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Regular Expression
Pocket Reference

Regular expressions (known as regexps or regexes) are a way
to describe text through pattern matching. You might want
to use regular expressions to validate data, to pull pieces of
text out of larger blocks, or to substitute new text for old
text.

Regular expression syntax defines a language you use to
describe text. Today, regular expressions are included in
most programming languages as well as many scripting lan-
guages, editors, applications, databases, and command-line
tools. This book aims to give quick access to the syntax and
pattern-matching operations of the most popular of these
languages.

About This Book
This book starts with a general introduction to regular expres-
sions. The first section of this book describes and defines the
constructs used in regular expressions and establishes the
common principles of pattern matching. The remaining sec-
tions of the book are devoted to the syntax, features, and
usage of regular expressions in various implementations.

The implementations covered in this book are Perl, Java, .NET
and C#, Python, PCRE, PHP, the vi editor, JavaScript, and
shell tools.
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Conventions Used in This Book
The following typographical conventions are used in this
book:

Italic
Used for emphasis, new terms, program names, and
URLs

Constant width
Used for options, values, code fragments, and any text
that should be typed literally

Constant width italic
Used for text that should be replaced with user-supplied
values
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Introduction to Regexes
and Pattern Matching
A regular expression is a string containing a combination of
normal characters and special metacharacters or metase-
quences. The normal characters match themselves. Meta-
characters and metasequences are characters or sequences of
characters that represent ideas such as quantity, locations, or
types of characters. The list in the section “Regex Metachar-
acters, Modes, and Constructs” shows the most common
metacharacters and metasequences in the regular expression
world. Later sections list the availability of and syntax for
supported metacharacters for particular implementations of
regular expressions.

Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The underlying
code that searchs the text is the regular expression engine.
You can guess the results of most matches by keeping two
rules in mind:

1. The earliest (leftmost) match wins
Regular expressions are applied to the input starting at
the first character and proceeding toward the last. As
soon as the regular expression engine finds a match, it
returns. (See MRE 148-149, 177–179.)

2. Standard quantifiers are greedy
Quantifiers specify how many times something can be
repeated. The standard quantifiers attempt to match as
many times as possible. They settle for less than the max-
imum only if this is necessary for the success of the
match. The process of giving up characters and trying
less-greedy matches is called backtracking. (See MRE
151–153.)

Regular expression engines have subtle differences based on
their type. There are two classes of engines: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Autom-
aton (NFA). DFAs are faster but lack many of the features of
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an NFA, such as capturing, lookaround, and non-greedy
quantifiers. In the NFA world there are two types: Tradi-
tional and POSIX.

DFA engines
DFAs compare each character of the input string to the
regular expression, keeping track of all matches in
progress. Since each character is examined at most once,
the DFA engine is the fastest. One additional rule to
remember with DFAs is that the alternation metase-
quence is greedy. When more than one option in an
alternation (foo|foobar) matches, the longest one is
selected. So, rule #1 can be amended to read “the long-
est leftmost match wins.” (See MRE 155–156.)

Traditional NFA engines
Traditional NFA engines compare each element of the
regex to the input string, keeping track of positions
where it chose between two options in the regex. If an
option fails, the engine backtracks to the most recently
saved position. For standard quantifiers, the engine
chooses the greedy option of matching more text; how-
ever, if that option leads to the failure of the match, the
engine returns to a saved position and tries a less greedy
path. The traditional NFA engine uses ordered alterna-
tion, where each option in the alternation is tried sequen-
tially. A longer match may be ignored if an earlier option
leads to a successful match. So, rule #1 can be amended
to read “the first leftmost match after greedy quantifiers
have had their fill.” (See MRE 153–154.)

POSIX NFA engines
POSIX NFA Engines work similarly to Traditional NFAs
with one exception: a POSIX engine always picks the
longest of the leftmost matches. For example, the alter-
nation cat|category would match the full word “cate-
gory” whenever possible, even if the first alternative
(“cat”) matched and appeared earlier in the alternation.
(See MRE 153–154.)


