

Python
Pocket Reference

THIRD EDITION

Mark Lutz

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.29099 Page 3 Wednesday, July 5, 2006 12:21 PM

Python Pocket Reference
by Mark Lutz

Copyright © 2005, 2002, 1998 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick
Production Editor: Claire Cloutier
Cover Designer: Edie Freedman
Interior Designer: David Futato

Printing History:
October 1998: First Edition.
January 2002: Second Edition.
February 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Python Pocket Reference, the image of a rock python, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

0-596-00940-2
[C] [6/06]

,COPYRIGHT.28972 Page iv Wednesday, July 5, 2006 12:20 PM

v

Contents

Introduction 1

Conventions 2

Command-Line Options 2
Python Options 2
Program Specification 4

Environment Variables 5

Built-in Types and Operators 6
Operators and Precedence 6
Operations by Category 7
Sequence Operation Notes 10

Specific Built-in Types 11
Numbers 11
Strings 12
Unicode Strings 21
Lists 22
Dictionaries 26
Tuples 28
Files 29
Other Common Types 32
Type Conversions 34

vi | Contents

Statements and Syntax 35
Syntax Rules 35
Name Rules 36

Specific Statements 38
Assignment 38
Expressions 39
The print Statement 40
The if Statement 41
The while Statement 41
The for Statement 42
The pass Statement 42
The break Statement 42
The continue Statement 43
The del Statement 43
The exec Statement 43
The def Statement 43
The return Statement 46
The yield Statement 46
The global Statement 47
The import Statement 47
The from Statement 49
The class Statement 49
The try Statement 50
The raise Statement 51
The assert Statement 53

Namespace and Scope Rules 53
Qualified Names: Object Namespaces 54
Unqualified Names: Lexical Scopes 54
Statically Nested Scopes 55

Contents | vii

Object-Oriented Programming 56
Classes and Instances 57
Pseudo-Private Attributes 58
New Style Classes 58

Operator Overloading Methods 59
For All Types 59
For Collections (Sequences, Mappings) 62
For Numbers (Binary Operators) 63
For Numbers (Other Operations) 66

Built-in Functions 67

Built-in Exceptions 79
Base Classes (Categories) 79
Specific Exceptions Raised 80
Warning Category Exceptions 82
Warnings Framework 82

Built-in Attributes 83

Built-in Modules 84

The sys Module 85

The string Module 91
Module Functions 91
Constants 92

The os System Module 93
Administrative Tools 93
Portability Constants 94
Shell Commands 95
Environment Tools 97
File Descriptor Tools 98

viii | Contents

File Pathname Tools 100
Process Control 103
The os.path Module 107

The re Pattern-Matching Module 110
Module Functions 110
Regular Expression Objects 112
Match Objects 112
Pattern Syntax 114

Object Persistence Modules 116
anydbm and shelve Interfaces 117
pickle Interface 118

Tkinter GUI Module and Tools 119
Tkinter Example 120
Tkinter Core Widgets 120
Common Dialog Calls 121
Additional Tkinter Classes and Tools 122
Tcl/Tk-to-Python/Tkinter Mappings 123

Internet Modules and Tools 124
Commonly Used Library Modules 124

Other Built-in Modules 127
The math Module 127
The time Module 128
The datetime Module 129
Threading Modules 129
Binary Data Parsing 130

Python Portable SQL Database API 130
API Usage Example 131
Module Interface 131

Contents | ix

Connection Objects 132
Cursor Objects 132
Type Objects and Constructors 133

Python Idioms and Hints 134
Core Language Hints 134
Environment Hints 135
Usage Hints 136
Assorted Hints 137

Index 139

1

Chapter 1

Python Pocket Reference

Introduction
Python is a general-purpose, object-oriented, and open
source computer programming language. It is commonly
used for both standalone programs and scripting applica-
tions in a wide variety of domains, by hundreds of thou-
sands of developers.

Python is designed to optimize developer productivity, soft-
ware quality, program portability, and component integra-
tion. Python programs run on most platforms in common
use, including mainframes and supercomputers, Unix and
Linux, Windows and Macintosh, Palm OS and Pocket PC,
Java and .NET, and more.

This pocket reference summarizes Python statements and
types, built-in functions, commonly used library modules,
and other prominent Python tools. It is intended to serve as a
concise reference tool for developers and is designed to be a
companion to other books that provide tutorials, code exam-
ples, and other learning materials.

This third edition covers Python Version 2.4 and later. It has
been thoroughly updated for recent language and library
changes and expanded for new topics. Most of it applies to
earlier releases as well, with the exception of recent language
extensions.

2 | Python Pocket Reference

Conventions
The following conventions are used in this book:

[]
Items in brackets are usually optional. The exceptions are
those cases where brackets are part of Python’s syntax.

*
Something followed by an asterisk can be repeated zero
or more times.

a | b
Items separated by a bar are often alternatives.

Italic
Used for filenames and URLs and to highlight new terms.

Constant width
Used for code, commands, and command-line options,
and to indicate the names of modules, functions,
attributes, variables, and methods.

Constant width italic
Used for replaceable parameter names in command syntax.

Command-Line Options
python [option*]
 [scriptfilename | -c command | -m module | -] [arg*]

Python Options
-d

Turns on parser debugging output (for developers of the
Python core).

-E
Ignores environment variables (such as PYTHONPATH).

Command-Line Options | 3

-h
Prints help message and exit.

-i
Enters interactive mode after executing a script, without
reading the PYTHONSTARTUP file. Useful for postmortem
debugging.

-O
Optimizes generated byte-code (create and use .pyo byte-
code files). Currently yields a minor performance
improvement.

-OO
Operates like -O, the previous option, but also removes
docstrings from byte-code.

-Q arg
Division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew.

-S
Doesn’t imply “import site” on initialization.

-t
Issues warnings about inconsistent tab usage (-tt issues
error instead).

-u
Forces stdout and stderr to be unbuffered and binary.

-v
Prints a message each time a module is initialized, show-
ing the place from which it is loaded; repeats this flag for
more verbose output.

-V
Prints Python version number and exit.

4 | Python Pocket Reference

-W arg
Functions as warning control; arg is action:message:
category:module:lineno. See warnings module documen-
tation in the Python Library Reference (http://www.
python.org/doc/).

-x
Skips first line of source, allowing use of non-Unix forms
of #!cmd.

Program Specification
scriptfilename

Denotes the name of a Python scriptfile to execute; the
main, topmost file of a program, made available in sys.
argv[0].

-c command
Specifies a Python command (as a string) to execute; sys.
argv[0] is set to -c.

-m module
Runs library module as a script: searches for module on
sys.path, and runs it as a top-level file (e.g., python -m
profile runs the Python profiler).

-
Reads Python commands from stdin (the default); enters
interactive mode if stdin is a tty (interactive device).

arg*
Indicates that anything else on the command line is
passed to the scriptfile or command (and appears in the
built-in list of strings sys.argv[1:]).

If no scriptfilename, command, or module is given, Python
enters interactive mode, reading commands from stdin (and
using GNU readline, if installed, for input).

Besides using traditional command lines, you can also gener-
ally start Python programs by clicking their filenames in a file

Environment Variables | 5

explorer GUI, by calling functions in the Python/C API, by
using program launch menu options in IDEs such as IDLE
and Komodo, and so on.

Environment Variables
PYTHONPATH

Augments the default search path for imported module
files. The format is the same as the shell’s PATH setting:
directory pathnames separated by colons (semicolons on
DOS). On module imports, Python searches for the cor-
responding file or directory in each listed directory, from
left to right. Merged into sys.path.

PYTHONSTARTUP
If set to the name of a readable file, the Python com-
mands in that file are executed before the first prompt is
displayed in interactive mode.

PYTHONHOME
If set, the value is used as an alternate prefix directory for
library modules (or sys.prefix, sys.exec_prefix). The
default module search path uses sys.prefix/lib.

PYTHONCASEOK
If set, ignores case in import statements (on Windows).

PYTHONDEBUG
If nonempty, same as -d option.

PYTHONINSPECT
If nonempty, same as -i option.

PYTHONOPTIMIZE
If nonempty, same as -O option.

PYTHONUNBUFFERED
If nonempty, same as -u option.

PYTHONVERBOSE
If nonempty, same as -v option.

6 | Python Pocket Reference

Built-in Types and Operators

Operators and Precedence
Table 1 lists Python’s expression operators. Operators in the
lower cells of this table have higher precedence (i.e., bind
tighter) when used in mixed-operator expressions without
parentheses.

Table 1. Expression operators and precedence

Operator Description

lambda args: expr Anonymous function maker.

X or Y Logical OR: Y is evaluated only if X is false.

X and Y Logical AND: Y is evaluated only if X is
true.

not X Logical negation.

X < Y, X <= Y, X > Y, X >= Y
X == Y, X <> Y, X != Y
X is Y, X is not Y
X in S, X not in S

Comparison operatorsa.
Equality operators.
Object identity tests.
Sequence membership.

X | Y Bitwise OR.

X ^ Y Bitwise exclusive OR.

X & Y Bitwise AND.

X << Y, X >> Y Shift X left, right by Y bits.

X + Y, X – Y Addition/concatenation, subtraction.

X * Y, X % Y, X / Y, X // Y Multiply/repetition, remainder/format,
division, floor divisionb.

-X, +X, ~X, X ** Y Unary negation, identity, bitwise
complement, power.

X[i], X[i:j], X.attr, X(...) Indexing, slicing, attribute references,
function calls.

(...), [...], {...}, `...` Tuplec, listd, dictionary, conversion to
stringe.

