

XAML
IN A NUTSHELL

Other resources from O’Reilly

Related titles Programming Windows
Presentation
Foundation

Programming C#
C# Cookbook™
Programming Visual Basic

2005

Visual Basic 2005 in a
Nutshell

Programming ASP.NET
ASP.NET 2.0 Cookbook™
XML in a Nutshell
HTML & XHTML: The

Definitive Guide

oreilly.com oreilly.com is more than a complete catalog of O’Reilly
books. You’ll also find links to news, events, articles,
weblogs, sample chapters, and code examples.

oreillynet.com is the essential portal for developers inter-
ested in open and emerging technologies, including new
platforms, programming languages, and operating
systems.

Conferences O’Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

XAML
IN A NUTSHELL

Lori A. MacVittie

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

XAML in a Nutshell
by Lori A. MacVittie

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper
Production Editor: Matt Hutchinson
Copyeditor: Rachel Monaghan
Proofreader: Matt Hutchinson

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano, Jessamyn

Read, and Lesley Borash

Printing History:

March 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, XAML in a Nutshell,
the image of a kudu, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-52673-3

[M]

v

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

Table of Contents

Preface . ix

Part I. Introducing XAML

1. Introducing XAML . 3
The Benefits of XAML 4
What XAML Is Not 5
XAML Development Resources 6

2. Getting Started with XAML . 8
XAML Prerequisites 8
Defining XAML Applications 9
Building XAML Applications 11
XAML Applications and Visual Studio 15

Part II. XAML Concepts

3. The Basics of XAML . 23
Core XAML Syntax 23
Elements 27
Attributes 31
Attached Properties 36
Binding Properties 37
codebehind 41

vi | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4. Layout and Positioning . 44
StackPanel and DockPanel 45
Using Width and Alignment 48
Margins and Padding 52
Grid 56
Absolute Positioning 57

5. Resources . 63
Using Resources 63
Using Styles 66
Triggers 70

6. Storyboards and Animations . 75
Storyboards 76
Controlling Animations 80
Animation Using Key Frames 86

Part III. Core XAML Reference

7. Elements . 91

8. Controls . 117
Base Control Reference 118
Common Event Reference 122
Core Control Reference 124

9. Shapes and Geometry . 157

10. Layout . 184

11. Animations and Transformations . 200

12. Events . 237
Routing Strategies 239
Event Argument Reference 240
Event Reference 245

Table of Contents | vii

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Part IV. Appendixes

A. System.Windows.Controls . 257

B. System.Windows.Documents . 259

C. System.Windows.Shapes . 261

D. System.Windows . 262

E. System.Windows.Media . 263

F. System.Windows.Input.ApplicationCommands 265

G. Predefined Colors . 267

H. XAML Interface in Code . 269

Index . 273

ix

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

Preface

Windows Vista is on its way, and with it comes a brand-new mechanism for
defining user interfaces. XAML is one of many new technologies appearing in
Windows Vista and promises to be a pervasive part of core Windows program-
ming across a variety of yet-to-be-introduced Windows frameworks. XAML
completely removes the need for user-interface designers to understand code.
Third-party visual layout applications can now generate valid XAML for use in
building sophisticated Windows Vista applications.

The Windows Presentation Foundation (WPF), and therefore XAML, offer many
sophisticated user-interface features that are not available in other declarative
markup languages such as HTML or XUL. Scaling and rotation of both text and
graphics, animation, and extensibility are all core parts of WPF and accessible to
XAML developers. While HTML was developed primarily for displaying text and
graphics on the Web, XAML’s primary target is native Windows applications
(although it can also target web-based deployments).

The close relationship between runtime objects and the elements in a XAML file
make XAML an easy choice for user-interface design on the Windows platform. It
offers the means to create rich, or “smart,” clients that act more like a full-
featured interface than a web-based application.

XAML can be used to design user interfaces without the need for code, or it can
be used in conjunction with supported .NET languages such as C# and VB.NET.
XAML is the preferred method of developing interfaces for applications on the
Windows Vista platform because its powerful features allow developers to create
interfaces that go above and beyond traditional interface design. XAML and the
WPF open up endless possibilities for exciting new user interfaces, and this book
will provide an understanding of the language and the framework upon which
those interfaces are developed.

x | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Who Should Read This Book
This book is intended for both .NET developers and user-interface designers
familiar with HTML and the basics of XML. Developers intending to write full
applications should have a good understanding of an existing .NET language such
as C# or Visual Basic, as application logic requires development of code in a .NET-
supported language.

Familiarity with other declarative markup languages such as HTML or XUL will
help you quickly grasp the concepts and user-interface elements used to design
interfaces with XAML.

Even if you are not familiar with a .NET language or other declarative markup
languages, this book will be invaluable in providing you with an understanding of
XAML.

What This Book Covers
This book covers XAML as it exists in the WinFX SDK (Community Technology
Preview, October 2005). It covers core XAML constructs and discusses syntax as
it relates to interfacing with the WinFX runtime—the WPF. The book provides
examples and documentation of all core components and presents detailed discus-
sions on features such as animation, resources, and layout that will jump-start you
on your way to becoming a XAML developer.

There are already several flavors of XAML, each created to enable the design of
user interfaces for a specific Windows API, such as Windows Workflow Founda-
tion. This book focuses on the core XAML language as intended for use in
building user interfaces for Avalon and will not explore API-specific subsets.

Organization
This book is organized into four sections. Each section focuses on a particular set
of topics that are grouped together logically.

Part I, Introducing XAML

This part of the book introduces the basics of XAML. It details the prerequisites
necessary to begin building user interfaces in XAML and introduces MSBuild,
Microsoft’s new unified build system.

Because XAML supports many new features such as animation and resources,
Part II has been devoted to covering these unique concepts. The basics will be
covered here, but new concepts such as animation and transformations are given
in-depth attention later on.

Chapter 1, Introducing XAML
This chapter provides you with a quick introduction to XAML and includes a
list of references to tools available for developing XAML applications.

Preface | xi

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2, Getting Started with XAML
This chapter details the system prerequisites and basics necessary to begin
developing and building XAML applications. It introduces Microsoft’s new
unified build system, MSBuild, and describes how to use it to build XAML
applications. The chapter also walks you through an example of using
Microsoft’s Visual Studio tools to create and build an application.

Part II, XAML Concepts

This part of the book delves into the details of XAML. You’ll learn about
elements, controls, styles, and animations, and how to use them to create your
own user interface.

There are many specific elements not discussed directly in other sections of this
book. These elements, in conjunction with all core XAML elements, are detailed
here for quick and easy access.

Chapter 3, The Basics of XAML
This chapter describes the core XAML syntax and delves into the types of
elements used to create XAML applications. Attributes, attached properties,
and event handler coding techniques are explained and accompanied by
examples of how to use them.

Chapter 4, Layout and Positioning
This chapter details how to position individual elements using a variety of
techniques, including panels and absolute positioning.

Chapter 5, Resources
This chapter provides an overview of resources, focusing on the use of global
resources to create a customized look and feel for your interface. It describes
how to define and reference resources and details the use of triggers to apply
styles based on events.

Chapter 6, Storyboards and Animations
This chapter details the mechanisms available for animating XAML elements.
It includes examples of animating properties, such as position and size of
elements.

Part III, Core XAML Reference

This part of the book details syntax rules and attributes for XAML in a series of
quick-reference chapters. This section divides XAML elements into logical categories
of elements, controls, shapes and geometry, layout, animations, and transformations.

Chapter 7, Elements
This reference chapter details and provides examples for the basic elements
used within XAML, including Brush and Pen, ListItem, and elements used for
text decoration, such as Inline, Bold, and Italic.

Chapter 8, Controls
This reference chapter details the control elements available within XAML,
such as Button, CheckBox, ImageViewer, and Expander. It also contains a refer-
ence to common events.

xii | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9, Shapes and Geometry
This reference chapter explains the differences between shape and geometry
classes and details the Shape and Geometry elements available within XAML.

Chapter 10, Layout
This reference chapter details the XAML elements used to lay out user inter-
faces such as Grid and Panel, and describes supporting elements such as
Trigger, Style, and Border.

Chapter 11, Animations and Transformations
This reference chapter details the types of animations and transformations
available to XAML elements.

Chapter 12, Events
This reference chapter explains the WPF event system and details the events
available to XAML elements.

Part IV, Appendixes

The appendixes detail the CLR classes in the WinFX runtime that are available
through XAML, list all of the predefined Color values supported by XAML, and
present a complete code-only example of building a XAML application.

Appendix A, System.Windows.Controls
Lists the elements found in the System.Windows.Control namespace

Appendix B, System.Windows.Documents
Lists the elements found in the System.Windows.Documents namespace

Appendix C, System.Windows.Shapes
Lists the elements found in the System.Windows.Shapes namespace

Appendix D, System.Windows
Lists the elements found in the System.Windows namespace

Appendix E, System.Windows.Media
Lists the elements found in the System.Windows.Media namespace

Appendix F, System.Windows.Input.ApplicationCommands
Lists the elements found in the System.Windows.Input.ApplicationCommands
namespace

Appendix G, Predefined Colors
Lists the available predefined colors supported by XAML

Appendix H, XAML Interface in Code
Contains a XAML declaration used to build a simple application

Preface | xiii

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conventions Used in This Book
The following list details the font conventions used in the book:

Constant width
Indicates anything that might appear in a XAML document, including
element names, tags, attribute values, and entity references, or anything that
might appear in a program, including keywords, operators, method names,
class names, and literals.

Constant width bold
Indicates user input or emphasis in code examples and fragments.

Constant width italic
Denotes replaceable elements in code statements.

Italic
Indicates emphasis in body text, new terms when they are defined, path-
names, filenames, program names, and host and domain names.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Significant code fragments, complete applications, and documents generally
appear in a separate paragraph, like this:

<Page xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005">
 <StackPanel>
 <TextBlock>Hello World</TextBlock>
 </StackPanel>
</Page>

When a property has a fixed set of values from which to choose, those choices will
be displayed as a pipe-separated list:

SelectionMode="Single|Multiple|Extended" >

XAML, like XML, is case-sensitive. The Page element is not the same as the PAGE
or page element. Both are also character-encoding-sensitive, and the smart quotes
found in a Microsoft Word document or in the help files accompanying the
WinFX SDK are not considered the same as the double quotes produced by appli-
cations such as Microsoft’s Visual Studio or Notepad. Smart quotes are not valid
within a XAML document, so it is important that you use the “Copy code” option
in the WinFX SDK help system or turn off smart quotes in Microsoft Word if you
wish to use either program to create XAML applications.

xiv | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Code Examples
Most of the examples in this book have very little real-world value and are
unlikely to be reused, although they work well as templates to get you started in
designing your own user interfaces with XAML. In general, you may use the code
in this book in your programs and documentation. Permission is not required
unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several blocks of code from this book does not require permis-
sion. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

Attribution is appreciated, but not required. An attribution usually includes the
title, author, publisher, and ISBN. For example: “XAML in a Nutshell, by Lori A.
MacVittie. Copyright 2006 O’Reilly Media, Inc., 0-596-52673-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book that lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/xamlian

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Preface | xv

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books: it’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments
Jeff Pepper, the editor who proposed the book and got things rolling.

Brad Shimmin, for bringing the opportunity to my attention in the first place.

My husband, Don, for encouraging me to agree to this undertaking and putting
up with long hours spent staring at the screen trying to figure out why something
wasn’t working the right way, and for a second set of technically minded eyes.

The reviewers of early versions of the manuscript were invaluable in this effort.
Thanks especially to Tim Patrick and Filipe Fortes for their thorough reviews and
helpful comments.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

I
Introducing XAML

3

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Introducing XAML

1
Introducing XAML

XAML (pronounced “Zamel”) stands for eXtensible Application Markup
Language. It is Microsoft’s new declarative language for defining application user
interfaces. XAML provides an easily extensible and localizable syntax for defining
user interfaces separated from application logic, similar to the object-oriented
technique for developing n-tier applications with a MVC (Model-View-Controller)
architecture.

XAML was created by Microsoft expressly for the purpose of interfacing with
its .NET Framework on its Windows Vista (formerly codenamed “Longhorn”)
operating system through the WinFX (codename “Avalon”) presentation
subsystem runtime environment. XAML gives developers the ability to control
the layout of all .NET user-interface elements such as text, buttons, graphics,
and listboxes, using XML. Because XAML is XML-based, your code must be
well-formed XML. Every XAML tag corresponds directly to a .NET Frame-
work class whose properties are controlled through the use of XML attributes.
For example, the <Button> tag corresponds directly to the System.Windows.
Controls.Button class. XAML elements represent a Common Language
Runtime (CLR) class, the runtime engine for Microsoft’s .NET framework. The
CLR is similar to the Java Virtual Machine (JVM), except that the JVM can
only run Java language programs, while the CLR can run applications written
in a number of .NET languages, such as C#, J#, and VB.NET.

Because XAML elements represent CLR objects (this book focuses on those in the
Windows Presentation Foundation [WPF]), anything that can be done with
XAML can also be accomplished with procedural code. There are some things,
however, that can be done by manipulating the object model programmatically
that are not accessible through XAML. Properties that are read-only are not
exposed through XAML; only those properties that are public and have both a get
and a set method are accessible to XAML developers.

Events and handlers can also be specified by XAML attributes, and the necessary
code behind the handlers, codebehind, can be written in .NET-supported

4 | Chapter 1: Introducing XAML

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

languages—currently C# and VB.NET. This code can be inlined in the XAML file
or placed in the codebehind file, similar to what is done with ASP.NET code. If
procedural code is embedded in a XAML page, you must compile the application
before you can run it; if there is no procedural code in the XAML page, you can
display it on a Windows Vista system by double-clicking the page file (just as you
would with HTML pages). On Windows XP, however, the XAML pages must be
“compiled” into an executable application before they can be displayed or loaded
into a browser.

XAML is similar to other markup languages designed for rendering in web
browsers, such as XHTML and HTML, and uses mechanisms similar to
Cascading Style Sheets (CSS) for designating properties of XAML elements. Just
as HTML objects are parsed to build out a Document Object Model (DOM) tree,
XAML elements are parsed to build out an ElementTree.

XAML is inherently object-oriented since its elements represent CLR classes.
This means that an element derived from another XAML element inherits the
attributes of its parent. For example, a System.Windows.Controls.Button derives
from System.Windows.Controls.ButtonBase, which derives from System.Windows.
Controls.ContentControl, which derives from System.Windows.FrameworkElement,
which derives from System.Windows.UIElement. Therefore, the Button element has
very few attributes of its own but still boasts a lengthy list of attributes that it has
inherited from classes above it in the hierarchy, such as Width and Height. It is
necessary to understand the nature of inheritance in order to take advantage of
XAML and its ability to be extended. Custom controls can be created for XAML
by creating subclasses in one of the supported .NET languages (C# or VB.NET),
for example, and then exposing the class to XAML developers for use in user-
interface design.

Some XAML elements require children and attributes to be of a specific type,
usually one of the base classes. Because of the nature of object-oriented program-
ming, any element requiring that its children be of type UIElement can be declared
as an element derived from UIElement. The Brush object is a very common attribute
type for XAML elements, yet an instance of Brush is rarely used as an attribute.
Instead, one of Brush’s subclasses, such as SolidColorBrush or LinearGradientBrush,
is often used. The nature of object-oriented programming allows an attribute to be
broadly defined as a base class and lets the designer choose which specialized
subclass will be used.

Because of XAML’s object-oriented nature, not all attributes will be listed with the
element. It is necessary to understand an element’s hierarchy to fully understand
all of the attributes available to describe the element. In Part III, I have included
each element’s hierarchy—as well as a description of abstract elements—to facili-
tate this understanding. While abstract elements are rarely, if ever, declared in
XAML, their description and attributes are used by derived classes and will there-
fore be fully described.

The Benefits of XAML
XAML offers similar benefits to other markup-based application interface mecha-
nisms such as XUL (eXtensible User-interface Language), HTML (HyperText

What XAML Is Not | 5

Introducing
XAM

L

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Markup Language), and Flex. Markup-based interfaces are quick to build and
easily modifiable. They require less code than traditional structured program-
ming. For example, creating and defining the properties of a Button with XAML
requires just one line of syntax, as opposed to multiple lines in C# or VB.NET:

<Button Click="OnClickHandler" Background="Green" Content="Submit" />

The same Button object created using C# requires four lines:

Button myBtn = new Button();
myBtn.Background = Brushes.Green;
myBtn.Text="Submit";
myBtn.Click += new System.EventHandler(OnClickHandler);

While HTML has limited programmatic functionality and control, XAML and
other new-generation declarative markup languages offer back-end scripting
language support to circumvent this limitation. While XAML separates the user
interface from application logic, it still provides a mechanism by which the two
can easily interact. This separation offers several benefits, including easily local-
ized user interfaces and the ability for developers to modify application logic
without affecting the user interface, and vice versa.

XAML also opens up user-interface design to a wider group of developers, namely
graphic designers and markup developers. Anyone with experience using HTML
or other web-oriented markup languages will find XAML to be intuitive; they will
be able to jump in and begin developing user interfaces in a short period of time.
This alleviates the burden placed on .NET developers and allows them to focus on
developing application logic, while others determine the look and feel of the user
interface.

XAML is toolable, which offers third-party developers opportunities to create
applications that support it. Several third-party applications already exist that
offer visual environments for developing XAML. Additional products are expected
as Windows Vista begins to be generally deployed.

XAML is extensible, as its name implies. XAML can easily be extended by devel-
opers creating custom controls, elements, and functionality. Because XAML is
essentially the XML representation of objects defined by the WPF, XAML
elements can easily be extended by developers using object-oriented program-
ming techniques. Custom controls and composite elements can be developed and
exposed to user-interface designers or shared with other developers.

Finally, by using XAML, Windows applications can be delivered unchanged via
the Web to Windows clients. Smart clients, Microsoft’s term for rich user inter-
faces with full Windows functionality, can be delivered to any connected
Windows machine over the Internet through a web browser without requiring the
overhead of a managed desktop to deploy full-featured thick-client applications.

What XAML Is Not
XAML is purely a markup language designed for describing user-interface compo-
nents and arranging them on the screen. Though there are components of XAML
that appear to be programmatic in nature, such as the Trigger and Transform

6 | Chapter 1: Introducing XAML

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

elements, XAML is not a procedural programming language and is not designed
to execute application logic.

XAML is interpreted, not compiled—though it can be compiled. Microsoft
recommends that XAML be compiled by compacting it into Binary Application
Markup Language (BAML). Both XAML and BAML are interpreted by the WPF
and then rendered on the screen in a manner similar to HTML. Unlike HTML,
however, XAML is strongly typed. HTML defaults to ignoring tags and attributes
it doesn’t understand, while XAML requires that every tag and attribute be under-
stood, including the typing of attributes. Although all attributes initially appear to
be strings, don’t let that fool you. The string represents an object, and because
those objects must be understood by WPF, XAML is strongly typed.

Finally, XAML is not HTML. Although there are similarities in the declaration of
elements, application of styles, and assignment of event handlers, XAML is an
XML-based interface to the Windows Presentation Framework, while HTML is a
markup language that is rendered within the context of the browser and operating
system in which it is loaded. XAML is far more than a mechanism for displaying
information and soliciting basic user input. It is a complete user-interface design
and development markup language that reaches beyond the scope of simple
HTML elements by including advanced features such as 3-D element rendering
and rich vector-based drawing capabilities.

XAML Development Resources
XAML can be developed in myriad ways. XAML can be written in any text editor.
For example, all the code included in this book was written in Notepad and then
compiled using MSBuild.

There are much easier ways to develop a XAML user interface, however, and most
of them involve a visual layout tool. There are several third-party tools, as well as
tools from Microsoft that support XAML. Some are focused on only one aspect of
XAML, such as development of 3-D interfaces, while others are more generally
applicable. Some popular tools available as of this writing include:

Electric Rain ZAM D XAML Tool (http://www.erain.com/products/zam3d/)
A tool that supports visual development of 3-D interface elements for XAML.

Xamlon Pro and XAML Converter (http://www.xamlon.com/)
Xamlon Pro supports development of XAML user interfaces in a visual envi-
ronment. XAML Converter converts other formats to XAML.

MyXAML (http://www.myxaml.com/)
An open source project dedicated to XAML development. Includes a mailing
list and forums focused on discussion of XAML and the sharing of tips,
tricks, and techniques.

Mobiform Aurora XAML Editor (http://www.mobiform.com/2005/XAML/
xamlhome.htm)

A visual editor for XAML from Mobiform.

XamlViewer (http://weblogs.asp.net/gmilano/archive/2004/11/24/269082.aspx)
A visual editor for XAML that integrates into Visual Studio 2005.

XAML Development Resources | 7

Introducing
XAM

L

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

XamlPad
A simple, real-time visual editor for XAML. XamlPad does not support visual
layout of elements, but it does offer a visual representation, in real time, of
XAML elements. XamlPad is included in the WinFX SDK.

Microsoft’s Visual Studio 2005 Extensions for WinFX
Tools that include XAML Intellisense support through schema extensions for
the editor and project templates for the WPF, the Windows Communication
Foundation (formerly known as “Indigo”), and WinFX SDK documentation
integration. These tools do not include a graphical design surface for either
the WPF or the Windows Communication Foundation.

Microsoft Expression Interactive Designer (formerly “Sparkle”) (http://www.
microsoft.com/products/expression/en/interactive_designer/default.aspx)

A forthcoming Microsoft visual-design tool for developing WinFX applications.

8

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Getting Started

2
Getting Started with XAML

As with most development-oriented tools, it’s important to have the proper envi-
ronment before you can start developing user interfaces with XAML. This chapter
discusses the prerequisites necessary to define and run XAML applications and
later details the basic structure of a XAML project, as well as how to compile and
run that application.

This chapter assumes that you have a working knowledge of XML and are at least
somewhat familiar with other user-interface markup languages, such as ASP.NET
and HTML.

XAML Prerequisites
Although XAML is designed specifically for Windows Vista, it’s also available on
Windows XP and Windows Server 2003, given that certain system requirements
are met. This makes it possible for developers to become familiar with XAML and
the WinFX SDK before Windows Vista is officially available.

XAML can be used to develop applications on the following operating systems:

• Windows XP SP2

• Windows Server 2003 SP1

• Windows Vista

On Windows XP SP2 and Windows Server 2003 SP1, you will first need to install
the WinFX runtime, which contains, among other things, the Windows Presenta-
tion Foundation (Avalon). Regardless of the operating system you choose, you’ll
need to install the WinFX SDK. The SDK contains the libraries, build tools, and
documentation necessary to begin developing user interfaces with XAML.
Depending on the operating system you choose, the WinFX SDK may also have
prerequisites that must be met.

Defining XAML Applications | 9

Getting
Started

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

If you plan on using the WinFX Extensions to Visual Studio 2005,
you must install Visual Studio 2005 before installing the WinFX
SDK.

Defining XAML Applications
A XAML application comprises two types of elements: an application element and
the set elements that make up the user interface. The XAML files contain the user-
interface definition for your application. The codebehind files will contain the
application logic and the code that handles event processing. XAML does not
provide a mechanism for handling events, but it can direct the runtime engine to
call event handlers written in C# or VB.NET. If you’re a developer, you’ll code
the event handlers and application logic just as you always have, but because the
user-interface code is separate, you’ll have to pay a bit more attention to the
names of the handlers and elements you reference because you don’t define
them—they’re declared and named in the XAML file.

You can define XAML applications completely using C# or VB.NET.
The CLR classes represented by XAML are all accessible through
code, and you can write applications just as you always have, if you
so desire. XAML offers you the ability to completely separate the pre-
sentation layer (user interface) from the application logic, thus mak-
ing it easier to split up development responsibilities and isolate UI
changes from the code. Appendix H provides an example of an appli-
cation declared in XAML, as well as entirely in C#.

The most common application element is of type NavigationApplication.
NavigationApplication defines an application that behaves like a web application
or wizard in that it consists of pages between which a user navigates using hyper-
links and forward and back buttons.

The application definition is generally declared in its own file. It requires two
properties to be set, the namespace and the startup URI, which is the URI of the
first page that should be loaded when the application starts. For our purposes in
this chapter, the application definition file will be called MyApp.xaml. It is
detailed in Example 2-1.

In XAML, element names correspond to CLR object names, and attributes repre-
sent properties. The exception to this rule is with standard XML elements, such as
xmlns, which is used to declare the namespace used within the XML file. The
namespace used here is the default namespace for the application and identifies
the Avalon types. If we did not specify the Avalon namespace as the default, all
core XAML elements would need to include a reference to it. That’s a lot of extra
typing. It is much easier to use the Avalon namespace as the default, unless you

Example 2-1. MyApp.xaml

<NavigationWindow
 xmlns="http://schemas.microsoft.com/winfx/avalon/2005"
 StartupUri="Page1.xaml" />

10 | Chapter 2: Getting Started with XAML

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

will be primarily using custom elements defined in your own namespace, in which
case, it is probably easier to specify your own namespace as the default and explic-
itly identify XAML elements instead. All the examples in this book will declare the
Avalon namespace as the default. Every XAML element requires either explicit
references to the namespace on a per-element basis or the declaration of the
Avalon namespace as the default of the root element. Of course the latter is
recommended, as it will alleviate the requirement to explicitly reference the
namespace for every XAML element in the file.

The first element declared in any XAML file is called the root element. The root
element must contain a reference to the namespace in which it is defined. For
XAML elements, the namespace is http://schemas.microsoft.com/winfx/avalon/
2005.

The default namespace will change when WPF officially ships.

Root elements are containers that hold other XAML elements. The most common
root element for the application definition is NavigationWindow. The most
common root elements for a page definition are Panel and its subclasses,
DockPanel and StackPanel, and Page. Window is also used, though less often than
the aforementioned elements.

In Example 2-1, the StartupUri attribute of the NavigationWindow specifies the
XAML page that will be loaded when the application starts, in this case Page1.xaml.
Additional attributes of NavigationWindow can be specified. For a complete descrip-
tion of NavigationWindow, see Chapter 8.

Page1.xaml will contain the actual definition for the user interface. Any subse-
quent pages will be referenced through allowable mechanisms, such as the
HyperLink element. Like all XAML files, Page1.xaml requires a root element. The
file is shown in Example 2-2.

StackPanel is fully described in Chapter 7. Like DockPanel, it is used to hold
elements, and that is all you need to know for now. The TextBlock element holds
text, and the Button element represents a standard user-interface button. Inter-
preting the code in XamlPad produces the output shown in Figure 2-1.

This is an extremely simple example of a XAML application with absolutely no atten-
tion paid to style, layout, or usefulness. Refining these aspects of user-interface
design is a subject for subsequent chapters. For now, it is only important that the file
declares the minimum requirements for a XAML application. With a successfully
defined application definition (MyApp.xaml) and a page definition (Page1.xaml), it’s
time to build the application into a Windows executable.

Example 2-2. Page1.xaml

<StackPanel xmlns="http://schemas.microsoft.com/winfx/avalon/2005">
 <TextBlock>Hello World</TextBlock>
 <Button Width="100">Click Me</Button>
</StackPanel>

Building XAML Applications | 11

Getting
Started

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Building XAML Applications
While XAML can be used to create libraries and modules that can be shared and
used to build other applications (in the same way that C# or VB.NET can be used
to build DLLs or shared assemblies), it is more likely that you will use XAML to
generate an application. There are two types of XAML applications: express and
installed. Express applications are hosted in a web browser. Installed applications
are traditional desktop applications and can be either Windows applications or
console applications. The type of application generated is determined by a prop-
erty value in the project file MSBuild uses to assemble the application.

MSBuild is one of the new features in Windows Vista and Visual Studio 2005.
With the release of Visual Studio 2005, Microsoft has moved to a unified build
environment. All projects now use MSBuild facilities to generate CLR assemblies.
The most exciting, and beneficial, aspect of this change is that Visual Studio is no
longer required to compile and build applications; builds can be completely auto-
mated without it. MSBuild is distributed with the WinFX SDK.

If you’re using Visual Studio to edit XAML and associated
codebehind files, don’t worry about the details of MSBuild. The rel-
evant files are generated automatically by Visual Studio.

MSBuild is similar to ANT and Unix/Linux make facilities. MSBuild reads in
XML-based project files, conventionally named with a .proj extension, and
executes the tasks contained in the project file to produce the desired target.

There are a number of XML elements that can be used in a project file. This
discussion covers only the basic elements and the typical ways that they are used

Figure 2-1. A simple XAML page previewed in XamlPad

12 | Chapter 2: Getting Started with XAML

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

to create an Avalon project file. The following list describes the key elements in an
Avalon project file:

Project
Functions as the root element for all project files

PropertyGroup
Contains project property settings, such as the build configuration setting
(Debug or Release)

ItemGroup
Contains the list of items, such as source or resource files, that make up the
project

Import
Allows you to import other project files, such as target files, into your project

There are a multitude of options that can be configured with MSBuild. It is a very
rich schema designed to handle building targets in a dynamic environment. The
following code illustrates the minimum requirements for a project file:

<Project
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <AssemblyName>MyFirstApplication</AssemblyName>
 <TargetType>winexe|exe|library|module</TargetType>
 <OutputPath>.\</OutputPath>
 </PropertyGroup>
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
 <Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />
 <ItemGroup>
 <ApplicationDefinition Include="MyApp.xaml" />
 <Page Include="Page1.xaml" />
 </ItemGroup>
 <ItemGroup>
 <Reference Include="System">
 <Private>false</Private>
 </Reference>
 <Reference Include="System.Xml">
 <Private>false</Private>
 </Reference>
 <Reference Include="System.Data">
 <Private>false</Private>
 </Reference>
 <Reference Include="WindowsBase">
 <Private>false</Private>
 </Reference>
 <Reference Include="PresentationCore">
 <Private>false</Private>
 </Reference>
 <Reference Include="PresentationFramework">
 <Private>false</Private>
 </Reference>
 <Reference Include="WindowsUIAutomation">
 <Private>false</Private>
 </Reference>

Building XAML Applications | 13

Getting
Started

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

 <Reference Include="UIAutomationProvider">
 <Private>false</Private>
 </Reference>
 </ItemGroup>
</Project>

The most important piece of the project file is the ItemGroup, which specifies the
inclusion of the XAML files that make up your project. You’ll need one
ApplicationDefinition file, identified by the <ApplicationDefinition .../> element,
and one or more page definition files, included through the use of the <Page .../>
element.

You can set a few optional attributes in the PropertyGroup element:

HostInBrowser
This Boolean value is set to true to generate express applications or false to
generate an installed application. The default value is false.

Install
This Boolean value determines the type of deployment file to generate. When
set to true, a deployment file for an installed application is generated. When
set to false, a deployment file for an express application is created. If
HostInBrowser is set to true, the default value for this property is false. If
HostInBrowser is false, the default value for this property is true.

Configuration
This String-based value determines the type of configuration to build: Debug
or Release. The default is Release.

MSBuild relies on a number of environment variables related to the location of
libraries and the identification of the .NET Framework version used to build the
application. The WinFX SDK includes a batch file to appropriately set these envi-
ronment variables. The necessary variables are:

SET FrameworkVersion=v2.0.50215
SET FrameworkDir=%windir%\Microsoft.NET\Framework
SET WinFX=%ProgramFiles%\Reference Assemblies\Microsoft\WinFX\
%FrameworkVersion%
SET URT=%FrameworkDir%\%FrameworkVersion%
SET WinFXSDK=C:\Program Files\Microsoft SDKs\WinFX
SET FrameworkSDKDir=%WinFXSDK%\
SET WinFXSDKTOOLPATH=%WinFXSDK%\bin
SET PATH=%URT%;%WinFXSDKTOOLPATH%;%WinFXSDK%\vc\bin;%path%;
SET INCLUDE=%WinFXSDK%\Include;%WinFXSDK%\vc\Include;
SET LIB=%WinFXSDK%\Lib;%WinFXSDK%\vc\Lib;

After the environment variables have been set and the project file is appropriately
configured for your application target, execute MSBuild on the command line to
generate your application. When completed, you will see several files:

MyFirstApplication.exe
The executable application. This file is always generated.

MyFirstApplication.xbap
The express application. This file is recognized by the Windows IE browser
and can be run by opening the file within IE. This file is generated only when

