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Chapter 1

Oracle PL/SQL Language
Pocket Reference

Introduction
The Oracle PL/SQL Language Pocket Reference is a quick ref-
erence guide to the PL/SQL programming language, which
provides procedural extensions to the SQL relational data-
base language and a range of Oracle development tools.
Where a package, program, or function is supported only for
a particular version of Oracle (e.g., Oracle Database 10g), we
indicate this in the text.

The purpose of this pocket reference is to help PL/SQL users
find the syntax of specific language elements. It is not a self-
contained user guide; basic knowledge of the PL/SQL pro-
gramming language is required. For more information, see
the following O’Reilly books:

Oracle PL/SQL Programming, Third Edition, by Steven
Feuerstein with Bill Pribyl

Learning Oracle PL/SQL, by Bill Pribyl with Steven Feuerstein

Oracle in a Nutshell, by Rick Greenwald and David C.
Kreines

Oracle PL/SQL Best Practices, by Steven Feuerstein
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Conventions
UPPERCASE indicates PL/SQL keywords.

lowercase indicates user-defined items such as parameters.

Italic indicates filenames and parameters within text, as well
as the first use of a term.

Constant width is used for code examples and output.

Constant width bold indicates user input in examples show-
ing an interaction.

[ ] enclose optional items in syntax descriptions.

{} enclose a list of items in syntax descriptions; you must
choose one item from the list.

| separates bracketed list items in syntax descriptions.

PL/SQL Language Fundamentals
This section summarizes the fundamental components of the
PL/SQL language: characters, identifiers, literals, delimiters,
use of comments and pragmas, and construction of state-
ments and blocks.

PL/SQL Character Set
The PL/SQL language is constructed from letters, digits,
symbols, and whitespace, as defined in the following table:



PL/SQL Language Fundamentals | 3

Characters are grouped together into four lexical units: iden-
tifiers, literals, delimiters, and comments.

Identifiers
Identifiers are names for PL/SQL objects such as constants,
variables, exceptions, procedures, cursors, and reserved
words. Identifiers have the following characteristics:

• Can be up to 30 characters in length

• Cannot include whitespace (space, tab, carriage return)

• Must start with a letter

• Can include a dollar sign ($), an underscore (_), and a
pound sign (#)

• Are not case-sensitive

In addition, you must not use PL/SQL’s reserved words as
identifiers. For a list of those words, see the “Reserved
Words” section at the end of the book.

If you enclose an identifier within double quotes, all but the
first of these rules are ignored. For example, the following
declaration is valid:

DECLARE
   "1 ^abc"  VARCHAR2(100);
BEGIN
   IF "1 ^abc" IS NULL THEN ...
END;

Type Characters

Letters A–Z, a–z

Digits 0–9

Symbols ~!@#$%^&*( )_-+=|[ ]{ }:;"'< >,.?/ ^

Whitespace space, tab, newline, carriage return
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Boolean, Numeric, and String Literals
Literals are specific values not represented by identifiers. For
example, TRUE, 3.14159, 6.63E-34, 'Moby Dick', and NULL
are all literals of type Boolean, number, or string. There are
no complex datatype literals as their values are internal rep-
resentations; complex types receive values through direct
assignment or via constructors. Unlike the rest of PL/SQL,
literals are case-sensitive. To embed single quotes within a
string literal, place two single quotes next to each other.

Oracle Database 10g allows you to define your own quoting
mechanism for string literals in both your SQL and PL/SQL
statements. Use the characters q' (q followed by a straight
single quote) to designate the programmer-defined delimiter
for your string literal. Terminate the literal string with the
programmer-defined delimiter followed by a trailing single
quote—for example, q'!my string!'. NCHAR and NVAR-
CHAR delimiters are preceded by the letters nq, as in
nq'^nchar string^'. This technique can simplify your code
when consecutive single quotes appear within a string, such
as the literals in a SQL statement. If you define your delimiter
with one of the four bracketing characters ( [ {<, you must
use the righthand version of the bracketing character as the
closing delimiter. For example, q'[ must be closed with ]'.

See the following table for examples:

Literal Actual value

'That''s Entertainment!' That’s Entertainment!

q'#That's Entertainment!#' That’s Entertainment!

'"The Raven"' "The Raven"

'TZ=''CDT6CST''' TZ='CDT6CST'

q'$TZ='CDT6CST'$' TZ='CDT6CST'

q'[TZ='CDT6CST']' TZ='CDT6CST'

'''' '

'''hello world''' 'hello world'

q'!'hello world'!' 'hello world'
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Numeric Literals
You may achieve improvements in runtime performance by
making explicit the datatype of numeric literals. You can do
so by including or excluding a decimal point, or by using a
trailing f or d, as shown in the following table:

Oracle Database 10g introduced several special named
constants:

BINARY_FLOAT_NAN (Not a Number)
BINARY_FLOAT_INFINITY
BINARY_FLOAT_MAX_NORMAL
BINARY_FLOAT_MIN_NORMAL
BINARY_FLOAT_MAX_SUBNORMAL
BINARY_FLOAT_MIN_SUBNORMAL

as well as the BINARY_DOUBLE_ versions of these constants.

Datetime Interval Literals
The datetime interval datatypes, introduced in Oracle9i, rep-
resent a chronological interval expressed in terms of either
years and months or days, hours, minutes, seconds, and

'''''' "

q'['']' "

nq'<Price='£10'>' Price='£10'

nq'-WHERE name LIKE '%ñ%'-' WHERE name LIKE '%ñ%'

Literal Datatype

3.14159 NUMBER

42 INTEGER

0.0 NUMBER

3.14159f BINARY_FLOAT (Oracle Database 10g)

3.14159d BINARY_DOUBLE (Oracle Database 10g)

Literal Actual value
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fractional seconds. Literals of these datatypes require the
keyword INTERVAL followed by the literal and format
string(s). The interval must go from a larger field to a smaller
one, so YEAR TO MONTH is valid, but MONTH TO YEAR
is not. See the following table for examples:

Delimiters
Delimiters are symbols with special meaning, such as :=
(assignment operator), || (concatenation operator), and ;
(statement delimiter). The following table lists the PL/SQL
delimiters:

Literal Actual value

INTERVAL '1-3' YEAR TO MONTH 1 year and 3 months later

INTERVAL '125-11' YEAR(3) TO MONTH 125 years and 11 months later

INTERVAL '-18' MONTH 18 months earlier

INTERVAL '-48' HOUR 48 hours earlier

INTERVAL '7 23:15' DAY TO MINUTE 7 days, 23 hours, 15 minutes later

INTERVAL '1 12:30:10.2' DAY TO SECOND 1 day, 12 hours, 30 minutes, 10.2 seconds
later

INTERVAL '12:30:10.2' HOUR TO SECOND 12 hours, 30 minutes, 10.2 seconds later

Delimiter Description

; Terminator (for statements and declarations)

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

** Exponentiation operator

|| Concatenation operator

:= Assignment operator

= Equality operator

<> and != Inequality operators
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Comments
Comments are sections of code that exist to aid readability.
The compiler ignores them.

A single-line comment begins with a double hyphen (--) and
ends with a new line. The compiler ignores all characters
between the -- and the new line.

A multiline comment begins with slash asterisk (/*) and ends
with asterisk slash (*/). The /* */ comment delimiters also can

^= and ~= Inequality operators

< “Less-than” operator

<= “Less-than or equal to” operator

> “Greater-than” operator

>= “Greater-than or equal to” operator

( and ) Expression or list delimiters

<< and >> Label delimiters

, (Comma) Item separator

' (Single quote) Literal delimiter

q' and ' Programmer-defined string literal delimiter

nq' and ' Programmer-defined NCHAR string literal delimiter

" (Double quote) Quoted literal delimiter

: Host variable indicator

% Attribute indicator

. (Period) Component indicator (as in record.field or package.
element)

@ Remote database indicator (database link)

=> Association operator (named notation)

.. (Two periods) Range operator (used in the FOR loop)

-- Single-line comment indicator

/* and */ Multiline comment delimiters

Delimiter Description
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be used for a single-line comment. The following block dem-
onstrates both kinds of comments:

DECLARE
   -- Two dashes comment out only the physical line.
   /* Everything is a comment until the compiler
      encounters the following symbol */

You cannot embed multiline comments within a multiline
comment, so be careful during development if you comment
out portions of code that include comments. The following
code demonstrates this issue:

DECLARE
   /* Everything is a comment until the compiler
      /* This comment inside another WON'T work!*/
      encounters the following symbol. */

   /* Everything is a comment until the compiler
      -- This comment inside another WILL work!
      encounters the following symbol. */

Pragmas
The PRAGMA keyword is used to give instructions to the
compiler. There are four types of pragmas in PL/SQL:

EXCEPTION_INIT
Tells the compiler to associate the specified error num-
ber with an identifier that has been declared an EXCEP-
TION in your current program or an accessible package.
See the “Exception Handling” section for more informa-
tion on this pragma.

RESTRICT_REFERENCES
Tells the compiler the purity level of a packaged pro-
gram. The purity level is the degree to which a program
does not read/write database tables and/or package vari-
ables. See the “Calling PL/SQL Functions in SQL” sec-
tion for more information on this pragma.


