

The Art of Application
Performance Testing

Ian Molyneaux

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

The Art of Application Performance Testing
by Ian Molyneaux

Copyright © 2009 Ian Molyneaux. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Adam Witwer
Production Services: Newgen Publishing and Data

Services

Cover Designer: Mark Paglietti
Interior Designer: Marcia Friedman
Illustrator: Robert Romano

January 2009: First Edition.

Revision History for the First Edition:
2009-01-12 First release
2013-09-20 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9780596520663 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly

Media, Inc. The Art of Application Performance Testing and related trade dress are trademarks of O’Reilly Media,

Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

Although every precaution has been taken in the preparation of this book, the publisher and authors assume

no responsibility for errors or omissions or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-52066-3

[LSI]

1379519766

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9780596520663

C O N T E N T S

PREFACE v

1 WHY PERFORMANCE TEST? 1
What Is Performance? The End-User Perspective 2
Bad Performance: Why It’s So Common 5
Summary 10

2 THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING 11
Choosing an Appropriate Performance Testing Tool 13
Designing an Appropriate Performance Test Environment 17
Setting Realistic and Appropriate Performance Targets 24
Making Sure Your Application Is Stable Enough for Performance Testing 30
Obtaining a Code Freeze 32
Identifying and Scripting the Business-Critical Transactions 32
Providing Sufficient Test Data of High Quality 36
Ensuring Accurate Performance Test Design 38
Identifying the Server and Network Key Performance Indicators (KPIs) 46
Allocating Enough Time to Performance Test Effectively 49
Summary 50

3 THE PROCESS OF PERFORMANCE TESTING 51
The Proof of Concept (POC) 52
From Requirements to Performance Test 54
Case Study 1: Online Banking 63
Case Study 2: Call Center 70
Summary 76

4 INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS 77
The Analysis Process 78
Types of Output from a Performance Test 79
Root-Cause Analysis 90
Analysis Checklist 96
Summary 100

5 APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING 101
Asynchronous Java and XML (AJAX) 101
Citrix 102
HTTP Protocol 104
Java 106
Oracle 107
SAP 108

iii

Service-Orientated Architecture (SOA) 109
Web 2.0 110
Oddball Application Technologies: Help, My Load Testing Tool Won’t Record It! 112

A TRANSACTION EXAMPLES 115

B POC AND PERFORMANCE TEST QUICK REFERENCE 119

C AUTOMATED TOOL VENDORS 129

D SAMPLE KPI MONITORING TEMPLATES 133

E SAMPLE PROJECT PLAN 137

INDEX 139

iv C O N T E N T S

P R E F A C E

This book is written by an experienced application performance specialist for the benefit of

those who would like to become specialists or have started working at application performance

testing.

Businesses in today’s world live and die by the performance of mission-critical software

applications. Sadly, many applications are deployed without being adequately tested for

scalability and performance. Effective performance testing identifies performance bottlenecks

in a timely fashion and tells you where they are located in the application landscape.

The Art of Application Performance Testing addresses an urgent need in the marketplace for

reference material on this subject. However, this is not a book on how to tune technology X or

optimize technology Y. I’ve intentionally stayed well away from specific technologies except

where they actually affect how you go about performance testing. My intention is to provide

a commonsense guide that focuses on planning, execution, and interpretation of results and

is based on a decade of experience in performance testing projects.

In the same vein, I won’t touch on any particular industry performance testing methodology

because—truth be told—they don’t exist. Application performance testing is a unique discipline

and is crying out for its own set of industry standards. I’m hopeful that this book may in some

small way act as a catalyst for the appearance of formal processes.

v

Although I work for a company that’s passionate about performance, this book is tool- and

vendor-neutral. The processes and strategies described here can be used with any professional

automated testing solution.

Hope you like it!

—Ian Molyneaux, December 2008

Audience
Although this book is for anyone interested in learning about application performance testing,

it especially targets seasoned software testers and project managers looking for guidance in

implementing an effective application performance testing strategy.

The book assumes that readers have some familiarity with software testing techniques, though

not necessarily performance-related ones.

As a further prerequisite, effective performance testing is really possible only with the use of

automation. Therefore, to get the most from the book you should have some experience of

automated testing tools.

About This Book
Based on a number of my jottings (that never made it to the white paper stage) and ten years

of hard experience, this book is designed to explain why it is so important to performance test

any application before deploying it. The book leads you through the steps required to

implement an effective application performance testing strategy.

Here are brief summaries of the book’s chapters and appendixes.

Chapter 1, Why Performance Test?, discusses the rationale behind application performance

testing and looks at performance testing in the IT industry from a historical perspective.

Chapter 2, The Fundamentals of Effective Application Performance Testing, introduces the building

blocks of effective performance testing and explains their importance.

Chapter 3, The Process of Performance Testing, suggests a best-practice approach. It builds on

Chapter 2, applying its requirements to a model for application performance testing.

Chapter 4, Interpreting Results: Effective Root-Cause Analysis, teaches effective root-cause analysis.

It discusses the typical output of a performance test and how to perform effective analysis.

Chapter 5, Application Technology and Its Impact on Performance Testing, discusses the effects of

particular software environments on testing. The approach is generic, so many details regarding

your applications will depend on the characteristics of the technologies you use.

Appendix A, Transaction Examples, provides examples of how to prepare application

transactions for inclusion in a performance test.

vi P R E F A C E

Appendix B, POC and Performance Test Quick Reference, reiterates the practical steps presented in

the book.

Appendix C, Automated Tool Vendors, lists sources for the technologies required by performance

testing. It is not an endorsement and is not intended to be complete.

Appendix D, Sample KPI Monitoring Templates, provides some examples of the sort of Key

Performance Indicators you would use to monitor server and network performance as part of

a typical performance test configuration.

Appendix E, Sample Project Plan, provides an example of a typical performance test plan based

on Microsoft Project.

Conventions Used in This Book
The following typographical conventions will be used.

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings and also within paragraphs to refer to program elements such

as variable or function names, databases, data types, environment variables, statements,

and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by

context.

T I P
This icon signifies a tip, suggestion, or general note.

C A U T I O N
This icon indicates a warning or caution.

Glossary
The following terms are used in this book.

Application landscape

A generic term describing the server and network infrastructure required to deploy a

software application.

P R E F A C E vii

ICA

Citrix proprietary protocol, Independent Computing Architecture.

ITIL

Information Technology Infrastructure Library.

ITPM

Information Technology Portfolio Management.

ITSM

Information Technology Service Management.

JMS

Java Message Service (formerly Java Message Queue).

Load injector

A PC or server used as part of an automated performance testing solution to simulate real

end-user activity.

IBM/WebSphere MQ

IBM’s Message Oriented Middleware.

POC

Proof of Concept, a term used to describe a pilot project often included as part of the sales

cycle. The intention is to compare the proposed software solution to a customer’s, current

application and so employ a familiar frame of reference. Proof of value is another term for

a POC or Proof of Concept.

SOA

Service-Oriented Architecture

Transaction

A set of end-user actions that represent typical application activity. A typical transaction

might be: log in, navigate to a search dialog, enter a search string, click the search button,

and log out. Transactions form the basis of automated performance testing.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book

in your programs and documentation. You do not need to contact us for permission unless

you’re reproducing a significant portion of the code. For example, writing a program that uses

several chunks of code from this book does not require permission. Selling or distributing a

CD-ROM of examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

viii P R E F A C E

We appreciate, but do not require, attribution. An attribution usually includes the title, author,

publisher, and ISBN. For example: “The Art of Application Performance Testing by Ian Molyneaux.

Copyright 2009 Ian Molyneaux, 978-0-596-52066-3.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite technology
book, that means the book is available online through the O’Reilly Network
Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search

thousands of top tech books, cut and paste code samples, download chapters, and find quick

answers when you need the most accurate, current information. Try it for free at http://safari

.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://www.oreilly.com/catalog/9780596520663

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Many thanks to everyone at O’Reilly who helped to make this book possible and put up with

the fumbling efforts of a novice author. These include editor Andy Oram, assistant editor Isabel

Kunkle, managing editor Marlowe Shaeffer, Robert Romano for the figures and artwork,

P R E F A C E ix

mailto:permissions@oreilly.com
http://safari.oreilly.com
http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596520663
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Jacquelynn McIlvaine and Karen Crosby for setting up my blog and providing me with the

materials to start writing, and Karen Crosby and Keith Fahlgren for setting up the DocBook

repository and answering all my questions.

In addition I would like to thank my employer, Compuware Corporation, for their kind

permission to use screenshots from a number of their performance solutions to help illustrate

points in this book.

I would also like to thank the following specialists for their comments and assistance on a

previous draft: Peter Cole, President and CTO of Greenhat, for his help with understanding

and expanding on the SOA performance testing model; Adam Brown of Quotium; David

Collier-Brown of Sun Microsystems; Matt St. Onge; Paul Gerrard, principal of Gerrard

consulting; Francois MacDonald of Compuware’s Professional Services division; and Alexandre

Mechain from Compuware France.

Finally, I would like to thank the many software testers and consultants whom I have worked

with over the last decade. Without your help, this book would not have been written!

x P R E F A C E

C H A P T E R O N E

Why Performance Test?

Faster than a speeding bullet . . .

—Superman, Action Comics

This chapter poses some fundamental questions concerning the subject of this book. What is

performance? Why carry out performance testing in the first place? Here I also define when

an application is considered performant versus nonperformant and then discuss some common

causes of a suboptimal end-user experience.

Nonperformant (i.e., badly performing) applications generally don’t deliver their intended

benefit to the organization. That is, they create a net cost of time, money, and loss of kudos

from the application users and therefore can’t be considered reliable assets. If an application is

not delivering benefits, its continued existence is definitely on shaky ground—not to mention

that of the architects, designers, coders, and testers (hopefully there were some!).

Performance testing is a neglected cousin of unit, functional, and system testing, which are

well understood in most businesses and where the maturity level is high in many organizations.

It is strange but true to say that executives do not appreciate the importance of performance

testing. This has changed little over the past ten years despite the best efforts of consultants

like myself and the many highly publicized failures of key software applications.

1

What Is Performance? The End-User Perspective
When is an application considered to be performing well?

My years of working with customers and performance teams suggest that the answer is

ultimately one of perception. A well-performing application is one that lets the end user carry

out a given task without undue perceived delay or irritation. Performance really is in the eye of

the beholder.

With a performant application, users are never greeted with a blank screen during login and

can achieve what they set out to accomplish without letting their attention wander. Casual

visitors browsing a web site can find what they are looking for and purchase it without

experiencing too much frustration, and the call-center manager is not being harassed by

complaints of poor performance from the operators.

It sounds simple enough, and you may have your own thoughts on what constitutes good

performance. But no matter how you define it, many applications struggle to deliver an

acceptable level of performance.

Of course, when I talk about an application I’m actually referring to the sum of the whole,

since an application is made up of many component parts. At a high level we can define these

as the application software plus the application landscape. The latter includes the servers

required to run the software as well as the network infrastructure that allows all the application

components to communicate.

If any of these areas has problems, application performance is likely to suffer.

You might think that all we need do to ensure good application performance is observe the

behavior of each of these areas under load and stress and correct any problems that occur. The

reality is very different because this approach is often “too little, too late” and so you end up

dealing with the symptoms of performance problems rather than the cause.

Performance Measurement

So how do we go about measuring performance? We’ve discussed end-user perception, but in

order to accurately measure performance there are a number of key indicators that must be

taken into account. These indicators are part of the performance requirements discussed

further in Chapter 2 but for now we can divide them into two types: service-oriented and

efficiency-oriented.

Service-oriented indicators are availability and response time; they measure how well (or not)

an application is providing a service to the end users. Efficiency-oriented indicators are

throughput and utilization; they measure how well (or not) an application makes use of the

application landscape. We can define these terms briefly as follows:

2 C H A P T E R O N E

Availability

The amount of time an application is available to the end user. Lack of availability is

significant because many applications will have a substantial business cost for even a small

outage. In performance testing terms, this would mean the complete inability of an end

user to make effective use of the application.

Response time

The amount of time it takes for the application to respond to a user request. For

performance testing, one normally measures system response time, which is the time

between the user’s requesting a response from the application and a complete reply

arriving at the user’s workstation.

Throughput

The rate at which application-oriented events occur. A good example would be the

number of hits on a web page within a given period of time.

Utilization

The percentage of the theoretical capacity of a resource that is being used. Examples

include how much network bandwidth is being consumed by application traffic and the

amount of memory used on a server when a thousand visitors are active.

Taken together, these indicators can provide us with an accurate idea of how an application is

performing and its impact, in capacity terms, on the application landscape.

Performance Standards

By the way, if you were hoping I could point you to a generic industry standard for good and

bad performance, you’re out of luck because no such guide exists. There have been various

informal attempts to define a standard, particularly for browser-based applications. For

instance, you may have heard the term “minimum page refresh time.” I can remember a figure

of 20 seconds being bandied about, which rapidly became 8 seconds. Of course, the application

user (and the business) wants “instant response” (in the words of the Eagles band, “Everything

all the time”), but this sort of performance is likely to remain elusive.

Many commercial Service Level Agreements (SLAs) cover infrastructure performance rather

than the application itself, and they often address only specific areas such as network latency

or server availability.

The following list summarizes research conducted in the late 1980s (Martin 1988) that

attempted to map user productivity to response time. The original research was based largely

on green-screen text applications, but its conclusions are probably still relevant.

Greater than 15 seconds

This rules out conversational interaction. For certain types of applications, certain types

of users may be content to sit at a terminal for more than 15 seconds waiting for the answer

W H Y P E R F O R M A N C E T E S T ? 3

to a single simple inquiry. However, to the busy call-center operator or futures trader,

delays of more than 15 seconds may seem intolerable. If such delays can occur, the system

should be designed so that the user can turn to other activities and request the response

at some later time.

Greater than 4 seconds

These delays are generally too long for a conversation requiring the end-user to retain

information in short-term memory (end-user’s memory, not the computer’s!). Such

delays would inhibit problem-solving activity and frustrate data entry. However, after the

completion of a transaction, delays of 4 to 15 seconds can be tolerated.

2 to 4 seconds

A delay longer than 2 seconds can be inhibiting to operations that demand a high level of

concentration. A wait of 2 to 4 seconds at a terminal can seem surprisingly long when the

user is absorbed and emotionally committed to completing the task at hand. Again, a delay

in this range may be acceptable after a minor closure. It may be acceptable to make a

purchaser wait 2 to 4 seconds after typing in her address and credit card number, but not

at an earlier stage when she is comparing various product features.

Less than 2 seconds

When the application user has to remember information throughout several responses,

the response time must be short. The more detailed the information to be remembered,

the greater the need for responses of less than 2 seconds. Thus, for complex activities such

as browsing camera products that vary along multiple dimensions, 2 seconds represents

an important response-time limit.

Subsecond response time

Certain types of thought-intensive work (such as writing a book), especially with

applications rich in graphics, require very short response times to maintain the users’

interest and attention for long periods of time. An artist dragging an image to another

location must be able to act instantly on his next creative thought.

Deci-second response time

A response to pressing a key of seeing the character displayed on the screen or to clicking

a screen object with a mouse must be almost instantaneous: less than 0.1 second after the

action. Many computer games require extremely fast interaction.

As you can see, the critical response time barrier seems to be 2 seconds. Response times greater

than this have a definite impact on productivity for the average user, so our nominal page

refresh time of 8 seconds for Internet applications is certainly less than ideal.

The Internet Effect

The explosive growth of the Internet has contributed in no small way to the need for

applications to perform at warp speed. Many (or is that most?) businesses now rely on

cyberspace for a good deal of their revenue in what is probably the most competitive

4 C H A P T E R O N E

