

Advance Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“Head First C# is a great book for hobbyist programmers. It provides examples and guidance on a
majority of the things [those] programmers are likely to encounter writing applications in C#.”

—Peter Ritchie, Microsoft MVP (2006-2007), Visual Developer, C#

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, Software Developer, co-author of C# 3.0 Cookbook

“Head First C# is perfect blend of unique and interesting ways covering most of the concepts of
programming. Fun excercises, bullet points, and even comic strips are some of the catchy and awesome
works that this book has. The game-based labs are something that you really don’t want to miss. [This
book is] a great work... the novice as [well as the] well-experienced will love this book. GREAT JOB!”

—Aayam Singh, .NET professional

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier, co-author of C# 3.0 in a
Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who] want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Software Engineer

“Going through this Head First C# book was a great experience. I have not come across a book series
which actually teaches you so well…This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head
First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise for the
reader...” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live
up to it while also teaching you about object serialization and network launch protocols. ”

—Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford
University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java), The Java Programming
Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired stale
professor-speak.”

—Travis Kalanick, Founder of Scour and Red Swoosh
 Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely très ‘cool.’ It is
fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of Design
Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun
coated’ format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Buehler… Buehler… Buehler…’ this book is on the
float belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly

Programming C# 3.0

C# 3.0 in a Nutshell

C# 3.0 Cookbook™

C# 3.0 Design Patterns

C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First Physics (2008)

Head First Programming (2008)

Head First Ruby on Rails (2008)

Head First PHP & MySQL (2008)

Beijing • Cambridge • K�ln • Sebastopol • Taipei • Tokyo

Andrew Stellman
Jennifer Greene

Head First C#

Wouldn’t it be dreamy
if there was a C# book that
was more fun than endlessly

debugging code? It’s probably
nothing but a fantasy…

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Sanders Kleinfeld

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:
November 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First C#, and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-0-596-51482-2

[M] [9/08]

This book uses RepKover™,  a durable and flexible lay-flat binding.
TMTM

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

viii

Jennifer Greene studied philosophy in
college but, like everyone else in the field, couldn’t
find a job doing it. Luckily, she’s a great software
tester, so she started out doing it at an online
service, and that’s the first time she really got a
good sense of what project management was.

She moved to New York in 1998 to test software
at a financial software company. She managed
a team of testers at a really cool startup that
did artificial intelligence and natural language
processing.

Since then, she’s traveled all over the world to work
with different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, waiting for
her Xbox to be repaired, drinking carloads of
carbonated beverages, and owning a whippet.

Andrew Stellman, despite being raised a
New Yorker, has lived in Pittsburgh twice. The
first time was when he graduated from Carnegie
Mellon’s School of Computer Science, and then
again when he and Jenny were starting their
consulting business and writing their first book for
O’Reilly.

When he moved back to his hometown, his first
job after college was as a programmer at EMI-
Capitol Records—which actually made sense,
since he went to LaGuardia High School of
Music and Art and the Performing Arts to study
cello and jazz bass guitar. He and Jenny first
worked together at that same financial software
company, where he was managing a team of
programmers. He’s had the privilege of working
with some pretty amazing programmers over the
years, and likes to think that he’s learned a few
things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing music (but video games even more),
studying taiji and aikido, having a girlfriend
named Lisa, and owning a pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they

first met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in

2005. They published their first book in the Head First series, Head First PMP, in 2007.

They founded Stellman & Greene Consulting in 2003 to build a really neat software project for
scientists studying herbicide exposure in Vietnam vets. When they’re not building software or writing
books, they do a lot of speaking at conferences and meetings of software engineers, architects and
project managers.
Check out their blog, Building Better Software: http://www.stellman-greene.com

Jenny

Andrew

Thanks for buying our book! We really
love writing about this stuff, and we
hope you get a kick out of reading it… … because we know

you’re going to have a
great time learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C#. You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for? xxx

We know what you’re thinking xxxi

Metacognition xxxiii

Bend your brain into submission xxxv

What you need for this book xxxvi

Read me xxxii

The technical review team xxxiv

Acknowledgments xxxv

 Intro xxix

1 Get productive with C#: Visual Applications, in 10 minutes or less 1

2 It’s All Just Code: Under the hood 43

3 Objects Get Oriented: Making code make sense 85

4 Types and References: It’s 10:00. Do you know where your data is? 123

 C# Lab 1: A Day at the Races 163

5 Encapsulation: Keep your privates… private 173

6 Inheritance: Your object’s family tree 205

7 Interfaces and abstract classes: Making classes keep their promises 251

8 Enums and collections: Storing lots of data 309

 C# Lab 2: The Quest 363

9 Reading and writing files: Save the byte array, save the world 385

10 Exception handling: Putting Out Fires Gets Old 439

11 Events and delegates: What Your Code Does When You’re Not Looking 483

12 Review and preview: Knowledge, Power, and Building Cool Stuff 515

13 Controls and graphics: Make it pretty 563

14 Captain Amazing: The Death of the Object 621

15 LINQ: Get control of your data 653

 C# Lab 3: Invaders 681

i Leftovers: The top 5 things we wanted to include in this book 703

table of contents

x

Visual Applications, in 10 minutes or less1 Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

get productive with C#

Why you should learn C# 2

C# and the Visual Studio IDE make lots of things easy 3

Help the CEO go paperless 4

Get to know your users’ needs before you start building your program 5

Here’s what you’re going to build 6

What you do in Visual Studio… 8

What Visual Studio does for you… 8

Develop the user interface 12

Visual Studio, behind the scenes 14

Add to the auto-generated code 15

You can already run your application 16

We need a database to store our information 18

Creating the table for the Contact List 20

The blanks on contact card are columns in our People table 22

Finish building the table 25

Diagram your data so your application can access it 26

Insert your card data into the database 28

Connect your form to your database objects with a data source 30

Add database-driven controls to your form 32

Good apps are intuitive to use 34

How to turn YOUR application into EVERYONE’S application 37

Give your users the application 38

You’re NOT done: test your installation 39

You built a complete data-driven application 40

table of contents

xi

Under the Hood
You’re a programmer, not just an IDE-user.
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this… 44

…the IDE does this 45

Where programs come from 46

The IDE helps you code 48

When you change things in the IDE, you’re also changing your code 50

Anatomy of a program 52

Your program knows where to start 54

You can change your program’s entry point 56

Two classes can be in the same namespace 61

Your programs use variables to work with data 62

C# uses familiar math symbols 64

Loops perform an action over and over again 65

Time to start coding 66

if/else statements make decisions 67

Set up conditions and see if they’re true 68

table of contents

xii

3 Making Code Make Sense
Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects get oriented

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

How Mike thinks about his problems 86

How Mike’s car navigation system thinks about his problems 87

Mike’s Navigator class has methods to set and modify routes 88

Use what you’ve learned to build a simple application 89

Mike gets an idea 90

Mike can use objects to solve his problem 91

You use a class to build an object 92

When you create a new object from a class,
it’s called an instance of that class 93

A better solution… brought to you by objects! 94

An instance uses fields to keep track of things 98

Let’s create some instances! 99

Thanks for the memory 100

What’s on your program’s mind 101

You can use class and method names to make your code intuitive 102

Give your classes a natural structure 104

Class diagrams help you organize your classes so they make sense 106

Build a class to work with some guys 110

Create a project for your guys 111

Build a form to interact with the guys 112

There’s an even easier way to initialize objects 115

A few ideas for designing intuitive classes 116

table of contents

xiii

4 It’s 10:00. Do you know where your data is?
Data type, database, Lieutenant Commander Data…
it’s all important stuff. Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information, to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, how to work with data in your program, and even

figure out a few dirty secrets about objects (psstt… objects are data, too).

types and references

The variable’s type determines what kind of data it can store 124

A variable is like a data to-go cup 126

10 pounds of data in a 5 pound bag 127

Even when a number is the right size,
you can’t just assign it to any variable 128

When you cast a value that’s too big, C# will adjust it automatically 129

C# does some casting automatically 130

When you call a method, the variables must
match the types of the parameters 131

Combining = with an operator 136

Objects use variables, too 137

Refer to your objects with reference variables 138

References are like labels for your object 139

If there aren’t any more references, your object gets garbage collected 140

Multiple references and their side effects 142

Two references means TWO ways to change an object’s data 147

A special case: arrays 148

Arrays can contain a bunch of reference variables, too 149

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 150

Objects use references to talk to each other 152

Where no object has gone before 153

fido

Luck
y

fido
Luck

y

table of contents

xiv

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The Spec: Build a Racetrack Simulator 164

The Finished Product 172

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?�

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal, or paging through your bank statements, good objects

don’t let other objects go poking around their properties. In this chapter, you’re going

to learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner 174

What does the estimator do? 175

Kathleen’s Test Drive 180

Each option should be calculated individually 182

It’s easy to accidentally misuse your objects 184

Encapsulation means keeping some of the data in a class private 185

Use encapsulation to control access to your class’s methods and fields 186

But is the realName field REALLY protected? 187

Private fields and methods can only be accessed from inside the class 188

A few ideas for encapsulating classes 191

Encapsulation keeps your data pristine 192

Properties make encapsulation easier 193

Build an application to test the Farmer class 194

Use automatic properties to finish the class 195

What if we want to change the feed multiplier? 196

Use a constructor to initialize private fields 197

table of contents

xvi

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through this chapter, you’ll

learn how to subclass an object to get its behavior, but keep the flexibility to make

changes to that behavior. You’ll avoid duplicate code, model the real world more

closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too 206

We need a BirthdayParty class 207

One more thing... can you add a $100 fee for parties over 12? 213

When your classes use inheritance,
you only need to write your code once 214

Build up your class model by starting general
and getting more specific 215

How would you design a zoo simulator? 216

Use inheritance to avoid duplicate code in subclasses 217

Different animals make different noises 218

Think about how to group the animals 219

Create the class hierarchy 220

Every subclass extends its base class 221

Use a colon to inherit from a base class 222

We know that inheritance adds the base class fields,
properties, and methods to the subclass... 225

A subclass can override methods to change or
replace methods it inherited 226

Any place where you can use a base class,
you can use one of its subclasses instead 227

A subclass can access its base class using the base keyword 232

When a base class has a constructor, your subclass needs one too 233

Now you’re ready to finish the job for Kathleen! 234

Build a beehive management system 239

First you’ll build the basic system 240

Use inheritance to extend the bee management system 245

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations... or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics 252

We can use inheritance to create classes for different types of bees 253

An interface tells a class that it must implement
certain methods and properties 254

Use the interface keyword to define an interface 255

Get a little practice using interfaces 256

Now you can create an instance of NectarStinger that does both jobs 257

Classes that implement interfaces have to include ALL of
the interface’s methods 258

You can’t instantiate an interface, but you can reference an interface 260

Interface references work just like object references 261

You can find out if a class implements a certain interface with “is” 262

Interfaces can inherit from other interfaces 263

The RoboBee 4000 can do a worker bee’s job
without using valuable honey 264

is tells you what an object implements,
as tells the compiler how to treat your object 265

A CoffeeMaker is also an Appliance 266

Upcasting works with both objects and interfaces 267

Downcasting lets you turn your appliance back into a coffee maker 268

Upcasting and downcasting work with interfaces, too 269

There’s more than just public and private 273

Access modifiers change scope 274

Some classes should never be instantiated 277

An abstract class is like a cross between a class and an interface 278

Like we said, some classes should never be instantiated 280

An abstract method doesn’t have a body 281

Polymorphism means that one object can take many different forms 289

table of contents

xviii

8 Storing lots of data
When it rains, it pours.
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort and manage all the data that your programs

need to pore through. That way you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data 310

Enums let you enumerate a set of valid values 311

Enums let you represent numbers with names 312

We could use an array to create a deck of cards... 315

Arrays are hard to work with 316

Lists make it easy to store collections of... anything 317

Lists are more flexible than arrays 318

Lists shrink and grow dynamically 321

List objects can store any type 322

Collection initializers work just like object initializers 326

Let’s create a list of Ducks 327

Lists are easy, but SORTING can be tricky 328

Two ways to sort your ducks 329

Use IComparer to tell your List how to sort 330

Create an instance of your comparer object 331

IComparer can do complex comparisons 332

Use a dictionary to store keys and values 335

The Dictionary Functionality Rundown 336

Your key and value can be different types, too 337

You can build your own overloaded methods 343

And yet MORE collection types... 355

A queue is FIFO — First In, First Out 356

A stack is LIFO — Last In, First Out 357

poof!

table of contents

xix

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 364

The fun’s just beginning! 484

table of contents

xx

9 Save the byte array, save the world
Sometimes it pays to be a little persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

C# uses streams to read and write data 386

Different streams read and write different things 387

A FileStream writes bytes to a file 388

Reading and writing takes two objects 393

Data can go through more than one stream 394

Use built-in objects to pop up standard dialog boxes 397

Dialog boxes are objects, too 399

Use the built-in File and Directory classes to
work with files and directories 400

Use File Dialogs to open and save files 403

IDisposable makes sure your objects are disposed properly 405

Avoid file system errors with using statements 406

Writing files usually involves making a lot of decisions 412

Use a switch statement to choose the right option 413

Add an overloaded Deck() constructor that reads
a deck of cards in from a file 415

What happens to an object when it’s serialized? 417

But what exactly IS an object’s state? What needs to be saved? 418

When an object is serialized, all of the objects it refers to
get serialized too... 419

Serialization lets you read or write a whole object all at once 420

If you want your class to be serializable,
mark it with the [Serializable] attribute 421

.NET converts text to Unicode automatically 425

C# can use byte arrays to move data around 426

Use a BinaryWriter to write binary data 427

You can read and write serialized files manually, too 429

StreamReader and StreamWriter will do just fine 433

table of contents

xxi

10 Putting out fires gets old
Programmers aren’t meant to be firefighters.
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting pages from work because your program

crashes, or doesn’t behave like it’s supposed to. Nothing pulls you out of

the programming groove like having to fix a strange bug . . . but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.

exception handling

Brian needs his excuses to be mobile 440

When your program throws an exception,
.NET generates an Exception object. 444

Brian’s code did something unexpected 446

All exception objects inherit from Exception 448

The debugger helps you track down and
prevent exceptions in your code 449

Use the IDE’s debugger to ferret out exactly
what went wrong in the excuse manager 450

Uh-oh—the code’s still got problems... 453

Handle exceptions with try and catch 455

What happens when a method you want to call is risky? 456

Use the debugger to follow the try/catch flow 458

If you have code that ALWAYS should run, use a finally block 460

Use the Exception object to get information about the problem 465

Use more than one catch block to handle multiple types of exceptions 466

One class throws an exception, another class catches the exception 467

Bees need an OutOfHoney exception 468

An easy way to avoid a lot of problems:
using gives you try and finally for free 471

Exception avoidance: implement IDisposable
to do your own clean up 472

The worst catch block EVER: comments 474

Temporary solutions are okay (temporarily) 475

A few simple ideas for exception handling 476

Brian finally gets his vacation... 481

table of contents

xxii

11 What your code does when you’re not looking
events and delegates

Your objects are starting to think for themselves.
You can’t always control what your objects are doing. Sometimes things...happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is

great, until you’ve got too many objects responding to the same event. And that’s when

callbacks will come in handy.

Ever wish your objects could think for themselves? 484

But how does an object KNOW to respond? 484

When an EVENT occurs... objects listen 485

One object raises its event, others listen for it... 486

Then, the other objects handle the event 487

Connecting the dots 488

The IDE creates event handlers for you automatically 492

The forms you’ve been building all use events 498

Connecting event senders with event receivers 500

A delegate STANDS IN for an actual method 501

Delegates in action 502

Any object can subscribe to a public event... 505

Use a callback instead of an event to hook up
exactly one object to a delegate 507

Callbacks use delegates, but NOT events 508

table of contents

xxiii

12 Knowledge, power, and building cool stuff
review and preview

Learning’s no good until you BUILD something.
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to learn about some new

odds and ends: timers and dealing with collections using LINQ (to name a couple).

We’re also going to build phase I of a really complex application, and make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up... it’s time to build some cool software.

You’ve come a long way, baby 516

We’ve also become beekeepers 517

The beehive simulator architecture 518

Building the beehive simulator 519

Life and death of a flower 523

Now we need a Bee class 524

Filling out the Hive class 532

The hive’s Go() method 533

We’re ready for the World 534

We’re building a turn-based system 535

Giving the bees behavior 542

The main form tells the world to Go() 544

We can use World to get statistics 545

Timers fire events over and over again 546

The timer’s using a delegate behind the scenes 547

Let’s work with groups of bees 554

A collection collects... DATA 555

LINQ makes working with data in collections and databases easy 557

table of contents

xxiv

13 Make it pretty
controls and graphics

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time on relying on controls to handle everything visual in our

applications. But sometimes that’s not enough—like when you want to animate a picture.

And once you get into animation, you’ll end up creating your own controls for your .NET

programs, maybe adding a little double buffering, and even drawing directly onto your

forms. It all begins with the Graphics object, Bitmaps, and a determination to not accept

the graphics status quo.

You’ve been using controls all along to interact with your programs 564

Form controls are just objects 565

Add a renderer to your architecture 568

Controls are well-suited for visual display elements 570

Build your first animated control 573

Your controls need to dispose their controls, too! 577

A UserControl is an easy way to build a control 578

Add the hive and field forms to the project 582

Build the Renderer 583

Let’s take a closer look at those performance issues 590

You resized your Bitmaps using a Graphics object 592

Your image resources are stored in Bitmap objects 593

Use System.Drawing to TAKE CONTROL of graphics yourself 594

A 30-second tour of GDI+ graphics 595

Use graphics to draw a picture on a form 596

Graphics can fix our transparency problem... 601

Use the Paint event to make your graphics stick 602

A closer look at how forms and controls repaint themselves 605

Double buffering makes animation look a lot smoother 608

Double buffering is built into forms and controls 609

Use a Graphics object and an event handler for printing 614

PrintDocument works with the print dialog and
print preview window objects 615

table of contents

xxv

14 CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

Captain Amazing, Objectville’s most amazing object
 pursues his arch-nemesis... 622

Your last chance to DO something... your object’s finalizer 628

When EXACTLY does a finalizer run? 629

Dispose() works with using, finalizers work with garbage collection 630

Finalizers can’t depend on stability 632

Make an object serialize itself in its Dispose() 633

Meanwhile, on the streets of Objectville... 636

A struct looks like an object... 637

..but isn’t on the heap 637

Values get copied, references get assigned 638

Structs are value types; objects are reference types 639

The stack vs. the heap: more on memory 641

Captain Amazing... not so much 645

Extension methods add new behavior to EXISTING classes 646

Extending a fundamental type: string 648

table of contents

xxvi

15 Get control of your data
LINQ

It’s a data-driven world... you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place... and in more than one format. Databases, XML,

collections from other programs... it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project... 654

...but the data’s all over the place 655

LINQ can pull data from multiple sources 656

.NET collections are already set up for LINQ 657

LINQ makes queries easy 658

LINQ is simple, but your queries don’t have to be 659

LINQ is versatile 662

LINQ can combine your results into groups 667

Combine Jimmy’s values into groups 668

Use join to combine two collections into one query 671

Jimmy saved a bunch of dough 672

Connect LINQ to a SQL database 674

Use a join query to connect Starbuzz and Objectville 678

table of contents

xxvii

C# Lab 3
Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 682

And yet there’s more to do... 701

table of contents

xxviii

i The top 5 things we wanted to include
in this book

leftovers

The fun’s just beginning!�

We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1 LINQ to XML 704

#2 Refactoring 706

#3 Some of our favorite Toolbox components 708

#4 Console Applications 710

#5 Windows Presentation Foundation 712

Did you know that C# and the .NET Framework can... 714

xxix

how to use this book

Intro
I can’t believe they

put that in a C#
programming book!

In this section, we answer the burning question:

“So why DID they put that in a C# programming book?”

xxx intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

you are here 4 xxxi

the intro

Great. Only
700 more dull,

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxxii intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something?� First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if

it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I’m more technical than thou” Bob from engineering doesn’t.

you are here 4 xxxiii

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain

into remembering
this stuff...

So just how DO you get your brain to treat C# like
it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way.
The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics
if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking
at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxxiv intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth a thousand words. And when text and
pictures work together, we embedded the text in the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just
wants to see an example. But regardless of your own learning preference, everyone
benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

you are here 4 xxxv

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of software!
There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when
you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

xxxvi intro

how to use this book

We wrote this book using Visual C# 2008 Express Edition, which uses C# 3.0 and .NET Framework 3.5. All
of the screenshots that you see throughout the book were taken from that edition, so we recommend that you
use it. If you’re using Visual Studio 2008 Standard, Professional, or Team System editions, you’ll see some small
differences, which we’ve pointed out wherever possible. You can download the Express Edition for free from
Microsoft’s website—it installs cleanly alongside other editions, as well as previous versions of Visual Studio.

 SETTING UP VISUAL STUDIO 2008 EXPRESS EDITION
�	 It’s	easy	enough	to	download	and	install	Visual	C#	2008	Express	Edition.	Here’s	the	link	to	the	Visual	Studio	

2008	Express	Edition	download	page:	
	
http://www.microsoft.com/express/download/
	
Make	sure	that	you	check	all	of	the	options	when	you	install	it.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�	 Download	the	installation	package	for	Visual	C#	2008	Express	Edition.	Make	sure	you	do	a	complete	
installation.	That	should	install	everything	that	you	need:	the	IDE	(which	you’ll	learn	about),	SQL	Server	
Express	Edition,	and	.NET	Framework	3.5.

�	 Once	you’ve	got	it	installed,	you’ll	have	a	new	Start	menu	option:	Microsoft Visual C# 2008 Express Edition.	
Click	on	it	to	bring	up	the	IDE,	and	you’re	all	set.

What you need for this book:

If you absolutely must use an
older version of Visual Studio,
C# or the .NET Framework,
then please keep in mind that
you’ll come across topics in this
book that won’t be compatible
with your version. The C# team
at Microsoft has added some
pretty cool features to the
language. We’ll give you warnings
when we talk about any of
these topics. But definitely
keep in mind that if you’re not
using the latest version, there
will be some code in this book
that won’t work.

you are here 4 xxxvii

the intro

Read me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning, 
because the book makes assumptions about what you’ve already seen and learned.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some for understanding, and some to
help you apply what you’ve learned. Don’t skip the written problems. The pool
puzzles are the only things you don’t have to do, but they’re good for giving your brain a
chance to think about twisty little logic puzzles.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books 
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!
The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills
by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if  you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right.  In some of  the Brain Power exercises you will find hints to point you in the 
right direction.

We use a lot of diagrams to
make tough concepts easier
to understand.

You should do ALL of the
“Sharpen your pencil” activities

Activities marked with the Exercise (running shoe) logo are really important! Don’t skip them if you’re serious about learning C#.

If you see the Pool Puzzle logo,
the activity is optional, and if
you don’t like twisty logic, you
won’t like these either.

 mi5Agent

 ciaAgent

†

xxxviii intro

Bill MietelskiPeter Ritchie

Joe Albahari Jay Hilyard

Andy ParkerTheodore Casser

The technical review team

the review team

Lisa Kellner Daniel Kinnaer

Technical Reviewers:

When we wrote this book, it had a bunch of mistakes, issues, problems, typos, and
terrible arithmetic errors. Okay, it wasn’t quite that bad. But we’re still really grateful for
the work that our technical reviewers did for the book. We would have gone to press with
errors (including one or two big ones) had it not been for the most kick-ass review team
EVER...

First of all, we really want to thank Joe Albahari for the enormous amount of technical
guidance. He really set us straight on a few really important things, and if it weren’t
for him you’d be learning incorrect stuff. We also want to thank Lisa Kellner—this
is our third book that she’s reviewed for us, and she made a huge difference in the
readability of the final product. Thanks, Lisa! And special thanks to Jay Hilyard
and Daniel Kinnaer for catching and fixing a whole lot of our mistakes, and
Aayam Singh for actually going through and doing every one of these exercises before
we fixed them and corrected their problems. Aayam, you’re really dedicated. Thanks!

And special thanks to our favorite readers, David Briggs and Jaime Moreno, for going
above and beyond the call of duty by finding and reporting many errors that we didn’t
catch in the first printing, and to Jon Skeet for going through the whole book carefully
and helping us fix a bunch of errors.

Aayam Singh

Krishna Pala

Giuseppe Turitto

Not pictured (but
just as awesome):
Wayne Bradney,
Dave Murdoch,
and Bridgette
Julie Landers

you are here 4 xxxix

the intro

Acknowledgments
Our editor:

We want to thank our editor, Brett McLaughlin, for editing this
book. He helped with a lot of the narrative, and the comic idea in
Chapter 14 was completely his, and we think it turned out really well.
Thanks, Brett!

Lou Barr

Brett McLaughlin

There are so many people at O’Reilly we want to thank
that we hope we don’t forget anyone. First of all, the Head
First team rocks—Laurie Petrycki, Catherine Nolan,
Sanders Kleinfeld (the most super production editor ever!),
Caitrin McCullough, Keith McNamara, and Brittany
Smith. Special thanks to Colleen Gorman for her sharp
proofread, Ron Bilodeau for volunteering his time and
preflighting expertise, and Adam Witwer for offering one
last sanity check—all of whom helped get this book from
production to press in record time. And as always, we love
Mary Treseler, and can’t wait to work with her again! And
a big shout out to our other friends and editors, Andy Oram,
Isabel Kunkle, and Mike Hendrickson. And if
you’re reading this book right now, then you can thank the
greatest publicity team in the industry: Marsee Henon,
Sara Peyton, Mary Rotman, Jessica Boyd, Kathryn
Barrett, and the rest of the folks at Sebastopol.

The O’Reilly team:

Lou Barr is an amazing graphic designer who went above and
beyond on this one, putting in unbelievable hours and coming up
with some pretty amazing visuals. If you see anything in this book
that looks fantastic, you can thank her (and her mad InDesign
skillz) for it. She did all of the monster and alien graphics for the
labs, and the entire comic book. Thanks so much, Lou! You are
our hero, and you’re awesome to work with.

Sanders Kleinfeld

xl intro

Safari® Books Online
When you see a Safari® icon on the cover of your favorite technology book that means the book is
available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, 
current information. Try it for free at http://safari.oreilly.com.

safari books online

this is a new chapter 1

Don’t worry, Mother. With Visual
Studio and C#, you’ll be able to
program so fast that you’ll never

burn the pot roast again.

get productive with c#1

Visual Applications, in 10
minutes or less

Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

2 Chapter 1

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

c# makes it easy

What you get with Visual Studio and C#…
With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

Here’s what the IDE automates for you...
Every time you want to get started writing a program,
or just putting a button on a form, your program needs
a whole bunch of repetitive code.

using System;

using System.C
ollections.Gen

eric;

using System.W
indows.Forms;

namespace A_Ne
w_Program

{
 static cla

ss Program

 {
 /// <s

ummary>

 /// Th
e main entry p

oint for the a
pplication.

 /// </
summary>

 [STATh
read]

 static
 void Main()

 {
 Ap

plication.Enab
leVisualStyles

();

 Ap
plication.SetC

ompatibleTextR
enderingDefaul

t(false);

 Ap
plication.Run(

new Form1());

 }
 }
}

private void InitializeComponent(){
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout(); //
 // button1 //
 this.button1.Location = new System.Drawing.Point(105, 56);
 this.button1.Name = “button1”; this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0; this.button1.Text = “button1”; this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(292, 267);
 this.Controls.Add(this.button1); this.Name = “Form1”; this.Text = “Form1”; this.ResumeLayout(false);}

It takes all this code just to draw a button on a form. Adding a few more visual elements to the form could take ten times as much code.

Data access

C# and the Visual Studio
IDE have pre-built
structures that handle t

he

tedious code that’s part
 of

most programming tasks.

.NET Framework
solutions

The result is a better looking application that takes less time to write.

Form Obje
ct

s

The IDE—or Visual Studio Integrated
Development Environment—is an
important part of working in C#. It’s
a program that helps you edit your
code, manage your files, and publish your
projects.

you are here 4 3

get productive with c#

 Build an application, FAST. Creating programs in C# is a snap. The
language is powerful and easy to learn, and the Visual Studio IDE does a lot
of work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

11

 Create and interact with databases. The IDE includes a simple
interface for building databases, and integrates seamlessly with SQL Server
Express, as well as several other popular database systems.

33

 Design a great looking user interface. The Form Designer in the
Visual Studio IDE is one of the easiest design tools to use out there. It
does so much for you that you’ll find that making stunning user interfaces
is one of the most satisfying parts of developing a C# application. You can
build full-featured professional programs without having to spend hours
writing a graphical user interface entirely from scratch.

22

 Focus on solving your REAL problems. The IDE does a lot for you, but
you are still in control of what you build with C#. The IDE just lets you focus on
your program, your work (or fun!), and your customers. But the IDE handles all the
grunt work, such as:

Keeping track of all of your projects

Making it easy to edit your project’s code

Keeping track of your project’s graphics, audio, icons, and other resources

Managing and interacting with databases

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building killer programs.

≥

≥

≥

≥

44

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

You’re going to see exactly
what we mean next.

C# and the Visual Studio IDE make
lots of things easy

4 Chapter 1

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

The Objectville Paper Company just hired a new CEO. He loves hiking,
coffee, and nature... and he’s decided that to help save forests. He wants
to become a paperless executive, starting with his contacts. He’s heading
to Aspen to go ski for the weekend, and expects a new address book
program by the time he gets back. Otherwise… well… it won’t be just
the old CEO who’s looking for a job.

Help the CEO go paperless

the boss needs your help

You’d better find a way
to get this data onto the
CEO’s laptop quick.

you are here 4 5

get productive with c#

Windows installer

SQL
Database

The CEO wants to be able to run his
program on his desktop and laptop, so
an installer is a must.

We already know that Visual C#

makes working with databases

easy. Having contacts in a

database lets the C
EO and

the sales team all access the

information, even though t
here’s

only one copy of the
 data.

Get to know your users’ needs before you
start building your program
Before we can start writing the address book application—or any
application—we need to take a minute and think about who’s going to
be using it, and what they need from the application.

 The CEO needs to be able to run his address book program
at work and on his laptop too. He’ll need an installer to
make sure that all of the right files get onto each machine.

11

 The Objectville Paper company sales team wants to
access his address book, too. They can use his data to
build mailing lists and get client leads for more paper
sales.

The CEO figures a database would be the best way that
everyone in the company to see his data, and then he
can just keep up with one copy of all his contacts.

22

6 Chapter 1

here’s your goal

SELECT command

INSERT command

UPDATE command

DELETE command

PictureBox o
b

je
c

t

TableAdapte
r

o
b

je
ct

BindingSour
ce

 o
b

je
ct

.NET Visual Objects .NET Database Objects

Database

diagram

Here’s what you’re going to build

You’ll be building
a Windows form with a

bunch of visual c
ontrols on it.

The application has a separate data layer that interacts with the database.

You’re going to need an application with a graphical user
interface, objects to talk to a database, the database itself, and
an installer. It sounds like a lot of work, but you’ll build all of
this over the next few pages.

Here’s the structure of the program we’re going to create:

Each of these objects
represents a control
on the address book
form we’ll create. We’ll need objects to talk to our tables, a diagram to let our application know what the database structure is, and more.

System.Window
s.

Fo
rm

 o
b

je
c

t

ToolBar o

bj
ec

t

data entry
 o

bj
ec

ts

DataSet o
bj

ec
t

BindingNavig
at

or
 o

b
je

ct

you are here 4 7

get productive with c#

SQL
Database

Table

DB diagram
support objects

Data Storage Deployment Package

Windows installer

Database

.exe

Program
file

The data is all stored in a table in a SQL Server Express database.
Once the program’s built,
it’ll be packaged up into a
Windows installer.

Here’s the database itself, which
Visual Studio will help us create
and maintain.

The sales
department will just need to point and click to install and then use his program.

8 Chapter 1

let’s get started

C#

Form1.Designer.cs

C#

Form1.cs

The code that
defines the form and its objects lives here.

This file contains the C#
code that defines the
behavior of the form.

What you do in Visual Studio…
Go ahead and start up Visual Studio, if you haven’t already. Skip over
the start page and select New Project from the File menu. Name your
project “Contacts” and click OK.

C#

Program.cs

This has the code
that starts up
the program and
displays the form.

What Visual Studio does for you…
As soon as you save the project, the IDE creates a Form1.cs, Form1.
Designer.cs, and Program.cs file when you create a new project. It adds
these to the Solution Explorer window, and by default, puts those files in My
Documents\Visual Studio 2008\Projects\Contacts\.

Visual Studio creates all three of
these files automatically.

 Things may
look a bit
different in
your IDE.

This is what
the “New Project” window
looks like in Visual
Studio 2008 Express
Edition. If you’re using
the Professional or Team
Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as you create it by selecting
“Save All” from the File menu—that’ll
save all of the project files out to
the folder. If you select “Save”, it
just saves the one you’re working on.

you are here 4 9

get productive with c#

Below is what your screen probably looks like right now. You should be
able to figure out what most of these windows and files are based on
what you already know. In each of the blanks, try and fill in an annotation
saying what that part of the IDE does. We’ve done one to get you started.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

We’ve blown up this
window below so you
have more room.

If your IDE doesn’t look exactly like this
picure, you can select “Reset Window Layout”
from the Window menu.

You can also bring up these windows by
selecting Solution Explorer, Properties, or
Error List from the View menu.

10 Chapter 1

We’ve filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

know your ide

This window
shows all of the
properties of
the controls on
your form.

This is the
toolbox. It
has a bunch
of visual
controls
that you can
drag onto
your form.

This bottom pane is for
debugging. It shows you
when there are errors in
your code.

The Form1.cs and Program.cs files that the IDE created for you when you added the new project appear in the Solution Explorer.

You can switch between files using the Solution Explorer in the IDE.

you are here 4 11

get productive with c#

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A:	No.	The	IDE	is	great	at	automatically	
generating	some	code	for	you,	but	it	can	
only	do	so	much.	There	are	some	things	it’s	
really	good	at,	like	setting	up	good	starting	
points	for	you,	and	automatically	changing	
properties	of	controls	on	your	forms.	But	
the	hard	part	of	programming—figuring	
what	your	program	needs	to	do	and	making	
it	do	it—is	something	that	no	IDE	can	do	
for	you.	Even	though	the	Visual	Studio	IDE	
is	one	of	the	most	advanced	development	
environments	out	there,	it	can	only	go	so	far.	
It’s	you—not	the	IDE—who	writes	the	code	
that	actually	does	the	work.

Q: I created a new project in Visual
Studio, but when I went into the “Projects”
folder under My Documents, I didn’t see it
there. What gives?

A:	First	of	all,	you	must	be	using	Visual	
Studio	2008—in	2005,	this	doesn’t	happen.	
When	you	first	create	a	new	project	in	
Visual	Studio	2008,	the	IDE	creates	the	
project	in	your	Local	Settings\
Application	Data\Temporary	
Projects	folder.	When	you	save	the	
project	for	the	first	time,	it	will	prompt	you	
for	a	new	filename,	and	save	it	in	the	My
Documents\Visual	Studio
2008\Projects	folder.	If	you	try	to	
open	a	new	project	or	close	the	temporary	
one,	you’ll	be	prompted	to	either	save	or	
discard	the	temporary	project.

Q: What if the IDE creates code I don’t
want in my project?

A:	You	can	change	it.	The	IDE	is	set	up	to	
create	code	based	on	the	way	the	element	
you	dragged	or	added	is	most	commonly	
	

	
used.	But	sometimes	that’s	not	exactly	what	
you	wanted.	Everything	the	IDE	does	for	
you—every	line	of	code	it	creates,	every	file	
it	adds—can	be	changed,	either	manually	by	
editing	the	files	directly	or	through	an	easy-
to-use	interface	in	the	IDE.

Q: Is it OK that I downloaded and
installed Visual Studio Express? Or do
I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

A:	There’s	nothing	in	this	book	that	you	
can’t	do	with	the	free	version	of	Visual	Studio	
(which	you	can	download	from	Microsoft’s	
website).	The	main	differences	between	
Express	and	the	other	editions	(Professional	
and	Team	Foundation)	aren’t	going	to	get	
in	the	way	of	writing	C#	and	creating	fully	
functional,	complete	applications.	

Q: Can I change the names of the files
the IDE generates for me?

A:	Absolutely.	When	you	create	a	new	
project,	the	IDE	gives	you	a	default	form	
called	Form1	(which	has	files	called	Form1.cs,	
Form1.Designer.cs	and	Form1.resx).	But	you	
can	use	the	Solution	Explorer	to	change	the	
names	of	the	files	to	whatever	you	want.	By	
default,	the	names	of	the	files	are	the	same	
as	the	name	of	the	form.	If	you	change	the	
names	of	the	files,	you’ll	be	able	to	see	in	
the	Properties	window	that	form	will	still	be	
called	Form1.	You	can	change	the	name	of	
the	form	by	changing	the	“(Name)”	line	in	the	
Properties	window.	If	you	do,	the	filenames	
won’t	change.	
	
C#	doesn’t	care	what	names	you	choose	for	
your	files	or	your	forms	(or	any	other	part	of	
the	program).	But	if	you	choose	good	names,	
it	makes	your	programs	easier	to	work	with.	
For	now,	don’t	worry	about	names—we’ll	talk	
a	lot	more	about	how	to	choose	good	names	
for	parts	of	your	program	later	on.

Q: I’m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A:	If	you	click	on	the	“Reset	Window	
Layout”	command	under	the	“Window”	menu,	
the	IDE	will	restore	the	default	window	layout	
for	you.	Then	your	screen	will	look	just	like	
the	ones	in	this	chapter.

Visual Studio will
generate code
you can use as a
starting point for
your applications.

Making sure
the application
does what it’s
supposed to do is
still up to you.

12 Chapter 1

Adding controls and polishing the user interface is as easy as
dragging and dropping with the Visual Studio IDE. Let’s add a
logo to the form:

Develop the user interface

a picturebox is worth a thousand words

 Use the PictureBox control to add a picture.
Click on the PictureBox control in the Toolbox, and drag it
onto your form. In the background, the IDE added code to
Form1.Designer.cs for a new picture control.

11

C#

Form1.Designer.cs

Every time you make a change to a control’s properties on the form, the code in Form1.Designer.cs is getting changed by the IDE.

If you don’t see
the toolbox, try
hovering over the
word “Toolbox”
that shows up
in the upper
left-hand corner
of the IDE. If it’s
not there, select

“Toolbox” from
the View menu to
make it appear.

 It’s OK if you’re not a pro at user
interface design.

We’ll talk a lot more about designing
good user interfaces later on. For now,

just get the logo and other controls on your form, and
worry about behavior. We’ll add some style later.

you are here 4 13

get productive with c#

You are Here

 Set the PictureBox to Zoom mode.
Every control on your form has properties that you can
set. Click the little black arrow for a control to access
these properties. Change the PictureBox’s Size property
to “Zoom” to see how this works:

22

Click on this little
black arrow to access
a control’s properti

es.

Choose “Zoom” so that the PictureBox frame will change to match the size of the picture you put in it.

 Download the Objectville Paper Company logo.
Download the Objectville Paper Co. logo from Head First Labs (http://
www.headfirstlabs.com/books/hfcsharp) and save it to your hard drive.
Then click the PictureBox properties arrow, and select Choose Image. You’ll see a
Select Resources window pop up. Click the “Local Resource” radio button to enable the

“Import…” button at the top of the form. Click that button, find your logo, and you’re all set.

33

Here’s the OPC logo,
and the PictureBox
zooms to get the size

just right.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

You can also use the
“Properties” window in
the IDE to set the
Size property. The
little black arrow is
just there to make
it easy to access
the most common
properties of any
control.

Then click “Choose Image” to bring up the Select Resource dialog box so you can import a local resource.

14 Chapter 1

Every time you do something in the Visual Studio IDE, the IDE is
writing code for you. When you created the logo and told Visual
Studio to use the image you downloaded, Visual Studio created a resource
and associated it with your application. A resource is any graphics file,
audio file, icon, or other kind of data file that gets bundled with your
application. The graphic file gets integrated into the program, so that
when it’s installed on another computer, the graphic is installed along with
it and the PictureBox can use it.

When you dragged the PictureBox control onto your form, the IDE
automatically created a resource file called Form1.resx to store that
resource and keep it in the project. Double-click on this file, and you’ll be
able to see the newly imported image.

Visual Studio, behind the scenes

This image is now a resource of the
Contact List application.

C#

Form1.Designer.csC#

Form1.cs C#

Program.cs

C#

Form1.resx

Here are the file
s

Visual Studio
created earlier.

conserving c#’s natural resources

When you imported the image, the
IDE created this file for you.
It contains all of the resources
(graphics, video, audio and other
stored data) associated with Form1.

Go to the Solution Explorer and click on the plus icon next to Form1.cs to expand it (if it’s not already expanded). This will display two files: Form1.Designer.cs and Form1.resx. Double-click on Form1.resx, click on the arrow next to “Strings”, and select “Images” from the drop-down list (or hit Ctrl-2) to see the logo that you imported. That file is what links it to the PictureBox, and the IDE added code to do the linking.
If you chose the other
“Import...” button from the
Select Resource dialog on
the last page, then your
image will show up in the
Resources folder in the
Solution Explorer instead.
Don’t worry—just go back
to Select Resources, choose
“Local Resource,” and
reimport the image into the
resources, and it’ll show up
here.

you are here 4 15

get productive with c#

Add to the auto-generated code
The IDE creates lots of code for you, but you’ll still want to get
into this code and add to it. Let’s set the logo up to show an About
message when the users run the program and click on the logo.

When you’re editing a form in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to
your project. Make sure you’ve got the form showing in the IDE,
and then double-click on the PictureBox control. The IDE will
add code to your project that gets run any time a user clicks on the
PictureBox. You should see some code pop up that looks like this:

public partial class Form1 : Form
{

 public Form1()
 {

 InitializeComponent();

 }

 private void pictureBox1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Contact List 1.0.\nWritten by: Your Name”, “About”);

 }
}

When you double-clicked on the PictureBox control,
the IDE created this method. It will run every time
a user clicks on the logo in the running application.

When you double-click on the
PictureBox, it will open this
code up with a cursor blinking
right here. Ignore any windows
the IDE pops up as you type;
it’s trying to help you, but we
don’t need that right now.

Type in this line of code. It causes a message box to popup with the text you provide. The box will be titled “About”.

Q: What’s a method?

A:	A	method	is	just	a	named block of code.	
We’ll	talk	a	lot	more	about	methods	in	Chapter	2.

Q: What does that \n thing do?

A:	That’s	a	line	break.	It	tells	C#	to	put	
“Contact	List	1.0.”	on	one	line,	and	then	start	a	
new	line	for	“Written	by:”.

This method name gives you a
good idea about when it runs:
when someone clicks on this
PictureBox control.

Once you’ve typed in the line
of code, save it using the Save
icon on the IDE toolbar or
by selecting “Save” from the
File menu. Get in the habit of
doing “Save All” regularly!

16 Chapter 1

run the app (already!)

Press the F5 key on your keyboard, or click the green
arrow button () on the toolbar to check out what you’ve
done so far. (This is called “Debugging”, which just means
running your program using the IDE.) You can stop
debugging by selecting “Stop Debugging” from the Debug
menu or clicking this toolbar button: .

You can already run your application

Clicking on the
OPC logo brings up
the About box you
just coded.

All three of these buttons work—and you didn’t have to write any code to make them work.

Q: In my IDE, the green arrow is marked as
“Debug”. Is that a problem?

A:	No.	Debugging,	at	least	for	our	purposes	
right	now,	just	means	running	your	application	
inside	the	IDE.	We’ll	talk	a	lot	more	about	
debugging	later,	but	for	now,	you	can	simply	think	
about	it	as	a	way	to	run	your	program.

Q: I don’t see the Stop Debugging button
on my toolbar. What gives?

A:	The	Stop	Debugging	button	only	shows	
up	in	a	special	toolbar	that	only shows up	
when	your	program	is	running.	Try	starting	the	
application	again,	and	see	if	it	appears.

When you run your program, Visual Studio copies
all of your files to My Documents\Visual	
Studio	2008\Projects\Contacts\
Contacts\bin\debug. You can even hop over
to that directory and run your program by double-
clicking on the .exe file the IDE creates.

Where are my files?

C#

Form1.
Designer.cs

C#

Form1.resx

C#

Form1.cs

C#

Program.cs

C#

bin

Properties

Contacts.csproj

This isn’t a mistake; there are two levels of folders. The inner folder has the actual C# code files.

C# turns your
program into a
file that you can
run, called an
executable. You’ll
find it in here, in
the debug folder.

you are here 4 17

get productive with c#

We’ve built a form and created a PictureBox object that pops up a
message box when it’s clicked on. Next, we need to add all the other
fields from the card, like the contact’s name and phone number.

Let’s store that information in a database. Visual Studio can connect
fields directly to that database for us, which means we don’t have to
mess with lots of database access code (which is good). But for that
to work, we need to create our database so that the controls on the
form can hook up to it. So we’re going to jump from the .NET Visual
Objects straight to the Data Storage section.

Here’s what we’ve done so far

SQL
Database

Visual Studio can generate code to connect your
form to a database, but you need to have the
database in place BEFORE generating that code.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Here’s what we’ve already done… …but we still need some
objects to interact
with the data we’ll put

in our database.

This step is about connecting our form to the database, so we’re not ready for it yet, since we don’t have a database.

So we need to focus
on this step next:
creating our database,
and putting some
initial data into it.

18 Chapter 1

 If you’re not using
the Express edition,
you’ll see “Server
Explorer” instead of
“Database Explorer”.

The Visual Studio 2008 Professional
and Team Foundation editions don’t
have a Database Explorer window.
Instead, they have a Server Explorer
window, which does everything the
Database Explorer does, but also lets
you explore data on your network.

Before we add the rest of the fields to the form, we need
to create a database to hook the form up to. The IDE
can create lots of the code for connecting our form to
our data, but we need to define the database itself first.

Make sure you’ve stopped debugging before you continue.

We need a database to store our information

 Add a new SQL database to your project.
In the Solution Explorer, right-click the Contacts project,
select Add, and then choose New Item. Choose the SQL
Database icon, and name it ContactDB.mdf.

11

 Cancel the Data Source Configuration Wizard.
For now, we want to skip configuring a data source, so
click the Cancel button. We’ll come back to this once
we’ve set up our database structure.

33

The SQL
Database icon
only works if you
have SQL Server
Express installed.
Flip back to the
README if
you’re not sure
how to do this.

 View your database in the Solution Explorer.
Go to the Solution Explorer, and you’ll see that
ContactDB has been added to the file list. Double click
ContactDB.mdf in the Solution Explorer and look at the
left side of your screen. The Toolbox has changed to a
Database Explorer.

44

save it for later

SQL

ContactDB.mdf

This file is our
new database.

Pick the
right icon for
the version
you’re using.
Choose SQL
Database if
you’re using
Visual Studio
Express 2005
and Service-
Based
Database if
you’re using
2008.

 Click on the Add button in the Add New Item
window.

22

you are here 4 19

get productive with c#

SQL

ContactDB.mdf

The SQL database is in this file.
We’re just about to define tables
and data for it, and all of that
will be stored in here too.

When you told the IDE to add a new SQL database to
your project, the IDE created a new database for you. A
SQL database is a system that stores data for you in an
organized, interrelated way. The IDE gives you all the
tools you need to maintain your data and databases.

Data in a SQL database lives in tables. For now, you
can think of a table like a spreadsheet. It organizes your
information into columns and rows. The columns are the
data categories, like a contact’s name and phone number,
and each row is the data for one contact card.

The IDE created a database

Tables Stored Procedures

SQL
Database

SQL stands for Structured Query Language.
It’s a programming language for accessing data in
databases. It’s got its own syntax, keywords, and
structure. SQL code takes the form of statements
and queries, which access and retrieve the data.
A SQL database can hold stored procedures,
which are a bunch of SQL statements and queries
that are stored in the database and can be run at
any time. The IDE generates SQL statements and
stored procedures for you automatically to let your
program access the data in the database.

SQL is its own language

A SQL database stores your data, and has information about how it’s structured and SQL code to help you access it.
Your data’s stored in a
table with columns and
rows, like in a spreadsheet.

Stored procedures are
statements that let you
work with your data easily.

[note from marketing: Can we get a plug
for Head First SQL in here?]

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

20 Chapter 1

data storage made easy

Creating the table for the Contact List
We have a database, and now we need to store information
in it. But our information actually has to go into a table, the
data structure that databases use to hold individual bits of
data. For our application, let’s create a table called “People”
to store all the contact information:

 Add a table to the ContactDB database.
Right click on Tables in the Database Explorer, and select
Add New Table. This will open up a window where you can
define the columns in the table you just created.

11

Now we need to add columns to our table. First, let’s add a
column called ContactID to our new People table, so that
each Contact record has its own unique ID.

 Add a ContactID column to the People table.
Type “ContactID” in the Column Name field, and
select Int from the Data Type dropdown box. Be sure to
uncheck the Allow Nulls checkbox.

Finally, let’s make this the primary key of our table.
Highlight the ContactID column you just created, and
click the Primary Key button. This tells the database
that each entry will have a unique primary key entry.

22

This is the Primary Key button. A primary key helps
your database look up records quickly.

Q: What’s a column again?

A:	A	column	is	one	field	of	a	table.	
So	in	a	People	table,	you	might	have	a	
FirstName	and	LastName	column.	It	will	
always	have	a	data	type,	too,	like	String	or	
Date	or	Bool.

Q: Why do we need this ContactID
column?

A:	It	helps	to	have	a	unique	ID	for	each	
record	in	most	database	tables.	Since	
we’re	storing	contact	information	for	
individual	people,	we	decided	to	create	a	
column	for	that,	and	call	it	ContactID.

Q: What’s that Int from Data Type
mean?

A:	The	data	type	tells	the	database	what	
type	of	information	to	expect	for	a	column.	
Int	stands	for	integer,	which	is	just	a	whole	
number.	So	the	ContactID	column	will	have	
whole	numbers	in	it.

Q: This is a lot of stuff. Should I be
getting all of this?

A:	No,	it’s	OK	if	you	don’t	understand	
everything	right	now.	Focus	on	the	basic	
steps,	and	we’ll	spend	a	lot	more	time	on	
databases	in	the	later	chapters	of	the	book.	
And	if	you’re	dying	to	know	more	right	away,	
you	can	always	pick	up	Head First SQL	to	
read	along	with	this	book.

you are here 4 21

get productive with c#

This will make it so that the ContactID field updates automatically whenever a new record is added.

It’s important
that you leave this
unchecked. Since
the primary key is
the main way your
program will locate
records, it always
needs to have a
value.

 Tell the database to auto-generate IDs.
Since ContactID is a number for the database, and not
our users, we can tell our database to handle creating and
assigning IDs for us automatically. That way, we don’t have
to worry about writing any code to do this.

In the properties below your table, scroll down to Identity
Specification, click the + button, and select Yes next to the
(Is Identity) property.

33

This window is what you use
to define your table and
the data it will store.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

You’ll need to click on the right column and
select Yes from the dropdown next to IsIdentity
to designate ContactID as your record
Identifier.

22 Chapter 1

let’s table this discussion

The blanks on contact card are
columns in our People table
Now that you’ve created a primary key for the table, you need
to define all of the fields you’re going to track in the database.
Each field on our written contact card should become a
column in the People table.

Each blank on the card should map to a column in the people table.

People

For each person, we want to store data, her name, company, phone number, email address, if she’s an OPC client, and date of the last time she was called.

What kinds of problems could result from having
multiple rows stored for the same person?

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 05/26/07

you are here 4 23

get productive with c#

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(50)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers and other
characters with a
maximum length of 50

A whole number

DescriptionData Type

24 Chapter 1

it’s just my type

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(50)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers and other
characters with a
maximum length of 50

A whole number

DescriptionData Type

you are here 4 25

get productive with c#

If you uncheck
Allow Nulls, the
column must
have a value.

Click on the Save button on the toolbar to save your new table. You’ll be
asked for a name. Call it “People” and click OK.

Bit fields
hold True or
False values
and can be
represented
as a checkbox.

Finish building the table
Go back to where you entered the ContactID column
and add the other five columns from the contact card.
Here’s what your database table should look like
when you’re done:

Some cards might have some missing information, so we’ll let certain columns be blank.

We’ve been talking about t
his

table as the “People” tab
le, but

it’s not until this step th
at you

give it an official name. ContactDB

People

This creates a People table, which goes in the ContactDB database.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

26 Chapter 1

map it out

The Visual Studio IDE is built to work with databases, and it
comes with a lot of built-in tools that help you when you’re
handling a lot of data. One of the most powerful tools you
have is the database diagram, which you can use to view
and edit complex relationships between the tables in your
database. So let’s go ahead and build a database diagram for
your database.

Diagram your data

 Create a new database diagram.
Go to the Database Explorer window and right-click on the
Database Diagrams node. Select Add New Diagram.

11

 Let the IDE generate access code.
Before you tell the IDE about your specific table, it needs to
create some basic stored procedures for interacting with your
database. Just click Yes here, and let the IDE go to work.

22

The IDE creates several

stored procedures

that allow your code

to interact with the

database you crea
ted.

 Select the tables you want to work with.
Select the People table from the window that pops up, and
click Add. Now the IDE is ready to generate code specific
to your table.

33

When you have databases with multiple tables, each table will show up as an entry on this window.

Remember, these options
are all under ContactDB,
so they all apply to that
specific database.

 In very rare cases, a few
people sometimes have
problems getting the SQL
database to work.

If you run into any trouble, don’t worry—go
to the Head First C# forum at http://
www.headfirstlabs.com/ for help
troubleshooting the problem.

you are here 4 27

get productive with c#

This is just a pictur
e of the

database design y
ou’ve just done.

It marks the ContactID field as

your primary key and lists
off all

of the columns in the table.

If you had any other
tables in the database you
wanted diagrammed, they
would appear here, too.

A database diagram describes your tables
to the Visual Studio IDE. The IDE will
read your database and build a database
diagram for you automatically.

 Name your diagram PeopleDiagram.
Select File>Save Diagram. You’ll be asked to name your
new database diagram. Call it PeopleDiagram, and you’re
all set.

44

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The database diagram is
shown here visually. It’s a
very simple representation
of your table.

If you’re using Visual
Studio 2005, select
File>Save All instead.

28 Chapter 1

Now you’re ready to start entering cards into the database.
Here are some of the boss’s contacts—we’ll use those to
set up the database with a few records.

adding your data

Type “True” or “F
alse”

in the Client colu
mn.

That’s how
 SQL stores

yes or no
info.

Once you see the Table grid in the
main window, go ahead and add all of
the data below. (You’ll see all NULL
values at first—just type over them
when you add your first row. And
ignore the exclamation points that
appear next to the data.) You don’t
need to fill in the ContactID column,
that happens automatically.

22

Expand Tables and then right click
on the People Table in the Database
Explorer (or Server Explorer) and
select Show Table Data.

11

Insert your card data into the database

Your job is to enter the data
from all six of these cards
into the People table.

Name:

Company:

Telephone:

Email:

Client: Last call:

Liz Nelson

JTP

(419)555-2578

LizNelson@JTP.ORg

Yes
03/04/06

Name:

Company:

Telephone:

Email:

Client: Last call:

Lucinda Ericson

Ericson Events

(212)555-9523
Lucy@EricsonEvents.info

No 05/17/07

Name:

Company:

Telephone:

Email:

Client: Last call:

Lloyd Jones

Black Box inc.

(718)555-5638

LJones@Xblackboxinc.com

Yes 05/26/07

you are here 4 29

get productive with c#

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 05/26/07

“Save All” tells the IDE to save
everything in your application.
That’s different from “Save”, which
just saves the file you’re working on.

Once you’ve entered all six records,
select Save All from the File menu
again. That should save the records
to the database.

33

Q: So what happened to the data after I entered it? Where
did it go?

A:	The	IDE	automatically	stored	the	data	you	entered	into	the	
People	table	in	your	database.	The	table,	its	columns,	the	data	
types,	and	all	of	the	data	inside	it	is	all	stored	in	the	SQL	Server	
Express	file,	ContactDB.mdf.	That	file	is	stored	as	part	of	your	
project,	and	the	IDE	updates	it	just	like	it	updates	your	code	files	
when	you	change	them.

Q: Okay, I entered these six records. Will they be part of
my program forever?

A:	Yes,	they’re	as	much	a	part	of	the	program	as	the	code	
that	you	write	and	the	form	that	you’re	building.	The	difference	
is	that	instead	of	being	compiled	into	an	executable	program,	
the	ContactDB.mdf	file	is	copied	and	stored	along	with	the	
executable.	When	your	application	needs	to	access	data,	it	reads	
and	writes	to	ContactDB.mdf,	in	the	program’s	output	directory.

SQL

ContactDB.mdf

This file is actually a SQL database, and your program can use it with the code the IDE generated for you.

Name:

Company:

Telephone:

Email:

Client: Last call:

Sarah Kalter
 Kalter, Riddle, and Stoft

(614)555-5641
Sarah@KRS.org

no 12/10/05

Name:

Company:
Telephone:

Email:

Client: Last call:

Matt Franks

 XYZ Industries

(212)555-8125
Matt.Franks@XyZindustries.com

Yes 05/26/07

Objectville Paper Company is in the
United States, so the CEO writes
dates so that 05/26/07 means May
26, 2007. If your machine is set to
a different location, you may need to
enter dates differently; you might
need to use 26/05/07 instead.

30 Chapter 1

We’re finally ready to build the .NET database objects that our
form will use to talk to your database. We need a data source,
which is really just a collection of SQL statements your program
will use to talk to the ContactDB database.

You need to close both the data grid and the diagram to get back to your form.

the data’s all in there

The data source you’re creating will handle all the interactions between your form and your database.

Connect your form to your database
objects with a data source

 Go back to your application’s form.
Close out the People table and the ContactDB database
diagram. You should now have the Form1.cs [Design] tab visible.

11

 Add a new data source to your application.
This should be easy by now. Click the Data menu, and then
select Add New Data Source… from the drop down.

22

you are here 4 31

get productive with c#

C#

ContactDBDataSet.
Designer.cs

XML

ContactDBDataSet.xsd

These steps connect your new data source with the People table in the ContactDB database.

SQL

ContactDB.mdf

These files are what’s
generated by the data
source you just setup.

Here’s your existing form.

This file is your database.

Now your form can use the data
source to interact with the
ContactDB database.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

 Configure your new data source.
Now you need to setup your data source to use the ContactDB
database. Here’s what to do:

Select Database and click the Next button.

Click Next in the “Choose your Data Connection”
screen.

Make sure the Save the connection checkbox is checked
in the “Save the Connection” screen that follows and
click Next.

In the “Choose Your Objects” screen, click the Table
checkbox.

In the Dataset Name field, make sure it says
“ContactDBDataSet” and click Finish.

≥

≥

≥

≥

≥

33

32 Chapter 1

All of the columns you created should show up here.

Click this arrow and choose Details to

tell the IDE to add individual controls

to your form rather than one large

spreadsheet-like data control.

Now we can go back to our form, and add some more controls. But
these aren’t just any controls, they are controls that are bound to our
database, and the columns in the People table. That just means that
a change to the data in one of the controls on the form automatically
changes the data in the matching column in the database.

Here’s how to create several database-driven controls:

Add database-driven controls to your form

bind it all together

It took a little work, but now we’re back to creating form objects that interact with our data storage.

 Select the data source you want to use.
Select Show Data Sources from the Data pull down menu. This
will bring up the Data Sources window, showing the sources you
have setup for your application.

11

This window shows you all your data sources. We’ve only got one setup, but you could have more for different tables or databases.

You can also
look for, and
click on, the
Data Sources
tab along the
bottom of your
Database
Explorer window.

 Select the People table.
Under the ContactDBDataSet, you should see the People table and all of the columns in
it. Click the plus sign next to the People table to expand it—you’ll see the columns that you
added to your table. When you click on the People table in the Data Sources window and drag
it onto your form, the IDE automatically adds data controls to your form that the user can use
to browse and enter data. By default it adds a DataGridView, which lets the user work with
the data using one big spreadsheet-like control. Click the arrow next to the People table and
select Details—that tells the IDE to add individual controls to your form for each column in
the table.

22

If you don’t see this tab,
select “Show Data Sources”
from the Data menu.

you are here 4 33

get productive with c#

When you dragged
the People table
onto the form, a
control was created
for each column in
the table.

These won’t
show up on
your form, but
represent the
data set the
IDE created to
interact with
the People table
and ContactDB
database.

The IDE
creates this
toolbar for
navigating
through the
People table.

This object connects the form to your People table. This adapter allows your
controls to interact
with SQL commands
that the IDE and data
source generated for you.

The binding navigator connects the toolbar controls to your table.

 Create controls that bind to the People table.
Drag and drop the People table onto your form. You should see
controls appear for each column in your database. Don’t worry
too much about how they look right now; just make sure that
they all appear on the form.

33

If you accidentally click out of the form you’re working on, you
can always get back to it by clicking the “Form1.cs [Design]”
tab, or opening Form1.cs from the Solution Explorer.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

34 Chapter 1

Right now, the form works. But it doesn’t look that great. Your
application has to do more than be functional. It should be
easy to use. With just a few simple steps, you can make the
form look a lot more like the paper cards we were using at the
beginning of the chapter.

make it pretty

Blue lines will show
up on the form as
you drag controls
around. They’re
there to help you
line the fields up.

Good programs are intuitive to use

Our form would
be more intuitive
if it looked
a lot like the
contact card.

Line up your fields and labels.
Line up your fields and labels along the left edge of
the form. Your form will look like other applications,
and make your users feel more comfortable using it.

11

Change the Text Property on the Client checkbox.
When you first drag the fields onto the form your Client
Checkbox will have a label to the right that needs to be
deleted. Right below the Solution Explorer, you’ll see the
properties window. Scroll down to the Text property and
delete the “checkbox1” label.

22

Delete this word to make
the label go away.

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

you are here 4 35

get productive with c#

The Text property controls the heading on your form’s title bar.

Make the application look professional.
You can change the name of the form by clicking on any space
within the form, and finding the Text property in the Properties
window of your IDE. Change the name of the form to

“Objectville Paper Co. - Contact List.”

You can also turn off the Maximize and Minimize buttons
in this same window, by looking for the MaximizeBox and
MinimizeBox properties. Set these both to False.

33

The Properties window

should be right be
low

Solution Explorer, in

the lower right pane of

your IDE.

A good application not only works, but is easy
to use. It’s always a good idea to make sure it
behaves as a typical user would expect it to.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The reason you want to turn off the Maximize button is that maximizing your form won’t change the positions of the controls, so it’ll look weird.

If you don’t have a Properties window, you can turn
it on by selecting it from the View drop-down menu.

36 Chapter 1

Okay, just one more thing to do… run your program and make sure
it works the way you think it should! Do it the same way you did
before—press the F5 key on your keyboard, or click the green arrow
button on the toolbar (or choose “Run” from the Debug menu).

You can always run your programs at any time, even when they’re not
done—although if there’s an error in the code, the IDE will tell you
and stop you from executing it.

Click the X box in the corner to stop the program so you can move on to the next step.

The IDE builds first, then runs.
When you run your program in the IDE it actually does two things. First it
builds your program, then it executes it. This involves a few distinct parts.
It compiles the code, or turns it into an executable file. Then it places the
compiled code, along with any resources and other files, into a subdirectory
underneath the bin folder.

In this case, you’ll find the executable and SQL database file in bin/
debug. Since it copies the database out each time, any changes you
make will be lost the next time you run inside the IDE. But if you run the
executable from Windows, it’ll save your data—until you build again, at
which point the IDE will overwrite the SQL database with a new copy that
contains the data you set up from inside the Database Explorer.

okay, one last thing…

Test drive

Building your
program
overwrites
the data in
your database.

These controls
let you page
through the
different records
in the database.

We’ll spend more time
on this in the next
chapter.

 Every time you
build your
program, the
IDE puts a
fresh copy of
the database
in the bin

folder. This will overwrite
any data you added when
you ran the program.

When you debug your program,
the IDE rebuilds it if the
code has changed—which
means that your database will
sometimes get overwritten
when you run your program in
the IDE. If you run the program
directly from the bin/debug or
bin/release folder, or if you
use the installer to install it on
your machine, then you won’t
see this problem.

you are here 4 37

get productive with c#

At this point, you’ve got a great program. But it only runs
on your machine. That means that nobody else can use the
app, pay you for it, see how great you are and hire you…
and your boss and customers can’t see the reports you’re
generating from the database.

C# makes it easy to take an application you’ve created, and
deploy it. Deployment is taking an application and installing
it onto other machines. And with the Visual C# IDE, you
can set up a deployment with just two steps.

How to turn YOUR application
into EVERYONE’S application

1 Select Publish Contacts from the
Build menu.

Building the solution just copies the files to your
local machine. Publish
creates a Setup executable and a configuration file
so that any machine could install your program.

2 Just accept all of the defaults in the
Publish Wizard by clicking Finish.
You‘ll see it package up your
application and then show you a
folder that has your Setup.exe in it.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

