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Chapter 1

Python Pocket Reference

Introduction
Python is a general-purpose, object-oriented, and open
source computer programming language. It is commonly
used for both standalone programs and scripting applica-
tions in a wide variety of domains, by hundreds of thou-
sands of developers.

Python is designed to optimize developer productivity, soft-
ware quality, program portability, and component integra-
tion. Python programs run on most platforms in common
use, including mainframes and supercomputers, Unix and
Linux, Windows and Macintosh, Palm OS and Pocket PC,
Java and .NET, and more.

This pocket reference summarizes Python statements and
types, built-in functions, commonly used library modules,
and other prominent Python tools. It is intended to serve as a
concise reference tool for developers and is designed to be a
companion to other books that provide tutorials, code exam-
ples, and other learning materials.

This third edition covers Python Version 2.4 and later. It has
been thoroughly updated for recent language and library
changes and expanded for new topics. Most of it applies to
earlier releases as well, with the exception of recent language
extensions.
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Conventions
The following conventions are used in this book:

[]
Items in brackets are usually optional. The exceptions are
those cases where brackets are part of Python’s syntax.

*
Something followed by an asterisk can be repeated zero
or more times.

a | b
Items separated by a bar are often alternatives.

Italic
Used for filenames and URLs and to highlight new terms.

Constant width
Used for code, commands, and command-line options,
and to indicate the names of modules, functions,
attributes, variables, and methods.

Constant width italic
Used for replaceable parameter names in command syntax.

Command-Line Options
python [option*]
  [ scriptfilename | -c command | -m module | - ] [arg*]

Python Options
-d

Turns on parser debugging output (for developers of the
Python core).

-E
Ignores environment variables (such as PYTHONPATH).
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-h
Prints help message and exit.

-i
Enters interactive mode after executing a script, without
reading the PYTHONSTARTUP file. Useful for postmortem
debugging.

-O
Optimizes generated byte-code (create and use .pyo byte-
code files). Currently yields a minor performance
improvement.

-OO
Operates like -O, the previous option, but also removes
docstrings from byte-code.

-Q arg
Division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew.

-S
Doesn’t imply “import site” on initialization.

-t
Issues warnings about inconsistent tab usage (-tt issues
error instead).

-u
Forces stdout and stderr to be unbuffered and binary.

-v
Prints a message each time a module is initialized, show-
ing the place from which it is loaded; repeats this flag for
more verbose output.

-V
Prints Python version number and exit.
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-W arg
Functions as warning control; arg is action:message:
category:module:lineno. See warnings module documen-
tation in the Python Library Reference (http://www.
python.org/doc/).

-x
Skips first line of source, allowing use of non-Unix forms
of #!cmd.

Program Specification
scriptfilename

Denotes the name of a Python scriptfile to execute; the
main, topmost file of a program, made available in sys.
argv[0].

-c command
Specifies a Python command (as a string) to execute; sys.
argv[0] is set to -c.

-m module
Runs library module as a script: searches for module on
sys.path, and runs it as a top-level file (e.g., python -m
profile runs the Python profiler).

-
Reads Python commands from stdin (the default); enters
interactive mode if stdin is a tty (interactive device).

arg*
Indicates that anything else on the command line is
passed to the scriptfile or command (and appears in the
built-in list of strings sys.argv[1:]).

If no scriptfilename, command, or module is given, Python
enters interactive mode, reading commands from stdin (and
using GNU readline, if installed, for input).

Besides using traditional command lines, you can also gener-
ally start Python programs by clicking their filenames in a file
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explorer GUI, by calling functions in the Python/C API, by
using program launch menu options in IDEs such as IDLE
and Komodo, and so on.

Environment Variables
PYTHONPATH

Augments the default search path for imported module
files. The format is the same as the shell’s PATH setting:
directory pathnames separated by colons (semicolons on
DOS). On module imports, Python searches for the cor-
responding file or directory in each listed directory, from
left to right. Merged into sys.path.

PYTHONSTARTUP
If set to the name of a readable file, the Python com-
mands in that file are executed before the first prompt is
displayed in interactive mode.

PYTHONHOME
If set, the value is used as an alternate prefix directory for
library modules (or sys.prefix, sys.exec_prefix). The
default module search path uses sys.prefix/lib.

PYTHONCASEOK
If set, ignores case in import statements (on Windows).

PYTHONDEBUG
If nonempty, same as -d option.

PYTHONINSPECT
If nonempty, same as -i option.

PYTHONOPTIMIZE
If nonempty, same as -O option.

PYTHONUNBUFFERED
If nonempty, same as -u option.

PYTHONVERBOSE
If nonempty, same as -v option.
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Built-in Types and Operators

Operators and Precedence
Table 1 lists Python’s expression operators. Operators in the
lower cells of this table have higher precedence (i.e., bind
tighter) when used in mixed-operator expressions without
parentheses.

Table 1. Expression operators and precedence

Operator Description

lambda args: expr Anonymous function maker.

X or Y Logical OR: Y is evaluated only if X is false.

X and Y Logical AND: Y is evaluated only if X is
true.

not X Logical negation.

X < Y, X <= Y, X > Y, X >= Y
X == Y, X <> Y, X != Y
X is Y, X is not Y
X in S, X not in S

Comparison operatorsa.
Equality operators.
Object identity tests.
Sequence membership.

X | Y Bitwise OR.

X ^ Y Bitwise exclusive OR.

X & Y Bitwise AND.

X << Y, X >> Y Shift X left, right by Y bits.

X + Y, X – Y Addition/concatenation, subtraction.

X * Y, X % Y, X / Y, X // Y Multiply/repetition, remainder/format,
division, floor divisionb.

-X, +X, ~X, X ** Y Unary negation, identity, bitwise
complement, power.

X[i], X[i:j], X.attr, X(...) Indexing, slicing, attribute references,
function calls.

(...), [...], {...}, `...` Tuplec, listd, dictionary, conversion to
stringe.


