

Learning UML 2.0

Other resources from O’Reilly

Related titles UML 2.0 in a Nutshell

UML Pocket Reference

Prefactoring

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Learning UML 2.0

Russ Miles and Kim Hamilton

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning UML 2.0
by Russ Miles and Kim Hamilton

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Brett McLaughlin and Mary T. O’Brien
Production Editor: Laurel R.T. Ruma
Copyeditor: Laurel R.T. Ruma
Proofreader: Reba Libby
Indexer: Angela Howard

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Cover Illustrator: Karen Montgomery
Illustrators: Robert Romano, Jessamyn Read,

and Lesley Borash

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning UML 2.0, the image of a gorilla, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00982-8

ISBN-13: 978-0-596-00982-3

[M] [9/07]

v

Table of Contents

Preface . ix

1. Introduction . 1
What’s in a Modeling Language? 2
Why UML 2.0? 9
Models and Diagrams 12
“Degrees” of UML 13
UML and the Software Development Process 13
Views of Your Model 14
A First Taste of UML 16
Want More Information? 19

2. Modeling Requirements: Use Cases . 20
Capturing a System Requirement 22
Use Case Relationships 30
Use Case Overview Diagrams 40
What’s Next? 41

3. Modeling System Workflows: Activity Diagrams . 43
Activity Diagram Essentials 44
Activities and Actions 46
Decisions and Merges 47
Doing Multiple Tasks at the Same Time 49
Time Events 51
Calling Other Activities 52
Objects 53
Sending and Receiving Signals 56

vi | Table of Contents

Starting an Activity 57
Ending Activities and Flows 57
Partitions (or Swimlanes) 59
Managing Complex Activity Diagrams 60
What’s Next? 62

4. Modeling a System’s Logical Structure: Introducing Classes and Class
Diagrams . 63
What Is a Class? 63
Getting Started with Classes in UML 67
Visibility 67
Class State: Attributes 72
Class Behavior: Operations 77
Static Parts of Your Classes 79
What’s Next 82

5. Modeling a System’s Logical Structure: Advanced Class Diagrams 83
Class Relationships 83
Constraints 91
Abstract Classes 92
Interfaces 96
Templates 99
What’s Next 100

6. Bringing Your Classes to Life: Object Diagrams . 101
Object Instances 101
Links 103
Binding Class Templates 105
What’s Next? 107

7. Modeling Ordered Interactions: Sequence Diagrams 108
Participants in a Sequence Diagram 109
Time 110
Events, Signals, and Messages 111
Activation Bars 113
Nested Messages 114
Message Arrows 114
Bringing a Use Case to Life with a Sequence Diagram 120
Managing Complex Interactions with Sequence Fragments 126
What’s Next? 130

Table of Contents | vii

8. Focusing on Interaction Links: Communication Diagrams 131
Participants, Links, and Messages 131
Fleshing out an Interaction with a Communication Diagram 136
Communication Diagrams Versus Sequence Diagrams 139
What’s Next? 143

9. Focusing on Interaction Timing: Timing Diagrams . 144
What Do Timing Diagrams Look Like? 144
Building a Timing Diagram from a Sequence Diagram 146
Applying Participants to a Timing Diagram 147
States 148
Time 149
A Participant’s State-Line 152
Events and Messages 153
Timing Constraints 154
Organizing Participants on a Timing Diagram 157
An Alternate Notation 159
What’s Next? 162

10. Completing the Interaction Picture: Interaction Overview Diagrams 163
The Parts of an Interaction Overview Diagram 163
Modeling a Use Case Using an Interaction Overview 165
What’s Next? 171

11. Modeling a Class’s Internal Structure: Composite Structures 173
Internal Structure 174
Showing How a Class Is Used 180
Showing Patterns with Collaborations 182
What’s Next? 185

12. Managing and Reusing Your System’s Parts: Component Diagrams 186
What Is a Component? 186
A Basic Component in UML 187
Provided and Required Interfaces of a Component 188
Showing Components Working Together 190
Classes That Realize a Component 192
Ports and Internal Structure 194
Black-Box and White-Box Component Views 196
What’s Next? 197

viii | Table of Contents

13. Organizing Your Model: Packages . 198
Packages 199
Namespaces and Classes Referring to Each Other 201
Element Visibility 203
Package Dependency 204
Importing and Accessing Packages 205
Managing Package Dependencies 208
Using Packages to Organize Use Cases 209
What’s Next? 210

14. Modeling an Object’s State: State Machine Diagrams 211
Essentials 212
States 213
Transitions 214
States in Software 217
Advanced State Behavior 218
Composite States 220
Advanced Pseudostates 221
Signals 222
Protocol State Machines 223
What’s Next? 223

15. Modeling Your Deployed System: Deployment Diagrams 224
Deploying a Simple System 224
Deployed Software: Artifacts 226
What Is a Node? 229
Hardware and Execution Environment Nodes 229
Communication Between Nodes 231
Deployment Specifications 232
When to Use a Deployment Diagram 234
What’s Next? 235

A. Object Constraint Language . 237

B. Adapting UML: Profiles . 245

C. A History of UML . 252

Index . 259

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | ix

Preface1

The Unified Modeling Language (UML) is the standard way to model systems, par-
ticularly software systems. If you are working on a system beyond “Hello, World,” then
having UML in your toolbox of skills is a must, and that’s where Learning UML 2.0
comes in.

Learning UML 2.0 is about coming to grips with UML quickly, easily, and practi-
cally. Along with a thorough set of tutorials on each of the different UML diagram
types, this book gives you the tools to use UML effectively when designing, imple-
menting, and deploying systems. The topics covered include:

• A brief overview of why it is helpful to model systems

• How to capture high-level requirements in your model to help ensure the sys-
tem meets users’ needs

• How to model the parts that make up your system

• How to model the behavior and interactions between parts when the system is
running

• How to move from the model into the real world by capturing how your system
is deployed

• How to create custom UML profiles to accurately model different system
domains

Audience
Learning UML 2.0 is for anyone interested in learning about UML, but it is helpful to
have some exposure to object-oriented (OO) design and some familiarity with Java.
However, even if you have only a small amount of experience with object orienta-
tion, Learning UML 2.0 will improve and extend your knowledge of OO concepts
and give you a comprehensive set of tools to work with UML.

Although this book is intended to take you through each subject on the path to
learning UML, some UML modeling subjects, such as use cases and activity dia-
grams, are self-explanatory, which means you can dive right into them.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

About This Book
Learning UML 2.0 aims to answer the “what,” “how,” and “why should I care?” for
every aspect of UML. Each chapter picks one subject from UML and explains it
based on these questions.

Since not everyone is new to UML, there are two main routes through this book. If
you’re new to UML as a subject and want to get an overview of where the modeling
language came from, then you should start with Chapter 1. However, if you want to
get your hands dirty as quickly as possible, then you can either skip the introduction
chapter to delve directly into use cases or jump to the chapter that describes the
UML diagram in which you are most interested.

Now you know what Learning UML 2.0 is about, it should be explained what this
book is not about. This book is not about any one particular modeling tool or imple-
mentation language. However, some tools have their own way of doing things, and
some implementation languages do not support everything you can legally model in
UML. Wherever appropriate, we have tried to point out where UML tools or imple-
mentation languages deviate from or follow the UML standard.

Lastly, because of the large variation in software development processes, this book is
not about any particular process or methodology. Instead, it focuses on modeling
and provides guidelines about appropriate levels of modeling that can be applied in
the context of your software development process. Since this book adheres to the
UML 2.0 standard, it works alongside any process or methodology you use.

Assumptions This Book Makes
The following general assumptions are made as to the reader’s knowledge and
experience:

• An understanding of object orientation

• Knowledge of the Java™ language for some of the examples

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning UML 2.0, by Russ Miles
and Kim Hamilton. Copyright 2006 O’Reilly Media, Inc., 0-596-00982-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

How to Contact Us
Everything has been done to ensure that the examples within this book are accurate,
tested, and verified to the best of the authors’ ability. However, even though UML is
a standard modeling language, the best practices as to its usage may change with
time and this may have an impact on this book’s contents. If so, please address com-
ments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book where you can find errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/learnuml2

To comment or ask technical questions about this book, email:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site:

http://www.oreilly.com

Additional information about this topic, including exercises, can be found at:

http://www.learninguml2.com

Acknowledgments

From the Authors
Thanks to Brett and Mary, our ace editors. We are indebted to Brett for providing
valuable guidance throughout, and to Mary for her UML expertise, her amazing
work bringing this book to completion, and her ability to line up an outstanding
team of reviewers.

We’d also like to thank all the kind individuals who put in the hours to provide such
excellent technical feedback on this book. Thanks to Ed Chou, Glen Ford, Stephen
Mellor, Eric Naiburg, Adewale Oshineye, Dan Pilone and Neil Pitman, and Richard
Mark Soley (the history of UML would not have been nearly as interesting without
your help).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

From Russ Miles
First and foremost, my thanks go to my family and friends: Mum, Dad, Bobbie, Rich,
Ad, Corinne (thanks for all your help through the last hectic stages, you’re one in a
million!), Martin and Sam, Jason and Kerry, and Aimee (wonder dog!). You are
always there for me 100 percent and, as a bonus, have the uncanny but very useful
ability to get me away from the Mac once in a while when I really need it.

I’d also like to take this opportunity to thank my uncle, Bruce Sargent. You got me
started on the first steps in this career and for that I am, and always will be, very
grateful!

I’d like to thank all my proofreaders, including Rob Wilson, Laura Paterson, and
Grant Tarrant-Fisher. You’ve been great proofreaders, tech reviewers and, most of
all, friends. With your comments this a much better book than anything I could have
put together on my own. Also, a special thanks to Rachel “Kong” Stevens for being
the unwitting inspiration for the front cover—we love ya!

A big thanks must go to M. David Peterson (http://www.xsltblog.com) and Sylvain
Hellegouarch (http://www.defuze.org) for all their help and inspiration with the CMS
example that is used throughout this book. You’re both top bloggers, developers,
and friends and I want to say thanks to you and all the LLUP hackers (http://www.
x2x2x.org/projects/wiki) for making my coding life that much more interesting,
cheers!

Last, but not least—with what is quickly becoming a standard catch-all—thanks to
everyone who has helped me out while writing this book. I haven’t forgotten your
help and I know I owe you all a beer or two!

From Kim Hamilton
Thanks again to Ed Chou for his gaming expertise that helped create the FPS exam-
ple (among his many other excellent contributions!) and for the long hours spent
reviewing this book at every phase. A big thanks goes to my reviewers: Frank Chiu,
Albert Chu, Yu-Li Lin, Justin Lomheim, Samarth Pal, Leland So, and Delson Ting.
You were great at everything—from providing technical feedback to pointing out the
humor in the word OMG. Thanks to John Arcos, Ben Faul, Mike Klug, Dwight
Yorke, and Paul Yuenger, whose support helped me get this book out the door. Also,
thanks to Thomas Chen for his CMS help!

Most of all, thanks to my wonderful family and friends—Mom, Dad, Ron, Mark,
Grandma and Ed, Grandpa (in loving memory), Aunt Gene, Anne Marie, Kim, Ed C,
Sokun, and Tien—who have all been so supportive this past year. Special thanks to
my Mom and Dad: my Mom keeps me going with her love, friendship, and phone
calls; and my Dad has always been my number one technical mentor.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction1

The Unified Modeling Language (UML) is the standard modeling language for soft-
ware and systems development. This statement alone is a pretty conclusive argu-
ment for making UML part of your software repertoire, however it leaves some
questions unanswered. Why is UML unified? What can be modeled? How is UML a
language? And, probably most importantly, why should you care?

Systems design on any reasonably large scale is difficult. Anything from a simple
desktop application to a full multi-tier enterprise scale system can be made up of
hundreds—and potentially thousands—of software and hardware components. How
do you (and your team) keep track of which components are needed, what their jobs
are, and how they meet your customers’ requirements? Furthermore, how do you
share your design with your colleagues to ensure the pieces work together? There are
just too many details that can be misinterpreted or forgotten when developing a
complex system without some help. This is where modeling—and of course UML—
comes in.

In systems design, you model for one important reason: to manage complexity. Mod-
eling helps you see the forest for the trees, allowing you to focus on, capture, docu-
ment, and communicate the important aspects of your system’s design.

A model is an abstraction of the real thing. When you model a system, you abstract
away any details that are irrelevant or potentially confusing. Your model is a simplifi-
cation of the real system, so it allows the design and viability of a system to be under-
stood, evaluated, and criticized quicker than if you had to dig through the actual
system itself. Even better, with a formal modeling language, the language is abstract
yet just as precise as a programming language. This precision allows a language to
be machine-readable, so it can be interpreted, executed, and transformed between
systems.

To effectively model a system, you need one very important thing: a language with
which the model can be described. And here’s where UML comes in.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction

What’s in a Modeling Language?
A modeling language can be made up of pseudo-code, actual code, pictures, dia-
grams, or long passages of description; in fact, it’s pretty much anything that helps
you describe your system. The elements that make up a modeling language are called
its notation. Figure 1-1 shows an example of a piece of UML notation.

There are references to the UML meta-model and profiles throughout
this book. A more complete description of what the UML meta-model
contains and why it is useful is available in Appendix B, but for now,
just think of the UML meta-model as the description of what each ele-
ment of notation means and a profile as a customization of that
description for a specific domain (i.e., banking).

However, notation is not the whole story. Without being told that one of the boxes
in Figure 1-1 represents a class, you wouldn’t necessarily know what it is, even
though you might be able to guess. The descriptions of what the notation means are
called the semantics of the language and are captured in a language’s meta-model.

A modeling language can be anything that contains a notation (a way of expressing
the model) and a description of what that notation means (a meta-model). But why
should you consider using UML when there are so many different ways of modeling,
including many you could make up on your own?

Every approach to modeling has different advantages and disadvantages, but UML
has six main advantages:

It’s a formal language
Each element of the language has a strongly defined meaning, so you can be con-
fident that when you model a particular facet of your system it will not be
misunderstood.

It’s concise
The entire language is made up of simple and straightforward notation.

It’s comprehensive
It describes all important aspects of a system.

Figure 1-1. A class declaration as it can be shown using UML notation

Guitarist

- instrument : Instrument

+ getInstrument() : Instrument
+ setInstrument(instrument : Instrument) : void
+ play() : void
+ main(args : String[]) : void

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

What’s in a Modeling Language? | 3

It’s scaleable
Where needed, the language is formal enough to handle massive system model-
ing projects, but it also scales down to small projects, avoiding overkill.

It’s built on lessons learned
UML is the culmination of best practices in the object-oriented community dur-
ing the past 15 years.

It’s the standard
UML is controlled by an open standards group with active contributions from a
worldwide group of vendors and academics, which fends off “vendor lock-in.”
The standard ensures UML’s transformability and interoperability, which means
you aren’t tied to a particular product.

Detail Overload: Modeling with Code
Software code is an example of a potential modeling language where none of the
detail has been abstracted away. Every line of code is the detail of how your software
is intended to work. Example 1-1 shows a very simple class in Java, yet there are
many details in this declaration.

Example 1-1. Even in a simple Java class, there can be a lot of detail to navigate through

package org.oreilly.learningUML2.ch01.codemodel;

public class Guitarist extends Person implements MusicPlayer {

 Guitar favoriteGuitar;

 public Guitarist (String name) {
 super(name);
 }

 // A couple of local methods for accessing the class's properties
 public void setInstrument(Instrument instrument) {
 if (instrument instanceof Guitar) {
 this.favoriteGuitar = (Guitar) instrument;
 }
 else {
 System.out.println("I'm not playing that thing!");
 }
 }

 public Instrument getInstrument() {
 return this.favoriteGuitar;
 }

 // Better implement this method as MusicPlayer requires it
 public void play() {
 System.out.println(super.getName() + "is going to do play the guitar now ...");

 if (this.favoriteGuitar != null) {

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction

Example 1-1 shows all of the information about the Guitar class, including inherit-
ance relationships to other classes, member variables involving other classes, and
even implementation details for the methods themselves.

What’s wrong with using software source code as your model? All of the details are
there, every element of the language’s notation has meaning to the compiler, and
with some effective code-level comments, such as JavaDoc, you have an accurate rep-
resentation of your software system, don’t you?

The truth is that you haven’t actually modeled anything other than the software
implementation. The source code focuses only on the software itself and ignores the
rest of the system. Even though the code is a complete and (generally) unambiguous
definition of what the software will do, the source code alone simply cannot tell you
how the software is to be used and by whom, nor how it is to be deployed; the big-
ger picture is missing entirely if all you have is the source code.

As well as ignoring the bigger picture of your system, software code presents a prob-
lem in that you need to use other techniques to explain your system to other people.
You have to understand code to read code, but source code is the language for soft-
ware developers and is not for other stakeholders, such as customers and system
designers. Those people will want to focus just on requirements or perhaps see how
the components of your system work together to fulfill those requirements.
Because source code is buried in the details of how the software works, it cannot
provide the higher level abstract views of your system that are suitable for these
types of stakeholders.

Now imagine that you have implemented your system using a variety of software
languages. The problem just gets worse. It is simply impractical to ask all the
stakeholders in your system to learn each of these implementation languages before
they can understand your system.

 for (int strum = 1; strum < 500; strum++) {
 this.favoriteGuitar.strum();
 }
 System.out.println("Phew! Finished all that hard playing");
 }
 else {
 System.out.println("You haven't given me a guitar yet!");
 }
 }

 // I'm a main program so need to implement this as well
 public static void main(String[] args) {
 MusicPlayer player = new Guitarist("Russ");
 player.setInstrument(new Guitar("Burns Brian May Signature"));
 player.play();
 }
}

Example 1-1. Even in a simple Java class, there can be a lot of detail to navigate through (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

What’s in a Modeling Language? | 5

Finally, if your design is modeled as code, you also lose out when it comes to reuse
because design is often reusable whereas code may not be. For example, reimple-
menting a Java Swing application in HTML or .NET is much simpler if the design is
modeled rather than reverse engineering the code. (Reverse engineering is extracting
the design of a system from its implementation.)

All of these problems boil down to the fact that source code provides only one level
of abstraction: the software implementation level. Unfortunately, this root problem
makes software source code a poor modeling language.

Verbosity, Ambiguity, Confusion: Modeling with Informal
Languages
At the opposite end of the spectrum from complete and precise source code models
are informal languages. Informal languages do not have a formally defined notation;
there are no hard and fast rules as to what a particular notation can mean, although
sometimes there are guidelines.

A good example of an informal language is natural language. Natural language—the
language that you’re reading in this book—is notoriously ambiguous in its meaning.
To accurately express something so that everyone understands what you are saying is
at best a challenge and at worst flat-out impossible. Natural language is flexible and
verbose, which happens to be great for conversation but is a real problem when it
comes to systems modeling.

The following is a slightly exaggerated but technically accurate natural language
model of Example 1-1:

Guitarist is a class that contains six members: one static and five non-static. Guitarist
uses, and so needs an instance of, Guitar; however, since this might be shared with
other classes in its package, the Guitar instance variable, called favoriteGuitar, is
declared as default.

Five of the members within Guitarist are methods. Four are not static. One of these
methods is a constructor that takes one argument, and instances of String are called
name, which removes the default constructor.

Three regular methods are then provided. The first is called setInstrument, and it takes
one parameter, an instance of Instrument called instrument, and has no return type.
The second is called getInstrument and it has no parameters, but its return type is
Instrument. The final method is called play. The play method is actually enforced by
the MusicPlayer interface that the Guitarist class implements. The play method takes
no parameters, and its return type is void.

Finally, Guitarist is also a runable program. It contains a method that meets the Java
specification for a main method for this reason.

If you take a hard look at this definition, you can see problems everywhere, almost
all resulting from ambiguity in the language. This ambiguity tends to result in the,
“No, that’s not what I meant!” syndrome, where you’ve described something as

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction

clearly as possible, but the person that you are conveying the design to has misunder-
stood your meaning (see Figure 1-2).

The problems with informal languages are by no means restricted to written lan-
guages. The same description of Guitarist might be presented as a picture like that
shown in Figure 1-3.

Figure 1-3 is another example of an informal language, and it happens to be a nota-
tion that I just made up. It makes perfect sense to me, but you could easily misinter-
pret my intentions.

Figure 1-2. Even a simple natural language sentence can be interpreted differently by different
stakeholders in the system

Figure 1-3. Informal notation can be confusing; even though my intentions with this diagram might
appear obvious, you really can’t be sure unless I also tell you what the notation means

Natural Language Description:
The system needs to be large,

with four legs and a trunk

Natural Language Description:
The system needs to be large,

with four legs and a trunk

Communication + Ambiguity = Confusion!

The System Designer’s Perspective The System Implementer’s Perspective

= =

Guitar

uses one of these

Guitarist

Person

is a kind of

Personis one of these

Can be told to play an instrument

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

What’s in a Modeling Language? | 7

As with the natural language model, all of the details are present in Figure 1-3’s pic-
ture, but without a definition of what the boxes, connections, and labels mean, you
can’t be sure about your interpretation (or mine!).

So, why does any of this matter if your team has a home-grown model-
ing technique it’s been using for years and you all understand what
each other means? If you ever have to show your design to external
stakeholders, they might become frustrated trying to understand your
home-grown symbols, when you could have used a standard notation
they already know. It also means you don’t have to learn a new model-
ing technique every time you switch jobs!

The basic problem with informal languages is that they don’t have exact rules for
their notation. In the natural language example, the meanings of the model’s sen-
tences were obscured by the ambiguity and verbosity of the English language. The
picture in Figure 1-3 may not have suffered from quite the same verbosity problems,
but without knowing what the boxes and lines represent, the meaning of the model
was left largely to guesswork.

Because informal languages are not precise, they can’t be transformed into code as a
formal language can. Imagine if Figure 1-3 had a set of formal rules; then you could
generate code that implemented the classes for Guitarist, Person, and so on. But this
is impossible without understanding the rules. Unfortunately, informal languages
will always suffer from the dual problem of verbosity and ambiguity, and this is why
they are a poor—and sometimes extremely dangerous—technique for modeling sys-
tems, as shown in Figure 1-4.

Figure 1-4. With an informal notation, the problem of confusion through ambiguity still exists

Communication + Ambiguity = Confusion!

The System Designer’s Perspective The System Stakeholder’s Perspective
(i.e., the customer)

legs = 4 thing size = large

trunk
==

legs = 4 thing size = large

trunk

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction

Although natural language is dangerously ambiguous, it is still one of
the best techniques for capturing requirements, as you will see when
you learn about use cases in Chapter 2.

Getting the Balance Right: Formal Languages
You’ve now seen some of the pitfalls of using a too-detailed language for modeling
(source code) and a too-verbose and ambiguous language for modeling (natural lan-
guage). To effectively model a system—avoiding verbosity, confusion, ambiguity,
and unnecessary details—you need a formal modeling language.

Ideally, a formal modeling language has a simple notation whose meaning is well-
defined. The modeling language’s notation should be small enough to be learned
easily and must have an unambiguous definition of the notation’s meaning. UML is
just such a formal modeling language.

Figure 1-5 shows how the code structure in Example 1-1 can be expressed in UML.
For now, don’t worry too much about the notation or its meaning; at this point, the
UML diagram is meant to be used only as a comparison to the informal pictorial and
natural language models shown previously.

Figure 1-5. Expressing the static structure of the Guitarist class structure in formal UML notation

Guitarist

+ getInstrument() : Instrument
+ setInstrument(Instrument instrument) : void
+ play() : void
+ main(args : String[]) : void

Guitar

1

1

-favoriteGuitar

Person

- name : String

+ getName() : String

<<interface>>
MusicPlayer

+ getInstrument() : Instrument
+ setInstrument(instrument : Instrument) : void
+ play() : void

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Why UML 2.0? | 9

Even if you don’t yet understand all of the notation used in Figure 1-5, you can prob-
ably start to grasp that there are some details present in the code—see
Example 1-1—that are not modeled here. For example, the specific implementation
of the play() method has been abstracted away, allowing you to visualize the code’s
structure without excess clutter.

The best thing about having modeled the system using UML is that the notation in
Figure 1-5 has a specific and defined meaning. If you were to take this diagram to
any other stakeholder in your system, provided he knows UML, the design would be
clearly understood. This is the advantage of using formal languages for modeling as
shown in Figure 1-6.

Why UML 2.0?
The first version of UML allowed people to communicate designs unambiguously,
convey the essence of a design, and even capture and map functional requirements to
their software solutions. However, the world changed more fundamentally with the
recognition that systems modeling, rather than just software modeling, could also
benefit from a unified language such as UML.

The driving factors of component-oriented software development, model-driven
architectures, executable UML, and the need to share models between different tools
placed demands on UML that it had not originally been designed to meet.

Figure 1-6. With a modeling language that has a formally defined meaning, you can ensure that
everyone is reading the picture the same way

Communication + Meaning = Success!

The System Designer’s Perspective The System Stakeholder's
Perspective

(i.e., the customer)

Leg

The System Implementer’s
Perspective

Thing

Trunk

4 1
1

1
-size = large

Leg Thing

Trunk

4 1
1

1
-size = large

= =

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction

Also, UML 1.x and all of its previous revisions were designed as a unified language
for humans. When it became important for models to be shared between machines—
specifically between Computer Aided Systems Engineering (CASE) tools—UML 1.x
was again found wanting. UML 1.x’s underlying notation rules and its meta-model
were (ironically) not formally defined enough to enable machine-to-machine sharing
of models.

Although UML 1.5 described a system fairly well, the model describing the model—
the meta-model—had become patched and overly complex. Like any system that has
an overly complex design, and is fragile and difficult to extend, UML had become
overly complex, fragile, and difficult to extend; it was time for a re-architecture.

The designers of UML 2.0 were very careful to ensure that UML 2.0 would not be
too unfamiliar to people who were already using UML 1.x. Many of the original dia-
grams and associated notations have been retained and extended in UML 2.0 as
shown in Table 1-1. However, new diagram types have been introduced to extend
the language just enough so that it can support the latest best practices.

With Version 2.0, UML has evolved to support the new challenges that software and
system modelers face today. What began many years ago as a unification of the dif-
ferent methods for software design has now grown into a unified modeling language
that is ready and suitable to continue to be the standard language for the myriad of
different tasks involved in software and systems design.

MDA and Executable UML
Two reasonably new approaches to system development inspired many of the
improvements made in UML 2.0. In a nutshell, Model Driven Architectures (MDAs)
provide a framework that supports the development of Platform Independent Models
(PIMs)—models that capture the system in a generic manner that is divorced from con-
cerns such as implementation language and platform.

PIMs can then be transformed into separate Platform Specific Models (PSMs) that con-
tain concrete specifications for a particular system deployment (containing details such
as implementation language and communications protocols, etc.). MDA requires a
formally structured and interoperable meta-model to perform its transformations, and
this level of meta-model is now provided by UML 2.0.

For many of the same reasons, executable UML provides a means by which a PSM
could contain enough complete information so that the model can be effectively run.
Some day, you could conceivably drag around a few symbols, and complete, runnable
software would pop out! An executable UML engine requires that the UML model be
defined well enough for it to be able to generate and execute the modeled system.

Unfortunately, even though UML 2.0 is supposed to provide the mechanisms to make
MDA and executable UML a reality, tools support is not yet fully developed.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Why UML 2.0? | 11

Table 1-1. To describe the larger landscape of systems design, UML 2.0 renamed and clarified its
diagrams for the new challenges facing system modelers today

Diagram type What can be modeled?
Originally introduced by
UML 1.x or UML 2.0

To learn about this
diagram type, go to…

Use Case Interactions between your
system and users or other
external systems. Also help-
ful in mapping require-
ments to your systems.

UML 1.x Chapter 2

Activity Sequential and parallel activ-
ities within your system.

UML 1.x Chapter 3

Class Classes, types, interfaces,
and the relationships
between them.

UML 1.x Chapters 4 and 5

Object Object instances of the
classes defined in class dia-
grams in configurations
that are important to your
system.

Informally UML 1.x Chapter 6

Sequence Interactions between objects
where the order of the inter-
actions is important.

UML 1.x Chapter 7

Communication The ways in which objects
interact and the connec-
tions that are needed to
support that interaction.

Renamed from UML 1.x’s
collaboration diagrams

Chapter 8

Timing Interactions between
objects where timing is an
important concern.

UML 2.0 Chapter 9

Interaction Overview Used to collect sequence,
communication, and timing
diagrams together to cap-
ture an important interac-
tion that occurs within your
system.

UML 2.0 Chapter 10

Composite Structure The internals of a class or
component, and can
describe class relationships
within a given context.

UML 2.0 Chapter 11

Component Important components
within your system and the
interfaces they use to inter-
act with each other.

UML 1.x, but takes on a new
meaning in UML 2.0

Chapter 12

Package The hierarchical organiza-
tion of groups of classes and
components.

UML 2.0 Chapter 13

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction

Models and Diagrams
Many newcomers to UML focus on the different types of diagrams used to model
their system. It’s very easy to assume that the set of diagrams that have been created
actually are the model. This is an easy mistake to make because when you are using
UML, you will normally be interacting with a UML tool and a particular set of dia-
grams. But UML modeling is not just about diagrams; it’s about capturing your sys-
tem as a model—the diagrams are actually just windows into that model.

A particular diagram will show you some parts of your model but not necessarily
everything. This makes sense, since you don’t want a diagram showing everything in
your model all at once—you want to be able to split contents of your model across
several diagrams. However, not everything in your model needs to exist on a dia-
gram for it to be a part of your model.

So, what does this mean? Well, the first thing to understand is that your model sits
behind your modeling tool and diagrams as a collection of elements. Each of those
elements could be a use case, a class, an activity, or any other construct that UML
supports. The collection of all the elements that describe your system, including their
connections to each other, make up your model.

However, if all you could do was create a model made up of elements, then you
wouldn’t have much to look at. This is where diagrams come in. Rather than actu-
ally being your model, diagrams are used merely as a canvas on which you can cre-
ate new elements that are then added to your model and organize related elements
into a set of views on your underlying model.

So, when you next use your UML tool to work with a set of diagrams in UML nota-
tion, it is worth remembering that what you are manipulating is a view of the con-
tents of your model. You can change elements of your model within the diagram, but
the diagram itself is not the model—it’s just a useful way of presenting some small
part of the information your model contains.

State Machine The state of an object
throughout its lifetime and
the events that can change
that state.

UML 1.x Chapter 14

Deployment How your system is finally
deployed in a given real-
world situation.

UML 1.x Chapter 15

Table 1-1. To describe the larger landscape of systems design, UML 2.0 renamed and clarified its
diagrams for the new challenges facing system modelers today (continued)

Diagram type What can be modeled?
Originally introduced by
UML 1.x or UML 2.0

To learn about this
diagram type, go to…

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

UML and the Software Development Process | 13

“Degrees” of UML
UML can be used as much or as little as you like. Martin Fowler describes three com-
mon ways that people tend to use UML:

UML as a sketch
Use UML to make brief sketches to convey key points. These are throwaway
sketches—they could be written on a whiteboard or even a beer coaster in a
crunch.

UML as a blueprint
Provide a detailed specification of a system with UML diagrams. These dia-
grams would not be disposable but would be generated with a UML tool. This
approach is generally associated with software systems and usually involves
using forward and reverse engineering to keep the model synchronized with the
code.

UML as a programming language
This goes directly from a UML model to executable code (not just portions of
the code as with forward engineering), meaning that every aspect of the system is
modeled. Theoretically, you can keep your model indefinitely and use transfor-
mations and code generation to deploy to different environments.

The approach used depends on the type of application you’re building, how rigor-
ously the design will be reviewed, whether you are developing a software system,
and, if it is software, the software development process you’re using.

In certain industries, such as medical and defense, software projects tend to lean
toward UML as a blueprint because a high level of quality is demanded. Software
design is heavily reviewed since it could be mission-critical: you don’t want your
heart monitoring machine to suddenly display the “blue screen of death.”

Some projects can get away with less modeling. In fact, some commercial industries
find that too much modeling is cumbersome and slows down productivity. For such
projects, it makes sense to use UML as a sketch and have your model contain some
architectural diagrams and a few class and sequence diagrams to illustrate key
points.

UML and the Software Development Process
When you are using UML to model a software system, the “degree of UML” you
apply is partially influenced by the software development process you use.

A software development process is a recipe used for constructing software—deter-
mining the capabilities it has, how it is constructed, who works on what, and the
timeframes for all activities. Processes aim to bring discipline and predictability to

