

Oracle PL/SQL Language
Pocket Reference

THIRD EDITION

Steven Feuerstein, Bill Pribyl,
 and Chip Dawes

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TitleCopy.12735 Page 3 Wednesday, July 5, 2006 9:16 AM

Oracle PL/SQL Language Pocket Reference, Third Edition
by Steven Feuerstein, Bill Pribyl, and Chip Dawes

Copyright © 2004, 2003, 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deborah Russell
Production Editor: Mary Brady
Cover Designer: Edie Freedman
Interior Designer: David Futato

Printing History:
April 1999: First Edition.
February 2003: Second Edition.
April 2004: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Oracle PL/SQL Language Pocket Reference, Third Edition, the
image of ants, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. Oracle® and all
Oracle-based trademarks and logos are trademarks or registered trademarks
of Oracle Corporation, Inc. in the United States and other countries.
O’Reilly Media, Inc. is independent of Oracle Corporation. Java and all
Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. O’Reilly
Media, Inc. is independent of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

0-596-00680-2
[C] [5/06]

,Copyright.12357 Page iv Wednesday, July 5, 2006 9:15 AM

v

Contents

Introduction 1
Acknowledgments 2
Conventions 2

PL/SQL Language Fundamentals 2
PL/SQL Character Set 2
Identifiers 3
Boolean, Numeric, and String Literals 4
Numeric Literals 5
Datetime Interval Literals 5
Delimiters 6
Comments 7
Pragmas 8
Statements 9
Block Structure 9

Variables and Program Data 11
Scalar Datatypes 11
NLS Character Datatypes 17
LOB Datatypes 17
Implicit Datatype Conversions 18
NULLs in PL/SQL 18
Declaring Variables 18
Anchored Declarations 21
Programmer-Defined Subtypes 22

vi | Contents

Conditional and Sequential Control 22
Conditional Control Statements 22
Sequential Control Statements 26

Loops 27
Simple Loop 27
Numeric FOR Loop 28
Cursor FOR Loop 29
WHILE Loop 29
REPEAT UNTIL Loop Emulation 30
EXIT Statement 30
Loop Labels 30

Database Interaction 31
Transaction Management 31
Autonomous Transactions 34

Cursors in PL/SQL 35
Explicit Cursors 35
Implicit Cursors 39
Dynamic Cursors 42
Cursor Variables 43
Cursor Expressions 44

Exception Handling 46
Declaring Exceptions 46
Raising Exceptions 48
Scope 49
Propagation 49

Records in PL/SQL 52
Declaring Records 52
Referencing Fields of Records 53
Assigning Records 53
DML and Records 54
Nested Records 55

Contents | vii

Named Program Units 56
Procedures 56
Functions 57
Parameters 58

Triggers 72
Creating Triggers 73
Trigger Predicates 76
DML Events 76
DDL Events 77
Database Events 77

Packages 77
Package Structure 78
Referencing Package Elements 80
Package Data 80
SERIALLY_REUSABLE Pragma 80
Package Initialization 81

Calling PL/SQL Functions in SQL 82
Calling a Function 83
Requirements and Restrictions 84
Calling Packaged Functions in SQL 84
Column/Function Name Precedence 85

Oracle’s Object-Oriented Features 85
Object Types 86
Type Inheritance 87
Methods 88
Methods in Subtypes 91
Manipulating Objects in PL/SQL and SQL 93
Upcasting and Downcasting 94
Changing Object Types 97

viii | Contents

Collections 99
Declaring a Collection 101
Initializing a Collection 102
Adding and Removing Elements 103
Nested Table Functions 104
Collection Methods 107
Collections and Privileges 110
Nested Collections 110
Bulk Binds 110

External Procedures 114
Creating an External Procedure 114
Parameters 120

Java Language Integration 124
Example 125
Publishing Java to PL/SQL 126
Data Dictionary 128

Regular Expressions (Oracle Database 10g) 128
Metacharacters 128
REGEXP_LIKE 129
REGEXP_INSTR 130
REGEXP_SUBSTR 131
REGEXP_REPLACE 132
Match Modifiers 133

Reserved Words 133

Index 135

1

Chapter 1

Oracle PL/SQL Language
Pocket Reference

Introduction
The Oracle PL/SQL Language Pocket Reference is a quick ref-
erence guide to the PL/SQL programming language, which
provides procedural extensions to the SQL relational data-
base language and a range of Oracle development tools.
Where a package, program, or function is supported only for
a particular version of Oracle (e.g., Oracle Database 10g), we
indicate this in the text.

The purpose of this pocket reference is to help PL/SQL users
find the syntax of specific language elements. It is not a self-
contained user guide; basic knowledge of the PL/SQL pro-
gramming language is required. For more information, see
the following O’Reilly books:

Oracle PL/SQL Programming, Third Edition, by Steven
Feuerstein with Bill Pribyl

Learning Oracle PL/SQL, by Bill Pribyl with Steven Feuerstein

Oracle in a Nutshell, by Rick Greenwald and David C.
Kreines

Oracle PL/SQL Best Practices, by Steven Feuerstein

2 | Oracle PL/SQL Language Pocket Reference

Acknowledgments
Many thanks to all those who helped in the preparation of
this book. In particular, thanks to first-edition reviewers Eric
J. Givler and Stephen Nelson, to second-edition reviewer
Jonathan Gennick, and to both Bryn Llewellyn and Jonathan
Gennick for their input on this latest revision. In addition,
we appreciate all the good work by the O’Reilly crew in edit-
ing and producing this book.

Conventions
UPPERCASE indicates PL/SQL keywords.

lowercase indicates user-defined items such as parameters.

Italic indicates filenames and parameters within text, as well
as the first use of a term.

Constant width is used for code examples and output.

Constant width bold indicates user input in examples show-
ing an interaction.

[] enclose optional items in syntax descriptions.

{} enclose a list of items in syntax descriptions; you must
choose one item from the list.

| separates bracketed list items in syntax descriptions.

PL/SQL Language Fundamentals
This section summarizes the fundamental components of the
PL/SQL language: characters, identifiers, literals, delimiters,
use of comments and pragmas, and construction of state-
ments and blocks.

PL/SQL Character Set
The PL/SQL language is constructed from letters, digits,
symbols, and whitespace, as defined in the following table:

PL/SQL Language Fundamentals | 3

Characters are grouped together into four lexical units: iden-
tifiers, literals, delimiters, and comments.

Identifiers
Identifiers are names for PL/SQL objects such as constants,
variables, exceptions, procedures, cursors, and reserved
words. Identifiers have the following characteristics:

• Can be up to 30 characters in length

• Cannot include whitespace (space, tab, carriage return)

• Must start with a letter

• Can include a dollar sign ($), an underscore (_), and a
pound sign (#)

• Are not case-sensitive

In addition, you must not use PL/SQL’s reserved words as
identifiers. For a list of those words, see the “Reserved
Words” section at the end of the book.

If you enclose an identifier within double quotes, all but the
first of these rules are ignored. For example, the following
declaration is valid:

DECLARE
 "1 ^abc" VARCHAR2(100);
BEGIN
 IF "1 ^abc" IS NULL THEN ...
END;

Type Characters

Letters A–Z, a–z

Digits 0–9

Symbols ~!@#$%^&*()_-+=|[]{ }:;"'< >,.?/ ^

Whitespace space, tab, newline, carriage return

4 | Oracle PL/SQL Language Pocket Reference

Boolean, Numeric, and String Literals
Literals are specific values not represented by identifiers. For
example, TRUE, 3.14159, 6.63E-34, 'Moby Dick', and NULL
are all literals of type Boolean, number, or string. There are
no complex datatype literals as their values are internal rep-
resentations; complex types receive values through direct
assignment or via constructors. Unlike the rest of PL/SQL,
literals are case-sensitive. To embed single quotes within a
string literal, place two single quotes next to each other.

Oracle Database 10g allows you to define your own quoting
mechanism for string literals in both your SQL and PL/SQL
statements. Use the characters q' (q followed by a straight
single quote) to designate the programmer-defined delimiter
for your string literal. Terminate the literal string with the
programmer-defined delimiter followed by a trailing single
quote—for example, q'!my string!'. NCHAR and NVAR-
CHAR delimiters are preceded by the letters nq, as in
nq'^nchar string^'. This technique can simplify your code
when consecutive single quotes appear within a string, such
as the literals in a SQL statement. If you define your delimiter
with one of the four bracketing characters ([{<, you must
use the righthand version of the bracketing character as the
closing delimiter. For example, q'[must be closed with]'.

See the following table for examples:

Literal Actual value

'That''s Entertainment!' That’s Entertainment!

q'#That's Entertainment!#' That’s Entertainment!

'"The Raven"' "The Raven"

'TZ=''CDT6CST''' TZ='CDT6CST'

q'$TZ='CDT6CST'$' TZ='CDT6CST'

q'[TZ='CDT6CST']' TZ='CDT6CST'

'''' '

'''hello world''' 'hello world'

q'!'hello world'!' 'hello world'

PL/SQL Language Fundamentals | 5

Numeric Literals
You may achieve improvements in runtime performance by
making explicit the datatype of numeric literals. You can do
so by including or excluding a decimal point, or by using a
trailing f or d, as shown in the following table:

Oracle Database 10g introduced several special named
constants:

BINARY_FLOAT_NAN (Not a Number)
BINARY_FLOAT_INFINITY
BINARY_FLOAT_MAX_NORMAL
BINARY_FLOAT_MIN_NORMAL
BINARY_FLOAT_MAX_SUBNORMAL
BINARY_FLOAT_MIN_SUBNORMAL

as well as the BINARY_DOUBLE_ versions of these constants.

Datetime Interval Literals
The datetime interval datatypes, introduced in Oracle9i, rep-
resent a chronological interval expressed in terms of either
years and months or days, hours, minutes, seconds, and

'''''' "

q'['']' "

nq'<Price='£10'>' Price='£10'

nq'-WHERE name LIKE '%ñ%'-' WHERE name LIKE '%ñ%'

Literal Datatype

3.14159 NUMBER

42 INTEGER

0.0 NUMBER

3.14159f BINARY_FLOAT (Oracle Database 10g)

3.14159d BINARY_DOUBLE (Oracle Database 10g)

Literal Actual value

6 | Oracle PL/SQL Language Pocket Reference

fractional seconds. Literals of these datatypes require the
keyword INTERVAL followed by the literal and format
string(s). The interval must go from a larger field to a smaller
one, so YEAR TO MONTH is valid, but MONTH TO YEAR
is not. See the following table for examples:

Delimiters
Delimiters are symbols with special meaning, such as :=
(assignment operator), || (concatenation operator), and ;
(statement delimiter). The following table lists the PL/SQL
delimiters:

Literal Actual value

INTERVAL '1-3' YEAR TO MONTH 1 year and 3 months later

INTERVAL '125-11' YEAR(3) TO MONTH 125 years and 11 months later

INTERVAL '-18' MONTH 18 months earlier

INTERVAL '-48' HOUR 48 hours earlier

INTERVAL '7 23:15' DAY TO MINUTE 7 days, 23 hours, 15 minutes later

INTERVAL '1 12:30:10.2' DAY TO SECOND 1 day, 12 hours, 30 minutes, 10.2 seconds
later

INTERVAL '12:30:10.2' HOUR TO SECOND 12 hours, 30 minutes, 10.2 seconds later

Delimiter Description

; Terminator (for statements and declarations)

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

** Exponentiation operator

|| Concatenation operator

:= Assignment operator

= Equality operator

<> and != Inequality operators

PL/SQL Language Fundamentals | 7

Comments
Comments are sections of code that exist to aid readability.
The compiler ignores them.

A single-line comment begins with a double hyphen (--) and
ends with a new line. The compiler ignores all characters
between the -- and the new line.

A multiline comment begins with slash asterisk (/*) and ends
with asterisk slash (*/). The /* */ comment delimiters also can

^= and ~= Inequality operators

< “Less-than” operator

<= “Less-than or equal to” operator

> “Greater-than” operator

>= “Greater-than or equal to” operator

(and) Expression or list delimiters

<< and >> Label delimiters

, (Comma) Item separator

' (Single quote) Literal delimiter

q' and ' Programmer-defined string literal delimiter

nq' and ' Programmer-defined NCHAR string literal delimiter

" (Double quote) Quoted literal delimiter

: Host variable indicator

% Attribute indicator

. (Period) Component indicator (as in record.field or package.
element)

@ Remote database indicator (database link)

=> Association operator (named notation)

.. (Two periods) Range operator (used in the FOR loop)

-- Single-line comment indicator

/* and */ Multiline comment delimiters

Delimiter Description

8 | Oracle PL/SQL Language Pocket Reference

be used for a single-line comment. The following block dem-
onstrates both kinds of comments:

DECLARE
 -- Two dashes comment out only the physical line.
 /* Everything is a comment until the compiler
 encounters the following symbol */

You cannot embed multiline comments within a multiline
comment, so be careful during development if you comment
out portions of code that include comments. The following
code demonstrates this issue:

DECLARE
 /* Everything is a comment until the compiler
 /* This comment inside another WON'T work!*/
 encounters the following symbol. */

 /* Everything is a comment until the compiler
 -- This comment inside another WILL work!
 encounters the following symbol. */

Pragmas
The PRAGMA keyword is used to give instructions to the
compiler. There are four types of pragmas in PL/SQL:

EXCEPTION_INIT
Tells the compiler to associate the specified error num-
ber with an identifier that has been declared an EXCEP-
TION in your current program or an accessible package.
See the “Exception Handling” section for more informa-
tion on this pragma.

RESTRICT_REFERENCES
Tells the compiler the purity level of a packaged pro-
gram. The purity level is the degree to which a program
does not read/write database tables and/or package vari-
ables. See the “Calling PL/SQL Functions in SQL” sec-
tion for more information on this pragma.

