

SWING
HACKSTM

Other Java™ resources from O’Reilly

Related titles Java™ in a Nutshell

Head First Java™

Head First EJB™

Programming Jakarta
Struts

Tomcat: The Definitive
Guide

Learning Java™

Java™ Extreme Program-
ming Cookbook

Java™ Servlet and JSP™

Cookbook™

Hardcore Java™

JavaServer™ Pages

Hacks Series Home hacks.oreilly.com is a community site for developers
and power users of all stripes. Readers learn from each
other as they share their favorite tips and tools for Mac
OS X, Linux, Google, Windows XP, and more.

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s
books on Java and related technologies, including
sample chapters and code examples.

OnJava.com is a one-stop resource for enterprise Java
developers, featuring news, code recipes, interviews,
weblogs, and more.

Conferences O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We spe-
cialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com
for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier on-
line reference library for programmers and IT
professionals. Conduct searches across more than
1,000 books. Subscribers can zero in on answers to
time-critical questions in a matter of seconds. Read the
books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today.

SWING
HACKS

Joshua Marinacci and Chris Adamson

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

TM

Swing Hacks™

by Joshua Marinacci and Chris Adamson

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Series Editor: Rael Dornfest

Executive Editor: Dale Dougherty

Production Editor: Marlowe Shaeffer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:
June 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, Swing Hacks, the image of a reflex mallet,
and related trade dress are trademarks of O’Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent
of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00907-0
ISBN-13: 978-0-596-00907-6 [4/07]
[M]

v

Contents

Credits . ix

Preface . xiii

Chapter 1. Basic JComponents . 1
1. Create Image-Themed Components 1

2. Don’t Settle for Boring Text Labels 8

3. Fill Your Borders with Pretty Pictures 14

4. Display Dates in a Custom Calendar 19

5. Add a Watermark to a Text Component 23

6. Watermark Your Scroll Panes 26

7. Put a NASA Photo into the Background of a Text Area 29

8. Animate Transitions Between Tabs 32

9. Blur Disabled Components 39

10. Building a Drop-Down Menu Button 43

11. Create Menus with Drop Shadows 49

12. Add Translucence to Menus 52

Chapter 2. Lists and Combos . 58
13. Filter JLists 58

14. Add a Filter History 63

15. Make JLists Checkable 66

16. Make Different List Items Look Different 70

17. Reorder a JList with Drag-and-Drop 80

18. Animate Your JList Selections 87

vi | Contents

19. Turn Methods into List Renderers 92

20. Create a Collections-Aware JComboBox 95

Chapter 3. Tables and Trees . 102
21. Size Your Columns to Suit Your JTable’s Contents 102

22. Add Column Selection to JTables 107

23. Let Your JTables Do the Sorting 110

24. Create a JDBC Table Model 122

25. Export Table Data to an Excel Spreadsheet 130

26. Search Through JTables Easily 133

27. Animate JTree Drops 139

Chapter 4. File Choosers . 149
28. Add a Right-Click Context Menu to the JFileChooser 149

29. Display Shortcuts in the JFileChooser 154

30. Real Windows Shortcut Support 158

31. Add Image Preview to File Choosers 164

32. Preview ZIP and JAR Files 167

Chapter 5. Windows, Dialogs, and Frames . 175
33. Window Snapping 175

34. Make a Draggable Window 178

35. Add Windows Resize Icons 181

36. Add Status Bars to Windows 187

37. Save Window Settings 193

38. Earthquake Dialog 197

39. Spin Open a Detail Pane 202

40. Minimize to a Mini-Frame 207

Chapter 6. Transparent and Animated Windows . 213
41. Transparent Windows 213

42. Make Your Frame Dissolve 219

43. Create Custom Tool Tips 225

44. Turn Dialogs into Frame-Anchored Sheets 228

45. Animating a Sheet Dialog 233

46. Slide Notes Out from the Taskbar 240

47. Indefinite Progress Indicator 247

Contents | vii

Chapter 7. Text . 257
48. Make Text Components Searchable 257

49. Force Text Input into Specific Formats 261

50. Auto-Completing Text Fields 265

51. Write Backward Text 272

52. Use HTML and CSS in Text Components 275

53. Use Global Anti-Aliased Fonts 278

54. Anti-Aliased Text Without Code 283

55. Anti-Aliased Text with a Custom Look and Feel 285

Chapter 8. Rendering . 287
56. Create a Magnifying Glass Component 287

57. Create a Global Right-Click 293

58. Block a Window Without a Modal Dialog 296

59. Create a Color Eyedropper 300

60. Changing Fonts Throughout Your Application 304

61. Load New Fonts at Runtime 307

62. Build a Colorful Vector-Based Button 309

63. Add a Third Dimension to Swing 316

64. Turn the Spotlight on Swing 321

Chapter 9. Drag-and-Drop . 330
65. Drag-and-Drop with Files 330

66. Handle Dropped URLs 336

67. Handle Dropped Images 340

68. Handling Dropped Picts on Mac OS X 345

69. Translucent Drag-and-Drop 350

Chapter 10. Audio . 358
70. Play a Sound in an Applet 359

71. Play a Sound with JavaSound 364

72. Play a Sound with Java Media Framework 368

73. Play a Sound with QuickTime for Java 371

74. Add MP3 Support to JMF 376

75. Build an Audio Waveform Display 378

76. Play Non-Trivial Audio 386

viii | Contents

77. Show Audio Information While Playing Sound 392

78. Provide Audio Controls During Playback 401

Chapter 11. Native Integration and Packaging . 408
79. Launch External Programs on Windows 408

80. Open Files, Directories, and URLs on Mac OS X 411

81. Make Mac Applications Behave Normally 413

82. Control iTunes on Mac OS X 418

83. Control iTunes Under Windows 421

84. Construct Single-Launch Applications 424

85. Stuff Stuff in JARs 428

86. Make Quick Look and Feel Changes 434

87. Create an Inverse Black-and-White Theme 439

Chapter 12. Miscellany . 443
88. Display a Busy Cursor 443

89. Fun with Keyboard Lights 446

90. Create Demonstrations with the Robot Class 450

91. Check Your Mail with Swing 454

92. Don’t Block the GUI 459

93. Code Models That Don’t Block 465

94. Fire Events and Stay Bug Free 472

95. Debug Your GUI 478

96. Debug Components with a Custom Glass Pane 481

97. Mirror an Application 486

98. Add Velocity for Dynamic HTML 492

99. Get Large File Icons 499

100. Make Frames Resize Dynamically 500

Index . 503

ix

0

Credits

About the Authors
Joshua Marinacci started playing with Java in the summer of ’95 at the
request of his favorite TA and has never looked back. Since then he has built
all manner of Java software for clients ranging from large Fortune 500 com-
panies to small Internet startups. He quickly discovered his passion for user
interfaces and client software, building a reputation in the desktop Java
world and finally joining the Swing Team at Sun in the spring of 2005. In his
spare time, Joshua writes articles and weblogs for Java.net while contribut-
ing to the JDIC, JDNC, and WinLAF open source projects. He also heads
up Flying Saucer, an open source, all-Java XHTML renderer. This is his first
book, but hopefully not his last. He lives in historic East Atlanta with his
girlfriend Kim and their yellow labrador Eliza.

Chris Adamson is the Editor of O’Reilly’s ONJava site and the Associate
Online Editor for Java.net, a collaboration of O’Reilly, Sun Microsystems,
and CollabNet. He also writes about Java and Mac topics online and speaks
at conferences such as ADHOC/MacHack and the O’Reilly Mac OS X
Conference. He develops media applications under the guise of his consult-
ing company, Subsequently & Furthermore, Inc. He has an M.A. in Tele-
communications from Michigan State University and a B.A. in English and
B.S. in Symbolic Systems from Stanford University. He lives in Atlanta with
his wife, Kelly, and their children, Keagan and Quinn, and he has thus far
managed to own seven and a half Macs.

x | Credits

Contributors
Swing is big enough that surely everyone who works with it takes away
some new ideas for how to hack it. Our contributors helped flesh this book
out with hacks that blew us away and that we’re sure you’ll like, too.

• Romain Guy is a French student currently working as an intern with the
Swing Team at Sun Microsystems in California. He discovered Java in
1998 and contributed to the Open Source/Free Software community
with Jext, a Java source code editor he developed over five years. He is
also a freelance journalist for Login:, a French computing magazine.
Never short for ideas, he also wrote for Javalobby, the Java developer’s
journal, and a couple of French magazines. Romain seeks for other
experiences whenever he can: he works as a translator for O’Reilly
France, he taught Java in a French university, he fulfilled several mis-
sions as a freelance Java developer, and he even worked as a video game
programmer. Today, Romain focuses on UI design and humane interac-
tion. He shares his work on his weblog: www.jroller.com/page/gfx.

• Jonathan Simon is a comprehensive client-side expert, designing and
developing mission-critical financial trading clients for Wall Street
investment banks. This requires a fluid combination of business and
task analysis and interaction design with the intricacies of Java rich-
client development to create content rich, ergonomic trading applica-
tions. He has written extensively about his experiences for Java.net,
IBM DeveloperWorks, JavaWorld, and Addison Wesley. An avid per-
cussionist, composer, and electronic musician, Jonathan also develops
music software in Java. He is especially interested in interaction design
and data visualization.

Acknowledgments

Joshua
This book has gone faster that I ever imagined, from original concept to final
draft in less than a year. Writing Swing Hacks was harder than I ever
thought, giving me great respect for those who write complete novels. I have
had the utmost fun, however, and wouldn’t trade the experience for the
world.

I would first like to thank Kimi, my loving partner who convinced me to
pursue writing as a serious endeavor. She has always believed that I could be
more than just a contract coder. I couldn’t have done it without you,
Sweetie.

Credits | xi

Many thanks to my family and friends who always said that I was never liv-
ing up to my potential. Thank you for raising, loving, and teaching me. I
promise to live up to my potential now, starting next week.

Thanks to the great team at O’Reilly, especially Brett, who tirelessly read
through my drafts, dotted the ts, crossed the is, and made my prose readable.

Thanks go out to the readers of Java.net and Daniel Steinberg, my Java.net
editor, who have always provided encouragement, feedback, and construc-
tive criticism. Without the Java community’s ecology of code and fresh
ideas, this book wouldn’t have been possible.

Special thanks to Jonathan and Romain who gave us the boost we needed to
get the book finished. They’ve put in some great stuff. I’ve even learned a
few things.

Extra special thanks to Chris who believed from the start that this was a
great idea for a book. He guided me through the proposal process, shaped
our draft, and always kept the book on track. Maybe we can finally get that
Okama GameSphere.

And, finally, my unending thanks to all of the Swing Team developers who
put in 10 years of blood and sweat, making Swing the powerful toolkit it is
today. I hope we can keep pushing it forward.

Chris
Credit for this book needs to begin with Joshua—I’m still tempted to type
“Joshy” because that’s his username everywhere—who started this book as
an informal series on his popular Java.net weblog and had the wherewithal
to push through a book proposal.

Also, all the really cool hacks are his. But I think that’s what everyone
involved with this book has been saying when they read what the others
have contributed.

And speaking of them, thanks also to our contributors, Romain and
Jonathan, who came in at just the right time to get this book over the hump
and make it real. Their inventiveness and responsiveness helped us pull
through.

Thanks to Brett McLaughlin, who was on the receiving end of a pretty wild
brain-dump, with two authors and two contributors going on wildly differ-
ent tangents. He helped shape this book into something readable and fun.

Lots of other people in O’Reilly production will handle this book after I fin-
ish writing this acknowledgment, and I thank them in advance for every-
thing they do.

xii | Credits

And, of course, thanks to Kelly and Keagan for holding down the fort at
home while daddy was in the office working on this book. Quinn also con-
tributed, sleeping on my lap while I banged out parts of Chapters 10 and 11.

Obligatory O’Reilly tune check: this time it was Delgados, The Tubes,
Green Day, L’Arc~en~Ciel, David Bowie, Frank Zappa, Puffy AmiYumi,
Little Feat, the Gundam Wing Endless Waltz soundtrack and the Armitage’s
Dimension stream.

xiii

0

Preface

Hi, welcome to Swing Hacks! This book is a reference, but not a complete
reference of the Swing API. We already have that. It’s called Java Swing, is
published by O’Reilly, and weighs in at over 1,200 pages. It’s available for
purchase at fine bookstores and Russian black market web sites every-
where. We’re not saying that it isn’t a great book. It’s fantastic! We’ve
owned many weathered copies over the years. The problem is…it’s huge!
This isn’t really the book’s fault: Swing itself is huge. I once saw an API dia-
gram that took an entire 30-inch poster. Swing is powerful, but it takes a
long time to explore fully, simply because it is so big. That’s not what this
book is about.

This book is a reference to the cool stuff. It’s about the interesting things
you learn over the years. The weird hacks that make you say, “I didn’t know
you could even do that!” After years of working with Swing, you start to
learn what the API is good at and what it lacks. Some days you learn some-
thing that makes your life as a developer easier, a way to do something
quicker than the standard route. That’s what we put into this book. Some
days you learn a workaround for a long-standing bug or a missing feature
that you’ve been dying to have. We put that stuff in the book, too. Some-
times it’s something fun—an interesting API that makes us think, “Well, if
we were evil what could we do with it?” This is usually followed by the pin-
kie up to the mouth and cackling that can be heard outside our under-
ground lair. After much consultation with lawyers and gods, we slipped
some of these into the book, too.

xiv | Preface

Why Swing Hacks?
The term hacking has a bad reputation in the press. They use it to refer to
people who break into systems or wreak havoc with computers as their
weapon. Among people who write code, though, the term hack refers to a
quick-and-dirty solution to a problem, or a clever way to get something
done. And the term hacker is taken very much as a compliment, referring to
someone as being creative, having the technical chops to get things done.
The Hacks series is an attempt to reclaim the word, document the good
ways people are hacking, and pass the hacker ethic of creative participation
on to the uninitiated. Seeing how others approach systems and problems is
often the quickest way to learn about a new technology.

In the short term, we hope this book will show you how to do fun things
that will enhance your own applications directly. Some are visual enhance-
ments to make your software look better. Some are functional improve-
ments to make your software do something it couldn’t do before. Some are
even just plain silly, in print only to prove it could be done. Whatever your
interest, we hope you will find both better ways of doing old things and
learn something new about techniques you never even thought of.

In the long term, we hope this book will give you a small glimpse of the
applications coming in the future. This year (2005) we hope will be a water-
shed year for Java on the desktop. Users are demanding more advanced user
interfaces than the Web can provide, and Java is poised to provide them.
New technology is streaming into the Java community at a blistering rate,
and it gives application developers a whole new set of blocks to play with.
This is important because we are going to need these new technologies.

New desktop software promises greater integration between the Web, exter-
nal devices, and software sitting right on your desktop. RSS readers and
iPods. iTunes and photo collaboration. Gaming on desktops, servers, and
cell phones; all at the same time. This is the future of desktop software.
Swing is just a small part of desktop Java, but we feel it is the focal point—
the place where desktop technology (AWT, Java2D, JavaSound), network
technology (web services, XML, JXTA), and device technology (iPods, cell
phones, TVs) all converge upon Java. Many of the hacks in this book are not
strictly about Swing, but about using Swing to do cool things with the rest of
the world. And it’s more than just “cool”—animation is a powerful way to
show a change in content or context, and sound can get the user’s attention
when he or she is away from the keyboard. These features are important
parts of delivering user-centric, quality desktop applications.

Preface | xv

How to Use This Book
You can read this book from cover to cover if you like, but each hack stands
on its own, so feel free to browse and jump to the different sections that
interest you most. If there’s a prerequisite you need to know about, a cross-
reference will guide you to the right hack. The code all works (we tried it)
but in case you can’t get a hack to work, let us know at the book’s web site:
http://www.oreilly.com/catalog/swinghks. You can also download the book’s
code online, or contribute your own tips and tricks. If we collect enough
new material, and this book sells more than 10 copies, then the publishers
might let us make Swing Hacks 2: The Endless Repaint.

With few exceptions, the hacks in this book were written for Java 2 Stan-
dard Edition (J2SE), version 1.4, which you can get from http://java.sun.com/
j2se/. A few hacks depend on open source packages, which are freely down-
loadable from their home pages, as described in the hack itself. The only
exceptions are two hacks that use QuickTime for Java—this is freely avail-
able from Apple (and installed by default on Mac OS X), but it is propri-
etary and available for Mac and Windows only.

Because this is a book about Swing, the program listings will be using the
classes from the Swing and AWT packages, so we’ve skipped import javax.
swing.* and import java.awt.* statements for space. You can also assume
that any listing involving event handling will import java.awt.event.* and
probably import javax.swing.event.* as well. Java2D hacks implicitly
import java.awt.image.*. In short, we’ll include import statements only
when a hack involves non-core, and/or non-obvious imports, like the hacks
that use JDBC, Lucene, Velocity, QuickTime for Java, etc.

How This Book Is Organized
The book is divided into several chapters, organized by subject:

Chapter 1, Basic JComponents
Here you’ll find simple hacks for the basic components like labels, but-
tons, and text fields. This chapter contains a lot of bang for the buck,
and it illustrates some of the techniques that we will explore more fully
later on. From fancy JLabels to translucent menus, this is a great place
to start.

Chapter 2, Lists and Combos
This chapter features complicated Swing components that are used
everywhere. Bend them to your will! Make them look good with poly-
morphic renderers and animated selections. Make them perform well
with filtering and Collections support.

xvi | Preface

Chapter 3, Tables and Trees
This chapter revelas the secrets of these mystic components—from
Excel exporting to proper JTree drop targets. Make the JTree and
JTable dance.

Chapter 4, File Choosers
One of Swing’s most maligned components, the JFileChooser, actually
has a lot of power hiding inside some murky APIs. This chapter will let
you use custom icons, detect Windows shortcuts, and even navigate ZIP
files.

Chapter 5, Windows, Dialogs, and Frames
This is where the fun begins. Every application needs a container, so
why not make it pretty and powerful? Make your windows drag and
snap. Build custom windows like the earthquake login and spin open
dialog. You can even save your window settings automatically with
almost no code changes.

Chapter 6, Transparent and Animated Windows
If you went through the previous chapter and still want more, then this
chapter is for you. We push windows to the limit with transparency,
animations, slide-in OS X stylesheets, and some of the coolest special
effects you’ve ever seen.

Chapter 7, Text
Text components seem boring, but there’s a lot of power hiding in
there. This chapter will show you how to do regular expression search-
ing, dot completion, backward text, and even three different ways to
give your application the bright sheen of anti-aliasing.

Chapter 8, Rendering
This chapter has the meat of the graphics hacks. Custom fonts, a magni-
fying glass, vector buttons, and even some work with Java3D. We’ve got
some great things to make your application pop.

Chapter 9, Drag-and-Drop
When your users want two pieces of software to work together the first
thing they want to do is drag-and-drop data from their other programs
to yours. This chapter covers how to do robust and attractive drag-and-
drop entirely within Java.

Chapter 10, Audio
What would be a cool modern application without some media sup-
port? This chapter covers four different ways to play sound, how to dis-
play waveforms, and how to embed MP3 support in your own
programs.

Preface | xvii

Chapter 11, Native Integration and Packaging
The best software works well with the native operating system. Here
you’ll learn how to launch web browsers, hack the Windows registry,
customize your program for specific platforms, and even control iTunes.

Chapter 12, Miscellany
This chapter offers a grab bag of things that didn’t fit anywhere else, but
were too cool not to include. Animated cursors, better threading, flash-
ing the keyboard lights, and a bunch of quick one-liners to let you make
the most of your busy day.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italics
Used to indicate URLs, filenames, filename extensions, and directory/
folder names. A path in the filesystem will appear as /Developer/Applica-
tions, for example.

Constant width
Used to show code examples, the contents of files, and console output,
as well as the names of variables, commands, and other code excerpts.

Constant width bold
Used to highlight portions of code, typically new additions to old code.

Constant width italic
Used in code examples and tables to show sample text to be replaced
with your own values.

Color
The second color is used to indicate a cross-reference within the text.

You should pay special attention to notes set apart from the text with the
following icons:

This is a tip, suggestion, or general note. It contains useful
supplementary information about the topic at hand.

This is a warning or note of caution, often indicating that
your money or your privacy might be at risk.

xviii | Preface

The thermometer icons, found next to each hack, indicate the relative
complexity of the hack:

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Swing Hacks
by Joshua Marinacci and Chris Adamson. Copyright 2005 O’Reilly Media,
Inc., 0-596-00907-0.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). As a reader of this book, you can help us to improve future
editions by sending us your feedback. Please let us know about any errors,
inaccuracies, bugs, misleading or confusing statements, and typos that you
find anywhere in this book.

Please also let us know what we can do to make this book more useful to
you. We take your comments seriously and will try to incorporate reason-
able suggestions into future editions. You can write to us at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

beginner moderate expert

Preface | xix

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Swing Hacks lists examples, errata, and plans for future edi-
tions. You can find this page at:

http://www.oreilly.com/catalog/swinghks

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Got a Hack?
To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that
lets you easily search thousands of top tech books, cut and paste code sam-
ples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

1

Chapter 1 C H A P T E R O N E

Basic JComponents
Hacks 1–12

Swing is a powerful toolkit, filled to the brim with complicated compo-
nents, extension APIs, and large Model-View-Controller (MVC) systems. It
can be quite daunting. The current edition of O’Reilly’s Java Swing book
now stretches over 1,200 pages! Swing now extends from the simplest
JButton to the full Look and Feel API. I am still amazed at the power and
flexibility of Swing, and quite aware of its complexity. Some of the more
esoteric parts can take years to master. However, you don’t need to go
straight into the JTree or Look and Feel APIs just to do something cool.
There are still a lot of fun things waiting in the standard components we
don’t always think about.

This chapter covers some of the basic components that every Swing devel-
oper uses: buttons, labels, menus, and the occasional scroll pane. From this
base you will learn how to create image buttons, put watermarks into your
text areas, and even build a new component or two. These are the compo-
nents that seem boring, but with a little imagination, they can do a whole
lot, and the techniques here lay the foundation for even more exciting hacks
later in the book.

H A C K

#1
Create Image-Themed Components Hack #1

This hack shows how to use Swing’s built-in image support to create a
completely custom image-based user interface.

Most Swing applications get their look from a Look and Feel (L&F)—either
a standard one provided by the VM or a custom one. L&Fs are a whole lot
of work to build and still aren’t completely custom. You can redefine a but-
ton to look like red stoplights, but then all buttons throughout your applica-
tion will look like red stoplights. Sometimes all you really want is a look
built entirely out of images, much like image-based web navigation.

2 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

To give you an idea of where this hack is going, Figure 1-1 shows our target:
a frame with a panel containing a label, a button, and a checkbox. The
panel, label, and button will be completely drawn with images, using none
of the standard L&F. The checkbox will be a standard checkbox, but it
should be transparent to fit in with the image background.

The first step toward image nirvana is the background. Because this type of
component is quite reusable, I built a subclass of JPanel called ImagePanel,
shown in Example 1-1.

The constructor takes the image to draw and saves it for later use in the img
variable. Then it calls setSize() and setPreferredSize() with the size of the
image. This ensures that the panel will be the size of the image exactly. I had

Figure 1-1. A component rendered with images

Example 1-1. A Custom subclass of JPanel

public class ImagePanel extends JPanel {

 private Image img;

 public ImagePanel(Image img) {
 this.img = img;
 Dimension size = new Dimension(img.getWidth(null),
 img.getHeight(null));
 setSize(size);
 setPreferredSize(size);
 setMinimumSize(size);
 setMaximumSize(size);
 setLayout(null);
 }

}

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 3

HACK

to set the preferred, maximum, and minimum sizes as well—this is because
the panel’s parent and children may not be using absolute layouts.

Absolute layout means that there is no layout manager to
position the components appropriately (which can be set by
calling setLayout(null)).

In this case, the explicit size and position will be used (via setSize() and
setLocation()). When a layout manager is set, the preferred, minimum, and
maximum sizes may be used. To cover all of the bases, simply set all four
values to the image size.

Now that the panel is sized appropriately, you can paint the image by over-
riding paintComponent():

public void paintComponent(Graphics g) {
 g.drawImage(img,0,0,null);
}

It’s important to override paintComponent() instead of
paint(), or else the child components won’t get drawn.

To test it, Example 1-2 uses an ImagePanel and the usual JFrame.

When run, the ImageTest program looks like Figure 1-2.

Now that the background is done, it’s time to focus on the label, Activate
Reactor. This is just a static image that sits at a certain position on the back-
ground. You could use another ImagePanel, but since the Activate Reactor
text is logically a JLabel, you can just create an ImageLabel subclass, as
shown in Example 1-3.

Example 1-2. Testing out image-based panels

public class ImageTest {

 public static void main(String[] args) {
 ImagePanel panel = new ImagePanel(new
 ImageIcon("images/background.png").getImage());

 JFrame frame = new JFrame("Hack #1: Create Image-Themed Components");
 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

4 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

As with the ImagePanel, set the size of the label to match the size of the
image. The rest of the sizing isn’t needed because the JLabel will take care of
that itself. Next, set the icon to your image, which lets the JLabel take care
of the image drawing. Setting the icon text gap to zero and the border and
text to null will remove any extra space around my image, resulting in a per-
fect mesh with the background. The final setOpaque(false) tells the label
not to draw its own background. If your image fills the label then this won’t
matter, but if the image has transparent areas (as PNG files often do), then
this will let the background shine through the transparent parts.

Add this code to ImageTest’s main() method:

ImageLabel label = new ImageLabel(new ImageIcon("images/reactor.png"));
label.setLocation(29,37);
panel.add(label);

Figure 1-2. Background only

Example 1-3. An image-based label

public class ImageLabel extends JLabel {

 public ImageLabel(ImageIcon icon) {
 setSize(icon.getImage().getWidth(null),
 icon.getImage().getHeight(null));
 setIcon(icon);
 setIconTextGap(0);
 setBorder(null);
 setText(null);
 setOpaque(false);
 }

}

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 5

HACK

The result is shown in Figure 1-3.

Next comes the button. Because buttons have rollovers and states, they are a
bit trickier. Again, start with a JButton subclass, as in Example 1-4.

The code is almost the same as ImageLabel. The only difference is the addi-
tion of the setMargin() and setBorder() calls. Most Look and Feels use a
border and margin to indicate when the button has been selected. Labels
aren’t selectable so they don’t have those methods. In any case, these are
two more properties you can simply turn off.

Add this code to ImageTest’s main() method:

final ImageButton button = new ImageButton("images/button.png");
button.setLocation(60,74);
panel.add(button);

The result is shown in Figure 1-4.

Figure 1-3. A custom JLabel

Example 1-4. Creating an image-based button

public class ImageButton extends JButton {

 public ImageButton(ImageIcon icon) {
 setSize(icon.getImage().getWidth(null),
 icon.getImage().getHeight(null));
 setIcon(icon);
 setMargin(new Insets(0,0,0,0));
 setIconTextGap(0);
 setBorderPainted(false);
 setBorder(null);
 setText(null);
 }

}

6 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

Now that the button is visible, you only have to add the rollovers and other
states. Fortunately, this doesn’t require any new coding in the subclass—
JButton already provides support for images representing the rollover,
pressed, selected, disabled, and disabled selected states. You can add vari-
ous states by using normal set methods:

button.setPressedIcon(new ImageIcon("images/button-down.png"));
button.setRolloverIcon(new ImageIcon("images/button-over.png"));
button.setSelectedIcon(new ImageIcon("images/button-sel.png"));
button.setRolloverSelectedIcon(new ImageIcon("images/button-sel-over.png"));
button.setDisabledIcon(new ImageIcon("images/button-disabled.png"));
button.setDisabledSelectedIcon(
 new ImageIcon("images/button-disabled-selected.png"));

Figures 1-5 and 1-6 are the images I used to represent each state. The roll-
over effect is done with an outer glow, and I used a blur for the disabled state.
The red rectangle in the middle represents the selected state, and it includes
its own color change and red glow mimicking a real glowing lightbulb.

Figure 1-4. Image button

Figure 1-5. Unselected button with rollover

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 7

HACK

To fully demonstrate all of the states, I have added a standard JCheckBox.
Normally, it would draw a gray background (or striped on the Mac) but a
simple setOpaque(false) fixes that. The call to checkbox.setSize(checkbox.
getPreferredSize()) is needed to make the checkbox size itself properly
when there is no layout manager in the parent, which is the case for this
panel:

final JCheckBox checkbox = new JCheckBox("Disable");
checkbox.setLocation(70,150);
checkbox.setOpaque(false);
checkbox.setSize(checkbox.getPreferredSize());
panel.add(checkbox);
checkbox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 button.setEnabled(!checkbox.isSelected());
 }
});

Figure 1-6. Selected button

On Image Creation
I created these images by drawing everything in a separate layer in Photoshop.
Keeping it all separate means I could save any section of the image as its own
file, with or without effects and backgrounds. Photoshop has a great feature
called slices that lets you divide the image up into malleable sections. Photo-
shop’s companion program, ImageReady, takes slices a step further by man-
aging slice states for you. This lets you create rollovers, in and out images, and
disabled states. When you Save Optimized, ImageReady automatically saves
each slice state to a different file with the appropriate name (e.g., button-
disabled-selected.png). Slices were originally created for web design, but they
can be put to great use in Swing applications as well.

8 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

With the addition of this code to ImageTest’s main() method, the image-
based showcase program is complete. Figure 1-7 shows what the running
program looks like in the selected but disabled state.

H A C K

#2
Don’t Settle for Boring Text Labels Hack #2

JLabel is a Swing staple; but it’s easy to spruce up boring labels with drop
shadows, outlines, and even 3D text.

When you want to draw non-editable text, Swing provides only the JLabel.
You can change the font, size, color, and even add an icon. By using HTML
in your components [Hack #52], you can even add things like underline and
bullets. This is fine for most jobs, but sometimes you need more. What if
you want a drop shadow or an embossed effect? The JLabel is simply inade-
quate for richer interfaces. Fortunately, the Swing Team made it very easy to
extend the JLabel and add these features yourself.

A great many text effects can be achieved with two simple features. First,
you can draw text multiple times, with each iteration slightly offset or in a
different color, to create effects like drop shadows and embossing. Second,
you can adjust the spacing between letters in a word (a feature known as
tracking in text-processing circles). Tracking is always specified in addition
to the default tracking specified by a font. Thus, a tracking of +1 would be
drawn as one extra pixel between each letter. A tracking of 0 would have the
same spacing as no extra tracking at all.

To implement all of this, you must override both the sizing and the painting
code in JLabel, which of course calls for a subclass; see Example 1-5 for
details.

Figure 1-7. Selected and disabled

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 9

HACK

RichJLabel extends the standard javax.swing.JLabel and adds a tracking
argument to the constructor. Next, it adds two methods for the right and
left shadow. These are called shadows because they will be drawn below the
main text, but whether they actually look like shadows depends on the
color, as well as the x- and y-offsets passed into each method.

With the boilerplate out of the way, you need to handle sizing issues. The
JLabel automatically tells layout managers its preferred size based on the
font size. When you add custom tracking, this sizing would be incorrect,
resulting in labels too small for the text they contain. For small font sizes it
won’t be noticeable, but with large fancy text and cool effects—and we all
want cool effects—it could chop off half of a letter or more.

Every Swing component returns its desired size using the getPreferredSize()
method. By adjusting the returned size to be a bit bigger, layout controls
using this component will give the label the extra room it needs:

public Dimension getPreferredSize() {
 String text = getText();
 FontMetrics fm = this.getFontMetrics(getFont());

 int w = fm.stringWidth(text);
 w += (text.length()-1)*tracking;
 w += left_x + right_x;

Example 1-5. Defining a richer JLabel

public class RichJLabel extends JLabel {

 private int tracking;
 public RichJLabel(String text, int tracking) {
 super(text);
 this.tracking = tracking;
 }

 private int left_x, left_y, right_x, right_y;
 private Color left_color, right_color;
 public void setLeftShadow(int x, int y, Color color) {
 left_x = x;
 left_y = y;
 left_color = color;
 }

 public void setRightShadow(int x, int y, Color color) {
 right_x = x;
 right_y = y;
 right_color = color;
 }

10 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

 int h = fm.getHeight();
 h += left_y + right_y;

 return new Dimension(w,h);
}

This implementation of getPreferredSize() calculates the size based on the
font metrics of the currently set text. The FontMetrics object contains meth-
ods to get the width and height of the font for the current text. Because the
tracking variable adds to the existing tracking of the font, you can expand
the width by adding a tracking width between each letter—one per letter,
except the last letter. The line w += (text.length()-1)*tracking does just
that. The shadows will be drawn the same size as the base text, but they will
be offset by the left_x and right_x values, so you need to add those in as
well. Tracking only affects the horizontal space between letters, so height
can be calculated normally via the fontmetrics.getHeight() method.

Don’t forget to account for those shadow offsets!

With the sizing handled, the only thing left is actually drawing the text on
screen. As with all Swing components, override the paintComponent()
method (and not paint()) so that the child components will be handled
properly.

Here’s the first bit of the paintComponent() method:

public void paintComponent(Graphics g) {
 ((Graphics2D)g).setRenderingHint(
 RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

 char[] chars = getText().toCharArray();

 FontMetrics fm = this.getFontMetrics(getFont());

 int h = fm.getAscent();
 int x = 0;

First, paintComponent() turns on the graphics object’s anti-aliasing hint.
Because the RichJLabel class will typically be used for large font sizes that
need to be attractive, it’s probably a safe bet that the developer wants
smooth text.

Next, the method grabs the font and line metrics for the current text in the
current font. The graphics object always draws text from the bottom of the
letter, rather than from the top, as you would expect with a rectangle or line.

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 11

HACK

To account for this, you need to know how far down a letter goes (its
ascent), which is retrieved from fm.getAscent().

A font’s ascent is not the same as the height of the font. The
height includes the part of letters that extend below the base-
line. Most letters stop at the baseline but some, like lower-
case ys and gs extend further down. The ascent only includes
the part of the letters above the baseline, which is what you
want.

After setting up the variables, you can start drawing each letter (this code is
still in the paintComponent() method):

 for(int i=0; i<chars.length; i++) {
 char ch = chars[i];
 int w = fm.charWidth(ch) + tracking;

 g.setColor(left_color);
 g.drawString(""+chars[i],x-left_x,h-left_y);

 g.setColor(right_color);
 g.drawString(""+chars[i],x+right_x,h+right_y);

 g.setColor(getForeground());
 g.drawString(""+chars[i],x,h);

 x+=w;
 }

 ((Graphics2D)g).setRenderingHint(
 RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT);

} // end paintComponent()

This is a simple loop that calculates the width of each character, plus the
tracking, then draws it three times: first with the left offsets, next with the
right offsets, and finally in the normal position. At the end of the loop, you
just increase x to move on to the next letter. The rendering hint line at the
bottom returns the graphics object to its original anti-aliasing state.

With the class completed, it’s time to try some effects. This code will draw
large (140 pt) text in gray with a black drop shadow and a slight, white
highlight:

public static void main(String[] args) {
 RichJLabel label = new RichJLabel("76", -40);
 // drop shadow w/ highlight
 label.setLeftShadow(1,1,Color.white);
 label.setRightShadow(2,3,Color.black);

12 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

 label.setForeground(Color.gray);
 label.setFont(label.getFont().deriveFont(140f));

 JFrame frame = new JFrame("RichJLabel hack");
 frame.getContentPane().add(label);
 frame.pack();
 frame.setVisible(true);
}

Figure 1-8 shows what the code looks like running.

If you change the shadows to be only one pixel offset from their normal
position and to share the same color, then you can create a subtle outline
effect. Setting the tracking to -30 pulls the letters close enough to overlap for
a nice logo effect (as seen in Figure 1-9):

RichJLabel label = new RichJLabel("76", -30);

// subtle outline
label.setLeftShadow(1,1,Color.white);
label.setRightShadow(1,1,Color.white);
label.setForeground(Color.blue);
label.setFont(label.getFont().deriveFont(140f));

Figure 1-8. Drop shadow text

Figure 1-9. Outlined text

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 13

HACK

The shadow offsets let you effectively rearrange the letters to create a faded
3D effect (shown in Figure 1-10):

// 3d letters
label.setLeftShadow(5,5,Color.white);
label.setRightShadow(-3,-3, new Color(0xccccff));
label.setForeground(new Color(0x8888ff));
label.setFont(label.getFont().deriveFont(140f));

You could expand on this hack by combining it with images and nice gradi-
ents like the Christmas Countdown counter in Figure 1-11. Simple graphi-
cal effects like the ones shown in the RichJLabel are easy to create with
Swing thanks to the power of Java2D, and they can really make your inter-
faces pop.

Figure 1-10. 3D faded letters

Figure 1-11. Mild emboss effect

14 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

H A C K

#3
Fill Your Borders with Pretty Pictures Hack #3

Swing comes with a set of customizable borders, but sometimes you want
more than they provide. This hack shows how to create a completely image-
based border that can be resized.

Swing has a prefabricated border, called the MatteBorder, which can accept
an image in its constructor. For simple tiled backgrounds, such as a checker-
board pattern, this works fine. However, if you want to have particular
images in each corner, creating a fully resizable image border, then you’ll
need something more powerful. Fortunately, Swing makes it very easy to
create custom border classes. The image border in this hack will produce a
border that looks like Figure 1-12.

The first step to any custom border is to subclass AbstractBorder and imple-
ment the paintBorder() method. The class will take eight images in the con-
structor, one for each corner and each side; all the code is shown in
Example 1-6.

Figure 1-12. An image-based border

Example 1-6. Building an image-based border

public class ImageBorder extends AbstractBorder {

 Image top_center, top_left, top_right;
 Image left_center, right_center;
 Image bottom_center, bottom_left, bottom_right;
 Insets insets;

 public ImageBorder(Image top_left, Image top_center, Image top_right,
 Image left_center, Image right_center,
 Image bottom_left, Image bottom_center, Image bottom_right) {

 this.top_left = top_left;
 this.top_center = top_center;
 this.top_right = top_right;
 this.left_center = left_center;
 this.right_center = right_center;
 this.bottom_left = bottom_left;
 this.bottom_center = bottom_center;
 this.bottom_right = bottom_right;
 }

Fill Your Borders with Pretty Pictures #3

Chapter 1, Basic JComponents | 15

HACK

The two methods after the constructor control the border insets. These are
the gaps between the panel’s outer edge (and its parent) and the inner edge
of the panel where the panel’s children are drawn. setInsets() lets you set
any size insets, but most of the time you want the insets to be based on the
actual images that make up the border. The implementation of
getBorderInsets() returns the insets variable if it’s not null. However, if the
developer didn’t set the insets, then they will be derived from the widths and
heights of the images that make up each side of the border (top, bottom,
left, and right).

To actually draw the border, align the corner images to the appropriate cor-
ners and then tile the side images along each border side. Doing this will
require using the TexturePaint class, which is an implementation of the
Paint interface. Unfortunately, TexturePaint takes only BufferedImages, not
regular ones, so you’ve got to convert your images before use.

BufferedImages are a special form of image that the Java2D framework can
read and write at a pixel level. The standard Image is controlled by the oper-
ating system and is very difficult to access at the pixel level. Java doesn’t let
you do a straight conversion between the two kinds of images, but you can
just draw one image on top of another, which is what this method in the
ImageBorder class does:

public BufferedImage createBufferedImage(Image img) {
 BufferedImage buff = new BufferedImage(img.getWidth(null),
 img.getHeight(null), BufferedImage.TYPE_INT_ARGB);
 Graphics gfx = buff.createGraphics();
 gfx.drawImage(img, 0, 0, null);
 gfx.dispose();
 return buff;
}

 public void setInsets(Insets insets) {
 this.insets = insets;
 }

 public Insets getBorderInsets(Component c) {
 if(insets != null) {
 return insets;
 } else {
 return new Insets(top_center.getHeight(null),
 left_center.getWidth(null),
 bottom_center.getHeight(null), right_center.getWidth(null));
 }
 }

Example 1-6. Building an image-based border (continued)

16 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

createBufferedImage() first creates an empty buffered image with the same
size as the original image. The image type is TYPE_INT_ARGB, which makes the
image have full 24-bit color with an alpha channel (transparency). Next, it
draws the original image on top of the buffered image. The dispose() call
releases any extra resources so that the code won’t waste any memory, and
then it returns the newly minted BufferedImage.

With buffered images in hand, the stage is set for actually filling areas of the
border with images. The next ImageBorder method, fillTexture(), creates a
TexturePaint using the appropriate image and then fills in the requested
area:

public void fillTexture(Graphics2D g2, Image img, int x, int y, int w, int
h) {
 BufferedImage buff = createBufferedImage(img);
 Rectangle anchor = new Rectangle(x,y,img.getWidth(null),img.
getHeight(null));
 TexturePaint paint = new TexturePaint(buff,anchor);
 g2.setPaint(paint);
 g2.fillRect(x,y,w,h);
}

The second line of this code creates an anchor rectangle. The image will be
tiled to fill the entire border area, but the anchor rectangle is needed to spec-
ify where the image will be anchored. We normally think of images being
anchored to (0,0), which works fine for the upper-left corner of the border
but wouldn’t work for the other sides. The right corners would need to be
right aligned instead of left aligned, as would happen with (0,0). By setting
the anchor to be the location and dimensions of the image itself, you take
care of anchoring altogether. The tiling will start wherever the single image
would have been drawn.

Now that you can fill an area with a properly aligned texture, you are ready
for the paintBorder() method, shown in Example 1-7.

Example 1-7. Painting the border

public void paintBorder(Component c, Graphics g, int x, int y,
 int width, int height) {
 g.setColor(Color.white);
 g.fillRect(x,y,width,height);

 Graphics2D g2 = (Graphics2D)g;

 int tlw = top_left.getWidth(null);
 int tlh = top_left.getHeight(null);
 int tcw = top_center.getWidth(null);
 int tch = top_center.getHeight(null);
 int trw = top_right.getWidth(null);
 int trh = top_right.getHeight(null);

Fill Your Borders with Pretty Pictures #3

Chapter 1, Basic JComponents | 17

HACK

The first two lines fill the entire border area with white. Then you have to
cast the Graphics to a Graphics2D object because you will be doing some
advanced painting later on. Next, save a reference to the width and height of
each image (the top left, top center, top right, etc.). Finally, call fillTexture()
on each section of the border to fill it in.

The test program shown in Example 1-8 creates a panel that uses the
ImageBorder. It creates a nested frame, panel, and button, and then it creates
an ImageBorder for the panel using eight images.

 int lcw = left_center.getWidth(null);
 int lch = left_center.getHeight(null);
 int rcw = right_center.getWidth(null);
 int rch = right_center.getHeight(null);
 int blw = bottom_left.getWidth(null);
 int blh = bottom_left.getHeight(null);
 int bcw = bottom_center.getWidth(null);
 int bch = bottom_center.getHeight(null);
 int brw = bottom_right.getWidth(null);
 int brh = bottom_right.getHeight(null);

 fillTexture(g2,top_left,x,y,tlw,tlh);
 fillTexture(g2,top_center,x+tlw,y,width-tlw-trw,tch);
 fillTexture(g2,top_right,x+width-trw,y,trw,trh);
 fillTexture(g2,left_center,x,y+tlh,lcw,height-tlh-blh);
 fillTexture(g2,right_center,x+width-rcw,y+trh,rcw,height-trh-brh);
 fillTexture(g2,bottom_left,x,y+height-blh,blw,blh);
 fillTexture(g2,bottom_center,x+blw,y+height-bch,width-blw-brw,bch);
 fillTexture(g2,bottom_right,x+width-brw,y+height-brh,brw,brh);
}

Example 1-8. Testing out an image-based border

public class ImageBorderHack {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Hack #3: Fill Your Borders with Pretty
 Pictures");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JPanel panel = new JPanel();
 JButton button = new JButton("Image Border Test");
 panel.add(button);

 ImageBorder image_border = new ImageBorder(
 new ImageIcon("images/upper_left.png").getImage(),
 new ImageIcon("images/upper.png").getImage(),
 new ImageIcon("images/upper_right.png").getImage(),

 new ImageIcon("images/left_center.png").getImage(),
 new ImageIcon("images/right_center.png").getImage(),

Example 1-7. Painting the border (continued)

18 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

The sample border is made out of a single image sliced into eight pieces
using Photoshop (the center image is discarded). You can see these slices in
Figure 1-13.

The completed ImageBorder class will take the Photoshop slices and tile
them to create the finished border, as seen in Figure 1-14.

 new ImageIcon("images/bottom_left.png").getImage(),
 new ImageIcon("images/bottom_center.png").getImage(),
 new ImageIcon("images/bottom_right.png").getImage()
);
 panel.setBorder(image_border);

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }

}

Figure 1-13. Source image in Photoshop with slices

Figure 1-14. Completed image border

Example 1-8. Testing out an image-based border (continued)

Display Dates in a Custom Calendar #4

Chapter 1, Basic JComponents | 19

HACK

The best thing about these image-based borders is that you can completely
change their look by just dropping in new images, which is easy to do with
the slice tool in Photoshop. When you create your own image borders, I rec-
ommend starting with a rectangular shape layer and then using filters and
effects to create drop shadows, bevels, and stroked borders.

H A C K

#4
Display Dates in a Custom Calendar Hack #4

You can download calendar components from third parties, but real hackers
can use Swing to build a custom calendar widget on their own.

When you design an application, you’ll often want to use standard widgets
to display information. Swing doesn’t always give you what you need,
though. Consider the calendar component: Swing doesn’t come with one, so
most users have to download widgets to integrate into their application.
However, why not go with a cool and hip teen-friendly application with an
attractive, image-based component, as shown in Figure 1-15?

That would be a bit more fun, wouldn’t it? This hack will show you how to
build a completely custom calendar component using java.util.Calendar
and a few images.

First, consider what you’ll need. You’ve got to have pretty images, a compo-
nent to paint them on, and then some logic to handle the different parts of
the date, including what day of the week starts off the current month. You
should also provide a setDate() method, so that MVC frameworks can play
well with your calendar. Let’s get started.

Figure 1-15. Custom calendar component

20 | Chapter 1, Basic JComponents

#4 Display Dates in a Custom Calendar
HACK

Create the Images
I created three images in Photoshop: one for the background, one for each day,
and one for the current day. These are shown in Figures 1-16, 1-17, and 1-18.

I could have separated the day names and the title, but since
they don’t change, it was simpler to make them part of the
image.

A Component to Paint
The easiest way to create a custom component with fancy drawing is to start
off with a JPanel and override the paintComponent() method, as shown in
Example 1-9.

Figure 1-16. calendar.png for the general background

Figure 1-17. day.png for the day backgrounds

Figure 1-18. highlight.png for the current day

Example 1-9. A Calendar base component

public class CalendarHack extends JPanel {
 protected Image background, highlight, day_img;
 protected SimpleDateFormat month = new SimpleDateFormat("MMMM");

Display Dates in a Custom Calendar #4

Chapter 1, Basic JComponents | 21

HACK

This loads the images in the constructor and sets up date formatters for the
month, year, and day. Override the paintComponent() method to turn on
anti-aliasing, draw the background, and then draw the month and year for
the current date.

You’ll notice that there is a default date in case the devel-
oper doesn’t set one (always a good practice).

Draw the Days of the Month
The java.util.Calendar object handles all date calculations, so let’s start
there. You’ll need two calendars: one to represent the current date (today)
and one that you update as you loop through the grid of dates (cal). Here’s
what that looks like in code:

Calendar today = Calendar.getInstance();
today.setTime(date);
Calendar cal = Calendar.getInstance();
cal.setTime(date);

 protected SimpleDateFormat year = new SimpleDateFormat("yyyy");
 protected SimpleDateFormat day = new SimpleDateFormat("d");
 protected Date date = new Date();

 public void setDate(Date date) {
 this.date = date;
 }

 public CalendarHack() {
 background = new ImageIcon("calendar.png").getImage();
 highlight = new ImageIcon("highlight.png").getImage();
 day_img = new ImageIcon("day.png").getImage();
 this.setPreferredSize(new Dimension(300,280));
 }

 public void paintComponent(Graphics g) {

 ((Graphics2D)g).setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g.drawImage(background,0,0,null);
 g.setColor(Color.black);
 g.setFont(new Font("SansSerif",Font.PLAIN,18));
 g.drawString(month.format(date),34,36);
 g.setColor(Color.white);
 g.drawString(year.format(date),235,36);
 }
}

Example 1-9. A Calendar base component (continued)

22 | Chapter 1, Basic JComponents

#4 Display Dates in a Custom Calendar
HACK

cal.set(Calendar.DATE,1);
cal.add(Calendar.DATE,-cal.get(Calendar.DAY_OF_WEEK)+1);
for(int week = 0; week < 6; week++) {
 for(int d = 0; d < 7; d++) {
 Image img = day_img;
 Color col = Color.black;
 // only draw if it's actually in this month
 if(cal.get(Calendar.MONTH) == today.get(Calendar.MONTH)) {
 if(cal.equals(today)) {
 img = highlight;
 col = Color.white;
 }
 g.drawImage(img,d*30+46,week*29+81,null);
 g.drawString(day.format(cal.getTime()),
 d*30+46+4,week*29+81+20);
 }
 cal.add(Calendar.DATE,+1);
 }
}

You’ll notice that both calendars are initialized to date, but then the code
resets cal’s date to the first of the month and subtracts the current day of the
week. This has the effect of setting cal to the last Sunday before (or equal to)
the real current date. You have to perform this calculation because you need
to start drawing in the upper-lefthand corner of the calendar grid, which will
almost always include a few days from the previous month. Once all of that
is done, the code loops through each week and draws each day.

Now, here’s the tricky part: cal goes back seven days, which is almost cer-
tainly going to run back into the previous month. Because the calendar is
month-based, those days in the previous month shouldn’t be drawn. That’s
why there is a check to see if cal’s month is equal to today’s month. If they
are equal, then you can draw the day safely; if not, skip drawing and just
increment the date.

The last thing to check is if the current day in cal is equal to the real current
date. If it is, you want to use a different color and background image
(highlight). Finally, the image and day numbers are drawn, with the posi-
tion determined by the current day of the week and week number. You can
adjust the multipliers and offsets (30, 46, 29, 81) to suit your taste. The
drawString() method has a few extra pixels of padding to make the day
number appear more centered in the day image.

And now you have a completely custom calendar, suitable for placement
within the zaniest of interfaces.

Add a Watermark to a Text Component #5

Chapter 1, Basic JComponents | 23

HACK

H A C K

#5
Add a Watermark to a Text Component Hack #5

This hack will show how to create a custom image background for the
JTextField, a complex Swing component that does not already support
backgrounds or icons by default.

One of Swing’s most underused features is the ability to partially override
drawing code. Most programs enhance widgets by using renderers or com-
pletely overriding the paint code. By only partially overriding the drawing,
however, you can create some very interesting effects that blend both new
and existing drawing commands.

Some components, like JList and JTable, use renderers to customize their
look. To put a background in a JTextField, however, requires more. The
plan is to subclass JTextField, prepare the resources for drawing a back-
ground (loading the image, etc.), and then draw a new background while
preserving the normal JTextField drawing code for the text and cursor.

The actual drawing will be done with a TexturePaint. Java2D allows you to
fill any area with instances of the Paint interface. Typically you use a color,
which is an implementation of Paint, but it is possible to use something else,
such as a texture or gradient. This class will use a TexturePaint to tile an
image across the component’s background.

The first step is to create a JTextField subclass (shown in Example 1-10).

Example 1-10 creates a class called WatermarkTextField. It is a subclass of
JTextField with a custom constructor that accepts a File object containing
an image. It also defines two member variables: img and texture. After the
usual call to super(), the constructor reads the file into the BufferedImage
variable, img. If the file isn’t a valid image—or can’t be read for some other
reason—the method will throw an exception (hence the throws IOException
clause on the constructor definition).

Example 1-10. Preparing a field for watermarking

public class WatermarkTextField extends JTextField {
 BufferedImage img;
 TexturePaint texture;

 public WatermarkTextField(File file) throws IOException {
 super();
 img = ImageIO.read(file);
 Rectangle rect = new Rectangle(0,0,
 img.getWidth(null),img.getHeight(null));
 texture = new TexturePaint(img, rect);
 setOpaque(false);
 }
}

24 | Chapter 1, Basic JComponents

#5 Add a Watermark to a Text Component
HACK

After the image is loaded successfully, the constructor creates a TexturePaint.
TexturePaints must be created with a source image and a rectangle. The
rectangle defines the portion of the source to be tiled. In this case, you want
the entire image to be used, so the rectangle is the same size as the image.

If you wanted to use just a portion of the image, you could
make the rectangle smaller. This would also give you the
ability to store all of your textures in a single large image,
which could save loading time and memory.

The last thing the WatermarkTextField constructor does before returning is
call setOpaque(false). As you have seen earlier in this chapter (and will see
again), the setOpaque() method is one of the core tools for hacking Swing.
In this case, it is used to turn off the default background of the TextField,
allowing you to substitute your own.

With the subclass created, you can add a method to do the actual drawing:

public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setPaint(texture);
 g.fillRect(0,0,getWidth(),getHeight());
 super.paintComponent(g);
}

WatermarkTextField overrides the parent class’s paintComponent() method with
its own version. The actual drawing is pretty simple: cast to a Graphics2D
object (which understands how to work with Paint classes), then fill in the
background with the texture paint and call super().

Earlier, I said that you will override the parent class partially rather than
completely. This is because the code still calls the parent class’s
paintComponent() method, but it does it after painting the new background.
Because the opaque property is set to false, the parent class will not draw its
own background, allowing your custom one to show through. The compo-
nent will draw the text, selections, and cursors as normal on top of the cus-
tom background.

With the class ready, it’s time to pull together an example—Example 1-11.

Example 1-11. Trying out the watermarked text field

public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("Watermark JTextField Hack");

 JTextField textfield = new WatermarkTextField(new File("red.png"));
 textfield.setText("A Text Field");

Add a Watermark to a Text Component #5

Chapter 1, Basic JComponents | 25

HACK

The main() method creates a JFrame with one child: the custom text field. It
creates a new WatermarkTextField with an image file in the constructor, then
it packs and shows the frame. The text field is every bit a normal JTextField
except for the constructor, so you can use a variable of type JTextField with
no problem.

The image, red.png, looks like Figure 1-19.

Once tiled across the background of the component, it looks like
Figure 1-20.

 frame.getContentPane().add(textfield);
 frame.pack();
 frame.show();
}

Figure 1-19. red.png, the background image

Figure 1-20. The running program

Going Further
Overriding a component’s background with custom drawing code is a simple
technique that can be used in some surprising ways. The next hack will reuse
the watermark code to create a JTextPane with light clouds in the background
and a small image badge in the upper-righthand corner. With custom back-
grounds you could also add animation, status reports, or even rotating space
images (see “Put a NASA Photo into the Background of a Text Area” [Hack #7]).

Example 1-11. Trying out the watermarked text field (continued)

26 | Chapter 1, Basic JComponents

#6 Watermark Your Scroll Panes
HACK

H A C K

#6
Watermark Your Scroll Panes Hack #6

This hack creates a text area with a tiled background image that is fixed,
even when the text area scrolls, and also a fixed foreground image that
appears above the text, much like the station badges now affixed to the
lower-righthand corner of most TV broadcasts.

The Swing framework was designed to let developers override portions of
every component, both the visual appearance (the view) and the behavior
(the model and controller). This design gives developers great flexibility.
One of my favorites is the JScrollPane. Its nested composite design allows
developers to create some stunning effects.

Once again, the idea is to override the drawing code of a standard compo-
nent to create the visual effects [Hack #5]. The difference here is that you must
deal with a composite object, the JScrollPane. A JScrollPane is not a single
Swing component—it’s actually a wrapper around two scrollbars and the
component that does the real scrolling is a JViewport. This viewport is the
actual target component; you will subclass it to draw both above and below
the View component (as seen in Example 1-12). The View is the Swing wid-
get being scrolled; in this case, it is a JTextArea.

The ScrollPaneWatermark class inherits from JViewport, adding two meth-
ods: setBackgroundTexture() and setForegroundBadge(). Each takes a URL
instead of a File to allow for images loaded from places other than the local
disk, such as a web server or JAR file.

setBackgroundTexture() does the same thing that the WatermarkTextField
did in the previous hack. It loads the image, creates a same-size rectangle,
then initializes a TexturePaint for later use. setForegroundBadge() is even
simpler, only loading the image and storing it in the fgimage variable.

Example 1-12. Modifying the viewport for watermarking

public class ScrollPaneWatermark extends JViewport {
 BufferedImage fgimage, bgimage;
 TexturePaint texture;

 public void setBackgroundTexture(URL url) throws IOException {
 bgimage = ImageIO.read(url);
 Rectangle rect = new Rectangle(0,0,
 bgimage.getWidth(null),bgimage.getHeight(null));
 texture = new TexturePaint(bgimage, rect);
 }

 public void setForegroundBadge(URL url) throws IOException {
 fgimage = ImageIO.read(url);
 }

Watermark Your Scroll Panes #6

Chapter 1, Basic JComponents | 27

HACK

With the class set up, it’s time to draw. The code below calls super.
paintComponent() first, and then draws the texture on top of the component.
This is because the existing background might need to show through in case
the texture has translucent sections. This would be especially important if the
standard view background isn’t just a solid color. Under Mac OS X, for
example, the background is often a striped, light blue pattern. Here’s the
code to handle texturing:

public void paintComponent(Graphics g) {
 // do the superclass behavior first
 super.paintComponent(g);

 // paint the texture
 if(texture != null) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setPaint(texture);
 g.fillRect(0,0,getWidth(),getHeight());
 }
}

ScrollPaneWatermark draws the foreground image badge by overriding the
paintChildren() method, calling the superclass, and then drawing the
image. This ensures that the badge is always on top of the children or view:

public void paintChildren(Graphics g) {
 super.paintChildren(g);
 if(fgimage != null) {
 g.drawImage(fgimage,
 getWidth()-fgimage.getWidth(null), 0,
 null);
 }
}

The view (a text area in this example) will usually draw its own back-
ground. Because, by definition, the view is as big as the viewport (if not big-
ger), its background will cover up the viewport’s nice texture completely. To
stop that, you need to call setOpaque() on the view:

public void setView(JComponent view) {
 view.setOpaque(false);
 super.setView(view);
}

The setView() method overrides the existing version (from JViewport) to
call setOpaque(false) on the view before calling the super() method. By
putting this call here, instead of calling setOpaque() from the normal setup
routines, it frees the developer using the ScrollPaneWatermark class from
having to call setOpaque() manually, making the class more reusable.

28 | Chapter 1, Basic JComponents

#6 Watermark Your Scroll Panes
HACK

With all of the pieces in place, you can now create a text area inside the cus-
tom scroll pane. The main() method in Example 1-13 tests it out.

The main() method in Example 1-13 creates a frame containing a scroll pane
that contains a text area. fileToString() is a utility function that loads a
text file into the text area.

For brevity, the code for fileToString() is not printed here,
but you can see it in the full source on the book’s web site:
http://www.oreilly.com/catalog/swinghks.

After setting up a standard JTextArea, the code creates a new
ScrollPaneWatermark viewport and loads up the images (clouds.jpg is a
tileable image of pale, fluffy clouds, and flyingsaucer.jpg is a small image of a
flying saucer with a translucent drop shadow that will blend nicely over the
text). Finally, the main() method sets the text area as the viewport’s view,
creates a new scroll pane, and then sets the watermark as the scroll pane’s
viewport.

Figure 1-21 shows what it looks like when it’s all put together.

Example 1-13. Testing the scroll pane watermark

public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("Scroll Pane Watermark Hack");

 JTextArea ta = new JTextArea();
 ta.setText(fileToString(new File("alice.txt")));
 ta.setLineWrap(true);
 ta.setWrapStyleWord(true);

 ScrollPaneWatermark watermark = new ScrollPaneWatermark();
 watermark.setBackgroundTexture(new File("clouds.jpg").toURL());
 watermark.setForegroundBadge(new File("flyingsaucer.png").toURL());
 watermark.setView(ta);

 JScrollPane scroll = new JScrollPane();
 scroll.setViewport(watermark);

 frame.getContentPane().add(scroll);
 frame.pack();
 frame.setSize(600,600);
 frame.show();
}

Put a NASA Photo into the Background of a Text Area #7

Chapter 1, Basic JComponents | 29

HACK

H A C K

#7
Put a NASA Photo into the Background
of a Text Area Hack #7

This hack will repurpose an existing web page, one of NASA’s photo sites, by
pulling their “Astronomy Picture of the Day” into the background of a text
area.

You’ve already learned how to draw a watermark image in the background
of a text area [Hack #6] using a ScrollPaneWatermark. This hack will pull a
photo down from the Web and reuse that class to put the photo in the back-
ground. The photo itself comes from NASA’s “Astronomy Picture of the
Day” page: http://antwrp.gsfc.nasa.gov/apod/. The URL to the image changes
each day, but the page itself does not. To pull the image down you will load
the page, find the image URL, then load the image itself and put it into the
ScrollPaneWatermark. Depending on the day, it may look something like
Figure 1-22.

Figure 1-21. Finished ScrollPane hack

Figure 1-22. Text area with a background image

30 | Chapter 1, Basic JComponents

#7 Put a NASA Photo into the Background of a Text Area
HACK

The code in Example 1-14 defines a class called BackgroundLoader, which
implements Runnable so it can be placed on its own thread. The constructor
takes as an argument the ScrollPaneWatermark, which the loader will put the
image into. The run() method contains a loop that will run every two hours,
loading the page, finding the SRC URL, then loading the image into the
watermark.

First, you open the web page and load it into a page_buffer by looping
through an InputStreamReader, copying the page data into a string buffer.

The Reader will take care of encoding issues so you don’t
need to worry about reading HTTP headers or converting to
Unicode.

Example 1-14. A thread to load a background image

public class BackgroundLoader implements Runnable {

 private ScrollPaneWatermark watermark;
 public BackgroundLoader(ScrollPaneWatermark watermark) {
 this.watermark = watermark;
 }

 public void run() {

 while(true) {
 try {
 String base_url = "http://antwrp.gsfc.nasa.gov/apod/";
 URL url = new URL(base_url);

 Reader input = new InputStreamReader(url.openStream());
 char buf[] = new char[1024];
 StringBuffer page_buffer = new StringBuffer();
 while(true) {
 int n = input.read(buf);
 if(n < 0) { break; }
 page_buffer.append(buf,0,n);
 }

 // Locate the Image URL (see next section)

 } catch (Exception ex) {
 System.out.println("exception: " + ex);
 ex.printStackTrace();
 }
 }
 }
}

Put a NASA Photo into the Background of a Text Area #7

Chapter 1, Basic JComponents | 31

HACK

Page in hand, now you need to find the URL for the image itself. If you load
the page into a web browser and view the page source, you will see that
there is only a single IMG tag in the entire page. This makes the image very
easy to find:

Pattern pattern = Pattern.compile("<IMG SRC=\"(.*)\"");
Matcher matcher = pattern.matcher(page_buffer);
matcher.find();
String img_url = base_url + matcher.group(1);

watermark.setBackgroundTexture(new URL(img_url));
watermark.repaint();

Thread.currentThread().sleep(1000*60*60*2);

First, you must create a Pattern object with a regex (regular expression) that
matches the URL. You will notice in the previous code that there are paren-
theses around the .*. This is called a grouping. The matcher will store any-
thing that matches the parentheses in a series of groups that you can query
later. This lets you define exactly which part of the pattern you want to pull
out. After creating a Matcher and calling find(), you can pull out the image
URL with the line matcher.group(1), prepending it with the base URL for
the page.

With the final image URL ready, just set the background texture for the
watermark, refresh the screen, and then sleep for two hours. The calcula-
tion in the code (1000*60*60*2) evaluates to the number of milliseconds in a
two-hour block of time. The page only changes once a day, but this way the
change will be picked up sooner if the program is running overnight.

With all of the parts assembled, you can now create a main method,
shown in Example 1-15, that builds a simple text editor with the
ScrollPaneWatermark to show the space image in the background.

Example 1-15. Testing the space image background

public static void main(String[] args) throws IOException {
 JFrame frame = new JFrame("Blocking Window");
 JTextArea jta = new JTextArea(10,40);
 jta.setForeground(Color.white);

 ScrollPaneWatermark viewport = new ScrollPaneWatermark();
 viewport.setView(jta);
 viewport.setOpaque(false);

 JScrollPane scroll = new JScrollPane();
 scroll.setViewport(viewport);

 Container comp = frame.getContentPane();
 comp.add("Center",scroll);

32 | Chapter 1, Basic JComponents

#8 Animate Transitions Between Tabs
HACK

The last line of the main() method starts a new thread to manage the back-
ground image.

Because the code is completely encapsulated in the
BackgroundLoader class, you could add space images to a
component that uses a scroll pane, not just a JTextArea.

H A C K

#8
Animate Transitions Between Tabs Hack #8

This hack shows how to create animated transitions that play whenever the
user switches tabs on a JTabbedPane.

One of Swing’s great strengths is that you can hack into virtually anything.
In particular, I love making changes to a component’s painting code. The
ability to do this is one of the reasons I prefer Swing over SWT. Swing gives
me the freedom to create completely new UI concepts, such as transitions.

With the standard paint methods, Swing provides most of what you will
need to build the transitions. You will have to put together three additional
things, however. First, you need to find out when the user actually clicked
on a tab to start a transition. Next, you need a thread to control the anima-
tion. Finally, since some animations might fade between the old and new
tabs, you need a way to provide images of both tabs at the same time. With
those three things, you can build any animation you desire.

Building a Basic Tabbed Pane
To keep things tidy, I have implemented this hack as a subclass of
JTabbedPane, except for the actual animation drawing, which will be dele-
gated to a further subclass. By putting all of the heavy lifting into the parent
class, you will be able to create new animations easily.

Example 1-16 is the basic skeleton of the parent class.

 frame.pack();
 frame.show();

 new Thread(new BackgroundLoader(viewport)).start();
}

Example 1-16. A skeleton for the transition manager

public class TransitionTabbedPane extends JTabbedPane
 implements ChangeListener, Runnable {

 protected int animation_length = 20;

Example 1-15. Testing the space image background (continued)

Animate Transitions Between Tabs #8

Chapter 1, Basic JComponents | 33

HACK

TransitionTabbedPane extends the standard JTabbedPane and also imple-
ments ChangeListener and Runnable. ChangeListener allows you to learn
when the user has switched between tabs. Since the event is propagated
before the new tab is painted, inserting the animation is very easy. Runnable
is used for the animation thread itself.

You could have split the thread into a separate class, but I
think that keeping all of the code together makes the system
more encapsulated and easier to maintain.

TransitionTabbedPane adds one new property, the animation length. This
defines the number of steps used for the transition, and it can be set by the
subclass or external code.

Scheduling the Animation
Since the pane was added as a ChangeListener to itself, the stateChanged()
method will be called whenever the user switches tabs. This is the best place
to start the animation thread. Once started, the thread will capture the pre-
vious tab into a buffer, loop through the animation, and control the repaint
speed:

// threading code
public void stateChanged(ChangeEvent evt) {
 new Thread(this).start();
}

protected int step;
protected BufferedImage buf = null;
protected int previous_tab = -1;

public void run() {
 step = 0;

 public TransitionTabbedPane() {
 super();
 this.addChangeListener(this);
 }

 public int getAnimationLength() {
 return this.animation_length;
 }

 public void setAnimationLength(int length) {
 this.animation_length = length;
 }

Example 1-16. A skeleton for the transition manager (continued)

