Proper Spacing of Latin and CJKV Characters	 517
Mixing Latin and CJKV Typeface Designs	 519

Glyph Substitution	 520
Character and Glyph Variants	 521
Ligatures	 523

Annotations	 525
Ruby Glyphs	 525
Inline Notes—Warichu	 529
Other Annotations	 530

Typographic Applications	 531
Page-Layout Applications	 532
Graphics Applications	 540

Advice to Developers	 543

Output Methods8.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Where Can Fonts Live?	 546
Output via Printing	 547

PostScript CJKV Printers	 548
Genuine PostScript	 548
Clone PostScript	 549
Passing Characters to PostScript	 551

Output via Display	 552
Adobe Type Manager—ATM	 553
SuperATM	 554
Adobe Acrobat and PDF	 555
Ghostscript	 556
OpenType and TrueType	 556

Other Printing Methods	 557
The Role of Printer Drivers	 558

Microsoft Windows Printer Drivers	 559
Mac OS X Printer Drivers	 560



Contents  |  xv

Output Tips and Tricks	 561
Creating CJKV Documents for Non-CJKV Systems	 561

Advice to Developers	 563
CJKV-Capable Publishing Systems	 563
Some Practical Advice	 564

Information Processing Techniques9.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Language, Country, and Script Codes	 568
CLDR—Common Locale Data Repository	 571
Programming Languages	 571

C/C++	 572
Java	 572
Perl	 574
Python	 575
Ruby	 575
Tcl	 576
Other Programming Environments	 576

Code Conversion Algorithms	 577
Conversion Between UTF-8, UTF-16, and UTF-32	 579
Conversion Between ISO-2022 and EUC	 580
Conversion Between ISO-2022 and Row-Cell	 581
Conversion Between ISO-2022-JP and Shift-JIS	 582
Conversion Between EUC-JP and Shift-JIS	 585
Other Code Conversion Types	 586

Java Programming Examples	 586
Java Code Conversion	 586
Java Text Stream Handling	 588
Java Charset Designators	 589

Miscellaneous Algorithms	 590
Japanese Code Detection	 591
Half- to Full-Width Katakana Conversion—in Java	 593
Encoding Repair	 595

Byte Versus Character Handling	 597
Character Deletion	 598
Character Insertion	 599
Character Searching	 600



xvi  |  Contents

Line Breaking	 602
Character Attribute Detection Using C Macros	 604

Character Sorting	 605
Natural Language Processing	 608

Word Parsing and Morphological Analysis	 608
Spelling and Grammar Checking	 610
Chinese-Chinese Conversion	 611
Special Transliteration Considerations	 612

Regular Expressions	 613
Search Engines	 615
Code-Processing Tools	 615

JConv—Code Conversion Tool	 616
JChar—Character Set Generation Tool	 617
CJKV Character Set Server	 618
JCode—Text File Examination Tool	 619
Other Useful Tools and Resources	 621

OSes, Text Editors, and Word Processors10.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Viewing CJKV Text Using Non-CJKV OSes	 625

AsianSuite X2—Microsoft Windows	 626
NJStar CJK Viewer—Microsoft Windows	 626
TwinBridge Language Partner—Microsoft Windows	 626

Operating Systems	 626
FreeBSD	 627
Linux	 627
Mac OS X	 628
Microsoft Windows Vista	 632
MS-DOS	 636
Plan 9	 637
Solaris and OpenSolaris	 637
TRON and Chokanji	 638
Unix	 639

Hybrid Environments	 639
Boot Camp—Run Windows on Apple Hardware	 640
CrossOver Mac—Run Windows Applications on Mac OS X	 640
GNOME—Linux and Unix	 640



Contents  |  xvii

KDE—Linux and Unix	 641
VMware Fusion—Run Windows on Mac OS X	 641
Wine—Run Windows on Unix, Linux, and Other OSes	 641
X Window System—Unix	 641

Text Editors	 642
Mac OS X Text Editors	 643
Windows Text Editors	 644
Vietnamese Text Editing	 645
Emacs and GNU Emacs	 646
vi and Vim	 647

Word Processors	 648
AbiWord	 649
Haansoft Hangul—Microsoft Windows	 649
Ichitaro—Microsoft Windows	 649
KWord	 649
Microsoft Word—Microsoft Windows and Mac OS X	 649
Nisus Writer—Mac OS X	 650
NJStar Chinese/Japanese WP—Microsoft Windows	 651
Pages—Mac OS X	 652

Online Word Processors	 652
Adobe Buzzword	 652
Google Docs	 652

Advice to Developers	 653

Dictionaries and Dictionary Software11.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Ideograph Dictionary Indexes	 656

Reading Index	 656
Radical Index	 657
Stroke Count Index	 658
Other Indexes	 660

Ideograph Dictionaries	 664
Character Set Standards As Ideograph Dictionaries	 665
Locale-Specific Ideograph Dictionaries	 666
Vendor Ideograph Dictionaries and Ideograph Tables	 669
CJKV Ideograph Dictionaries	 670

Other Useful Dictionaries	 670



xviii  |  Contents

Conventional Dictionaries	 670
Variant Ideograph Dictionaries	 671

Dictionary Hardware	 671
Dictionary Software	 672

Dictionary CD-ROMs	 672
Frontend Software for Dictionary CD-ROMs	 673
Dictionary Files	 674
Frontend Software for Dictionary Files	 684
Web-Based Dictionaries	 685

Machine Translation Applications	 686
Machine Translation Services	 687

Free Machine Translation Services	 687
Commercial Machine Translation Services	 688

Language-Learning Aids	 688

Web and Print Publishing12.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
Line-Termination Concerns	 693
Email	 694

Sending Email	 695
Receiving Email	 696
Email Troubles and Tricks	 697
Email Clients	 697

Network Domains	 700
Internationalized Domain Names	 701
The CN Domain	 702
The HK Domain	 702
The JP Domain	 703
The KR Domain	 703
The TW Domain	 704
The VN Domain	 705

Content Versus Presentation	 705
Web Publishing	 707

Web Browsers	 707
Displaying Web Pages	 709

HTML—HyperText Markup Language	 709
Authoring HTML Documents	 710



Contents  |  xix

Web-Authoring Tools	 716
Embedding CJKV Text As Graphics	 716

XML—Extensible Markup Language	 716
Authoring XML Documents	 717

CGI Programming Examples	 718
Print Publishing	 721

PDF—Portable Document Format	 721
Authoring PDF Documents	 723
PDF Eases Publishing Pains	 725

Where to Go Next?	 727

Code Conversion TablesA.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Notation Conversion TableB.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Perl Code ExamplesC.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

GlossaryD.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Vendor Character Set StandardsE.	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Vendor Encoding MethodsF.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

Chinese Character Sets—ChinaG.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

Chinese Character Sets—TaiwanH.	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Chinese Character Sets—Hong KongI.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

Japanese Character SetsJ.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

Korean Character SetsK.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Vietnamese Character SetsL.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

Miscellaneous Character SetsM.	 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

Bibliography.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

Index.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839





xxi

Foreword

The noncommittal phrase information processing covers a lot of ground, from generating 
mailing lists and tabulating stock exchange transactions to editing and typesetting Lady 
Murasaki’s Tale of Genji, the meditations of Lao Zi, or the poems of Han Shan. There is a 
lot of information in the world, and it is stored, handled, and processed in a lot of differ-
ent ways.

The oldest human writing systems known—including Sumerian, early Egyptian, Chinese, 
and early Mayan—seem to have sprung up independently. They thrived in different plac-
es, serving unrelated languages, and they look thoroughly different from one another, but 
they all have something in common: they all employ large numbers of signs for meanings, 
supplemented with signs for sounds. The only such script that has survived in common 
use to the present day is Han Chinese. All the other scripts now in general use for writing 
natural human languages are essentially confined to the writing of sounds. They are all 
syllabic, consonantal, or alphabetic.

Here in the West, we often speak of Chinese as if it were a single language. Once upon a 
time, perhaps it was—but for thousands of years things have been more complicated than 
that. There are now more than a dozen Chinese languages, each with several dialects, 
spoken in China and by people of Chinese origin living elsewhere in the world. The most 
successful member of the group, often called Mandarin, is spoken as a first or second lan-
guage by roughly a billion people. Add all those who speak at least one of the other Chi-
nese languages (such as Yuè, the common language of Hong Kong, or Mǐn Nán, the most 
common language in Taiwan, or Wú, which is common in Shanghai), and the total gets 
closer to a billion and a half. Add also the speakers of Japanese, Korean, and Vietnamese, 
whose languages belong to different families but whose scripts and literatures have a long 
and rich association with Chinese, and the number is larger yet: about 25% of the human 
population as a whole.

You can see from this alone why a book giving clear and thorough guidance on the han-
dling of text in Chinese, Japanese, Korean, and Vietnamese might be important. But even 
if these scripts weren’t part of daily life for a quarter of humanity, there would be good 
reasons to study them. Compared to the Latin alphabet, they are wonderfully complex 



xxii  |  Foreword

and polymorphous. That human speech can be recorded and transmitted in all these dif-
ferent ways tells us something about language, something about the mind, and something 
about how many different ways there are to be a human being.

There is always a certain tension between written and spoken language, because speech 
continues to change while writing is used to preserve it. Wherever reading and writing 
are normal parts of daily life, there are things that people know how to say but aren’t sure 
how to write, and things that they know how to write, and may write fairly often, but 
might never find any occasion to say. (Sincerely yours is one example.) If we wrote only 
meanings and no sounds, the gulf between speech and writing would be wider, but the 
tension between them would often be less. This is what happens, in fact, when we use 
mathematical notation. We write basically nothing but symbols for meanings, along with 
a lot of punctuation to keep the meanings from getting confused, and what we have writ-
ten can be read with equal ease, and with equal accuracy, in English, Hungarian, Arabic, 
or Chinese. It is not really possible to write spoken language in this way—but it is possible 
to write a close correlative. We can write (as logicians do when they use symbolic logic) 
the sequence of meanings that a string of spoken sentences would carry; then we can read 
what we have written by pronouncing the names of those meanings in any language we 
choose and filling in the holes with whatever inflections, links, and lubricants our spoken 
grammar requires. That in fact is how Japanese, Vietnamese, and Korean were first writ-
ten: using Chinese characters to represent the meanings, then reading back the meanings 
of these Chinese signs in a language other than Chinese. (Most Chinese languages other 
than classical Mandarin are written even now in the same way.)

In time, the Japanese devised their delicate and supple syllabic scripts (hiragana and kata-
kana) as a supplement to kanji, which are Han Chinese glyphs used to write Japanese; the 
Koreans devised their ingeniously analytical Hangul script, in which alphabetic informa-
tion is nested into discrete syllabic units; and the Vietnamese, after spending a thousand 
years building their own large lexicon of redefined Chinese glyphs and new glyphs on 
the Chinese model, embraced a complex variant of the Latin alphabet instead. But in all 
three cultures, the old associations with Chinese script and Chinese literature run deep 
and have never disappeared. The connection is particularly vivid in the case of Japanese, 
whose script is what a linguistic geologist would call a kind of breccia or conglomerate: 
chunks of pure Chinese script and angular syllabics (and often chunks of Latin script as 
well) cemented into a matrix of cursive syllabics.

Ken Lunde is an enthusiast for all these complications and an expert on their electronic 
outcome—expert enough that his book is relied on by professionals and amateurs alike, 
in both Asia and the West.

Many North Americans and Europeans have written books about the Orient, but very few 
of those books have been translated into Asian languages, because so few of them can tell 
Asians anything about themselves. Once in a while, though, outsiders really know their 
stuff, and insiders see that this is so. The first edition of this book (which ran to 1,100 pag-
es) was published in California in 1999. It was recognized at once as the definitive work in 



Foreword  |  xxiii

the field and was promptly translated into both Chinese and Japanese. Its shorter prede-
cessor, Understanding Japanese Information Processing—Ken Lunde’s first book, published 
in 1993, when he was only 28—had been greeted the same way: it was recognized as the 
best book of its kind and promptly published, unabridged, in Japanese. As a reader, I am 
comforted by those endorsements. The subject is, after all, complex. Some would call it 
daunting. I know how useful this book has been to me, and it pleases me to know that 
native speakers of Chinese and Japanese have also found it useful.

Robert Bringhurst
Quadra Island, British Columbia · 21 August 2008





xxv

Preface

Close to 16 years have elapsed since Understanding Japanese Information Processing was 
published, and perhaps more importantly, 10 years have gone by since CJKV Information 
Processing was first published. A lot has changed in those 10 years. I should point out that 
I was first inspired to undertake the initial “CJKV” expansion sometime in 1996, during 
a lengthy conversation I had at a Togo’s near the UC Berkeley campus with Peter Mui, my 
editor for Understanding Japanese Information Processing.

Join me in reading this thick tome of a book, which also serves as a reference book, and 
you shall discover that “CJKV” (Chinese, Japanese, Korean, and Vietnamese) will become 
a standard term in your arsenal of knowledge. But, before we dive into the details, allow 
me to discuss some terms with which you are no doubt familiar. Otherwise, you probably 
would have little need or desire to continue reading.

Known to more and more people, internationalization, globalization, and localization 
seem to have become household or “buzz” words in the field of computing and software 
development, and have also become very hot topics among high-tech companies and re-
searchers due to the expansion of software markets to include virtually all parts of the 
planet. This book is specifically about CJKV-enabling, which is the adaptation of software 
for one or more CJKV locales. It is my intention that readers will find relevant and useful 
CJKV-enabling information within the pages of this book.

Virtually every book on internationalization, globalization, or localization includes infor-
mation on character sets and encodings, but this book is intended to provide much more. 
In summary, it provides a brief description of writing systems and scripts, a thorough 
background of the history and current state of character sets, detailed information on 
encoding methods, code conversion techniques, input methods, keyboard arrays, font 
formats, glyph sets, typography, output methods, algorithms with sample source code, 
tools that perform useful information processing tasks, and how to handle CJKV text in 
the context of email and for web and print publishing. Expect to find plenty of platform-
independent information and discussions about character sets, how CJKV text is encoded 
and handled on a number of operating systems, and basic guidelines and tips for develop-
ing software targeted for CJKV markets.



xxvi  |  Preface

Now, let me tell you what this book is not about. Don’t expect to find out how to design 
your own word-processing application, how to design your own fonts for use on a com-
puter (although I provide sources for such tools), or how to properly handle formats for 
CJKV numerals, currency, dates, times, and so on. This book is not, by any stretch of the 
imagination, a complete reference manual for internationalization, globalization, or local-
ization, but should serve remarkably well as a companion to such reference works, which 
have fortunately become more abundant.

It is my intention for this book to become the definitive source for information related to 
CJKV information processing issues.* Thus, this book focuses heavily on how CJKV text 
is handled on computer systems in a very platform-independent way, with an emphasis 
or bias toward Unicode and other related and matured technologies. Most important-
ly, everything that is presented in this book can be programmed, categorized, or easily 
referenced.

This book was written to fill the gap in terms of information relating to CJKV information 
processing, and to properly and effectively guide software developers. I first attempted to 
accomplish this over the course of several years by maintaining an online document that 
I named JAPAN.INF (and entitled Electronic Handling of Japanese Text). This document 
had been made publicly available through a number of FTP sites worldwide, and had 
gained international recognition as the definitive source for information relating to Japa-
nese text handling on computer systems. Understanding Japanese Information Process-
ing excerpted and further developed key information contained in JAPAN.INF. However, 
since the publication of Understanding Japanese Information Processing in 1993, JAPAN.
INF, well, uh, sort of died. Not a horrible death, mind you, but rather to prepare for its 
reincarnation as a totally revised and expanded online document that I entitled CJK.INF 
(the CJK analog to JAPAN.INF). The work I did on CJK.INF helped to prepare me to write 
the first edition of this book, which provided updated material plus significantly more 
information about Chinese, Korean, and Vietnamese, to the extent that granting the book 
a new title was deemed appropriate and necessary. The second edition, which you have 
in your hands, represents a much-needed update, and I hope that it becomes as widely 
accepted and enjoyed as the first edition.

Although I have expended great effort to provide sufficient amounts of information for 
Chinese, Japanese, Korean, and Vietnamese computing, you may feel that some bias to-
ward Japanese still lingers in many parts of this book. Well, if your focus or interest hap-
pens to be Japanese, chances are you won’t even notice. In any case, you can feel at ease 
knowing that almost everything discussed in this book can apply equally to all of these 
languages. However, the details of Vietnamese computing in the context of using ideo-
graphs are still emerging, so its coverage is still somewhat limited and hasn’t changed 
much since the first edition.

*	 The predecessor of this book, Understanding Japanese Information Processing, which had a clear focus on Japa-
nese (hence its title) apparently became the definitive source for Japanese information processing issues, and was 
even translated into Japanese.



Preface  |  xxvii

What Changed Since the First Edition?
Several important events took place during the 10 years since the first edition was pub-
lished. These events could be characterized as technologies that were in the process of 
maturing, and have now fully matured and are now broadly used and supported.

First and foremost, Unicode has become the preferred way in which to represent text in  
digital format, meaning when used on a computer. Virtually all modern OSes and ap-
plications now support Unicode, and in a way that has helped to trivialize many of the 
complexities of handling CJKV text. As you read this book, you may feel a bias toward 
Unicode. This is for a good reason, because unless your software embraces Unicode, you 
are going down the wrong path. This also means that if you are using an application that 
doesn’t handle Unicode, chances are it is outdated, and perhaps a newer version exists that 
supports Unicode.

Second, OpenType has become the preferred font format due to its cross-platform nature, 
and how it allows what were once competing font formats, Type 1 and TrueType, to exist 
in harmony. Of course, OpenType fonts support Unicode and have strong multilingual 
capabilities. OpenType fonts can also provide advanced typographic functionality.

Third, PDF (Portable Document Format) has become the preferred way in which to pub-
lish for print, and is also preferred for the Web when finer control over presentation is de-
sired. In addition to supporting Unicode, PDF encapsulates documents in such a way that 
they can be considered a reliable digital master, and the same file can be used for display-
ing and printing. In short, PDF has become the key to the modern publishing workflow.

Last but not least, the Web itself has matured and advanced in ways that could not be pre-
dicted. The languages used to build the Web, which range from languages that describe 
the content and presentation of web documents, such as CSS, HTML, XHTML, and XML, 
to scripting languages that enable dynamic content, have matured, and they all have one 
thing in common: they all support Unicode. In case it is not obvious, Unicode will be a 
recurring theme throughout this book.

Audience
Anyone interested in how CJKV text is processed on modern computers will find this 
book useful, including those who wish to enter the field of CJKV information processing, 
and those who are already in the field but have a strong desire for additional reference ma-
terial. This book will also be useful for people using any kind of computer and any type of 
operating system, such as FreeBSD, the various Linux distributions, Mac OS X, MS-DOS, 
Unix, and the various flavors of Windows.

Although this book is specifically about CJKV information processing, anyone with an in-
terest in creating multilingual software or a general interest in I18N (internationalization), 
G11N (globalization), or L10N (localization) will learn a great deal about the issues in-
volved in handling complex writing systems and scripts on computers. This is particularly 



xxviii  |  Preface

true for people interested in working with CJKV text. Thankfully, information relating to 
the CJKV-enabling of software has become less scarce.

I assume that readers have little or no knowledge of a CJKV language (Chinese, Japa-
nese, Korean, or Vietnamese) and its writing system. In Chapter 2, Writing Systems and 
Scripts, I include material that should serve as a good introduction to CJKV languages, 
their writing systems, and the scripts that they use. If you are familiar with only one CJKV 
language, Chapter 2 should prove to be quite useful for understanding the others.

Conventions Used in This Book
Kanji, hanzi, hanja, kana, hiragana, katakana, hangul, jamo, and other terms will come 
up, time and time again, throughout this book. You will also encounter abbreviations and 
acronyms, such as ANSI, ASCII, CNS, EUC, GB, GB/T, GBK, ISO, JIS, KS, and TCVN. 
Terms, abbreviations, and acronyms—along with many others words—are usually ex-
plained in the text, and again in Appendix D, Glossary, which I encourage you to study.

When hexadecimal values are used in the text for lone or single bytes, and to remove any 
ambiguity, they are prefixed with 0x, such as 0x80. When more than one byte is speci-
fied, hexadecimal values are instead enclosed in angled brackets and separated by a space, 
such as <80 80> for two instances of 0x80. Unicode scalar values follow the convention of 
using the U+ prefix followed by four to six hexadecimal digits. Unicode encoding forms 
are enclosed in angled brackets and shown as hexadecimal code units, except when the 
encoding form specifies byte order, in which case the code units are further broken down 
into individual bytes. U+20000, for example, is expressed as <D840 DC00> in UTF-16, but 
as <D8 40  DC 00> in UTF-16BE (UTF-16 big-endian) and as <40 D8  00 DC> in UTF-16LE 
(UTF-16 little-endian). Its UTF-8 equivalent is <F0 A0 80 80>. The angled brackets are 
generally omitted when such values appear in a table. Furthermore, Unicode sequences 
are expressed as Unicode scalar values separated by a comma and enclosed in angled 
brackets, such as <U+304B, U+309A>.

Decimal values are almost always clearly identified as such, and when used, appear as 
themselves without a prefix, and unenclosed. For those who prefer other notations, such 
as binary or octal, Appendix B, Notation Conversion Table, can be consulted to convert 
between all four notations.

Throughout this book I generically use short suffixes such as “J,” “K,” “S,” “T,” “V,” and 
“CJKV” to denote locale-specific or CJKV-capable versions of software products. I use 
these suffixes for the sake of consistency, and because software manufacturers often change 
the way in which they denote CJKV versions of their products. In practice, you may in-
stead encounter the suffix 日本語版 (nihongoban, meaning “Japanese version”), the prefix 
“Kanji,” or the prefix 日本語 (nihongo, meaning “Japanese”) in Japanese product names. 
For Chinese software, 中文 (zhōngwén, meaning “Chinese”) is a common prefix. I also 
refrain from using version numbers for software described in this book (as you know, this 
sort of information becomes outdated very quickly). I use version numbers only when 
they represent a significant advancement or development stage in a product.



Preface  |  xxix

References to “China” in this book refer to the People’s Republic of China (PRC; 中华人民
共和国 zhōnghuá rénmín gònghé guó), also commonly known as Mainland China. Refer-
ences to “Taiwan” in this book refer to the Republic of China (ROC; 中華民國 zhōnghuá 
mínguó). Quite often this distinction is necessary.

Name ordering in this book, when transliterated in Latin characters, follows the conven-
tion that is used in the West—the given name appears first, followed by the surname. 
When the name is written using CJKV characters—in parentheses following the translit-
erated version—the surname appears first, followed by the given name.

“ISO 10646” and “Unicode” are used interchangeably throughout this book. Only in some 
specific contexts are they different.

Italic is used for pathnames, filenames, program names, new terms where they are de-
fined, newsgroup names, and web addresses, such as domain names, URLs, and email 
addresses.

Constant width is used in examples to illustrate output from commands, the contents of 
files, or the text of email messages.

Constant width bold is used in examples to indicate commands or other text that should 
be typed literally by the user; occasionally it is also used to distinguish parts of an ex-
ample.

The % (percent) character is used to represent the Unix shell prompt for Unix and similar 
command lines.

Footnotes are used for parenthetical remarks and for providing URLs. Sometimes what is 
written in the text proper has been simplified or shortened for the purpose of easing the 
discussion or for practical reasons (especially in Chapter 2 where I introduce the many 
CJKV writing systems), and the footnotes—usually, but not always—provide additional 
details.

How This Book Is Organized
Let’s now preview the contents of each chapter in this book. Don’t feel compelled to read 
this book linearly, but feel free to jump around from section to section. Also, the index is 
there for you to use.

Chapter 1, CJKV Information Processing Overview, provides a bird’s eye overview of the 
issues that are addressed by this book, and is intended to give readers an idea of what they 
can expect to learn. This chapter establishes the context in which this book will become 
useful in your work or research.

Chapter 2, Writing Systems and Scripts, contains information directly relating to CJKV 
writing systems and their scripts. Here you will learn about the various types of charac-
ters that compose CJKV texts. This chapter is intended for readers who are not familiar 
with the Chinese, Japanese, Korean, or Vietnamese languages (or who are familiar with 



xxx  |  Preface

only one or two of those languages). Everyone is bound to learn something new in this 
chapter.

Chapter 3, Character Set Standards, describes the two classes of CJKV character set stan-
dards: coded and noncoded. Coded character set standards are further divided into two 
classes: national and international. Comparisons are also drawn between CJKV character 
set standards, and the coverage of Unicode is extensive.

Chapter 4, Encoding Methods, contains information on how the character set standards 
described in Chapter 3 are encoded on computer systems. Emphasis is naturally given to 
the encoding forms of Unicode, but information about legacy encoding methods is also 
provided. Encoding is a complex but important step in representing and manipulating 
human-language text in a computer. Other topics include software for converting from 
one CJKV encoding to another, and instructions on how to repair damaged CJKV text 
files.

Chapter 5, Input Methods, contains information on how CJKV text is input. First I dis-
cuss CJKV input in general terms, and then describe several specific methods for enter-
ing CJKV characters on computer systems. Next, we move on to the hardware necessary 
for CJKV input, specifically keyboard arrays. These range from common keyboard ar-
rays, such as the QWERTY array, to ideograph tablets containing thousands of individual 
keys.

Chapter 6, Font Formats, Glyph Sets, and Font Tools, contains information about bitmapped 
and outline font formats as they relate to CJKV, with an emphasis toward OpenType. The 
information presented in this chapter represents my daily work at Adobe Systems, so 
some of its sections may suffer from excruciating detail, which explains the length of this 
chapter.

Chapter 7, Typography, contains information about how CJKV text is properly laid out on 
a line and on a printed page. Merely having CJKV fonts installed is not enough—there are 
rules that govern where characters can and cannot be used, and how different character 
classes behave, in terms of spacing, when in proximity. The chapter ends with a descrip-
tion of applications that provide advanced page composition functionality.

Chapter 8, Output Methods, contains information about how to display, print, or other-
wise output CJKV text. Here you will find information relating to the latest printing and 
display technologies.

Chapter 9, Information Processing Techniques, contains information and algorithms relat-
ing to CJKV code conversion and text-handling techniques. The actual mechanics are 
described in detail, and, where appropriate, include algorithms written in C, Java, and 
other programming languages. Though somewhat dated, the chapter ends with a brief 
description of three Japanese code-processing tools that I have written and maintained 
over a period of several years. These tools demonstrate how the algorithms can be applied 
in the context of Japanese.



Preface  |  xxxi

Chapter 10, OSes, Text Editors, and Word Processors, contains information about operat-
ing systems, text editors, and word processors that are CJKV-capable, meaning that they 
support one or more CJKV locale.

Chapter 11, Dictionaries and Dictionary Software, contains information about dictionar-
ies, both printed and electronic, that are useful when dealing with CJKV text. Also in-
cluded are tips on how to more efficiently make use of the various indexes used to locate 
ideographs in dictionaries.

Chapter 12, Web and Print Publishing, contains information on how CJKV text is best 
handled electronically over networks, such as when using email clients. Included are tips 
on how to ensure that what you send is received intact, as well as information about the 
Internet domains that cover the CJKV locales. Web and print publishing, through the use 
of HTML (HyperText Markup Language), XML (Extensible Markup Language), and PDF 
(Portable Document Format) are also discussed in detail.

Appendix A, Code Conversion Tables, provides a code conversion table between deci-
mal Row-Cell, hexadecimal ISO-2022, hexadecimal EUC, and hexadecimal Shift-JIS 
(Japanese-specific) codes. Also included is an extension that handles the Shift-JIS user-
defined range.

Appendix B, Notation Conversion Table, lists all 256 8-bit byte values in the four common 
notations: binary, octal, decimal, and hexadecimal.

Appendix C, Perl Code Examples, provides Perl equivalents of many algorithms found in 
Chapter 9—along with other goodies.

Appendix D, Glossary, defines many of the concepts and terms used throughout this book 
(and other books).

Finally, the Bibliography lists many useful references, many of which were consulted while 
writing this book.

Although not included in the printed version of this book, the following appendixes are 
provided as downloadable and printable PDFs. This book does include placeholder pages 
for them, which serve to specify their URLs.

Appendix E, Vendor Character Set Standards, is reference material for those interested in 
vendor-specific extensions to CJKV character set standards. To a great extent, Unicode 
has effectively deprecated these standards.

Appendix F, Vendor Encoding Methods, is reference material for those interested in how 
the vendor character sets in Appendix E are encoded.

Appendix G, Chinese Character Sets—China, provides character set tables, character lists, 
mapping tables, and indexes that relate to standards from China.

Appendix H, Chinese Character Sets—Taiwan, provides character set tables, character 
lists, mapping tables, and indexes that relate to standards from Taiwan.



xxxii  |  Preface

Appendix I, Chinese Character Sets—Hong Kong, provides character set tables and charac-
ter lists that relate to standards from Hong Kong.

Appendix J, Japanese Character Sets, provides character set tables, character lists, mapping 
tables, and indexes that relate to standards from Japan.

Appendix K, Korean Character Sets, provides character set tables, character lists, mapping 
tables, and indexes that relate to standards from Korea, specifically South Korea.

Appendix L, Vietnamese Character Sets, provides character set tables that relate to stan-
dards from Vietnam.

Appendix M, Miscellaneous Character Sets, provides character set tables for standards 
such as ASCII, ISO 8859, EBCDIC, and EBCDIK.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this 
book in your programs and documentation. You do not need to contact us for permission 
unless you’re reproducing a significant portion of the code. For example, writing a pro-
gram that uses several chunks of code from this book does not require permission. Selling 
or distributing a CD-ROM or DVD of examples from this book does require permission. 
Answering a question by citing this book and quoting example code does not require 
permission. Incorporating a significant amount of example code from this book into your 
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, 
author, publisher, and ISBN. For example: “CJKV Information Processing, Second Edition, 
by Ken Lunde. Copyright 2009 O’Reilly Media, Inc., 978-0-596-51447-1.”

If you feel your use of code examples falls outside fair use or the permission given above, 
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
USA
800-998-9938 (in the United States or Canada)
+1-707-829-0515 (international/local)
+1-707-829-0104 (facsimile)

There is a web page for this book, which lists errata, examples, or any additional 
information. You can access this page at:

http://oreilly.com/catalog/9780596514471/



Preface  |  xxxiii

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

Safari® Books Online
When you see a Safari Books Online icon on the cover of your favorite 
technology book, that means the book is available online through the 
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily 
search thousands of top tech books, cut and paste code samples, download chapters, and 
find quick answers when you need the most accurate, current information. Try it for free 
at http://safaribooksonline.com/.

Acknowledgments
To write a book or reference work this thick requires interaction with and cooperation 
from people across our planet. It is not possible for me to list all the people who have 
helped or guided me over the years—there are literally hundreds.

In some cases, people simply come to me for help on a particular subject (that’s what hap-
pens, I guess, when people are aware of your email address—to ensure that I will receive 
a ton of email, in various parts of this book you will find that my email address is lunde@
adobe.com). Sometimes I may not know the answer, but the question usually inspires me 
to seek out the truth. The truth is out there.

The year 2008 marks 17 wonderful years at Adobe Systems, a company that provides me 
with daily CJKV-related challenges. Its always-advancing technologies and commitment 
to customers is what initially attracted me, and these are the qualities and values that keep 
me here. Besides, they let me display on the wall of my office the antelopes that I have har-
vested* annually in Wyoming since 2003. I firmly believe that “diversity in the workforce” 
is a door that swings both ways, and the antelopes that I display in my office serve as a 
tribute to that belief. Speaking of tributes, all aspects of the production of this book are a 
tribute to Adobe Systems’ publishing technologies.

To all the people who have read and criticized my previous writings, tolerated my some-
times dull but otherwise charming personality at work, pointed out errors in my work, ex-
changed email with me for whatever reason, or otherwise helped me to grow and become 
a better person: thank you! You should know who you are.

Special thanks go to Tim O’Reilly (the president and founder of O’Reilly Media) and Peter 
Mui for believing in my first book, Understanding Japanese Information Processing, and 
to Peter for serving as its editor. It was Peter who encouraged me to expand it to cover 
the complete CJKV framework. Thanks go to Edie Freedman for sticking with my idea 

*	 Harvesting is another way to express hunting.



xxxiv  |  Preface

of a blowfish for the cover.* Ron Bilodeau graciously helped me through the layout of the 
book, and nurtured my desire to embrace Adobe InDesign’s particular paradigm. Robert 
Romano also deserves a lot of credit for the work he did on the figures that are found 
throughout this book. Julie Steele, my editor, continually pushed and prodded me to get 
this book done as close to schedule as possible. Mary Brady performed the copyedit, ex-
posing various errors and oddities that crept from my fingers to the keyboard. Genevieve 
d’Entremont proofread the entire book, and discovered additional gems. Rachel Mon-
aghan reviewed the index, and also provided production assistance.

Attempting to write a book of any length, while holding down a day job and doing so as an 
activity above and beyond it, takes a lot of effort and perseverance. I’d like to specifically 
thank David Lemon, Karen Catlin, and Digby Horner for their support and encourage-
ment while writing this book. My colleagues and coworkers at Adobe Systems, especially 
those in Type Development, deserve the same recognition. Miguel Sousa, a coworker in 
Type Development, needs to be singled out and especially thanked for providing to me 
custom versions of the Minion Pro and Myriad Pro fonts that include the glyphs neces-
sary for Pinyin transliteration and for implementing tabular hexadecimal digits, both of 
which are used extensively throughout this book. The tabular headecimal digits are espe-
cially nice, especially for a book such as this one.

The following individuals were incredibly helpful by reviewing various parts of this book, 
from specific pages to entire chapters, during the various stages of its prolonged devel-
opment: Tom Bishop, Jim Breen, Robert Bringhurst, Seong Ah Choi (최성아), Rich-
ard Cook, Gu Hua (顾华), Paul Hackett, Jerry Hall, Taichi Kawabata (川幡太一), John 
Knightley, Tatsuo Kobayashi (小林龒生), Mark Leisher, David Lemon, Lu Qin (陸勤), 
Nat McCully, Dirk Meyer, Charles Muller, Eric Muller, Mihai Nita, Thomas Phinney, Read 
Roberts, Markus Scherer, Jungshik Shin (신정식), Miguel Sousa, Frank Tang (譚永鋒), 
Margie Vogel, Taro Yamamoto (山本太郎), and Retarkgo Yan (甄烱輝). I am indebted to 
each and every one of them for providing me with useful insights and inspirational ideas, 
and in some deserving cases, sharp criticism. I am, of course, ultimately responsible for 
any errors, omissions, or oddities that you may encounter while reading this book.

Finally, I wish to thank my wonderful parents, Vernon Delano Lunde and Jeanne Mae 
Lunde, for all of their support throughout the years; my son, Edward Dharmputra Lunde; 
my step-son, Ryuho Kudo (工藤龍芳); my beautiful daughter, Ruby Mae Lunde (工藤瑠
美); and my beloved and caring wife, Hitomi Kudo (工藤仁美). I treasure the time that I 
spend with my parents, which includes varmint and larger game hunting with my father. 
Having my own family has great rewards.

*	 Michael Slinn made the astute observation that the Babel Fish would have been more appropriate as a cover 
creature for this book—according to Douglas Adams’ The Hitchhiker’s Guide to the Galaxy, you simply stick a 
Babel Fish in your ear, it connects with your brain, and you can suddenly understand all languages.



1

Chapter 1

CJKV Information Processing Overview

Here I begin this book by stating that a lot of mystique and intrigue surrounds how 
CJKV—Chinese, Japanese, Korean, and Vietnamese—text is handled on computer sys-
tems, ranging from handheld mobile devices to mainframe computers. Although I agree 
with there being sufficient intrigue, there is far too much mystery in my opinion and ex-
perience. Much of this is due to a lack of information, or perhaps simply due to a lack of 
information written in a language other than Chinese, Japanese, Korean, or Vietnamese. 
Nevertheless, many fine folks, such as you, the reader of this book, would like to know 
how this all works. To confirm some of your worst fears and speculations, CJKV text does 
require special handling on computer systems. However, it should not be very mysterious 
after having read this book. In my experience, you merely need to break the so-called one-
byte-equals-one-character barrier—most CJKV characters are represented by more than a 
single byte (or, to put it in another way, more than eight bits).*

English information processing was a reality soon after the introduction of early computer 
systems, which were first developed in England and the United States. Adapting software 
to handle more complex scripts, such as those used to represent CJKV text, is a more re-
cent phenomenon. This adaptation developed in various stages and continues today.

Listed here are several key issues that make CJKV text a challenge to process on computer 
systems:

CJKV writing systems use a mixture of different, but sometimes related, scripts.•	

CJKV character set standards enumerate thousands or tens of thousands of charac-•	
ters, which is orders of magnitude more than used in the West—Unicode now includes 
more than 100,000 characters, adequately covering CJKV needs.

There is no universally recognized or accepted CJKV character set standard such as •	
ASCII for writing English—I would claim that Unicode has become such a character 
set, hence its extensive coverage in this book.

*	 For a greater awareness of, and appreciation for, some of the complexities of dealing with multiple-byte text, 
you might consider glancing now at the section entitled “Byte Versus Character Handling” in Chapter 9.



2  |  Chapter 1:  CJKV Information Processing Overview

There is no universally recognized or accepted CJKV encoding method such as ASCII •	
encoding—again, the various Unicode encoding forms have become the most widely 
used encodings, for OSes, applications, and for web pages.

There is no universally recognized or accepted input device such as the •	 QWERTY 
keyboard array—this same keyboard array, through a method of transliteration, is 
frequently used to input most CJKV text through reading or other means.

CJKV text can be written horizontally or vertically, and requires special typograph-•	
ic rules not found in Western typography, such as spanning tabs and unique line- 
breaking rules.

Learning that the ASCII character set standard is not as universal as most people think 
is an important step. You may begin to wonder why so many developers assume that 
everyone uses ASCII. This is okay. For some regions, ASCII is sufficient. Still, ASCII has 
its virtues. It is relatively stable, and it forms the foundation for many character sets and 
encodings. UTF-8 encoding, which is the most common encoding form used for today’s 
web pages, uses ASCII as a subset. In fact, it is this characteristic that makes its use pre-
ferred over the other two Unicode encoding forms, specifically UTF-16 and UTF-32.

Over the course of reading this chapter, you will encounter several sections that explain 
and illustrate some very basic, yet important, computing concepts, such as notation and 
byte order, all of which directly relate to material that is covered in the remainder of this 
book. Even if you consider yourself a seasoned software engineer or expert programmer, 
you may still find value in those sections, because they carry much more importance in 
the context of CJKV information processing. That is, how these concepts relate to CJKV 
information processing may be slightly different than what you had previously learned.

Writing Systems and Scripts
CJKV text is typically composed of a mixture of different scripts. The Japanese writing 
system, as an example, is unique in that it uses four different scripts. Others, such as Chi-
nese and Korean, use fewer. Japanese is one of the few, if not the only, languages whose 
writing system exhibits this characteristic of so many scripts being used together, even in 
the same sentence (as you will see very soon). This makes Japanese quite complex, ortho-
graphically speaking, and poses several problems.*

Unicode’s definitions of script and writing system are useful to consider. Script is defined 
as a collection of letters and other written signs used to represent textual information in 
one or more writing systems. For example, Russian is written with a subset of the Cyrillic 
script; Ukranian is written with a different subset. The Japanese writing system uses sev-
eral scripts. Writing system is defined as a set of rules for using one or more scripts to write 
a particular language. Examples include the American English writing system, the British 
English writing system, the French writing system, and the Japanese writing system.

*	 Orthography is a linguistic term that refers to the writing system of a language.



Writing Systems and Scripts  |  3

The four Japanese scripts are Latin characters, hiragana, katakana, and kanji (collectively 
referred to as ideographs regardless of the language). You are already familiar with Latin 
characters, because the English language is written with these. This script consists of the 
upper- and lowercase Latin alphabet, which consists of the characters often found on 
typewriter keys. Hiragana and katakana are native Japanese syllabaries (see Appendix D 
for a definition of “syllabary”). Both hiragana and katakana represent the same set of 
syllables and are collectively known as kana. Kanji are ideographs that the Japanese bor-
rowed from China over 1,600 years ago. Ideographs number in the tens of thousands and 
encompass meaning, reading, and shape.

Now let’s look at an example sentence composed of these four scripts, which will serve to 
illustrate how the different Japanese scripts can be effectively mixed:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

In case you are curious, this sentence means “Encoding methods such as EUC can sup-
port texts that mix Japanese and English.” Let’s look at this sentence again, but with the 
Latin characters underlined:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

In this case, there is a single abbreviation, EUC (short for Extended Unix Code, which 
refers to a locale-independent encoding method, a topic covered in Chapter 4). It is quite 
common to find Latin characters used for abbreviations in CJKV texts. Latin characters 
used to transliterate Japanese text are called ローマ字 (rōmaji) or ラテン文字 (raten 
moji) in Japanese.

Now let’s underline the katakana characters:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

Each katakana character represents one syllable, typically a lone vowel or a consonant- 
plus-vowel combination. Katakana characters are commonly used for writing words bor-
rowed from other languages, such as English, French, or German. Table 1-1 lists these 
three underlined katakana words, along with their meanings and readings.

Sample katakanaTable 1-1. 

Katakana Meaning Readinga

エンコーディング encoding enkōdingu

テキスト text tekisuto

サポート support sapōto

The macron is used to denote long vowel sounds.a.	



4  |  Chapter 1:  CJKV Information Processing Overview

Note how their readings closely match that of their English counterparts, from which they 
were derived. This is no coincidence: it is common for the Japanese readings of borrowed 
words to be spelled out with katakana characters to closely match the original.

Next we underline the hiragana characters:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

Hiragana characters, like katakana as just described, represent syllables. Hiragana char-
acters are mostly used for writing grammatical words and inflectional endings. Table 1-2 
illustrates the usage or meaning of the hiragana in the preceding example.

Sample hiraganaTable 1-2. 

Hiragana Meaning or usage Reading

の Possessive marker no

は Topic marker waa

と and (conjunction) to

が Subject marker ga

している doing… (verb) shite-iru

を Object marker o

します do… (verb) shimasu

This hiragana character is normally pronounced a.	 ha, but when used as a topic marker, it becomes wa.

That’s a lot of grammatical stuff! Japanese is a postpositional language, meaning that 
grammatical markers, such as the equivalent of prepositions as used in English, come 
after the nouns that they modify. These grammatical markers are called particles (助詞 
joshi) in Japanese.

Finally, we underline the ideographs (called hànzì in Chinese, kanji in Japanese, hanja in 
Korean, and chữ Hán and chữ Nôm in Vietnamese):

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

At first glance, ideographs appear to be more complex than the other characters in the 
sentence. This happens to be true most of the time. Ideographs represent meanings and 
are often called Chinese characters, Han characters, pictographs, or logographs.* Ideographs 
are also assigned one or more readings (pronunciations), each of which is determined by 
context. While their readings differ depending on the language (meaning Chinese, Japa-
nese, Korean, or Vietnamese), ideographs often have or convey the same or similar mean-
ing. This makes it possible for Japanese to understand—but not necessarily pronounce—

*	 Being a widespread convention, this is beyond critique. However, linguists use these terms for different classes 
of ideographs, depending on their etymology.



Writing Systems and Scripts  |  5

some very basic Chinese, Korean, and Vietnamese texts. Table 1-3 provides a listing of 
the underlined ideographs and ideograph compounds (words composed of two or more 
ideographs) from our example sentence, and supplies their meanings and readings.

Sample ideographs and ideograph compoundsTable 1-3. 

Ideographs Meaning Reading

等 such as… nado

方法 method hōhō

日本語 Japanese (language) nihongo

英語 English (language) eigo

混交 (to) mix konkō

Of course, this example includes only those types of characters that are used in Japanese—
other locales use different types of characters. Table 1-4 lists the four CJKV locales, along 
with what scripts their writing systems use.

CJKV locales and their scriptsTable 1-4. 

Locale Scripts

China Latin and hanzi (simplified)

Taiwan Latin, zhuyin, and hanzi (traditional)

Japan Latin, hiragana, katakana, and kanji

Koreaa Latin, jamo, hangul, and hanja

Vietnam Latin (Quốc ngữ), chữ Nôm, and chữ Hán

Jamo are the alphabet-like components that make up hangul.a.	

Table 1-5 lists some sample characters from each of the scripts used in CJKV locales. We 
discuss the scripts of these writing systems in much greater detail in Chapter 2.

Sample CJKV charactersTable 1-5. 

Script Sample characters

Latin characters ＡＢＣＤＥＦＧＨＩＪ … ｑｒｓｔｕｖｗｘｙｚ
Zhuyin ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎ … ㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩ
Hiragana ぁあぃいぅうぇえぉお … りるれろゎわゐゑをん
Katakana ァアィイゥウェエォオ … ロヮワヰヱヲンヴヵヶ
Jamo ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺ … ㆅㆆㆇㆈㆉㆊㆋㆌㆍㆎ

Hangul syllables 가각간갇갈갉갊감갑값 … 흽힁히힉힌힐힘힙힛힝



6  |  Chapter 1:  CJKV Information Processing Overview

Sample CJKV charactersTable 1-5. 

Script Sample characters

Hanzi (simplified) 啊阿埃挨哎唉哀皑癌蔼 … 黪黯鼢鼬鼯鼹鼷鼽鼾齄

Hanzi (traditional) 一乙丁七乃九了二人儿 … 驫鱺鸝灩灪爩麤齾齉龘
Kanji 亜唖娃阿哀愛挨姶逢葵 … 齶龕龜龠堯槇遙瑤凜熙
Hanja 伽佳假價加可呵哥嘉嫁 … 晞曦熙熹熺犧禧稀羲詰

But, how frequently are each of these scripts used? Given an average sampling of Japanese 
writing, one normally finds 30% kanji, 60% hiragana, and 10% katakana. Actual percent-
ages depend on the nature of the text. For example, you may find a higher percentage of 
kanji in technical literature, and a higher percentage of katakana in fields such as fashion 
and cosmetics, which make extensive use of loan words written in katakana. Most Korean 
texts consist of nothing but hangul syllables, and most Chinese texts are composed of only 
hanzi.* Latin characters are used the least, except in Vietnam, where they represent the 
primary script.

So, how many characters do you need to learn in order to read and write CJKV languages 
effectively? Here are some very basic guidelines:

You must learn hiragana and katakana if you plan to deal with Japanese—this consti-•	
tutes approximately 200 characters.

Learning hangul is absolutely necessary for Korean, but you can get away with not •	
learning hanja.

You need to have general knowledge of about 1,000 kanji to read over 90% of the kanji •	
in typical Japanese texts—more are required for reading Chinese texts because only 
hanzi are used.

If you have not already learned Chinese, Japanese, Korean, or Vietnamese, I encourage 
you to learn one of them so that you can better appreciate the complexity of their writing 
systems. Although I discuss character dictionaries, and learning aids to a lesser extent, in 
Chapter 11, they are no substitute for a human teacher.

Character Set Standards
A character set simply provides a common bucket, repertoire, or collection of characters. 
You may have never thought of it this way, but the English alphabet is an example of a 
character set standard. It specifies 52 upper- and lowercase letters. Character set standards 
are used to ensure that we learn a minimum number of characters in order to commu-
nicate with others in society. In effect, they limit the number of characters we need to 

*	 Well, you will also find symbol-like characters, such as punctuation marks.



Character Set Standards  |  7

learn. There are only a handful of characters in the English alphabet, so nothing is really 
being limited, and as such, there really is no character set standard per se. In the case of 
languages that use ideographs, however, character set standards play an especially vital 
role. They specify which ideographs—out of the tens of thousands in existence—are the 
most important to learn for each locale. The current Japanese set, called Jōyō Kanji (常用
漢字 jōyō kanji), although advisory, limits the number of ideographs to 1,945.* There are 
similar character sets in China, Taiwan, and Korea. These character set standards were 
designed with education in mind, and are referred to as noncoded character sets.

Character set standards designed for use on computer systems are almost always larger 
than those used for the purpose of education, and are referred to as coded character sets. 
Establishing coded character set standards for use with computer systems is a way to en-
sure that everyone is able to view documents created by someone else. ASCII is a Western 
character set standard, and ensures that their computer systems can communicate with 
each other. But, as you will soon learn, ASCII is not sufficient for the purpose of profes-
sional publishing (neither is its most common extension, ISO 8859-1:1998).

Coded character set standards typically contain characters above and beyond those found 
in noncoded ones. For example, the ASCII character set standard contains 94 printable 
characters—42 more than the upper- and lowercase alphabet. In the case of Japanese, 
there are thousands of characters in the coded character sets in addition to the 1,945 in 
the basic noncoded character set. The basic coded Japanese character set standard, in its 
most current form, enumerates 6,879 characters and is designated JIS X 0208:1997. There 
are four versions of this character set, each designated by the year in which it was estab-
lished: 1978, 1983, 1990, and 1997. There are two typical compatibility problems that you 
may encounter when dealing with different versions of the same character set standard:

Some of these versions contain different numbers of characters—later versions gen-•	
erally add characters.

Some of these versions are not 100% compatible with each other due to changes.•	

In addition, there may be an extended character set standard, such as Japan’s JIS X 0212-
1990, that defines 6,067 additional characters, most of which are kanji, or China’s GB 
18030-2005, which adds tens of thousands of characters to its original GB 2312-80 
standard.

Additional incompatibility has occurred because operating system (OS) developers took 
these coded character set standards one step further by defining their own extensions. 
These vendor character set standards are largely, but not completely, compatible, and al-
most always use one of the national standards as their base. When you factor in vendor 
character set standards, things appear to be a big mess. Fortunately, the broad adoption of 
Unicode has nearly brought the development of vendor-specific character sets to a halt. 
This book documents these character sets, primarily for historical purposes.

*	 The predecessor of this character set, Tōyō Kanji (当用漢字 tōyō kanji), was prescriptive.



8  |  Chapter 1:  CJKV Information Processing Overview

Encoding Methods
Encoding is the process of mapping a character to a numeric value, or more precisely, 
assigning a numeric value to a character. By doing this, you create the ability to uniquely 
identify a character through its associated numeric value. The more unique a value is 
among different encoding methods, the more likely that character identification will be 
unambiguous. Ultimately, the computer needs to manipulate the character as a numeric 
value. Independent of any CJKV language or computerized implementations thereof, in-
dexing encoded values allows a numerically enforced ordering to be mapped onto what 
might otherwise be a randomly ordered natural language.

While there is no universally recognized encoding method, many have been commonly 
used—for example, ISO-2022-KR, EUC-KR, Johab, and Unified Hangul Code (UHC) for 
Korean. Although Unicode does not employ a single encoding form, it is safe to state that 
the encoding forms for Unicode—UTF-8, UTF-16, and UTF-32—have become univer-
sally recognized. In addition, each one has become the preferred encoding form for spe-
cific uses. For the Web, UTF-8 is the most common encoding form. Applications prefer to 
use the UTF-16 encoding form internally for its overall space-efficiency for the majority 
of multilingual text. OpenType fonts, when they include glyphs that map from characters 
outside the Basic Multilingual Plane (BMP), make use of and prefer the UTF-32 encoding 
form.

Data Storage Basics
First, before describing these encoding methods, here’s a short explanation of how mem-
ory is allocated on computer systems. Computer systems process data called bits. These 
are the most basic units of information, and they can hold or store one of two possible 
values: on or off. These are usually mapped to the values 1 or 0, respectively. Bits are strung 
together into units called bytes. Bytes are usually composed of 7 or 8 bits. Seven bits allow 
for up to 128 unique combinations, or values; 8 bits allow for up to 256. While these num-
bers are sufficient for representing most characters in Western writing systems, it does 
not even come close to accommodating large character sets whose characters number in 
the thousands, such as those required by the CJKV locales. It is also possible to use more 
than 8 bits, and some encoding methods use 16 or 32 bits as their code units, which are 
equivalent to 2 and 4 bytes, respectively.

The first attempt to encode an Asian language script on computer systems involved the 
use of Japanese half-width katakana characters. This is a limited set of 63 characters that 
constitutes a minimal set for representing Japanese text. But there was no support for 
kanji. The solution to this problem, at least for Japanese, was formalized in 1978, and em-
ployed the notion of using 2 bytes to represent a single character. This did not eliminate 
the need for one-byte characters, though. The Japanese solution was to extend the notion 
of one-byte character encoding to include two-byte characters. This allows for text with 
mixed one- and two-byte characters. How one- and two-byte characters are distinguished 
depends on the encoding method. Two bytes equal 16 bits, and thus can provide up to 



Encoding Methods  |  9

65,536 unique values. This is best visualized as a 256×256 matrix. See Figure 1-1 for an 
illustration of such a matrix.

���

�
����

256×256 encoding matrixFigure 1-1. 

However, not all of these 65,536 cells can be used for representing displayable characters. 
To enable the mixture of one- and two-byte characters within a single text stream, some 
characters needed to be reserved as control characters, some of which then serve as the 
characters that signify when a text stream shifts between one- and two-byte modes. In the 
case of ISO-2022-JP encoding, the upper limit of displayable characters was set at 8,836, 
which is the size of the code space made from a 94×94 matrix.*

But why do you need to mix one- and two-byte characters anyway? It is to support exist-
ing one-byte encoding standards, such as ASCII, within a two-byte (or sometimes larger) 
encoding system. One-byte encoding methods are here to stay, and it is still a rather effi-
cient means to encode the characters necessary to write English and many other languag-
es. The most common encoding method for web pages, a mixed one- through four-byte 
encoding form called UTF-8, includes ASCII as its one-byte portion. However, languages 
with large character sets—those spoken in the CJKV locales—require two or more bytes 
to encode characters. Some encoding methods treat all characters, including ASCII, the 
same, meaning that they consume or require the same amount of encoding space. UTF-16 
and UTF-32 use 16- and 32-bit code units, meaning that ASCII “A” (0x41) is represented 
by 16 or 32 bits: <0041> or <00000041>.

Along with discussions about character sets and encodings, you will encounter the terms 
“row” and “cell” again and again throughout this book. These refer to the axes of a matrix 

*	 Code space refers to the area within the (usual) 256×256 encoding matrix that is used for encoding characters. 
Most of the figures in Chapter 4 and Appendix F illustrate code spaces that fall within this 256×256 matrix.



10  |  Chapter 1:  CJKV Information Processing Overview

used to hold and encode characters. A matrix is made up of rows, and rows are made up 
of cells. The first byte specifies the row, and the second specifies the cell of the row. Figure 
1-2 illustrates a matrix and how characters’ positions correspond to row and cell values.

��
��
��
��
��
��
��

��

��

�� ������

��
�

�
�
�

�
�

�

����

��
�

��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

� � � � � � �

�� ��
��

�� �� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��������� ��� ����

� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��

�����������

Indexing an encoding matrix by row and cellFigure 1-2. 



Input Methods  |  11

In an attempt to allow for a mixture of one- and two-byte characters, several CJKV encod-
ing methods have been developed. As you will learn in Chapter 4, these encoding meth-
ods are largely, but not completely, compatible. You will also see that there are encoding 
methods that use three or even four bytes to represent a single character!

The most common Japanese encoding methods are ISO-2022-JP, Shift-JIS, and EUC-JP. 
ISO-2022-JP, the most basic, uses seven-bit bytes (or, seven bits of a byte) to represent 
characters, and requires special characters or sequences of characters (called shifting char-
acters or escape sequences) to shift between one- and two-byte modes. Shift-JIS and EUC-
JP encodings make generous use of eight-bit characters, and use the value of the first byte 
as the way to distinguish one- and multiple-byte characters. Now, Unicode has become 
the most common encoding for Japanese.

Input Methods
Those who type English text have the luxury of using keyboards that can hold all the keys 
to represent a sufficient number of characters. CJKV characters number in the thousands, 
though, so how does one type CJKV text? Large keyboards that hold thousands of indi-
vidual keys exist, but they require special training and are difficult to use. This has led to 
software solutions: input methods and the conversion dictionaries that they employ.

Most Chinese and Japanese text is typically input in two stages:

The user types raw keyboard input, which the computer interprets by using the input 1.	
method and the conversion dictionary to display a list of candidate characters (the 
word “candidate” here refers to the character or characters that are mapped to the 
input string in the conversion dictionary).

The user selects one choice from the list of candidate characters, or requests more 2.	
choices.

How well each stage of input is handled on your computer depends greatly on the quality 
(and vintage) of the input software you are using. Typical Korean and Vietnamese input is 
much more direct, and it varies by the keyboard layout that is used.

Software called an input method handles both of these input stages. It is so named because 
it grabs the user’s keyboard input before any other software can use it (specifically, it is the 
first software to process keyboard input).

The first stage of input requires keyboard input, and can take one of two usual forms:

Transliteration using Latin characters (type “k” plus “a” to get •	 か, and so on), which is 
common for Chinese and Japanese, but relatively rare for Korean.

Native-script input—•	 zhuyin for Chinese as used in Taiwan, hiragana for Japanese, 
hangul for Korean, and so on.

The form used depends on user preference and the type of keyboard in use. For Japanese, 
the input method converts transliterated Japanese into hiragana on-the-fly, so it doesn’t 



12  |  Chapter 1:  CJKV Information Processing Overview

really matter which keyboard you are using. In fact, studies show that over 70% of Japa-
nese computer users prefer transliterated Japanese input.

Once the input string is complete, it is then parsed in one of two ways: either by the 
user during input or by a parser built into the input method. Finally, each segment is 
run through a conversion process that consists of a lookup into a conversion dictionary. 
This is very much like a key-value lookup. Typical conversion dictionaries have tens of 
thousands of entries. It seems that the more entries, the better the conversion quality. 
However, if the conversion dictionary is too large, users are shown a far too lengthy list of 
candidates. This reduces input efficiency.

Can ideographs be input one at a time? While single-ideograph input is possible, there are 
three basic units that can be used. These units allow you to limit the number of candidates 
from which you must choose. Typically, the larger the input unit, the fewer candidates. 
The units are as follows:

Single ideograph•	

Ideograph compound•	

Ideograph phrase•	

Early input programs required that each ideograph be input individually, as single ideo-
graphs. Nowadays it is much more efficient to input ideographs as they appear in com-
pounds or even phrases. This means that you may input two or more ideographs at once 
by virtue of inputting their combined reading. For example, the ideograph compound 漢
字 (the two ideographs for writing the word meaning “ideograph”) can be input as two 
separate characters, 漢 (pronounced kan in Japanese) and 字 (pronounced ji in Japanese). 
Table 1-6 shows the two target ideographs, along with other ideographs that share the 
same reading.

Single ideograph input—JapaneseTable 1-6. 

Character Reading Ideographs with identical readings

漢 K A N 乾侃冠寒刊勘勧巻喚堪姦完官寛干幹患感慣憾換敢柑桓棺款
歓汗漢澗潅環甘監看竿管簡緩缶翰肝艦莞観諌貫鑑鑑間閑関
陥韓館舘

字 J I 事似侍児字寺慈持時次滋治爾璽痔磁示而耳自蒔辞

You can see that there are many other ideographs with the same readings, so you may 
have to wade through a long list of candidate ideographs before you find the correct one. 
A more efficient way is to input them as one unit, called an ideograph compound. This 
produces a much shorter list of candidates from which to choose. Table 1-7 illustrates the 
two ideographs input as a compound, along with candidate compounds with the same 
reading.



Typography  |  13

Ideograph compound input—JapaneseTable 1-7. 

Compound Reading Compounds with identical readings

漢字 K A N J I 漢字 感じ 幹事 監事 完司

Note how the list of ideograph compounds is much shorter in this case. There is an even 
higher-level input unit called an ideograph phrase. This is similar to inputting two or more 
ideographs as a single compound, but it adds another element, similar to a preposition in 
English, that makes the whole string into a phrase. An example of an ideograph phrase is 
漢字は, which means “the ideograph” in Japanese. Because Chinese-language text is com-
posed solely of hanzi, ideograph phrases apply only to Japanese, and possibly Korean.

Some of you may know of input software that claims to let you convert whole sentences 
at once. This is not really true. Such software allows you to input whole sentences, but the 
sentence is then parsed into smaller units, usually ideograph phrases, and then converted. 
Inputting whole sentences before any conversion is merely a convenience for the user.

Korean input has some special characteristics that are related to how their most widely 
used script, hangul syllables, is composed. Whether input is by a QWERTY or a Korean 
keyboard array, Korean input involves entering hangul elements called jamo. As the jamo 
are input, the operating system or input software attempts to compose hangul syllables 
using an automaton. Because of how hangul syllables are composed of jamo, the user may 
have up to three alternatives for deleting characters:

Delete entire hangul syllable•	

Delete by jamo•	

Delete by word•	

This particular option is specific to Korean, and depends on whether the input method 
supports it.

Typography
Typography is a broad topic, and covers the way in which characters are set together, or 
composed, to form words, lines, and pages. What makes CJKV text different from West-
ern text is the fact that it can usually be written or set in one of two orientations, described 
as follows:

Left to right, top to bottom—horizontal setting, as in this book•	

Top to bottom, right to left—•	 vertical setting

Chapter 7 provides plenty of examples of horizontal versus vertical writing. More often 
than not, vertical writing orientation causes problems with Western-language applica-
tions. This is because vertical writing does not come for free, and some nontrivial amount 
of effort is required to implement this support in applications. Luckily, it is generally 



14  |  Chapter 1:  CJKV Information Processing Overview

acceptable to set CJKV text in the same horizontal orientation as most Western languages. 
Traditional novels and short stories are often set vertically, but technical materials, such as 
science textbooks and the like, are set horizontally.

Vertically set CJKV text is not a simple matter of changing writing direction. Some char-
acters require special handling, such as a different orientation (90˚ clockwise rotation) or 
a different position within the em-square.* Chapter 7 provides some sample text set both 
horizontally and vertically, and it illustrates the characters that require special treatment.

In addition to the two writing directions for CJKV text, there are other special layout or 
composition considerations, such as special rules for line breaking, special types of justifi-
cation, metrics adjustments, methods for annotating characters, and so on.

Basic Concepts and Terminology FAQ
Now I’ll define some basic concepts which will help carry you through this entire book. 
These concepts are posed as questions because they represent questions you might raise as 
you read this book. If at any time you encounter a new term, please glance at the glossary 
toward the back of the book: new terms are included and explained there.

What Are All These Abbreviations and Acronyms?
Most technical fields are flooded with abbreviations and acronyms, and CJKV informa-
tion processing is no exception. Some of the more important, and perhaps confusing, 
ones are explained in the following section, but when in doubt, consult Appendix D.

What is the difference between GB and GB/T? What about GBK?
Most references to “GB” refer to the GB 2312-80 character set standard, which represents 
the most widely implemented character set for Chinese. Now, of course, a much larger 
character set, designated GB 18030-2005, is considered the standard character set.

GB stands for Guo Biao (国标 guóbiāo), which is short for Guojia Biaozhun (国家标准 
guójiā biāozhǔn), and simply means “National Standard.”

Because GB/T character set standards are traditional analogs of existing GB character 
set standards, some naturally think that the “T” stands for Traditional. This represents 
yet another myth to expose as untrue. The “T” in “GB/T” actually stands for Tui (推 tuī), 
which is short for Tuijian (推荐 tuījiàn) and means “recommended” in the sense that it is 
the opposite of “forced” or “mandatory.”

The “K” in GBK (an extension to GB 2312-80) comes from the Chinese word 扩展 
(kuòzhǎn), which means “extension.” As you will learn in Chapter 3, while GBK is an 

*	 The term em-square refers to a square-shaped space whose height and width roughly correspond to the width 
of the letter “M.” The term design space is actually a more accurate way to represent this typographic concept.



Basic Concepts and Terminology FAQ  |  15

extension to GB 2312-80, and thus appropriately named, GBK itself was extended to be-
come GB 18030-2005.

What are JIS, JISC, and JSA? How are they related?
In much of the literature in the field of Japanese information processing, you will quite 
often see references to JISC, JIS, and JSA. The most common of these is JIS; the least is 
JISC. What these refer to can sometimes be confusing and is often contradicted in refer-
ence works.

JIS stands for Japanese Industrial Standard (日本工業規格 nihon kōgyō kikaku), the name 
given to the standards used in Japanese industry.* The character 〄 is the original symbol 
for JIS, which was used through September 30, 2008. The character � is the new symbol 
for JIS, which was issued on October 1, 2005, and its use became mandatory on October 
1, 2008. JIS can refer to several things: the character set standards established by JISC, the 
encoding method specified in these character set standards, and even the keyboard arrays 
described in specific JIS standards. Context should usually make its meaning clear. Of 
course, JIS appears frequently in this book.

JISC stands for Japanese Industrial Standards Committee (日本工業標準調査会 nihon 
kōgyō hyōjun chōsakai).† This is the name of the governing body that establishes JIS stan-
dards and publishes manuals through JSA. The committee that develops and writes each 
JIS manual is composed of people from Japanese industry who have a deep technical 
background in the topic to be covered by the manual. Committee members are listed at 
the end of each JIS manual.

JSA stands for Japanese Standards Association (日本規格協会 nihon kikaku kyōkai).‡ This 
organization publishes the manuals for the JIS standards established by JISC, and gener-
ally oversees the whole process.

JIS is often used as a blanket term covering JIS, JISC, and JSA, but now you know what 
they genuinely mean.

Several JIS “C” series standards changed designation to “X” series standards on March 1, 
1987. Table 1-8 lists the JIS standards—mentioned in this book—that changed designa-
tion from “C” to “X” series.

*	 There is even a JIS standard for manufacturing toilet paper! It is designated JIS P 4501:2006 and is entitled 
トイレットペーパー (toiretto pēpā). Its English title is Toilet tissue papers. The “P” series JIS standards are for 
the pulp and paper industries.

†	 http://www.jisc.go.jp/
‡	 http://www.jsa.or.jp/



16  |  Chapter 1:  CJKV Information Processing Overview

JIS standard designation changesTable 1-8. 

JIS “C” series JIS “X” series

JIS C 6220 JIS X 0201

JIS C 6228 JIS X 0202

JIS C 6225 JIS X 0207

JIS C 6226 JIS X 0208

JIS C 6233 JIS X 6002

JIS C 6235 JIS X 6003

JIS C 6236 JIS X 6004

JIS C 6232 JIS X 9051

JIS C 6234 JIS X 9052

Because these changes took place well over two decades ago, they have long been reflected 
in software and other documentation.

What is KS?
KS simply stands for Korean Standard (한국 공업 규격/韓國工業規格 hanguk gongeop 
gyugyeok). All Korean character set standard designations begin with the two uppercase 
letters “KS.” The character ㉿ is the symbol for KS.

All KS standards also include another letter in their designation. Those that are dis-
cussed in this book all include the letter “X,” which now indicates electric or electronic 
standards.*

Several KS “C” series standards changed designation to “X” series standards on August 20, 
1997. Table 1-9 lists the KS standards—mentioned in this book—that changed designa-
tion from the “C” to “X” series.

KS standard designation changesTable 1-9. 

KS “C” series KS “X” series

KS C 5601 KS X 1001

KS C 5657 KS X 1002

KS C 5636 KS X 1003

KS C 5620 KS X 1004

KS C 5700 KS X 1005

*	 Other letter designations for KS standards include “B” (mechanical), “D” (metallurgy), and “A” (general 
guidelines).



Basic Concepts and Terminology FAQ  |  17

KS standard designation changesTable 1-9. 

KS “C” series KS “X” series

KS C 5861 KS X 2901

KS C 5715 KS X 5002

It took several years until these new KS standard designations were consistently reflected 
in software and documentation. Especially for KS X 1001, its original designation, KS C 
5601, is still seen often.

Are VISCII and VSCII identical? What about TCVN?
Although both VISCII and VSCII are short for Vietnamese Standard Code for Information 
Interchange, they represent completely different character sets and encodings. VISCII is 
defined in RFC 1456,* and VSCII is derived from TCVN 5712:1993 (specifically, VN2), 
which is a Vietnamese national standard. VSCII is also known as ISO IR 180. The differ-
ences among VISCII and VSCII are described in Chapter 3. Appendix L provides com-
plete encoding tables for VISCII and VSCII, which better illustrate their differences.

TCVN stands for Tiêu Chuẩn Việt Nam, which translates into English as “Vietnamese 
Standard.” Like CNS, GB, JIS, and KS, it represents the first portion of Vietnamese stan-
dard designations.

What Are Internationalization, Globalization, and Localization?
Internationalization—often abbreviated as I18N, composed of the initial letter “I” fol-
lowed by the middle eighteen (18) letters followed by the final letter “N”—is a term that 
usually refers to the process of preparing software so that it is ready to be used by more 
than one culture, region, or locale.† Internationalization is thus what engineers do.

Globalization, similarly abbreviated as G11N, is often used synonymously with interna-
tionalization, but encompasses the business aspects, such as entering a foreign market, 
conducting market research, studying the competition, strategizing, becoming aware of 
legal restrictions, and so on.‡ Globalization is thus what companies as a whole do.

Localization—often abbreviated as L10N under the same auspices as I18N and G11N—is 
the process of adapting software for a specific culture, region, or locale. Japanization—
often abbreviated as J10N—is thus a locale-specific instance of L10N. While this book 
does not necessarily address all of these issues, you will find information pertinent to 
internationalization and localization within its pages.

*	 http://www.ietf.org/rfc/rfc1456.txt
†	 Quiz time. Guess what CJKV6N, C10N, K11N, M17N, S32S, and V12N stand for.
‡	 But, globalization should not be confused with global domination, which is an entirely different matter.



18  |  Chapter 1:  CJKV Information Processing Overview

Internationalization and localization are different processes. For example, it is possible to 
develop an application that properly handles the various scripts of the world, and is thus 
internationalized, but provides an English-language user interface (UI), and is thus not 
localized. The converse is also possible, specifically an application with a UI that has been 
translated into a large number of languages, and is thus localized, but fails to properly 
handle the various scripts of the world, and is thus not internationalized.

In any case, market demand forces or encourages developers to embrace I18N, G11N, 
and L10N, because doing so results in the functionality that their customers demand, or 
it provides menus and documentation written in the language of the target locale. They 
often require special handling because many non-Latin writing systems include a large 
number of characters, have complex rendering issues, or both.

What Are the Multilingual and Locale Models?
There have been two basic models for internationalization: the locale model and the multi-
lingual model. The locale model was designed to implement a set of attributes for specific 
locales. The user must explicitly switch from one locale to another. The character sets 
implemented by the locale model were specific to a given culture or region, thus locale.

The multilingual model, on the other hand, was designed or expected to go one step fur-
ther by not requiring the user to flip or switch between locales. Multilingual systems thus 
implement a character set that includes all the characters necessary for several cultures 
or regions. But still, there are cases when it is impossible to correctly render characters 
without knowing the target locale.

For the reasons just pointed out, a combination of these two models is ideal, which is 
precisely what has happened in the field of software internationalization. Unicode is the 
ideal character set because it is truly multilingual, and it effectively bridges and spans the 
world’s writing systems. Of course, Unicode is not perfect. But then again, nothing made 
by man, by definition, can be perfect. Still, no other character set spans the world’s writing 
systems as effectively and broadly as Unicode has done. This is why it is wise to embrace 
Unicode, and I encourage you to do so. Embracing Unicode also requires that its data be 
tagged with locale attributes so that the characters behave accordingly and appropriately 
for each culture or region. The Common Locale Data Repository (CLDR) is the most com-
plete and robust source for locale data, and will be explored in Chapter 9.*

Thus, both of these models for internationalization have succeeded, not by competing, but 
rather by combining into a single solution that has proven to work well.

What Is a Locale?
Locale is a concept for specifying the language and country or region, and is significant 
in that it affects the way in which an OS, application, or other software behaves. A locale, 

*	 http://www.unicode.org/cldr/



Basic Concepts and Terminology FAQ  |  19

as used by software, typically consists of a language identifier and a country or region 
identifier.

What Is Unicode?
Unicode is the first truly successful multilingual character set standard, and it is sup-
ported by three primary encoding forms, UTF-8, UTF-16, and UTF-32. Unicode is also a 
major focus of this book.

Conceived 20 years ago by my friend Joe Becker, Unicode has become the preferred char-
acter set and has been successful in enabling a higher level of internationalization. In 
other words, Unicode has trivialized many aspects of software internationalization.

How Are Unicode and ISO 10646 Related?
Make no mistake, Unicode and ISO 10646 are different standards.* The development of 
Unicode is managed by The Unicode Consortium, and that of ISO 10646 is managed by the 
International Organization for Standardization (ISO). But, what is important is that they 
are equivalent, or rather kept equivalent, through a process that keeps them in sync.

ISO 10646 increases its character repertoire through new versions of the standard, ad-
ditionally designated by year, along with amendments. Unicode, on the other hand, does 
the same through new versions. It is possible to correlate Unicode and ISO 10646 by indi-
cating the version of the former, and the year and amendments of the latter.

More detailed coverage of Unicode can be found in Chapter 3, and details of the various 
Unicode encoding forms can be found in Chapter 4.

What Are Row-Cell and Plane-Row-Cell?
Row-Cell is the translated form of the Japanese word 区点 (kuten), which literally means 
“ward [and] point,” or more intuitively as “row [and] cell.”† This notation serves as an 
encoding-independent method for referring to characters in most CJKV character set 
standards. A Row-Cell code usually consists of four decimal digits. The “Row” portion 
consists of a zero-padded, two-digit number with a range from 01 to 94. Likewise, the 
“Cell” portion also consists of a zero-padded, two-digit number with a range from 01 to 
94. For example, the first character in most CJKV character set standards is represented 
as 01-01 in Row-Cell notation, and is more often than not a full-width “space” character, 
which is typically referred to as an ideographic space.

Bear in mind that some character sets you will encounter include or span more than a 
single 94×94 matrix, each of which is referred to as a plane. CNS 11643-2007 and JIS X 

*	 http://unicode.org/faq/unicode_iso.html
†	 In Chinese, Row-Cell is expressed as 区位 (qūwèi); in Korean, as 행렬/行列 (haengnyeol). Note that if the 

“Cell” portion of “Row-Cell” is in isolation in Korean, then it is expressed instead with the hangul 열 (yeol), not 
렬 (nyeol).



20  |  Chapter 1:  CJKV Information Processing Overview

0213:2004 are examples of legacy character set standards that include two or more planes. 
Obviously, Row-Cell notation must be expanded to include the notion of plane, meaning 
Plane-Row-Cell. In Japanese, this is expressed as 面区点 (menkuten) and is used as the 
preferred notation for referencing the characters in JIS X 0213:2004.

When I provide lists of characters throughout this book, I usually include Row-Cell (or 
Plane-Row-Cell) codes. These are useful for future reference of these data, and so that 
you don’t have to hunt for the codes yourself. Now that Unicode plays an important 
role in today’s software development efforts, I also provide Unicode scalar values when 
appropriate.

What Is a Unicode Scalar Value?
Like Row-Cell notation, Unicode scalar values serve as an encoding-independent method 
of referring to specific Unicode characters, or sequences of Unicode characters. It is a no-
tation, but instead of using decimal values such as Row-Cell notation, hexadecimal values 
are used due to the larger 256×256 encoding space afforded by Unicode. Still, Unicode 
scalar values are not tied to a specific encoding, such as UTF-8, UTF-16, nor UTF-32.

The syntax for Unicode scalar values is simple and consists of a prefix followed by four 
to six hexadecimal digits. The prefix is “U+,” and the length of the hexadecimal digits var-
ies by whether the character is in the Basic Multilingual Plane (BMP) or in one of the 16 
supplementary planes. I prefer to think of Unicode scalar values as equivalent to UTF-32 
encoding when expressed in hexadecimal notation, but zero-padded to four digits. The 
ASCII “space” is thus represented as U+0020 (not U+20), and the last code point in Plane 
16 is represented as U+10FFFF.

Unicode scalar values are incredibly useful. When their prefix is removed and replaced 
with the appropriate Numeric Character Reference (NCR) syntax, such as &#x4E00; for 
U+4E00, they become immediately usable in contexts that support HTML or XML.* They 
can also be used within angled brackets and separated with a comma to indicate standard-
ized Unicode sequences, such as <U+528D, U+E0101>.

Unicode scalar values are used throughout this book and are provided for your 
convenience.

Characters Versus Glyphs: What Is the Difference?
Now here’s a topic that is usually beaten to death! The term character is an abstract notion 
indicating a class of shapes declared to have the same meaning or abstract shape. The term 
glyph refers to a specific instance of a character.

*	 NCRs are SGML constructs that have carried through into SGML derivations, such as HTML and XML. I can-
not guarantee that all HTML and XML implementations support NCRs, but the vast majority do.



Basic Concepts and Terminology FAQ  |  21

Interestingly, more than one character can constitute a single glyph, such as the two char-
acters f and i, which can be fused together as the single entity fi. This fi glyph is called a 
ligature. The dollar currency symbol is a good example of a character with several glyphs. 
There are at least four distinct glyphs for the dollar currency symbol, described and il-
lustrated here:

An “S” shape with a single vertical bar: •	 $
An “S” shape with a single broken vertical bar: •	 �
An “S” shape with two vertical bars: •	 �
An “S” shape with two broken vertical bars: •	 �

The differences among these four glyphs are minor, but you cannot deny that they still 
represent the same character, specifically the dollar currency symbol. More often than 
not, you encounter a difference in this glyph as a difference in typeface.

However, there are some characters that have a dozen or more variant forms. Consider the 
kanji 辺 (hen, used in the common Japanese family name 渡辺 watanabe), which has only 
two variant forms that are included in JIS X 0208:1997, and are thus included in Unicode: 
邉 (U+9089) and 邊 (U+908A). These are considered the traditional forms of the kanji 
辺. Table 1-10 lists the additional variant forms that are included in the Adobe-Japan1-6 
character collection, which will be covered in Chapter 6.

Standard versus variant formsTable 1-10. 

Standard Form Variant forms Additional variant forms

辺 邉 邉邉邉邉邉邉邉邉邉邉邉邉邉邉
邊 邉邉邉邉邉邉邉

Clearly, these variant forms all appear to represent that same character, but are simply 
different glyphs.

You will discover that CJKV character set standards do not define the glyphs for the char-
acters contained within their specifications. Unfortunately (or, fortunately, as the case 
may be), many think that the glyphs that appear in these manuals are the official ones, and 
to some extent they become the default, or prototypical, glyphs for the characters.

Note, however, that the official Jōyō Kanji Table does define the glyph shape, at least for 
the 1,945 kanji contained within its specification. Interestingly, JSA at one time published 
two standards that did, in fact, define glyphs for characters by virtue of specifying precise 
bitmap patterns for every character: JIS X 9051-1984* and JIS X 9052-1983.† The glyphs 

*	 Previously designated JIS C 6232-1984
†	 Previously designated JIS C 6234-1983



22  |  Chapter 1:  CJKV Information Processing Overview

set forth in these two standards were designed for the JIS X 0208-1983 standard, which 
was current at the time. However, these glyphs have not been widely accepted in industry, 
mainly due to the introduction of outline fonts. It seems as though JSA has no intention 
of ever revising these documents, and some speculate that this may be their way of not 
enforcing glyphs.

The one Japanese organization that established a definitive Japanese glyph standard in 
Japan is the now-defunct FDPC, which is an abbreviation for Font Development and Pro-
motion Center (文字フォント開発・普及センター moji fonto kaihatsu fukyū sentā). FDPC 
was a MITI (Ministry of International Trade and Industry—通商産業省 tsūshō sangyō 
shō)-funded organization, and has since been folded in with JSA. This government or-
ganization, with the help of members, developed a series of Japanese outline fonts called 
Heisei (平成 heisei) typefaces. The first two Heisei typefaces that were released were Heisei 
Mincho W3 (平成明朝 W3 heisei minchō W3) and Heisei Kaku (squared) Gothic W5 (平
成角ゴシック W5 heisei kaku goshikku W5). In fact, the standard Japanese typeface used 
in the production of the first edition of this book was Heisei Mincho W3. A total of seven 
weights of both designs were produced, ranging from 3 (W3) to 9 (W9). Two weights of 
Heisei Maru (rounded) Gothic (平成丸ゴシック heisei maru goshikku), specifically 4 and 
8, also were developed. The Heisei typefaces have become somewhat commonplace in the 
Japanese market.

Stability versus correctness
I have learned that changes to prototypical glyphs are inevitable and unavoidable. There 
are two forces or notions at work. One is stability, and the other is the notion of cor-
rectness. Unfortunately, the notion of correctness can—and ultimately will—change over 
time. Languages and their writing systems change, which is part of their nature. In Japan, 
the first series of prototypical glyph changes took place in 1983, when JIS X 0208-1983 
was published. Bear in mind that the first version of the standard was published in 1978. 
Somewhat subtle prototypical glyph changes took place when it was revised in 1990 and 
designated JIS X 0208-1990. Stability ruled the day when the 1997 revision, designated JIS 
X 0208:1997, was published, along with its extension in 2000, designated JIS X 0213:2000. 
A new set of 1,022 kanji, called NLC Kanji (表外漢字 hyōgai kanji), introduced a new 
notion of correctness, and directly influenced prototypical glyph changes that were intro-
duced in 2004, as a revision to the existing standard, designated JIS X 0213:2004. I have 
found it interesting that some of these prototypical glyph changes have caused the glyphs 
for some characters to come full circle, meaning that they reverted to their original forms 
as found in the 1978 version of the standard. Table 1-11 provides but one example of a 
JIS X 0208:1997 kanji that came full circle—specifically 36-52. Its Unicode code point, 
regardless of glyph, is U+8FBB.



Basic Concepts and Terminology FAQ  |  23

Prototypical glyph changes over time—JapanTable 1-11. 

Code point 1978 1983 1990 1997 2000 2004

36-52 辻 辻 辻 辻 辻 辻

China takes glyph issues very seriously and expended the effort to develop a series of 
standards, published in a single manual entitled 32×32 Dot Matrix Font Set and Data 
Set of Chinese Ideograms for Information Interchange (信息交换用汉字 32×32 点阵字模
集及数据集 xìnxī jiāohuàn yòng hànzì 32×32 diǎnzhèn zìmújí jí shújùjí). This explicitly 
defined glyphs for the GB 2312-80 character set standard in various typeface styles. These 
standards are listed in Table 1-12.

Chinese glyph standardsTable 1-12. 

Standard Pages Title (in English)

GB 6345.1-86 1–27 32×32 Dot Matrix Font Set of Chinese Ideograms for Information Interchange

GB 6345.2-86 28–31 32×32 Dot Matrix Font Data Set of Chinese Ideograms for Information Interchange

GB 12034-89 32–55 32×32 Dot Matrix Fangsongti Font Set and Data Set of Chinese Ideograms for Information 
Interchange

GB 12035-89 56–79 32×32 Dot Matrix Kaiti Font Set and Data Set of Chinese Ideograms for Information Interchange

GB 12036-89 80–103 32×32 Dot Matrix Heiti Font Set and Data Set of Chinese Ideograms for Information Interchange

Song (specified in GB 6345.1-86), Fangsong, Kai, and Hei are the most common typeface 
styles used in Chinese. When the number of available pixels is reduced, it is impossible to 
completely represent all of an ideograph’s strokes. These standards are useful because they 
establish bitmapped patterns that offer a compromise between accuracy and legibility. 
The GB 16794.1-1997 standard (信息技术—通用多八位编码字符集 48 点阵字形 xìnxī 
jìshù—tōngyòng duōbāwèi biānmǎ zìfùjí 48 diǎnzhèn zìxíng) is similar to the GB standards 
listed in Table 1-12, but covers the complete GBK character set and provides 48×48 bit-
mapped patterns for every character. An older set of GB standards, GB 5007.1-85 (信息交
换用汉字 24×24 点阵字模集 xìnxī jiāohuàn yòng hànzì 24×24 diǎnzhèn zìmújí) and GB 
5007.2-85 (信息交换用汉字 24×24 点阵字模数据集 xìnxī jiāohuàn yòng hànzì 24×24 
diǎnzhèn zìmú shújùjí), provided 24×24 bitmapped patterns for a single design, and obvi-
ously covered GB 2312-80, not GBK, given that they were published in 1985, long before 
GBK was developed.

Exactly how the terms character and glyph are defined can differ depending on the source. 
Table 1-13 provides the ISO and The Unicode Consortium definitions for the terms ab-
stract character, character, glyph, glyph image, and grapheme.



24  |  Chapter 1:  CJKV Information Processing Overview

Abstract character, character, glyph, glyph image, and grapheme definitionsTable 1-13. 

Terminology ISO Unicodea

Abstract character n/a A unit of information used for the organization, control, or 
representation of textual data. (See definition D7 in Section 
3.4, Characters and Encoding.)

Character A member of a set of elements used 
for the organization, control, or 
representation of data.b

An atom of information with an 
individual meaning, defined by a 
character repertoire.c

(1) The smallest component of written language that has 
semantic value; refers to the abstract meaning and/or shape, 
rather than a specific shape (see also glyph), though in code 
tables some form of visual representation is essential for the 
reader’s understanding. (2) Synonym for abstract character. 
(3) The basic unit of encoding for the Unicode character 
encoding. (4) The English name for the ideographic written 
elements of Chinese origin. [See ideograph (2).]

Glyph A recognizable abstract graphical 
symbol which is independent of any 
specific design.c

(1) An abstract form that represents one or more glyph im-
ages. (2) A synonym for glyph image. In displaying Unicode 
character data, one or more glyphs may be selected to 
depict a particular character. These glyphs are selected by a 
rendering engine during composition and layout processing. 
(See also character.)

Glyph image An image of a glyph, as obtained from 
a glyph representation displayed on a 
presentation surface.c

The actual, concrete image of a glyph representation having 
been rasterized or otherwise imaged onto some display 
surface. 

Grapheme n/a (1) A minimally distinctive unit of writing in the context 
of a particular writing system. For example, ‹b› and ‹d› are 
distinct graphemes in English writing systems because there 
exist distinct words like big and dig. Conversely, a lowercase 
italiform letter a and a lowercase Roman letter a are not 
distinct graphemes because no word is distinguished on the 
basis of these two different forms. (2) What a user thinks of 
as a character.

The Unicode Standard, Version 5.0a.	  (Addison-Wesley, 2006)

ISO 10646:2003b.	

ISO 9541-1:1991c.	

As usual, the standards—in this case ISO 10646 and Unicode—provide clear and precise 
definitions for otherwise complex and controversial terms. Throughout this book, I use 
the terms character and glyph very carefully.

What Is the Difference Between Typeface and Font?
The term typeface refers to the design characteristics of a collection of glyphs, and is often 
comprised of multiple fonts. Thus, a font refers to a single instance of a typeface, such as a 
specific style, relative weight, relative width, or other design attributes, and in the case of 
bitmapped fonts, point size. This is why the commonly used term outline font is somewhat 
of a misnomer—the mathematical outlines are, by definition, scalable, which means that 
they are not specific to a point size. A better term is outline font instance. But, I digress.



Basic Concepts and Terminology FAQ  |  25

Western typography commonly uses serif, sans serif, and script typeface styles. Table 1-14 
lists the common CJKV typeface styles, along with correspondences across locales.

Western versus CJKV typeface stylesTable 1-14. 

Western Chinesea Japanese Korean

Serif b Ming (明體 míngtǐ )
Song (宋体 sòngtǐ )

Mincho (明朝体 minchōtai) Batang (바탕 batang)c

Sans serif Hei (黑体 hēitǐ ) Gothic (ゴシック体 goshikkutai) Dotum (돋움 dotum)d

Script Kai (楷体 kǎitǐ ) Kaisho (楷書体 kaishotai)
Gyosho (行書体 gyōshotai)
Sosho (草書体 sōshotai)

Haeseo (해서체/楷書體 
haeseoche)
Haengseo (행서체/行書體 
haengseoche)
Choseo (초서체/草書體 
choseoche)

Other Fangsong (仿宋体 fǎngsòngtǐ ) Kyokasho (教科書体 kyōkashotai)

Replace a.	 体 with 體 in these typeface style names for Traditional Chinese.

The convention has been that Ming is used for Traditional Chinese, and Song is used for Simplified Chinese.b.	

In the mid-1990s, the Korean Ministry of Culture specified this term, replacing c.	 Myeongjo (명조체/明朝體 myeongjoche).

In the mid-1990s, the Korean Ministry of Culture specified this term, replacing d.	 Gothic (고딕체/고딕體 godikche).

Table 1-14 by no means constitutes a complete list of CJKV typeface styles—there are nu-
merous typeface styles for hangul, for example. To provide a sample of typeface variation 
within a locale, consider the four basic typeface styles used for Chinese, as illustrated in 
Table 1-15.

Chinese typeface styles—examplesTable 1-15. 

Song Hei Kai Fangsong

中文简体字 中文简体字 中文简体字 中文简体字

Clearly, the glyphs shown in Table 1-15 represent the same characters, in that they convey 
identical meanings, and differ only in that their glyphs are different by virtue of having 
different typeface designs.

What Are Half- and Full-Width Characters?
The terms half- and full-width refer to the relative glyph size of characters. These are 
referred to as hankaku (半角 hankaku) and zenkaku (全角 zenkaku), respectively, in 



26  |  Chapter 1:  CJKV Information Processing Overview

Japanese.* Half-width is relative to full-width. Full-width refers to the glyph size of stan-
dard CJKV characters, such as zhuyin, kana, hangul syllables, and ideographs. Latin char-
acters, which appear to take up approximately half the display width of CJKV characters, 
are considered to be half-width by this standard. The very first Japanese characters to 
be processed on computer systems were half-width katakana. They have the same ap-
proximate display width as Latin characters. There are now full-width Latin and katakana 
characters. Table 1-16 shows the difference in display width between half- and full-width 
characters (the katakana character used as the example is pronounced ka).

Half- and full-width charactersTable 1-16. 

Width Katakana Latin

Half ｶｶｶｶｶ 12345
Full カカカカカ １２３４５

As you can see, full-width characters occupy twice the display width as their half-width 
versions. At one point in time there was a clear-cut relationship between the display width 
of a glyph and the number of bytes used to encode it (the encoding length)—the number of 
bytes simply determined the display width. Half-width katakana characters were original-
ly encoded with one byte. Full-width characters were encoded with two bytes. Now that 
there is a much richer choice of encoding methods available, this relationship no longer 
holds true. Table 1-17 lists several popular encoding methods, along with the number of 
bytes required to represent half- and full-width characters.

Half- and full-width character representations—JapaneseTable 1-17. 

Width Script ASCII ISO-2022-JP Shift-JIS EUC-JP UTF-8 UTF-16

Fu
ll Katakana n/a 2 bytes 2 bytes 2 bytes 3 bytes 16 bits

Latin n/a 2 bytes 2 bytes 2 bytes 3 bytes 16 bits

Ha
lf Katakana n/a 1 byte 1 byte 2 bytes 3 bytes 16 bits

Latin 1 byte 1 byte 1 byte 1 byte 1 byte 16 bits

I should also point out that in some circumstances, half-width may also mean not full-
width, and can refer to characters that are intended to be proportional.

*	 In Chinese, specifically in Taiwan, these terms are 半形 (bànxíng) and 全形 (quánxíng), respectively. But, in 
China, they are the same as those used for Japanese, specifically 半角 (bànjiǎo) and 全角 (quánjiǎo), respec-
tively. In Korean, these terms are 반각/半角 (bangak) and 전각/全角 (jeongak), respectively.



Basic Concepts and Terminology FAQ  |  27

Latin Versus Roman Characters
To this day, many people debate whether the 26 letters of the English alphabet should be 
referred to as Roman or Latin characters. While some standards, such as those published 
by ISO, prefer the term Latin, other standards prefer the term Roman. In this book, I 
prefer to use Latin over Roman, and use it consistently, but readers are advised that they 
should treat both terms synonymously.

When speaking of typeface designs, the use of the term Roman is used in contrast with the 
term italic, and refers to the upright or nonitalic letterforms.

What Is a Diacritic Mark?
A diacritic mark is an attachment to a character that typically serves as an accent, or in-
dicates tone or other linguistic information. Diacritic marks are important in the scope 
of this book, because many transliteration and Romanization systems make use of them. 
Japanese long vowels, for example, are indicated through the use of the diacritic mark 
called a macron. Vietnamese makes extensive use of multiple diacritic marks, meaning 
that some characters can include more than one diacritic mark. Many non-Latin scripts, 
such as Japanese hiragana and katakana, also use diacritic marks. In the case of Japanese 
kana, one such diacritic mark serves to indicate the voicing of consonants.

What Is Notation?
The term notation refers to a method of representing units. A given distance, whether 
expressed in miles or kilometers, is, after all, the same physical distance. In computer sci-
ence, common notations for representing the value of bit arrays, bytes, and larger units are 
listed in Table 1-18, and all correspond to a different numeric base.

Decimal 100 in common notationsTable 1-18. 

Notation Base Value range Example

Binary 2 0 and 1 01100100

Octal 8 0–7 144

Decimal 10 0–9 100

Hexadecimal 16 0–9 and A–F 64

While the numbers in the Example column all have the same underlying value, specifi-
cally 100 (in decimal), they have been expressed using different notations, and thus take 
on a different form. Most people—that is, non-nerds—think in decimal notation, because 
that is what we were taught. However, computers—and some nerds—process information 



28  |  Chapter 1:  CJKV Information Processing Overview

using binary notation.* As discussed previously, computers process bits, which have two 
possible values. In the next section, you will learn that hexadecimal notation does, how-
ever, have distinct advantages when dealing with computers.

What Is an Octet?
We have already discussed the terms bits and bytes. But what about the term octet? At a 
glance, you can tell it has something to do with the number eight. An octet represents 
eight bits, and is thus an eight-bit byte, as opposed to a seven-bit one. This becomes con-
fusing when dealing with 16-bit encodings. Sixteen bits can be broken down into two 
eight-bit bytes, or two octets. Thirty-two bits, likewise, can be broken down into four 
eight-bit bytes, or four octets.

Given 16 bits in a row:
0110010001011111

this string of bits can be broken down into two eight-bit units, specifically octets (bytes):
01100100
01011111

The first eight-bit unit represents decimal 100 (0x64), and the second eight-bit unit repre-
sents decimal 95 (0x5F). All 16 bits together as a single unit are usually equal to 25,695 in 
decimal, or <645F> in hexadecimal (it may be different depending on a computer’s specif-
ic architecture). Divide 25,695 by 256 to get the first byte’s value as a decimal octet, which 
results in 100 in this case; the remainder from this division is the value of the second byte, 
which, in this case, is 95. Table 1-19 lists representations of two octets (bytes), along with 
their 16-bit unit equivalent. This is done for you in the four different notations.

Octets and 16-bit units in various notationsTable 1-19. 

Notation First octet Second octet 16-bit unit

Binary 01100100 01011111 01100100 01011111

Octal 144 137 62137

Decimal 100 95 25,695

Hexadecimal 64 5F 64 5F

Note how going from two octets to a 16-bit unit is a simple matter of concatenation in the 
case of binary and hexadecimal notation. This is not true with decimal notation, which 
requires multiplication of the first octet by 256, followed by the addition of the second 
octet. Thus, the ease of converting between different representations—octets versus 
16-bit units—depends on the notation that you are using. Of course, string concatenation 

*	 Now that I think about it, the Bynars, featured in the Star Trek: The Next Generation episode entitled “11001001,” 
represent an entire race that processes information in binary form.



Basic Concepts and Terminology FAQ  |  29

is easier than two mathematical operations. This is precisely why hexadecimal notation is 
used very frequently in computer science and software development.

In some cases, the order in which byte concatenation takes place matters, such as when 
the byte order (also known as endianness) differs depending on the underlying computing 
architecture. Guess what the next section is about?

What Are Little- and Big-Endian?
There are two basic computer architectures when it comes to the issue of byte order: little-
endian and big-endian. That is, the order in which the bytes of larger-than-byte storage 
units—such as integers, floats, doubles, and so on—appear.* One-byte storage units, such 
as char in C/C++, do not need this special treatment. That is, unless your particular ma-
chine or implementation represents them with more than one byte. The following is a 
synopsis of little- and big-endian architectures:

Little-endian machines use computing architectures supported by Vax and Intel pro-•	
cessors. Historically, MS-DOS and Windows machines are little-endian.

Big-endian machines use computing architectures supported by Motorola and Sun •	
processors. Historically, Mac OS and most Unix workstations are big-endian. Big-
endian is also known as network byte order.

Linux, along with Apple’s rather recent switch to Intel processors, has blurred this distinc-
tion, to the point that platform or OS are no longer clear indicators of whether little- or 
big-endian byte order is used. In fact, until the 1970s, virtually all processors used big-
endian byte order. The introduction of microprocessors with their (initially) simple logic 
circuits and use of byte-level computations led to the little-endian approach. So, from the 
viewpoint of history, the mainframe versus microprocessor distinction gave birth to byte 
order differences. I should also point out that runtime detection of byte order is much 
more robust and reliable than guessing based on OS.

Table 1-20 provides an example two-byte value as encoded on little- and big-endian 
machines.

Little- and big-endian representationTable 1-20. 

Notation High byte Low byte Little-endian Big-endian

Binary 01100100 01011111 01011111 01100100 01100100 01011111

Hexadecimal 64 5F 5F 64 64 5F

A four-byte example, such as 0x64, 0x5F, 0x7E, and 0xA1, becomes <A1 7E 5F 64> on 
little-endian machines, and <64 5F 7E A1> on big-endian machines. Note how the bytes 

*	 A derivation of little- and big-endian came from Gulliver’s Travels, in which there were civil wars fought over 
which end of a boiled egg to crack.



30  |  Chapter 1:  CJKV Information Processing Overview

themselves—not the underlying bits of each byte—are reversed depending on endianness. 
This is precisely why endianness is also referred to as byte order. The term endian is used 
to describe what impact the byte at the end has on the overall value. The UTF-16 value 
for the ASCII “space” character, U+0020, is <00 20> for big-endian machines and <20 00> 
for little-endian ones.

Now that you understand the concept of endianness, the real question that needs answer-
ing is when endianness matters. Please keep reading….

What Are Multiple-Byte and Wide Characters?
If you have ever read comprehensive books and materials about ANSI C, you more than 
likely came across the terms multiple-byte and wide characters. Those documents typi-
cally don’t do those terms justice, in that they are not fully explained. Here you’ll get a 
definitive answer.

When dealing with encoding methods that are processed on a per-byte basis, endianness 
or byte order is irrelevant. The bytes that compose each character have only one order, re-
gardless of the underlying architecture. These encoding methods support what are known 
as multiple-byte characters. In other words, these encoding methods use the byte as their 
code unit.

So, what encoding methods support multiple-byte characters? Table 1-21 provides an in-
complete yet informative list of encoding methods that support multiple-byte characters. 
Some encoding methods are tied to a specific locale, and some are tied to CJKV locales 
in general.

Multiple-byte characters—encoding methodsTable 1-21. 

Encoding Encoding length Locale

ASCII One-byte n/a

ISO-2022 One- and two-byte CJKV

EUC One- through four-byte, depending on locale CJKV

GBK One- and two-byte China

GB 18030 One-, two-, and four-byte China

Big Five One- and two-byte Taiwan and Hong Kong

Shift-JIS One- and two-byte Japan

Johab One- and two-byte Korea

UHC One- and two-byte Korea

UTF-8 One- through four-byte n/a

There are some encodings that require special byte order treatment, and thus cannot be 
treated on a per-byte basis. These encodings use what are known as wide characters, and 



Advice to Readers  |  31

almost always provide a facility for indicating the byte order. Table 1-22 lists some encod-
ing methods that make use of wide characters, all of which are encoding methods for 
Unicode.

Wide characters—encoding methodsTable 1-22. 

Encoding Encoding length

UCS-2 16-bit fixed

UTF-16 16-bit variable-length

UTF-32 32-bit fixed

Sometimes the encodings listed in Table 1-22 are recommended to use the Byte Order 
Mark (BOM) at the beginning of a file to explicitly indicate the byte order. The BOM is 
covered in greater detail in Chapter 4.

It is with endianness or byte order that we can more easily distinguish multiple-byte from 
wide characters. Multiple-byte characters have the same byte order, regardless of the un-
derlying processor architecture. The byte order of wide characters is determined by the 
underlying processor architecture and must be flagged or indicated in the data itself.

Advice to Readers
This chapter serves as an introduction to the rest of this book, and is meant to whet your 
appetite for what lies ahead in the pages that follow. When reading the chapters of this 
book, I suggest that you focus on the sections that cover or relate to Unicode, because they 
are likely to be of immediate value and benefit. Information about legacy character sets 
and encodings is still of great value because it relates to Unicode, often directly, and also 
serves to chronicle how we got to where we are today.

In any case, I hope that you enjoy reading this book as much as I enjoyed writing the 
words that are now captured within its pages.





33

Chapter 2

Writing Systems and Scripts

Reading the introductory chapter provided you with a taste of what you can expect to 
learn about CJKV information processing in this book. Let’s begin the journey with a 
thorough description of the various CJKV writing systems that serve as the basis for the 
characters set standards that will be covered in Chapter 3.

Mind you, we have already touched upon this subject, though briefly, in the introductory 
chapter, but there is a lot more to learn! After reading this chapter, you should have a firm 
grasp of the types of characters, or character classes, used to write CJKV text, specifically 
the following:

Latin characters—including transliteration and romanization systems•	

Zhuyin—also called •	 bopomofo

Kana—•	 hiragana and katakana

Hangul syllables—including •	 jamo, the elements from which they’re made

Ideographs—originating in China•	

Non-Chinese ideographs—originating in Japan, Korea, and Vietnam•	

Knowing that each of these character classes exhibits its own special characteristics and 
often has locale-specific usages is important to grasp. This information is absolutely cru-
cial for understanding discussions elsewhere in this book. After all, many of the problems 
and issues that caused you to buy this book are the result of the complexities of these writ-
ing systems. This is not a bad thing: the complexities and challenges that we face are what 
make our lives interesting, and to some extent, unique from one another.

Latin Characters, Transliteration, and Romanization
Latin characters (拉丁字母 lādīng zìmǔ in Chinese, ラテン文字 raten moji or ローマ字 
rōmaji in Japanese, 로마자 romaja in Korean, and Quốc ngữ/國語 in Vietnamese) used 
in the context of CJKV text are the same as those used in Western text, specifically the 52 
upper- and lowercase letters of the Latin alphabet, sometimes decorated with accents to 



34  |  Chapter 2:  Writing Systems and Scripts

indicate length, tone, or other phonetic attributes, and sometimes set with full-width met-
rics. Also included are the 10 numerals 0 through 9. Accented characters, usually vowels, 
are often required for transliteration or Romanization purposes. Table 2-1 lists the basic 
set of Latin characters.

Latin charactersTable 2-1. 

Character class Characters

Lowercase abcdefghijklmnopqrstuvwxyz
Uppercase ABCDEFGHIJKLMNOPQRSTUVWXYZ
Numerals 0123456789

There is really nothing special about these characters. Latin characters are most often 
used in tables (numerals), in abbreviations and acronyms (alphabet), or for transcription 
or transliteration purposes, sometimes with accented characters to account for tones or 
other phonetic attributes.

Transliteration systems are distinguished from Romanization systems in that they are not 
the primary way to write a language, and serve as a proununciation aid for those who are 
not familiar with the primary scripts of the language.

Commonly used transliteration systems for CJKV text that use characters beyond the 
standard set of Latin characters illustrated in Table 2-1 include Pinyin (Chinese), Hepburn 
(Japanese), Kunrei (Japanese), and Ministry of Education (Korean). These and other CJKV 
transliteration systems are covered in the following sections. Quốc ngữ, on the other hand, 
is a Romanization system, because it is the accepted way to write Vietnamese.

Special cases of transliteration are covered in Chapter 9, specifically in the section entitled 
“Special Transliteration Considerations.”

Chinese Transliteration Methods
Chinese uses two primary transliteration methods: Pinyin (拼音 pīnyīn) and Wade-Giles 
(韋氏 wéishì). There is also the Yale method, which is not covered in this book. There are 
many similarities between these two transliteration methods; they mainly differ in where 
they are used. Pinyin is used in China, whereas Wade-Giles is popular in Taiwan. His-
torically speaking, Wade-Giles was the original Chinese transliteration system recognized 
during the nineteenth century.

Table 2-2 lists the consonant sounds as transliterated by Pinyin and Wade-Giles—zhuyin/
bopomofo symbols, also a transliteration system, and described later in this chapter, are 
included for the purpose of cross-reference.



Latin Characters, Transliteration, and Romanization  |  35

Chinese transliteration—consonantsTable 2-2. 

Zhuyin/bopomofo Pinyin Wade-Giles

ㄅ B P

ㄆ P P’

ㄇ M M

ㄈ F F

ㄉ D T

ㄊ T T’

ㄋ N N

ㄌ L L

ㄍ G K

ㄎ K K’

ㄏ H H

ㄐ J CHa

ㄑ Q CH’a

ㄒ X HSa

ㄓ ZH CH

ㄔ CH CH’

ㄕ SH SH

ㄖ R J

ㄗ Z TS

ㄘ C TS’

ㄙ S S

Only before a.	 i or ü

Table 2-3 lists the vowel sounds as transliterated by Pinyin—zhuyin/bopomofo are again 
included for reference. Note that this table is constructed as a matrix that indicates what 
zhuyin vowel combinations are possible and how they are transliterated. The two axes 
themselves serve to indicate the transliterations for single zhuyin vowels.

Chinese transliteration—vowelsTable 2-3. 

ㄧ  I ㄨ  U ㄩ  Ü

ㄚ  A ㄧㄚ  IA ㄨㄚ  UA

ㄛ  O ㄨㄛ  UO



36  |  Chapter 2:  Writing Systems and Scripts

Chinese transliteration—vowelsTable 2-3. 

ㄧ  I ㄨ  U ㄩ  Ü

ㄜ  E ㄧㄝ  IE ㄩㄝ  ÜE

ㄞ  AI ㄨㄞ  UAI

ㄟ  EI ㄨㄟ  UEI

ㄠ  AO ㄧㄠ  IAO

ㄡ  OU ㄧㄡ  IOU

ㄢ  AN ㄧㄢ  IAN ㄨㄢ  UAN ㄩㄢ  ÜAN

ㄣ  EN ㄧㄣ  IN ㄨㄣ  UEN ㄩㄣ  ÜN

ㄤ  ANG ㄧㄤ  IANG ㄨㄤ  UANG

ㄥ  ENG ㄧㄥ  ING ㄨㄥ  UENG or ONG ㄩㄥ  IONG

The zhuyin character ㄦ, which deserves separate treatment from the others, is usually 
transliterated er.

It is sometimes necessary to use an apostrophe to separate the Pinyin readings of in-
dividual hanzi when the result can be ambiguous. Consider the transliterations for the 
words 先 and 西安, which are xiān and xī’ān, respectively. Note the use of the apostrophe 
to distinguish them.

More details about the zhuyin characters themselves appear later in this chapter. Po-Han 
Lin (林伯翰 lín bóhàn) has developed a Java applet that can convert between the Pinyin, 
Wade-Giles, and Yale transliteration systems.* He also provides additional details about 
Chinese transliteration.†

Chinese tone marks
Also of interest is how tone marks are rendered when transliterating Chinese text. Basi-
cally, there are two systems for indicating tone. One system, which requires the use of 
special fonts, employs diacritic marks that serve to indicate tone. The other system uses 
the numerals 1 through 4 immediately after each hanzi transliteration—no special fonts 
are required. Pinyin transliteration generally uses diacritic marks, but Wade-Giles uses 
numerals.

Table 2-4 lists the names of the Chinese tone marks, along with an example hanzi for each. 
Note that there are cases in which no tone is required.

*	 http://www.edepot.com/java.html
†	 http://www.edepot.com/taoroman.html



Latin Characters, Transliteration, and Romanization  |  37

Chinese tone mark examplesTable 2-4. 

Tone Tone name Numbera Example Meaning

None 轻声/輕聲 (qīngshēng) None ma (吗) Question particle

Flat 阴平/陰平 (yīnpíng) 1 ma1 or mā (妈) mother

Rising 阳平/陽平 (yángpíng) 2 ma2 or má (麻) hemp, flax

Falling-Rising 上声/上聲 (shǎngshēng) 3 ma3 or mǎ (马) horse

Falling 去声/去聲 (qùshēng) 4 ma4 or mà (骂) cursing, swearing

Microsoft’s Pinyin input method uses the numeral 5 to indicate no tone.a.	

It is also common to find reference works in which Pinyin readings have no tone marks at 
all—that is, no numerals and no diacritic marks. I have observed that tone marks can be 
effectively omitted when the corresponding hanzi are in proximity, such as on the same 
page; the hanzi themselves can be used to remove any ambiguity that arises from no in-
dication of tones. Pinyin readings provided throughout this book use diacritic marks to 
indicate tone.

Japanese Transliteration Methods
There are four Japanese transliteration systems worth exploring in the context of this 
book:

The Hepburn system (ヘボン式 hebon shiki)
Popularized by James Curtis Hepburn, an American missionary, in 1887 in the third 
edition of his dictionary, this is considered the most widely used system. This trans-
literation system was developed two years earlier, in 1885, by the Roman Character 
Association (羅馬字会 rōmajikai).

The Kunrei system (訓令式 kunrei shiki)
Developed in 1937, this is considered the official transliteration system by the Japa-
nese government.

The Nippon system (日本式 nippon shiki)
Developed by Aikitsu Tanakadate (田中館愛橘 tanakadate aikitsu) in 1881—nearly 
identical to the Kunrei system, but the least used.

The Word Processor system (ワープロ式 wāpuro shiki)
Developed in a somewhat ad hoc fashion over recent years by Japanese word proces-
sor and input method manufacturers. Whereas the other three transliteraton systems 
are largely phonemic, the Word Processor system more closely adheres to a one-to-
one transcription of the kana.

The Japanese transliterations in this book adhere to the Hepburn system. Because the 
Word Processor system allows for a wide variety of transliteration possibilities, which is 
the nature of input methods, it is thus a topic of discussion in Chapter 5.



38  |  Chapter 2:  Writing Systems and Scripts

Table 2-5 lists the basic kana syllables (shown here and in other tables of this section us-
ing hiragana), transliterated according to the three transliteration systems. Those that are 
transliterated differently in the three systems have been highlighted for easy differentia-
tion. Table 2-18 provides similar information, but presented in a different manner.

Single syllable Japanese transliterationTable 2-5. 

Kana Hepburn Kunrei Nippon

あ A A A

い I I I

う U U U

え E E E

お O O O

か KA KA KA

が GA GA GA

き KI KI KI

ぎ GI GI GI

く KU KU KU

ぐ GU GU GU

け KE KE KE

げ GE GE GE

こ KO KO KO

ご GO GO GO

さ SA SA SA

ざ ZA ZA ZA

し SHI SI SI

じ JI ZI ZI

す SU SU SU

ず ZU ZU ZU

せ SE SE SE

ぜ ZE ZE ZE



Latin Characters, Transliteration, and Romanization  |  39

Single syllable Japanese transliterationTable 2-5. 

Kana Hepburn Kunrei Nippon

そ SO SO SO

ぞ ZO ZO ZO

た TA TA TA

だ DA DA DA

ち CHI TI TI

ぢ JI ZI DI

つ TSU TU TU

づ ZU ZU DU

て TE TE TE

で DE DE DE

と TO TO TO

ど DO DO DO

な NA NA NA

に NI NI NI

ぬ NU NU NU

ね NE NE NE

の NO NO NO

は HA HA HA

ば BA BA BA

ぱ PA PA PA

ひ HI HI HI

び BI BI BI

ぴ PI PI PI

ふ FU HU HU

ぶ BU BU BU

ぷ PU PU PU

へ HE HE HE



40  |  Chapter 2:  Writing Systems and Scripts

Single syllable Japanese transliterationTable 2-5. 

Kana Hepburn Kunrei Nippon

べ BE BE BE

ぺ PE PE PE

ほ HO HO HO

ぼ BO BO BO

ぽ PO PO PO

ま MA MA MA

み MI MI MI

む MU MU MU

め ME ME ME

も MO MO MO

や YA YA YA

ゆ YU YU YU

よ YO YO YO

ら RA RA RA

り RI RI RI

る RU RU RU

れ RE RE RE

ろ RO RO RO

わ WA WA WA

ゐ WI WI WI

ゑ WE WE WE

を O O WO

ん N or Ma N N

An a.	 m was once used before the consonants b, p, or m—an n is now used in all contexts.

Table 2-6 lists what are considered to be the palatalized syllables—although they signify a 
single syllable, they are represented with two kana characters. Those that are different in 
the three transliteration systems are highlighted.



Latin Characters, Transliteration, and Romanization  |  41

Japanese transliteration—palatalized syllablesTable 2-6. 

Kana Hepburn Kunrei Nippon

きゃ KYA KYA KYA

ぎゃ GYA GYA GYA

きゅ KYU KYU KYU

ぎゅ GYU GYU GYU

きょ KYO KYO KYO

ぎょ GYO GYO GYO

しゃ SHA SYA SYA

じゃ JA ZYA ZYA

しゅ SHU SYU SYU

じゅ JU ZYU ZYU

しょ SHO SYO SYO

じょ JO ZYO ZYO

ちゃ CHA TYA TYA

ぢゃ JA ZYA DYA

ちゅ CHU TYU TYU

ぢゅ JU ZYU DYU

ちょ CHO TYO TYO

ぢょ JO ZYO DYO

にゃ NYA NYA NYA

にゅ NYU NYU NYU

にょ NYO NYO NYO

みゃ MYA MYA MYA

みゅ MYU MYU MYU

みょ MYO MYO MYO

ひゃ HYA HYA HYA

びゃ BYA BYA BYA

ぴゃ PYA PYA PYA



42  |  Chapter 2:  Writing Systems and Scripts

Japanese transliteration—palatalized syllablesTable 2-6. 

Kana Hepburn Kunrei Nippon

ひゅ HYU HYU HYU

びゅ BYU BYU BYU

ぴゅ PYU PYU PYU

ひょ HYO HYO HYO

びょ BYO BYO BYO

ぴょ PYO PYO PYO

りゃ RYA RYA RYA

りゅ RYU RYU RYU

りょ RYO RYO RYO

Table 2-7 lists what are considered to be long (or doubled) vowels. The first five rows are 
hiragana, and the last five are katakana. Note that only the long hiragana i—written い
い, and transliterated ii—is common to all three systems, and that the Kunrei and Nippon 
systems are identical in this regard.

Japanese transliteration—long vowelsTable 2-7. 

Kana Hepburn Kunrei Nippon

ああ Ā Â Â

いい II II II

うう Ū Û Û

ええ Ē Ê Ê

えい EI EI EI

おう Ō Ô Ô

アー Ā Â Â

イー Ī Î Î

ウー Ū Û Û

エー Ē Ê Ê

オー Ō Ô Ô



Latin Characters, Transliteration, and Romanization  |  43

The only difference among these systems’ long vowel transliterations is the use of a ma-
cron (Hepburn) versus a circumflex (Kunrei and Nippon). Almost all Latin fonts include 
circumflexed vowels, but those with macroned vowels are still relatively rare.

Finally, Table 2-8 shows some examples of how to transliterate Japanese double conso-
nants, all of which use a small つ or ツ (tsu).

Japanese transliteration—double consonantsTable 2-8. 

Example Transliteration

かっこ kakko

いっしょ issho

ふっそ fusso

ねっちゅう netchū

しって shitte

ビット bitto

ベッド beddo

バッハ bahha

Korean Transliteration Methods
There are now four generally accepted methods for transliterating Korean text: The Re-
vised Romanization of Korean* (국어의 로마자 표기법/國語의 로마字 表記法 gugeoui 
romaja pyogibeop), established on July 7, 2000; Ministry of Education (문교부/文敎部 
mungyobu, derived from and sometimes referred to as McCune-Reischauer), established 
on January 13, 1984;† Korean Language Society (한글 학회/한글 學會 hangeul hakhoe), 
established on February 21, 1984;‡ and ISO/TR 11941:1996 (Information Documentation—
Transliteration of Korean Script into Latin Characters), established in 1996. The transliter-
ated Korean text in this book adheres to the RRK transliteration method because it repre-
sents the official way in which Korean text is transliterated, at least in South Korea.§ Other 
transliteration methods, not covered in this book, include Yale, Lukoff, and Horne.

Table 2-9 lists the jamo that represent consonants, along with their representation in these 
three transliteration methods. Also included are the ISO/TR 11941:1996 transliterations 
when these jamo serve as the final consonant of a syllable. ISO/TR 11941:1996 Method 1 

*	 http://www.mct.go.kr/english/roman/roman.jsp
†	 http://www.hangeul.or.kr/24_1.htm
‡	 http://www.hangeul.or.kr/hnp/hanroma.hwp
§	 Notable exceptions include words such as hangul, which should really be transliterated as hangeul.



44  |  Chapter 2:  Writing Systems and Scripts

is used for North Korea (DPRK), and Method 2 is used for South Korea (ROK). Upper-
case is used solely for clarity.

Korean transliteration—consonantsTable 2-9. 

Jamo RRKa MOE KLS ISO (DPRK) Final ISO (ROK) Final

ㄱ G/Kb—G K/G G K K G G

ㄴ N N N N N N N

ㄷ D/T c—D T/D D T T D D

ㄹ R/Ld—L R/L L R L R L

ㅁ M M M M M M M

ㅂ B/P e—B P/B B P P B B

ㅅ S S/SH S S S S S

ㅇ None/NG None/NG None/NG None NG None NG

ㅈ J CH/J J C C J J

ㅊ CH CH’ CH CH CH C C

ㅋ K K’ K KH KH K K

ㅌ T T’ T TH TH T T

ㅍ P P’ P PH PH P P

ㅎ H H H H H H H

ㄲ KK KK GG KK KK GG GG

ㄸ TT TT DD TT n/a DD n/a

ㅃ PP PP BB PP n/a BB n/a

ㅆ SS SS SS SS SS SS SS

ㅉ JJ TCH JJ CC n/a JJ n/a

When Clause 8 of this system is invoked, the character shown after the dash shall be used.a.	

Gb.	  is used before vowels, and K is used when followed by another consonant or to form the final sound of a word.

Dc.	  is used before vowels, and T is used when followed by another consonant or to form the final sound of a word.

Rd.	  is used before vowels, and L is used when followed by another consonant or to form the final sound of a word.

Be.	  is used before vowels, and P is used when followed by another consonant or to form the final sound of a word.

Note that some of the double jamo do not occur at the end of syllables. Also, some of 
these transliteration methods, most notably the Ministry of Education system, have a 
number of rules that dictate how to transliterate certain jamo depending on their context. 



Latin Characters, Transliteration, and Romanization  |  45

This context dependency arises because the MOE and RRK (without Clause 8 invoked) 
are transcription systems and not transliteration systems, and because the hangul script 
is morphophonemic (represents the underlying root forms) and not phonemic (repre-
sents the actual sounds). If a one-to-one correspondence and round-trip conversion are 
desired, invoking Clause 8 of the RRK system accomplishes both. ICU’s Hangul-Latin 
transliteration function does this.*

For example, the ㄱ jamo is transliterated as k when voiceless (such as at the beginning 
of a word or not between two voiced sounds), and as g when between two voiced sounds 
(such as between two vowels, or between a vowel and a voiced consonant). Thus, ㄱ in 
강물 is pronounced k because it is voiceless, but the same ㄱ in 한강 is pronounced g 
because it is between a voiced consonant (ㄴ) and a vowel (ㅏ), and becomes voiced 
itself.

Clause 8 of RRK states that when it is necessary to convert transliterated Korean back into 
hangul for special purposes, such as for academic papers, transliteration is done accord-
ing to hangul spelling and not by pronunciation. The jamo ㄱ, ㄷ, ㅂ, and ㄹ are thus 
always written as g, d, b, and l. Furthermore, when ㅇ has no phonetic value, it is replaced 
by a hyphen, which may also be used to separate or distinguish syllables.

ISO/TR 11941:1996 also defines transliterations for compound consonant jamo that ap-
pear only at the end of hangul syllables, all of which are listed in Table 2-10.

ISO/TR 11941:1996 compound jamo transliterationTable 2-10. 

Jamo DPRK ROK

ㄳ KS GS

ㄵ NJ NJ

ㄶ NH NH

ㄺ LK LG

ㄻ LM LM

ㄼ LP LB

ㄽ LS LS

ㄾ LTH LT

ㄿ LPH LP

ㅀ LH LH

ㅄ PS BS

*	 http://icu-project.org/userguide/Transform.html



46  |  Chapter 2:  Writing Systems and Scripts

Table 2-11 lists the jamo that represent vowels and diphthongs, along with their repre-
sentations in the three transliteration methods. Again, uppercase is used for clarity, and 
differences have been highlighted.

Korean transliteration—vowelsTable 2-11. 

Jamo RRK MOE KLS ISO (DPRK and ROK)

ㅏ A A A A

ㅑ YA YA YA YA

ㅓ EO Ŏ EO EO

ㅕ YEO YŎ YEO YEO

ㅗ O O O O

ㅛ YO YO YO YO

ㅜ U U U U

ㅠ YU YU YU YU

ㅡ EU Ŭ EU EU

ㅣ I I I I

ㅐ AE AE AE AE

ㅒ YAE YAE YAE YAE

ㅔ E E E E

ㅖ YE YE YE YE

ㅘ WA WA WA WA

ㅙ WAE WAE WAE WAE

ㅚ OE OE OE OE

ㅝ WO WŎ WEO WEO

ㅞ WE WE WE WE

ㅟ WI WI WI WI

ㅢ UI ŬI EUI YI

Note that the ISO/TR 11941:1996 transliteration method is identical for both North and 
South Korea (DPRK and ROK, respectively).

As with most transliteration methods, there are countless exceptions and special cases. 
Tables 2-9 and 2-11 provide only the basic transliterations for jamo. It is when you start 



Latin Characters, Transliteration, and Romanization  |  47

combining consonants and vowels that exceptions and special cases become an issue. In 
fact, a common exception is the transliteration of the hangul used for the Korean surname 
“Lee.” I suggest that you try Younghong Cho’s Korean Transliteration Tools.*

Vietnamese Romanization Methods
Writing Vietnamese using Latin characters—called Quốc ngữ (國語)—is considered the 
most acceptable method for expressing Vietnamese today. As a result, Quốc ngữ is not 
considered a transliteration method. As with using Latin characters to represent Chinese, 
Japanese, and Korean text, it is the currently acceptable means to express Vietnamese in 
writing. Quốc ngữ is thus a Romanization system.

This writing system is based on Latin script, but is decorated with additional characters 
and many diacritic marks. This complexity serves to account for the very rich Vietnamese 
sound system, complete with tones.

In addition to the upper- and lowercase English alphabet, Quốc ngữ requires two addi-
tional consonants and 12 additional base characters (that is, characters that do not indi-
cate tone), as shown in Table 2-12.

Additional Quốc ngữ consonants and base charactersTable 2-12. 

Character class Consonants Base characters

Lowercase đ ăâêôơư
Uppercase Đ ĂÂÊÔƠƯ

The modifiers that are used for the base vowels, in the order shown in Table 2-12, are 
called breve or short (trăng or mũ ngược in Vietnamese), circumflex (mũ in Vietnamese), 
and horn (móc or râu in Vietnamese).

While these additional base characters include diacritic marks and other attachments, 
they do not indicate tone. There are six tones in Vietnamese, five of which are written with 
a tone mark. Every Vietnamese word must have a tone. The diacritic marks for these six 
tones are shown in Table 2-13, along with their names.

The six Vietnamese tonesTable 2-13. 

Tone mark Name in Vietnamese Name in English

none Không dấu none

` Huyền Grave

*	 http://www.sori.org/hangul/conv2kr.cgi



48  |  Chapter 2:  Writing Systems and Scripts

The six Vietnamese tonesTable 2-13. 

Tone mark Name in Vietnamese Name in English

� Hỏi Hook above, curl, or hoi

˜ Ngã Tilde

́ Sắc Acute

� Nặng Dot below, underdot, or nang

All of the diacritic-annotated characters that are required for the Quốc ngữ writing sys-
tem, which are combinations of base characters plus tones, are provided in Table 2-14.

Quốc ngữ base characters and tone marksTable 2-14. 

Base characters

a  A ă  Ă â  Â e E  ê  Ê i  I o O  ô  Ô ơ  Ơ u  U ư  Ư y  Y

To
ne

 m
ar

ks

` à  À ằ  Ằ ầ  Ầ è  È ề  Ề ì  Ì ò  Ò ồ  Ồ ờ  Ờ ù  Ù ừ  Ừ ỳ  Ỳ

� ả  Ả ẳ  Ẳ ẩ  Ẩ ẻ  Ẻ ể  Ể ỉ  Ỉ ỏ  Ỏ ổ  Ổ ở  Ở ủ  Ủ ử  Ử ỷ  Ỷ

˜ ã  Ã ẵ  Ẵ ẫ  Ẫ ẽ  Ẽ ễ  Ễ ĩ  Ĩ õ  Õ ỗ  Ỗ ỡ  Ỡ ũ  Ũ ữ  Ữ ỹ  Ỹ

́ á  Á ắ  Ắ ấ  Ấ é  É ế  Ế í  Í ó  Ó ố  Ố ớ  Ớ ú  Ú ứ  Ứ ý  Ý

� ạ  Ạ ặ  Ặ ậ  Ậ ẹ  Ẹ ệ  Ệ ị  Ị ọ  Ọ ộ  Ộ ợ  Ợ ụ  Ụ ự  Ự ỵ  Ỵ

In summary, Quốc ngữ requires 134 additional characters beyond the English alphabet. 
Fourteen are additional base characters (see Table 2-12), and the remaining 120 include 
diacritic marks that indicate tone (see Table 2-14). Although the U+1Exx block of Unicode 
provides the additional characters necessary for Vietnamese in precomposed form, they 
can still be represented as sequences that are composed of a base character followed by 
one or more diacritic marks. Windows Code Page 1258 includes some, but not all, of these 
precomposed characters.

ASCII-based Vietnamese transliteration methods
When only the ASCII character set is available, it is still possible to represent Vietnamese 
text using well-established systems. The two most common ASCII-based transliteration 
methods are called VIetnamese Quoted-Readable (VIQR) and VSCII MNEMonic (VSCII-
MNEM). The VIQR system is documented in RFC 1456.* Table 2-15 illustrates how Quốc 
ngữ base characters and tones are represented in these two systems.

*	 http://www.ietf.org/rfc/rfc1456.txt



Zhuyin/Bopomofo  |  49

VIQR and VSCII-MNEM transliteration methodsTable 2-15. 

Quốc ngữ VIQR VSCII-MNEM
Ba

se
 ch

ar
ac

te
rs

ă Ă a( A( a< A<

â Â a^ A^ a> A>

ê Ê e^ E^ e> E>

ô Ô o^ O^ o> O>

ơ Ơ o+ O+ o* O*

ư Ư u+ U+ u* U*

đ Đ dd DD dd DD

To
ne

s

à À a` A` a! A!

ả Ả a? A? a? A?

ã Ã a~ A~ a" A"

á Á a' A' a' A'

ạ Ạ a. A. a. A.

Table 2-16 illustrates how base characters and tones are combined in each system. Note 
how the base character’s ASCII-based annotation comes before the ASCII-based tone 
mark.

Base character plus tones using VIQR and VSCII-MNEM methodsTable 2-16. 

Quốc ngữ VIQR VSCII-MNEM

ờ  Ờ o+` O+` o*! O*!

ở  Ở o+? O+? o*? O*?

ỡ  Ỡ o+~ O+~ o*" O*"

ớ  Ớ o+' O+' o*' O*'

ợ  Ợ o+. O+. o*. O*.

Zhuyin/Bopomofo
Zhuyin, developed in the early part of the 20th century, is a method for transcribing Chi-
nese text using ideograph elements for their reading value. In other words, it is a translit-
eration system. It is also known as the National Phonetic System (注音符号 zhùyīn fúhào) 
or bopomofo. The name bopomofo is derived from the readings of the first four characters 
in the character set: b, p, m, and f. There are a total of 37 characters (representing 21 



50  |  Chapter 2:  Writing Systems and Scripts

consonants and 16 vowels), along with five symbols to indicate tone (one of which has no 
glyph) in the zhuyin character set.

Table 2-17 illustrates each of the zhuyin characters, along with the ideograph from which 
they were derived, and their reading. Those that represent vowels are at the end of the 
table.

Zhuyin charactersTable 2-17. 

Zhuyin Ideograph Reading—Pinyin

ㄅ 勹 B

ㄆ 攵 P

ㄇ 𠘨 M

ㄈ 匚 F

ㄉ 𠚣 D

ㄊ 𠫓 T

ㄋ 𠄎 N

ㄌ 𠠲 L

ㄍ 巜 G

ㄎ 丂 K

ㄏ 厂 H

ㄐ 丩 J

ㄑ 𡿨 Q

ㄒ 丅 X

ㄓ 㞢 ZH

ㄔ 彳 CH

ㄕ 𡰣 SH

ㄖ 日 R

ㄗ 卩 Z

ㄘ 𠀁 C

ㄙ 厶 S

ㄚ 丫 A



Kana  |  51

Zhuyin charactersTable 2-17. 

Zhuyin Ideograph Reading—Pinyin

ㄛ 𠀀 O

ㄜ 左 E

ㄝ 也 EI

ㄞ 𠀅 AI

ㄟ 乁 EI

ㄠ 幺 AO

ㄡ 又 OU

ㄢ 𢎘 AN

ㄣ 𠃑 EN

ㄤ 尢 ANG

ㄥ 𠃋 ENG

ㄦ 儿 ER

ㄧ or � 丨 I

ㄨ 㐅 U

ㄩ 凵 IU

The zhuyin character set is included in character sets developed in China (GB 2312-80 
and GB/T 12345-90, Row 8) and Taiwan (CNS 11643-2007, Plane 1, Row 5). This set 
of characters is identical across these two Chinese locales, with one exception, which is 
indicated in Table 2-17 with two different characters: “ㄧ” is used in China, and “�” is 
used in Taiwan.

Kana
The most frequently used script found in Japanese text is kana. It is a collective term for 
two closely related scripts, as follows:

Hiragana•	

Katakana•	

Although one would expect to find kana characters only in Japanese character sets, they 
are, in fact, part of some Chinese and Korean character sets, in particular GB 2312-80 and 
KS X 1001:2004. In fact, kana are encoded at the same code points in the case of GB 2312-
80! Why in the world would Chinese and Korean character sets include kana? Most likely 



52  |  Chapter 2:  Writing Systems and Scripts

for the purposes of creating Japanese text using a Chinese or Korean character set.* After 
all, many of the ideographs are common across these locales.

The following sections provide detailed information about kana, along with how they 
were derived from ideographs.

Hiragana
Hiragana (平仮名 hiragana) are characters that represent sounds, specifically syllables. 
A syllable is generally composed of a consonant plus a vowel—sometimes a single vowel 
will do. In Japanese, there are five vowels: a, i, u, e, and o; and 14 basic consonants: k, s, t, 
n, h, m, y, r, w, g, z, d, b, and p. It is important to understand that hiragana is a syllabary, 
not an alphabet: you cannot decompose a hiragana character into a part that represents 
the vowel and a part that represents the consonant. Hiragana (and katakana, covered in 
the next section) is one of the only true syllabaries still in common use today. Table 2-18 
illustrates a matrix containing the basic and extended hiragana syllabary.

The hiragana syllabaryTable 2-18. 

K S T N H M Y R W G Z D B P

A あ か さ た な は ま や ら わ が ざ だ ば ぱ
I い き し ち に ひ み り ゐ ぎ じ ぢ び ぴ
U う く す つ ぬ ふ む ゆ る ぐ ず づ ぶ ぷ
E え け せ て ね へ め れ ゑ げ ぜ で べ ぺ
O お こ そ と の ほ も よ ろ を ご ぞ ど ぼ ぽ
N ん

The following are some notes to accompany Table 2-18:

Several hiragana have smaller versions, and are as follows (the standard version is in •	
parentheses): ぁ (あ), ぃ (い), ぅ (う), ぇ (え), ぉ (お), っ (つ), ゃ (や), ゅ (ゆ), ょ (よ), 
and ゎ (わ).

Two hiragana, •	 ゐ and ゑ, are no longer commonly used.

The hiragana •	 を is read as o, not wo.

The hiragana •	 ん is considered an independent syllable and is pronounced approxi-
mately ng.

*	 There is, however, one fatal flaw in the Chinese and Korean implementations of kana. They omitted five sym-
bols used with kana, all of which are encoded in row 1 of JIS X 0208:1997 (Unicode code points also provided): 

 ヽ(01-19; U+30FD), ヾ  (01-20; U+30FE), ゝ  (01-21; U+309D), ゞ  (01-22; U+309E), and ー (01-28; U+30FC).



Kana  |  53

Notice that some cells do not contain any characters. These sounds are no longer used in 
Japanese, and thus no longer need a character to represent them. Also, the first block of 
characters is set in a 5×10 matrix. This is sometimes referred to as the 50 Sounds Table 
(50 音表 gojūon hyō), so named because it has a capacity of 50 cells. The other blocks of 
characters are the same as those in the first block, but with diacritic marks.

Diacritic marks serve to annotate characters with additional information—usually a 
changed pronunciation. In the West you commonly see accented characters such as á, à, 
â, ä, ã, and å. The accents are called diacritic marks.

In Japanese there are two diacritic marks: dakuten (also called voiced and nigori) and 
handakuten (also called semi-voiced and maru). The dakuten (濁点 dakuten) appears as 
two short diagonal strokes ( )゙ in the upper-right corner of some kana characters. The da-
kuten serves to voice the consonant portion of the kana character to which it is attached.* 
Examples of voiceless consonants include k, s, and t. Their voiced counterparts are g, z, 
and d, respectively. Hiragana ka (か) becomes ga (が) with the addition of the dakuten. 
The b sound is a special voiced version of a voiced h in Japanese.

The handakuten (半濁点 handakuten) appears as a small open circle ( )゚ in the upper-
right corner of kana characters that begin with the h consonant. It transforms this h sound 
into a p sound.

Hiragana were derived by cursively writing kanji, but no longer carry the meaning of the 
kanji from which they were derived. Table 2-22 lists the kanji from which the basic hira-
gana characters were derived.

In modern Japanese, hiragana are used to write grammatical words, inflectional end-
ings for verbs and adjectives, and some nouns.† They can also be used as a fallback (read 
“crutch”) in case you forget how to write a kanji—the hiragana that represent the reading 
of a kanji are used in this case. In summary, hiragana are used to write some native Japa-
nese words.

Table 2-19 enumerates the hiragana characters that are included in the JIS X 0208:1997 
and JIS X 0213:2004 character set standards. For both character set standards, all of these 
characters are in Row 4.

*	 Voicing is a linguistic term referring to the vibration of the vocal bands while articulating a sound.
†	 Prior to the Japanese writing system reforms that took place after World War II, hiragana and katakana were 

used interchangeably, and many legal documents used katakana for inflectional endings and for purposes now 
used exclusively by hiragana.



54  |  Chapter 2:  Writing Systems and Scripts

Hiragana characters in JIS standardsTable 2-19. 

Standard Characters

JIS X 0208:1997

ぁあぃいぅうぇえぉおかがきぎくぐけげこごさざし
じすずせぜそぞただちぢっつづてでとどなにぬねの
はばぱひびぴふぶぷへべぺほぼぽまみむめもゃやゅ
ゆょよらりるれろゎわゐゑをん

JIS X 0213:2004 ゔゕゖか゚き゚く゚け゚こ゚

Note how these characters have a cursive or calligraphic look to them (cursive and cal-
ligraphic refer to a smoother, handwritten style of characters). Keep these shapes in mind 
while we move on to katakana.

Katakana
Katakana (片仮名 katakana), like hiragana, is a syllabary, and with minor exceptions, 
they represent the same set of sounds as hiragana. Their modern usage, however, dif-
fers from hiragana. Where hiragana are used to write native Japanese words, katakana 
are primarily used to write words of foreign origin, called gairaigo (外来語 gairaigo), to 
write onomatopoeic words,* to express “scientific” names of plants and animals, or for 
emphasis—similar to the use of italics to represent foreign words and to express emphasis 
in English. For example, the Japanese word for bread is written パン and is pronounced 
pan. It was borrowed from the Portuguese word pão, which is pronounced sort of like 
pown. Katakana are also used to write foreign names. Table 2-20 illustrates the basic and 
extended katakana syllabary.

The katakana syllabaryTable 2-20. 

K S T N H M Y R W G Z D B P

A ア カ サ タ ナ ハ マ ヤ ラ ワ ガ ザ ダ バ パ
I イ キ シ チ ニ ヒ ミ リ ヰ ギ ジ ヂ ビ ピ
U ウ ク ス ツ ヌ フ ム ユ ル グ ズ ヅ ブ プ
E エ ケ セ テ ネ ヘ メ レ ヱ ゲ ゼ デ ベ ペ
O オ コ ソ ト ノ ホ モ ヨ ロ ヲ ゴ ゾ ド ボ ポ
N ン

*	 Onomatopoeic refers to words that serve to describe a sound, such as buzz or hiss in English. In Japanese, for 
example, ブクブク (bukubuku) represents the sound of a balloon expanding.



Kana  |  55

The following are some notes to accompany Table 2-20:

Several katakana have smaller versions, and are as follows (the standard version is in •	
parentheses): ァ (ア), ィ (イ), ゥ (ウ), ェ (エ), ォ (オ), ヵ (カ), ヶ (ケ), ッ (ツ), ャ (ヤ), 
ュ (ユ), ョ (ヨ), and ヮ (ワ).

Two katakana, •	 ヰ and ヱ, are no longer commonly used.

The katakana •	 ヲ is read as o, not wo.

The katakana •	 ン is considered an independent syllable, and is pronounced approxi-
mately ng.

Katakana were derived by extracting a single portion of a whole kanji, and, like hiragana, 
no longer carry the meaning of the kanji from which they were derived. If you compare 
several of these characters to some kanji, you may recognize common shapes. Table 2-20 
lists the basic katakana characters, along with the kanji from which they were derived.

Table 2-21 enumerates the katakana characters that are included in the JIS X 0208:1997 
and JIS X 0213:2004 character set standards. As shown in the table, those in JIS X 
0208:1997 are in Row 5, and those in JIS X 0213:2004 are in Plane 1, but spread across 
Rows 5 through 7.

Katakana characters in JIS standardsTable 2-21. 

Standard Row Characters

JIS X 0208:1997 5

ァアィイゥウェエォオカガキギクグケゲコゴサ
ザシジスズセゼソゾタダチヂッツヅテデトドナ
ニヌネノハバパヒビピフブプヘベペホボポマミ
ムメモャヤュユョヨラリルレロヮワヰヱヲンヴ
ヵヶ

JIS X 0213:2004

5 カ゚キ゚ク゚ケ゚コ゚セ゚ツ゚ト゚
6 ㇰㇱㇲㇳㇴㇵㇶㇷㇸㇹㇷ゚ㇺㇻㇼㇽㇾㇿ
7 ヷヸヹヺ

Katakana, unlike hiragana, have a squared, more rigid feel to them. Structurally speaking, 
they are quite similar in appearance to kanji, which we discuss later.

The Development of Kana
You already know that kana were derived from kanji, and Table 2-22 provides a complete 
listing of kana characters, along with the kanji from which they were derived.



56  |  Chapter 2:  Writing Systems and Scripts

The ideographs from which kana were derivedTable 2-22. 

Katakana Ideograph Hiragana

ア 阿 安 あ
イ 伊 以 い
ウ 宇 う
エ 江 衣 え
オ 於 お
カ 加 か
キ 幾 き
ク 久 く
ケ 介 計 け
コ 己 こ
サ 散 左 さ
シ 之 し
ス 須 寸 す
セ 世 せ
ソ 曽 そ
タ 多 太 た
チ 千 知 ち
ツ 川 つ
テ 天 て
ト 止 と
ナ 奈 な
ニ 二 仁 に
ヌ 奴 ぬ
ネ 祢 ね
ノ 乃 の
ハ 八 波 は
ヒ 比 ひ


