

Regular Expression
Pocket Reference

Tony Stubblebine

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.17955 Page 3 Wednesday, July 5, 2006 9:41 AM

Regular Expression Pocket Reference
by Tony Stubblebine

Copyright © 2003 O’Reilly Media, Inc. All rights reserved.
Portions of this book are based on Mastering Regular Expressions, by Jeffrey
E. F. Friedl, Copyright © 2002, 1997 O’Reilly Media, Inc.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational,
business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Nathan Torkington
Production Editor: Genevieve d’Entremont
Cover Designer: Hanna Dyer
Interior Designer: David Futato

Printing History:
August 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, Regular Expression Pocket Reference, the
image of owls, and related trade dress are trademarks of O’Reilly Media,
Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial
caps. Java is a trademark of Sun Microsystems, Inc. Microsoft Internet
Explorer and .NET are registered trademarks of Microsoft Corporation.
Spider-Man is a registered trademark of Marvel Enterprises, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

0-596-00415-X
[C] [6/06]

,COPYRIGHT.18439 Page 1 Wednesday, July 5, 2006 9:42 AM

v

Contents

About This Book 1

Introduction to Regexes and Pattern Matching 3
Regex Metacharacters, Modes, and Constructs 5
Unicode Support 13

Perl 5.8 13
Supported Metacharacters 14
Regular Expression Operators 17
Unicode Support 19
Examples 20
Other Resources 21

Java (java.util.regex) 21
Supported Metacharacters 22
Regular Expression Classes and Interfaces 25
Unicode Support 29
Examples 29
Other Resources 32

.NET and C# 32
Supported Metacharacters 32
Regular Expression Classes and Interfaces 36
Unicode Support 40
Examples 40
Other Resources 43

vi | Contents

Python 43
Supported Metacharacters 43
re Module Objects and Functions 46
Unicode Support 49
Examples 49
Other Resources 51

PCRE Lib 51
Supported Metacharacters 51
PCRE API 55
Unicode Support 58
Examples 58
Other Resources 62

PHP 62
Supported Metacharacters 62
Pattern-Matching Functions 66
Examples 68
Other Resources 70

vi Editor 70
Supported Metacharacters 70
Pattern Matching 73
Examples 74
Other Resources 75

JavaScript 75
Supported Metacharacters 75
Pattern-Matching Methods and Objects 78
Examples 80
Other Resources 81

Shell Tools 81
Supported Metacharacters 82
Other Resources 86

Index 87

1

Regular Expression
Pocket Reference

Regular expressions (known as regexps or regexes) are a way
to describe text through pattern matching. You might want
to use regular expressions to validate data, to pull pieces of
text out of larger blocks, or to substitute new text for old
text.

Regular expression syntax defines a language you use to
describe text. Today, regular expressions are included in
most programming languages as well as many scripting lan-
guages, editors, applications, databases, and command-line
tools. This book aims to give quick access to the syntax and
pattern-matching operations of the most popular of these
languages.

About This Book
This book starts with a general introduction to regular expres-
sions. The first section of this book describes and defines the
constructs used in regular expressions and establishes the
common principles of pattern matching. The remaining sec-
tions of the book are devoted to the syntax, features, and
usage of regular expressions in various implementations.

The implementations covered in this book are Perl, Java, .NET
and C#, Python, PCRE, PHP, the vi editor, JavaScript, and
shell tools.

2 | Regular Expression Pocket Reference

Conventions Used in This Book
The following typographical conventions are used in this
book:

Italic
Used for emphasis, new terms, program names, and
URLs

Constant width
Used for options, values, code fragments, and any text
that should be typed literally

Constant width italic
Used for text that should be replaced with user-supplied
values

Acknowledgments
The world of regular expressions is complex and filled with
nuance. Jeffrey Friedl has written the definitive work on the
subject, Mastering Regular Expressions (O’Reilly), a work on
which I relied heavily when writing this book. As a conve-
nience, this book provides page references to Mastering Reg-
ular Expressions, Second Edition (MRE) for expanded
discussion of regular expression syntax and concepts.

This book simply would not have been written if Jeffrey
Friedl had not blazed a trail ahead of me. Additionally, I owe
him many thanks for allowing me to reuse the structure of
his book and for his suggestions on improving this book. Nat
Torkington’s early guidance raised the bar for this book.
Philip Hazel, Ron Hitchens, A.M. Kuchling, and Brad Mer-
rill reviewed individual chapters. Linda Mui saved my sanity
and this book. Tim Allwine’s constant regex questions
helped me solidify my knowledge of this topic. Thanks to
Schuyler Erle and David Lents for letting me bounce ideas off
of them. Lastly, many thanks to Sarah Burcham for her con-
tributions to the “Shell Tools” sections and for providing the
inspiration and opportunity to work and write for O’Reilly.

Introduction to Regexes and Pattern Matching | 3

Introduction to Regexes
and Pattern Matching
A regular expression is a string containing a combination of
normal characters and special metacharacters or metase-
quences. The normal characters match themselves. Meta-
characters and metasequences are characters or sequences of
characters that represent ideas such as quantity, locations, or
types of characters. The list in the section “Regex Metachar-
acters, Modes, and Constructs” shows the most common
metacharacters and metasequences in the regular expression
world. Later sections list the availability of and syntax for
supported metacharacters for particular implementations of
regular expressions.

Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The underlying
code that searchs the text is the regular expression engine.
You can guess the results of most matches by keeping two
rules in mind:

1. The earliest (leftmost) match wins
Regular expressions are applied to the input starting at
the first character and proceeding toward the last. As
soon as the regular expression engine finds a match, it
returns. (See MRE 148-149, 177–179.)

2. Standard quantifiers are greedy
Quantifiers specify how many times something can be
repeated. The standard quantifiers attempt to match as
many times as possible. They settle for less than the max-
imum only if this is necessary for the success of the
match. The process of giving up characters and trying
less-greedy matches is called backtracking. (See MRE
151–153.)

Regular expression engines have subtle differences based on
their type. There are two classes of engines: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Autom-
aton (NFA). DFAs are faster but lack many of the features of

4 | Regular Expression Pocket Reference

an NFA, such as capturing, lookaround, and non-greedy
quantifiers. In the NFA world there are two types: Tradi-
tional and POSIX.

DFA engines
DFAs compare each character of the input string to the
regular expression, keeping track of all matches in
progress. Since each character is examined at most once,
the DFA engine is the fastest. One additional rule to
remember with DFAs is that the alternation metase-
quence is greedy. When more than one option in an
alternation (foo|foobar) matches, the longest one is
selected. So, rule #1 can be amended to read “the long-
est leftmost match wins.” (See MRE 155–156.)

Traditional NFA engines
Traditional NFA engines compare each element of the
regex to the input string, keeping track of positions
where it chose between two options in the regex. If an
option fails, the engine backtracks to the most recently
saved position. For standard quantifiers, the engine
chooses the greedy option of matching more text; how-
ever, if that option leads to the failure of the match, the
engine returns to a saved position and tries a less greedy
path. The traditional NFA engine uses ordered alterna-
tion, where each option in the alternation is tried sequen-
tially. A longer match may be ignored if an earlier option
leads to a successful match. So, rule #1 can be amended
to read “the first leftmost match after greedy quantifiers
have had their fill.” (See MRE 153–154.)

POSIX NFA engines
POSIX NFA Engines work similarly to Traditional NFAs
with one exception: a POSIX engine always picks the
longest of the leftmost matches. For example, the alter-
nation cat|category would match the full word “cate-
gory” whenever possible, even if the first alternative
(“cat”) matched and appeared earlier in the alternation.
(See MRE 153–154.)

