Channeling the Flow of Change
in Software Development Collaboration

|

1CA4

+—
Q
S
—
—

AR
i

Laura Wingerd

O’REILLY"

9

Software Development

O’REILLY"

Practical Perforce

Good configuration management is critical to the success of any software project—
indeed, to the success of any creative endeavor involving computer files. Where do you
store your files? What do you do when several people edit the same file? How do you
keep straight the code from multiple versions of a product? How do you explore a new
idea without affecting current development? These are just some of the questions that any good
software configuration management system must answer.,

Perforce stands as one of the industry’s preeminent software configuration management tools. It is
hugely popular among its users, and once you've read this book you'll understand why. Yet tools
are only as good as those who know how to use them. Author Laura Wingerd's goal with Practical
Perforce is to take you to what she calls the “aha!” moment. To that end, this book:

* Goes beyond the official Perforce documentation to provide coverage of undocumented com-
mands, explanations of esoteric internals, useful recipes, and clever ways to exploit Perlorce

e Covers the big picture by telling you how to use Perforce commands—and who needs to use
them and when—to shepherd software in development from inception to retirement

e Examines branching and merging in depth, arguably the hardest part of version control, by
taking into account the consequences of refactoring, agile development, extreme programming,
parallel development, emergency patches, and ongoing product maintenance

The “aha!” moment is when you really and truly understand what Perforce is, how it works, and
how you can best take advantage of it. Don't settle for the ability to “just use” Perforce. Really
learn the tool. Take time to understand its architecture. Learn the best practices. Take your skills
at configuration management to the next level.

Laura Wingerd is the Vice President of Product Technology at Perforce Software. Her experience
spans software configuration work at Relational Technology, Inc. (Ingres) and Sybase, and she
has been with Perforce since the “garage days.” Laura has written or cowritten many papers on
configuration management, including the widely cited “High-Level Best Practices in Software
Configuration Management.”

www.oreilly.com

US $39.95 CAN $55.95
ISBN-10: 0-596-10185-6

ISBN-13: 978-0-596-10185-5 3
53995 sa'a" Includes
W | OAIAN froudes

780596'101855 I"'""“"” Online Edition

Practical Perforce

Laura Wingerd

O’REILLY"

Beijing + Cambridge - Farnham « KéIn - Paris « Sebastopol - Taipei - Tokyo

Practical Perforce
by Laura Wingerd

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick

Production Editor: ~ Adam Witwer

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:
November 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Practical Perforce, the image of herring, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover. . ,M . L
=== This book uses RepKover", a durable and flexible lay-flat binding.

ISBN: 0-596-10185-6
M]

Table of Contents

Preface vii
1. FilesintheDepot 1
The Perforce Filespec Syntax 1
Browsing Depot Files 7
File Types at a Glance 15

2. WorkingwithFiles 17
An Overview 17
Creating a Workspace 20
Synchronizing a Workspace 26
Local Syntax, Wildcard Expansion, and Special Characters 29
Working with Local Files 31
Working with Pending Changelists and Submitting Files 39
Removing and Restoring Files 44
Useful Recipes 46

3. Resolvingand MergingFiles 49
Resolving: When, What, and How 49
How Perforce Merges Text Files 62
Reconciling Structural Changes 66
Tips for Smoother Collaboration 74
The Arcana of Merging 78

4. BranchingandIntegration............ 87
The Classic Case for a Branch 88
Creating Branches 89
Integrating Changes from Branch to Branch 96

Reconciling Structural Changes 112

The Arcana of Integration 118
5. LabelsandJobs........ il 127
Saving Important Configurations 127
Using Labels 129
Using Jobs 137
Jobs as Changelist Markers 142
6. Controlling and Automating Activity 144
Depot and File Access 144
Accessing Files in Other Domains 146
Saving and Restoring Specs 150
Change Notification and Change Monitoring 152
Scripting Tips 157
Behind-the-Scenes Version Control 163
7. HowSoftwareEvolvesl 167
The Story of Ace Engineering 167
The Mainline Model 169
Ace Engineering Revisited 183
Containerizing 186
8. BasicCodelineManagement 189
Organizing Your Depot 189
General Care and Feeding of Codelines 199
Nightly Builds 205
Is Bug X Fixed in Codeline Y? 208
9. ReleaseCodelinesl 216
Creating a Release Codeline 216
Working in a Release Codeline 222
Integrating Changes into the Mainline 227
Making a Release 231
Distributing Releases 235
Breaking the Rules 237
Retiring a Release Codeline 240
Task Branches and Patch Branches 242

iv. | Tableof Contents

10. DevelopmentCodelines 249

Creating a Development Codeline 249
Working in a Development Codeline 255
Keeping a Development Codeline Up to Date 258
Working with Third-Party Software 263
Delivering Completed Development Work 267

The Soft Codelines 275

11. Staging StreamsandWebContent 282
Staging Web Content 282
Visual Content Development 288

Bug Fixes and Staging Streams 297
Major Web Development 302

A. Setting Up a Perforce Test Environment 305
B. Perforce Terminology and P4ACommands 311
Bibliography 315
Glossary 317
Index ... 321

Table of Contents | v

Preface

What Is Perforce?

If you’ve picked up this book simply because of its riveting title, you may be wonder-
ing what Perforce is. Perforce is a software configuration management (SCM) system.
SCM systems are used by software developers to keep track of all the software they
build and all the components that go into it.

A good SCM system can explain the mysteries of software development and head off
its disasters—mysteries like lost bug fixes, and disasters like botched file merges. In
large-scale and commercial environments, good SCM is absolutely essential to pro-
ducing good software.

It’s All Software and We're All Software Developers

SCM was once concerned with files that computer programmers produced. Now it is
concerned with files of all types that a business produces. Software, when viewed from
the perspective of SCM, is any endeavor that calls a computer home. Documention,
web content, spreadsheets, schematics, graphics, sound—it’s all software. If it’s stored
in computer files and gets built, embedded, or packaged into a deliverable result, it’s
software. The term software developer may not sound like it applies to web content
authors, graphic artists, test engineers, and technical writers, but for the purpose of
this book, anyone whose work involves creating computer files from intellectual
thought is a software developer.

Perforce, like all SCM systems, keeps track of changes as people do concurrent, par-
allel work on files. It logs activity; reports who did what; compares, merges, and

vii

branches files; and stores files and file configurations. Some of Perforce’s most salient
features are:

The depot
Perforce stores files in a protected repository known as the depot. The depot is a
centrally located, permanent archive of all file content submitted by users.

Workspaces
Perforce users work on files in workspaces, private disk areas of their own that
contain copies of depot files. In this book we’ll describe effective ways that
developers can use workspaces, and we’ll also discuss how workspaces can be
used to automate nightly builds, release packaging, web staging, and other soft-
ware production tasks.

Changelists

Perforce changelists tie files changed together into single units of work. Every
change to the depot can be traced to a changelist, and every changelist marks a
known, reproducible state of the depot; the depot evolves as changelists are sub-
mitted. In the Perforce view of SCM, it is the changelist—not the file revision,
nor the delta—that is the atomic transaction of software development. This
book will discuss a variety of ways changelists can be used, including treating
them as snapshots and using them to identify file dependencies.

Filespecs and views
The Perforce filespec syntax, and the views that use it, allow selection of files for
Perforce operations. Filespecs can define not only the common file collections,
like directories, but arbitrary collections of files that constitute codelines, mod-
ules, delivery streams, and other containers. They are the key to treating collec-
tions of files as versioned objects that can be inspected, rolled back, branched,
labeled, compared, and merged at any version.

Jobs
In Perforce you can record externally defined tasks and states—bug reports, fea-
ture requests, and project milestones, for example—in objects it calls jobs. Jobs
can be linked to changelists to provide a record of software changes related to
tasks. Jobs are also the linchpin of any integration between Perforce and exter-
nal systems, as we’ll see in later chapters.

Branching
Perforce uses Inter-File Branching to model file variants. In the traditional ver-
sion tree branching model used by most SCM systems, a file can be branched
and merged only into revisions of itself. In Perforce, any two files can have a
branching relationship; branched files are peers, not offshoots, of their originals.
A number of chapters in this book are dedicated to describing Perforce branch-
ing and its unexpectedly useful applications.

* The data format of the Perforce depot is not proprietarys; it is, in fact, consistent with the RCS archive format.
Because of this, there is a common misperception that Perforce is an RCS wrapper. It’s not.

viii | Preface

Integration history
In Perforce, branching and merging are referred to as integration. Perforce
records a history of integration events and uses it to direct merges and prevent
unnecessary remerging. In this book you’ll see how Perforce does that and learn
how to anticipate the effect of merges you perform.

Change tracking
Perforce combines filespecs, changelists, jobs, and integration history to track
changes as they are merged from branch to branch. In this book you’ll learn how
these objects can be used to determine whether a change—a bug fix, for exam-
ple—made in one branch has been merged to another, no matter how distantly
related.

In addition to these features, which could be considered the interesting capabilities
of Perforce, there are also the standard housekeeping and productivity features
you're likely to find in any SCM system, including labels, triggers, change notifica-
tion, graphical merge tools, file histories, and so forth.

The Perforce System in a Nutshell

Perforce is a client/server system (see Figure P-1). The domain of a Perforce system
encompasses a master file repository (the depot), a database, and a constellation of
users running client programs. One Perforce Server typically serves an entire Per-
force domain. Its job is to communicate with Perforce client programs, analyze and
execute user commands, archive and serve up file content, run event triggers, and
record system activity in the Perforce database. It also performs a variety of database
housekeeping tasks, some on demand and some automatically.

The client component of Perforce, shown in Figure P-2, manages workspace files and
communicates with the server. It’s implemented in a variety of tools designed for
users at almost every technical level.

Perforce client tools can be divided roughly into three categories:

Graphical user interfaces

The Perforce GUIs are the point-and-click client applications. This category
includes P4V, P4Win, and P4Web. (The latter is actually more of a plug-in, but
because it turns your browser into a Perforce GUI it is marketed as a GUT itself.)
Although they don’t support every possible Perforce command, the GUIs do
support the day-to-day operations of the typical software developer, and they are
easy on the eyes. They also provide a variety of data-mining features, including
some very nice visualizations of branching and file evolution. For these reasons,
even die-hard command-line adherents find them useful. P4V, P4Win, and
P4Web can be used interchangeably, although there are some variations in the
range of operations they support. All three come with embedded help files that
provide rudimentary coaching in how to use Perforce.

Preface | ix

o
Y]
-
o
o
Y
[
m

Cofd]
Cood]
Cood]
COood

Depot (lient program

f Client program
Pad
< (lient program

Client program

Perforce Server

Server machine
Client program

Figure P-1. The Perforce client/server system

Preforce Server

User’s machine
Workspace
Perforce Client Program
(P4,P4V,P4Web ...)

Local files

Workspace

)
Local files

Figure P-2. The Perforce client component

x | Preface

Plug-ins
The Perforce plug-ins category consists of client programs that run behind the
scenes, usually on the user’s machine, to enable other applications to work with
Perforce. The most widely used is the Perforce SCC Plug-in, which integrates
Perforce with Visual Studio .NET. (That’s SCC as in Microsoft Source Code
Control API; any Windows application that supports the Microsoft SCC API is
likely to work just fine with the Perforce SCC Plug-in.)

As Perforce’s popularity grows, plug-ins are emerging that wed less technical
applications to Perforce. PAFTP, for example, makes Perforce transparent to peo-
ple using applications that rely on FTP, and P4Report turns the Perforce data-
base into an ODBC data source for Windows spreadsheet and database tools.

Programmable clients

The programmable interfaces to Perforce are P4 and P4API. P4, the Perforce
Command-Line Client, can be used in interactive shells and in scripts. It’s the
canonical client program—if you can’t do it with P4, it can’t be done. P4API, the
Perforce C/C++ API, is available to embed the client component in applica-
tions, scripting languages, and other software. P4 and P4API run on all the oper-
ating system platforms Perforce supports—and there are a lot of them—and they
support all Perforce operations, including administrative and privileged
operations.

Why Perforce?

The features and capabilities of an SCM system are important, but equally so is its
ability to meet expectations and thrive in its habitat. Perforce runs as a self-reliant,
self-contained system, and you don’t need other software or hardware components
installed to use it. Unlike many other SCM systems, Perforce fits into almost any
computing environment, thanks to the following features:

Speed
Perforce is fast. It doesn’t make developers wait to check out, check in, com-
pare, or update files, and it doesn’t add a processing burden to developers’
machines.

Centralized repository
In the Perforce system, there is one centralized repository per domain for files
and SCM data. Very large companies may have several Perforce domains, but
that’s typically an organizational choice, not a limitation of domain size. (Per-
force domains at some large companies are known to encompass over 1,000
users each.) While it may be argued that a centralized repository puts your SCM
system at risk of a single point of failure, that risk is vastly outweighed by sev-
eral advantages. First, you have only one machine per domain to take care of to
protect your assets. Second, you don’t have to worry about where your assets

Preface | xi

are. Office moves and machine upgrades don’t perturb your central SCM reposi-
tory. And third, as long as your central SCM server is running, all your users
have access to it. The failure of one machine doesn’t impede SCM access for
users elsewhere in your system.

No external database required
Some SCM systems require you to configure and administer an external data-
base system like SQL Server or MySQL. Perforce provides its own database.
When you install Perforce, you're installing a reliable, self-contained database,
customized for Perforce SCM.

Because the Perforce database can’t be accessed by any other means than the
Perforce Server, there’s not much that can go wrong. It does require that the sys-
tem administrator schedule regular checkpoints and backups, but other than
that, very little hands-on administration is required. Database recovery per-
formed after a disk failure or other misfortune can be done manually by the sys-
tem administrator or through automated tools. Perforce provides tools for
checkpointing, for recovery, and for automatically upgrading the database when
a new release is installed.

No reliance on networked file sharing

Some SCM tools rely on networked file sharing (NFS) of one kind or another.
NFS is not an ideal solution for SCM; network file sharing can be slow, and
make it difficult for the SCM tool to handle file format differences. (Have you
ever opened up a file in Notebook only to see all its lines running together? Or
opened up a file in vi and seen "M characters at the end of every line?) NFS is also
very machine-dependent; clock synchronization and other interoperability issues
make version control difficult.

Perforce does not use NFS. Instead, it does its own file transport using TCP/IP.
This approach gives it control over the files it cares about and, because TCP/IP is
so universally supported, makes it capable of running on more operating system
platforms.

No HTTP server required
Some SCM systems require you to configure an HTTP server, like Apache or IIS,
to perform the duties of an SCM server. Perforce provides its own server and
runs independently of your web servers.

Traditionally, software development organizations were formed of developers work-
ing together at the same company, at the same location. Most SCM systems, includ-
ing Perforce, are suited for that kind of organization. But Perforce has built-in
features that make it suitable for nontraditional teams, including teams formed of
developers who work outside of the office, developers who work in separate divi-
sions, and even developers who work for completely different companies:

xi | Preface

Process impartiality
Perforce imposes almost no built-in workflow or process rules. It’s designed with
certain software development activities in mind (all of which will be discussed in
later chapters), but it can accommodate almost any procedure or methodology.
Any workflow or process you have established (or that you would like to estab-
lish) can be automated with Perforce.

File types
While some SCM systems have restrictions on handling certain file types, Per-
force can store and manage text files, binary files, Unicode files, native Apple
files on the Macintosh, Mac resource forks, and Unix symlinks in its repository.

Product distribution and vendor drops

The Perforce Server can access file repositories in other Perforce domains. This
makes a seamless, Perforce-to-Perforce distribution of software products possi-
ble. In other words, you can distribute your product directly from your Perforce
repository to other organizations, as long as they have Perforce, too. And you
can receive vendor drops from other organizations directly from their Perforce
repositories. In fact, you can even branch or merge files from their repositories
directly into yours. All the while, a history of what you’ve released and received
is being collected and recorded in your SCM database.

Firewalls and tunnels

As mentioned, Perforce uses TCP/IP to communicate between its components.
The firewall that prevents external access to machines inside your network also
prevents access to your Perforce repository. However, that doesn’t mean that all
your developers have to be inside your firewall. Perforce can be used in a Virtual
Private Network (VPN), when one has been created, and authorized users can
use Secure Shell (SSH) to tunnel through a firewall with Perforce commands.
The advantage here is that you can extend your SCM—and hence your software
development projects—to participants all over the world without having to give
them direct access to your machines or intranet.

For a commercial product, Perforce is unusually accessible. Many new users are
lured to Perforce simply because it’s so much easier to get started with it than it is
with any other SCM system:

Easy to install

Unlike open source software, which generally has to be configured and built,
Perforce tools are executable out of the box. By comparison, CVS and Subver-
sion may be free, but they aren’t free of the problems of building open source
software. If you’ve ever been down the rabbit hole of trying to find, configure,
compile, and install all the components in the dependency chain of an open
source tool, you’ll appreciate the simplicity of getting Perforce up and running.
It’s literally a 10-minute job: you download a couple of binary files, run one to
start up a server, and run the other as your client-side interface to it.

Preface | xiii

Runs everywhere

Perforce runs on a huge variety of operating system platforms. Your laptop, the
fully loaded machine at your office, the discount PC in your child’s room, the
old VAX you found on the sidewalk on trash collection day, even the ground-
breaking new operating system you’re developing—chances are very good that
there’s a version of Perforce that runs on it.” Since its inception, Perforce Soft-
ware has made a point of porting its tools to as many platforms as possible.
That’s been relatively easy to do, because the core components of Perforce are
small, standalone programs. And to this day, every version of Perforce ever
released can be downloaded for free—in prebuilt, executable form, no less—
from the Perforce FTP site.

Costs nothing to try

You can download all Perforce software and documentation for free, without
having to talk to a sales rep or even fill out a form on the Web. The software you
download is fully functional; it’s the vendor’s intent that you try Perforce and
really see whether it meets your needs before you commit to buying it. If you
want to test-drive Perforce in an environment with more than two users, Per-
force Software will give you a limited-term license for as many users as you need.
So instead of spending time in meetings arguing with everyone else about
whether Perforce will meet your needs, you and your colleagues can spend time
actually trying it out.

Easy budget planning

It’s easy to plan a budget for Perforce. How many developers will you have?
That’s what you’ll be paying for. Perforce is priced per user, regardless of what
they’re doing and the environments in which they’re working.

All-inclusive pricing

Once you’ve paid for Perforce, you can download and run as many server pro-
grams as you need, on as many operating systems as you have, as long as you
don’t exceed the number of users you’ve paid for. You can run your servers any-
where in the world, and any of your users can use any of your servers (if you
allow them to). The price you pay includes all of the Perforce client programs,
plug-ins, and tools.

Free to students, hermits, and saints

In fact, if you’re going to use Perforce for educational purposes—you’re teach-
ing a programming class, or developing software for a school project, for exam-
ple—the vendor will provide you with a free license to cover as many users as are
involved. Just contact Perforce Software and let them know about your project.

* The Perforce web site used to boast that “if the client program doesn’t run on your platform, we’ll port it
there.” Paradoxically, while compatibility with exotic, leading-edge platforms gave Perforce a foot up in the
SCM market, the market itself has become more homogeneous. Today, established Windows and Linux
operating systems seem to be the preferred platforms for even the newest software technology projects.

Xiv

| Preface

You need a license, by the way, only if you have more than two users accessing
your Perforce repository. That means that if you’re working on a software devel-
opment project all on your own, or with just one other person, you can use Per-
force for free, forever. And if you are one of the saints developing open source
software for no remuneration, you can get a free Perforce license to cover you
and everyone else working on your project.

About This Book

This book is written with a particular reader in mind. The reader is familiar with
SCM in general, and is most likely a programmer, a project manager, or a build engi-
neer involved with software development. This book is written especially for the
reader who wears more than one of those hats on the job and is responsible for some
or all of the interconnection between the roles they represent. If you’re pursuing bet-
ter ways to keep it all connected, and are interested in seeing how Perforce fits in,
this book is for you.

One purpose of this book is to present Perforce’s potential as a software configura-
tion management tool. This is a strictly academic purpose—you need not be a Per-
force user to gain insight from it. Anyone interested in comparative SCM will find
worthwhile material in this book.

The second purpose of this book is to help Perforce users understand why Perforce
works the way it does. Most users come to this level of understanding on their own
eventually; it is the level of understanding that prompts them to post “Aha!” mes-
sages to online Perforce discussions. This level of understanding also makes the dif-
ference between simply using Perforce to do what any SCM system can do and
exploiting Perforce to accomplish what other systems can’t. This book will get you to
that level sooner.

There are two parts to this book:

* Part I (Chapters 1-5) describes Perforce commands and concepts. It’s not a tuto-
rial, nor is it a reference—it’s more of a whirlwind technical tour. It will provide
you with a baseline knowledge about fundamental Perforce operations.

* Part I (Chapters 6-11) describes the big picture, using Perforce in a collabora-
tive software development environment. It outlines recommended best practices
and shows how to implement them with the Perforce operations you were intro-
duced to in Part L.

& %

The examples in this book are based on Perforce 2005.1, although

some features new to Release 2005.2 are covered as well.

Preface | xv

What’s Not in This Book

This book contains no tutorials, no hands-on exercises, and no getting-started
guides. Although it does contain numerous examples of basic and advanced com-
mands, this book is not meant to be a primary source of instruction for new Perforce
users. The role of this book is to complement the existing product manuals with tips
and ideas for using Perforce to its full advantage.

This book doesn’t document actual case studies. It’s almost impossible to describe
actual case studies without detail-laden examples that put a reader right to sleep. So
we’ve foresaken realism on the principle that simple, readable examples can be
extrapolated to complicated, real-world solutions more easily than simple solutions
can be inferred from painstakingly realistic examples.

This book won’t address industry standards, benchmarks, or certification models,
although it will surely be of use to practioners of such standards. Perforce’s strength
is in its versatility and accessibility. It makes a robust foundation for a compliance
process, but it does not itself enforce compliance.

This book is rather light on system administration issues. Perforce is a tool you can
use to great effect without knowing anything about installation, security, backups,
upgrades, migration, or performance. When you do need to know about these
things, you’ll find the Perforce manuals and other materials that are readily available
at the Perforce Software web site to be a rich resource.

This book doesn’t start with a chapter explaining SCM. There was a time when SCM
was arcane and indistinct, but those days are gone, and the world now abounds with
books and web sites designed to bring novices up to speed.

Additional Reading

Software configuration management, as a topic, is finally conquering measurable
shelf space in the computer section of bookstores. A number of SCM issues and chal-
lenges have been fully explored by other writers, and this book won’t retread that
ground. If you’re a complete SCM novice, you might want to take a look at some of
the introductory or complementary titles available, including;:

Real World Software Configuration Management, by Sean Kenefick (APress)
If software configuration management is in your job description, this book is for
you. It’s a no-nonsense explanation of SCM best practices with down-to-earth
advice about getting going and sticking with them.

Software Configuration Management Patterns: Effective Teamwork, Practical Integra-
tion, by Steve Berczuk with Brad Appleton (Addison Wesley)
This is a concept book that manages to be quite practical nevertheless. Its
detailed analyses of SCM problems and solutions are for the most part

xi | Preface

independent of any particular SCM system. It also offers a comprehensive com-
parison of the terminology used by contemporary SCM systems.

Configuration Management: The Missing Link in Web Engineering, by Susan Dart
(Artech)
This wide-ranging survey of risk management and return on investment includes
brief case studies of a variety of SCM systems in use.

Open Source Development with CVS, by Karl Fogel and Moshe Bar (Paraglyph)
This very readable book combines a detailed guide to using CVS with an inter-
esting discussion of its history and its application in open source projects. It’s a
good source of insight into how today’s SCM terminology and usage conven-
tions have evolved from their earliest progenitors.

Software Configuration Management Strategies and Rational ClearCase, by Brian A.
White (Addison Wesley)
With its in-depth coverage of the ClearCase view of problems and solutions, this
book presents an interesting contrast to SCM with Perforce.

The Pragmatic Programmer, by Andrew Hunt and David Thomas (Addison Wesley)
Not about SCM per se, this book touches on many software development prac-
tices that harmonize with good SCM.

Finally, while this book will teach you about Perforce, it won’t teach you about all
the Perforce commands, command forms, and command options available to you.
For that level of detail, go to the Perforce web site and check out the following prod-
uct manuals:

The Perforce Command Reference
An A-to-Z reference to P4 commands. You may wish to bookmark this manual
and refer to it to find out more about—or alternatives to—the command forms
and options shown in Practical Perforce.

The P4 User’s Guide
A detailed guide to using Perforce for working with files. This manual is geared
toward end users and uses P4 commands in its examples. Consult this manual
for in-depth information about the Perforce user environment and a variety of
typical developer tasks.

The Perforce System Administrator’s Guide
A detailed guide to setting up a Perforce Server and managing a Perforce system.
Consult this manual for in-depth information on backups, security, triggers,
scripting, job customization, review daemons, performance, and OS-specific
issues.

The online versions of these and other Perforce product manuals are available free at
http://'www.perforce.com/perforce/technical.html. You can also buy bound, hard copy
versions of the same manuals; check the web site for details.

Preface | xvii

Conventions Used in This Book

This book uses the following typographic conventions:

Constant width is used for names of commands, command fragments, and com-
mand options.

Italic is used for filenames and for characters used in the context of file identifiers.
Button labels in graphical application windows are shown in regular text, and
are often intercapped.

Menu — Item — Item represents sequential selections in graphical application
menus.

Examples that show commands as they are typed, but that do not show com-
mand output, look like this:
type this command

Examples that show commands as they are typed, and that show command out-
put as well, look like this:

type this command
and you will see
output that looks like this

Examples that show the contents of files and scripts look like this:

these are lines
that appear in
a file

Examples of Perforce spec forms look like this:

Field1 valuel
Field2 value2

In addition, the following formats are used to grab your attention and relieve the
tedium of what could otherwise be monotonous reading:

& W

Indicates a tip, suggestion, or general advice.

Indicates a warning or caution.

Xviii

| Preface

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Practical Perforce, by Laura Wingerd.
Copyright © 2006 O’Reilly Media, Inc., 0-596-10185-6.”

If you feel that your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Safari® Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
sa'arl nology book, that means the book is available online through the

YT O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed or that we have made mistakes. If so,
please notify us by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (FAX)

Preface | xix

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for this book, where you can find examples and errata (previ-
ously reported errors and corrections are available for public view there). You can
access this page at:

http:/fwww.oreilly.com/catalog/practicalperforce

Acknowledgments

Practical Perforce couldn’t have been written without the participation and encour-
agement of many people. I thank Christopher Seiwald, creator of Perforce the prod-
uct and Perforce the company, for seeing the value in this project from its outset. I
thank Kathy Baldanza for coaxing early drafts out of me and asking painful ques-
tions like “How’s that book coming?” T thank everyone who reviewed the drafts
(especially Jason Kao!) for catching so many of my dumb mistakes. I thank Jonathan
Gennick at O’Reilly for making the endgame painless. And I thank Chris Comparini
for making many hours spent sitting with a laptop a pleasant and companionable
experience.

Above all, T thank the many people—users, customers, consultants, colleagues, and
friends—who have indulged my compulsion to talk—at trade shows, at confer-
ences, at the office, and at parties—about how SCM works in general and how Per-
force pays off in particular. Their stories, their diagrams, and their sharp insights
have shaped my ideas. They are the “we” in this book, the voice that narrates the
knowledge I've tried to impart.

xx | Preface

CHAPTER 1
Files in the Depot

This chapter describes how Perforce stores files and directories in its repository, the
depot. It starts by introducing the syntax that allows you to work with depot files
and follows with examples of how to browse the depot and get information. Finally,
it touches on file properties and their effect on how Perforce handles file content
internally.

N

iy You may be happiest using a GUI (graphical user interface) for your
"‘.“ day-to-day work. This book, however, bases most of its examples on
T Qe P4, the Perforce Command-Line Client. One reason we stick with P4 is

simply that it’s easier to create and write about text examples than it is
to create and write about screenshots. So don’t take our bias toward P4
as a snub of the Perforce GUI programs. In fact, we’ll point out some
P4V features that show you at a glance what P4 would take thousands
of lines of output to tell you. On the other hand, the GUIs are some-
what limited—only P4 offers the complete lexicon of Perforce com-
mands. So, while you are encouraged to use a GUI, expect to use the
command line from time to time to do the things the GUIs don’t do.

The Perforce Filespec Syntax

Perforce is widely used partly because it is so portable, and part of that portability
comes from the platform-independent file syntax it provides. While native platform
syntax can be used to refer to workspace files, Perforce provides its own uniform syn-
tax for referring to workspace and depot contents. This syntax is known as a file
specifier, or “filespec.” A filespec can refer to a single file or a collection of files, to a
specific revision or a range of revisions, and to depot files or workspace files. More
importantly, the filespec syntax applies to all operating systems; Perforce converts
filespecs to native file references for local operations.

The depot hierarchy

Depots, where Perforce keeps master file content, and workspaces, where users work
on files, are hierarchical structures of directories and files. A filespec uses “//” to indi-
cate the root of the hierarchy, and “/” as a directory path and filename separator. For
example:

//depot/projectA/doc/index.html

Although we often refer to an entire repository as “the depot,” there can be multiple
depots in a Perforce repository. The filespec root identifies the name of the depot.
The filespec //depot/projectAl/doc/index.html refers to a depot named “depot” (see
Figure 1-1).

=2/
= & depat
= prajects,
= doc

% index himl

Figure 1-1. Filespecs and the depot hierarchy

A filespec can express a relative path as well as an absolute path. An unrooted
filespec is a relative reference to the current directory (if you're using a command
shell) or the current folder (if you’re using a GUI). Depending on the context, doc/
index.html or even just index.html could indicate the same file. In the Chapter 2 sec-
tion “Local Syntax, Wildcard Expansion, and Special Characters,” you’ll find out
how to use relative references to files and directories.

Wildcards and file collections

When filespecs contain wildcards, they define entire collections of files instead of
single files. For example, the “*” wildcard matches characters in filenames at a direc-
tory level. Depending on what files are actually present, a filespec like projectA/d*/*.
html, for example, can define a collection of files like:

projectA/dev/index.html

projectA/doc/diagnostics.html

projectA/doc/index.html
The “...” wildcard (pronounced “dot-dot-dot”) matches filename characters at or
below a directory level. A filespec that ends in /..., in other words, is a succinct refer-
ence to the complete collection of files in a directory hierarchy. For example,
projectA/... refers to the files in the projectA directory. Depending on what’s in the
directory, the filespec projectA/... might represent the following files:

2 | Chapter1: Filesinthe Depot

projectA/bin/win32/app.exe
projectA/bin/win32/app.dll
projectA/dev/index.html
projectA/dev/main.cpp
projectA/doc/app/index.html
projectA/doc/app/reference.html
projectA/doc/diagnostics.html
projectA/doc/index.html

Views and mappings

A filespec is a special case of the Perforce construct called a view. The Perforce data-
base stores views for a variety of uses, including access permissions, labels, branch-
ing, triggers, and change reviews. The scope of every Perforce operation is
constrained by the views that affect it.

Some of the views involved—filespec views, or workspace views, for example—are
evident to users. Some views, however, like those that define access permissions, are
not. For example, consider the P4 command that shows the history of changes to
HTML files in the //depot path:

p4 changes //depot/.../*.html

Change 1386 on 2005/06/10 ... 'New page for promo...'
Change 1375 on 2005/06/05 ... 'Fix links on sign-up...'
Change 1369 on 2005/05/29 ... 'Add press releases...'

This command is affected by two views. The first is the filespec you see on the com-
mand line. The second is a view you don’t see: the set of depot files you have permis-
sion to access. If, for instance, the access permission view is

//depot/projectA/...

//depot/projectB/...
the net effect is that you will see the history of the files in the intersection of the two
views. In other words, you will see the history of the set of files defined by this view:

//depot/projectA/.../*.html

//depot/projectB/.../*.html
Views are also used to map files to each other. Client workspace views, for example,
map depot files to workspace files, as you’ll see in Chapter 2. In Chapter 4 you’ll see
how view mapping comes into play to relate branches to one another.

File and directory revisions

Perforce stores file versions in a sequence of numbered revisions. Figure 1-2 illus-
trates the revisions of //depot/projectA/doc/index.html. A filespec can refer to an abso-
lute, numbered file revision, prefixed with “#”. For example, index.html#10 is the
tenth revision of index.html.

The Perforce FilespecSyntax | 3

o
i

/fdepot/projectd/doc/indes. hitml

ol L% B U T A ey B Y I o R]

Figure 1-2. Revisions of a single file

Filespecs can also refer to dates and labels, prefixed with @. For example, index.
html@2004/11/21 is the revision of index.html as of November 21, 2004.

You can refer to directories by date as well. The filespec //depot/projectA/...@2004/
11/21 refers to the collection of files that made up the //depot/projectA directory as of
November 21, 2004.

Two kinds of revision specifiers can be used in Perforce. One kind is the absolute
revision. For instance, in this filespec

doc/index.html#t14
the #14 is a an absolute revision. It refers to the fourteenth revision of the file named

doc/index.html.

Absolute revisions can’t be used with directories. (A filespec like doc/...#14 refers to
the fourteenth revision of each and every file in the doc directory, not to the four-
teenth revision of the directory.) However, you can use any of the symbolic revisions
with both files and directories. For example, #head is a symbolic revision that refers
to the newest, most up-to-date revision of a file or directory. For example:

doc/...t#head

Perforce’s reserved-word symbolic revisions are delimited by the character “#”.
Other symbolic revisions are delimited by “@.” Dates, as you saw previously, are an
example of the latter:

doc/...@2004/01/04

Labels can also be used as symbolic revisions. (You’ll see how to create labels in
Chapter 5.) A label can be used to refer to file revisions to which it has been applied:

doc/...@Good2Go

4 | Chapter1: Filesin the Depot

There are also symbolic revisions you can use to refer to files in a workspace, as
you’ll see in Chapter 2.

Dates, Times, and Perforce

In a filespec, the date 2004/11/21 is actually shorthand for 2004/11/21:00:00:00. Say-
ing index.html@2004/11/21 refers to the revision of index.html as of November 21 is
slightly misleading. It refers to the latest revision of the file as of the commencement of
November 21, 2004.

Dates and times in Perforce are always relative to the Perforce Server. The revision
2004/11/21:12:00:00, for example, specifies 12 noon on 21 November 2004 in the
server’s time zone. (See Appendix A.)

Changes and changelists

Perforce uses changelists to track changes submitted to the depot. Changelists are
numbered; when a changelist number is used as a symbolic revision, it refers to revi-
sions that were newest at the moment the change occured. For example,

doc/...@3405

refers to the head revisions of the doc directory files at the moment changelist 3405
was submitted.

You’ll notice in the preceding examples that the rightmost element of the filespec—
exclusive of the revision specifier—is a filename, or a wildcard that matches a set of
filenames. Perforce’s filespecs always refer to files, not directories. In fact, there are
no Perforce commands that operate on directories. This is not to say you can’t orga-
nize your files into directories, or restore older versions of directories, or get the his-
tory of a directory. After all, when a Perforce command operates on the collection of
files in a directory, it is in fact updating a directory. But in Perforce you don’t explic-
itly create or version directories; it just happens automatically.”

In Perforce, a directory’s revision (and its very existence, in fact) is construed from
the file revisions it contains. You saw how file revisions can be identified by dates
and changelists as well as by absolute revision numbers. Actually, you can refer to
any file in the depot with any changelist number. Changelists represent points in
time at which users submitted files. If you plot file changes over time, left to right,
you’ll see that changelist numbers slice file collections vertically—every changelist
number is associated with a unique state of the collection.

* Yes, this is a bit of a challenge to the Perforce plug-ins. They bend over backward to support applications
that think repository directories have to be created before new files can be added.

The Perforce FilespecSyntax | 5

Consider the collection of files shown in Figure 1-3, for example. Here we see that in
changelist @100, foo.c was added, creating foo.c#1. In changelist @114, foo.c was
updated, creating @foo.c#2, and bar.c was deleted, creating bar.c#2 (a deleted revi-
sion). ola.c, which was created in changelist @105, was unaffected by changelist
@114. Therefore, revision @114 refers to this collection of files:

foo.c#2
bar.c#2
ola.c#1
¢ & & & & &9 &
«\%Q «\%Q &\wQ & P& » Q@%
\w \o,\’° ,Q\"o \\@ ﬁ)@ \@ \°§ 039 \@
#1 # #3 #4
foo.c O O O O >
#1 #2
bar.c O—® """""""""""""""""" >
#1 #2 #3 #4 #5
e i O—— OO0 O—0O—»
S A A S S

Figure 1-3. A collection of files changing over time

Note that labeling the time axis in a diagram like this with both dates and changelist
numbers is redundant. Because changelists can’t overlap—each marks a unique
point in time—the sequence of Perforce changelists is a representation of time. It
often makes just as much sense (and less clutter) to chart file evolution along the
changelist axis, as we see in Figure 1-4.

The sequence of changelists associated with file revisions in a collection is, in fact, a
history of the collection. And when a collection is a directory, the sequence of
changelists associated with it is the history of the directory. If the projectA directory
contains only the files shown in Figure 1-3, for example, collapsing the diagram into
a single timeline would show the history of projectA. We see this in Figure 1-5.

In the next section you’ll see how to list and compare directory revisions. Later chap-
ters will show how directory revisions can be used for populating workspaces and in
branching and merging operations.

6 | Chapter1: Filesinthe Depot

SR O T A
#1 # #3 #4
foo.c O O O O >
#1)
bar.c O—® ____________________ »

#1 #2 #3 #4

#5
ola.c O O_O_O O >

Figure 1-4. The changelist axis

R
'\@‘\

S & @
™ & e

Q

projecth... :O:O:O:O:O:O:O:O:O:’

Figure 1-5. The history of a directory

R
S N

Browsing Depot Files

You can do extensive browsing in a Perforce depot without having to set up a work-
space of your own. In fact, there is very little reason to reproduce depot files locally
just to see their contents. You can explore the depot hierarchy, peruse file history,
read change descriptions, examine file content, and compare depot files, without
going to the trouble of setting up a workspace.

A %

iy Many of the examples that follow are from the Perforce Public Depot.
.‘s‘ You, too, can browse the Public Depot by connecting to public.
T W perforce.com:1666 (see Appendix A). However, some of the outputs

shown here have been somewhat abridged to shorten line lengths and
reduce clutter. If you connect to the Public Depot and try these com-
mands for yourself, you’ll get more verbose results.

Browsing DepotFiles | 7

Navigating the file tree

The depot is a file tree, and the easiest way to navigate it is with a GUIL. With P4V,
for example, all you have to do is point and click to step down the tree and expand
its subdirectories (or folders, as they’re called in P4V). A P4V depot tree is shown in
Figure 1-6.

%E Depot Tree B,
E‘ [no workspace selected) j
SE= 1)

ﬁ guest

=38 public
e jam
E!-ﬁperforce
+1 [revm

3 indes html #0447 <kbest>

o 0 tutorial il #0415 <hestekas

4] | ol

%E Depot % workspace

Figure 1-6. Navigating the depot tree in P4V

However, you can also navigate from the command line, using P4. To list the top-
most levels of the tree, for example, use this dirs command:

p4 dirs "//*"

//guest

//public
Notice that the dirs argument is quoted—that’s so the command shell won’t expand
the asterisk before passing it to the p4 command.

Another way to show the top level of the depot hierarchy is with the depots
command:

p4 depots
Depot guest 'Depot for guest users. '
Depot public 'Perforce's open source depot.

Listing directories

The dirs command can be used at any level of the depot tree to list the subdirecto-
ries at that level. For example:

p4 dirs "//public/*"
//public/jam
//public/perforce
//public/revml

8 | Chapter1: Filesinthe Depot

Listing directory history

The changes command shows the history of a directory, listing the most recent
changes first:

p4 changes -m5 //public/revml/...
Change 4971 on 2005/05/21 ... '- Added test to make sure big r'

Change 4970 on 2005/05/21 ... '- Allow sdbm files to handle la'
Change 4969 on 2005/05/21 ... '- Added a special command line '
Change 4968 on 2005/05/21 ... '- Use module name instead of lo'
Change 4967 on 2005/05/21 ... '- Removed "-d", leaving only "-'

(The -ms flag restricts the output to the five most recent changes. Each change is
identified with a changelist number and the first 30-odd characters of a description.
If you want to see entire descriptions, use changes -1.)

In P4V you can use Folder History to see the history of a directory, as Figure 1-7
shows.

[fpublic el v @,
‘ (@ Folder History |
Revision Date Submitted = Subrmitted By Drescription A

| | 4971 2005/05/2111:5218 banie_slaymaker - Added test to make sure big_recards db file will handle large keys.
(24970 2005/05/21 11:45:00 banie_slaymaker - Allows sdbm files to handle large keps, o |
(Z4963 2005/05/21 11:44:42 banie_slaymaker - Added a special command line macro "'default_filkers:" added ta allaw ...
[Z 4968 2005/05/21 06:37:37 banie_slaymaker - Uze maodule name instead of location in memom to create unigue db files,
(#4967 2005/05/21 05:56:25 banie_slaymaker - Removed "-d", leaving only '--debug" so that "-d" is properly passedt...

Figure 1-7. Using P4V to browse the history of a directory

What's in a changelist?

In addition to marking points in time, changelists also record the files that were
changed and the user who changed them. You can show the details of a changelist
with the describe command:

p4 describe -s 4417
Change 4417 by barrie on 2004/08/19 20:11:50
- Adapt to "estimated values" messages
- Adapt to more accurate test suite
Affected files ...
... //public/revml/bin/gentrevml#56 edit
.. //public/revml/1ib/VCP/TestUtils.pm#65 edit
.. //public/revml/t/91cvs2revml.t#16 edit
.. //public/revml/t/91vss2revml.t#7 edit
. //public/revml/t/95cvs2p4.t#30 edit

(The -s flag suppresses diff output. If you use describe without it, you’ll get a diff of
every file in the changelist!)

Browsing DepotFiles | 9

Listing files and file information

You can list the files in a directory with the files command:

p4 files "//public/revml/*"
//public/revml/CHANGES#81 - edit change 3640 (text)
//public/revml/MANIFEST#45 - edit change 4234 (text)
//public/revml/ui.png#1 - add change 3671 (binary)
//public/revml/ui.ps#1 - add change 3671 (text)

Each line of output gives a bit of information about the file revision shown. For
example, //public/revml/CHANGES#81 is a text file, last edited in change 3640.

>

You can list files in subdirectories recursively, using “...” with the files command:

p4 files //public/revml/...

//public/revml/CHANGES#81 - edit change 3640 (text)
//public/revml/MANIFEST#45 - edit change 4234 (text)
//public/revml/bin/analyze_profile#2 - edit change 2679 (xtext)
//public/revml/bin/compile dtd#1 - add change 2454 (xtext)
//public/revml/dist/vcp.exe#10 - edit change 4233 (xbinary)
//public/revml/dist/vcp.pl#4 - add change 4235 (xtext)

(Note that the dirs command, by contrast, has no recursive form.)

Finding files

As you can see, the files command has the potential to yield thousands of lines of
output. If you’re looking for a particular file, you can use wildcards to pare down the
results. For example, here we’re looking for files named index. html:

p4 files "//public/revml/.../index.html"

//public/revml/docs/html/index.html#2 - edit change 2307 (text)

//public/revml/product/release/0.90/html/index.html#1 - add change 4344 (text)
//public/revml/product/release/1.0.0/html/index.html#1 - add change 4311 (text)

Perusing file history and file origins

You can use either changes or filelog to see a file’s history. The output of changes is
the same for a file as for a directory:

p4 changes //public/revml/dist/vcp.pl

Change 4235 on 2004/03/18 by barrie '- experimental dist/vcp.pl'
Change 4023 on 2003/12/11 by barrie '- Remove outdated "fat"'
Change 1859 on 2002/05/24 by barrie 'fat script version '

Change 1738 on 2002/04/30 by barrie 'Add "fat" script '

The filelog output, by comparison, shows file revision numbers and the action (add,
delete, and so on) that took place at each revision:

p4 filelog //public/revml/dist/vcp.pl

//public/revml/dist/vcp.pl

... #4 change 4235 add "experimental dist/vcp.pl’
. #3 change 4023 delete 'Remove outdated "fat" '

10 | Chapter1: Filesin the Depot

. #2 change 1859 edit 'fat script version

. #1 change 1738 add 'Add "fat" script '
(You’ll also see date, user, and file type information in filelog output. They’ve been
removed here to make lines fit on the page.)

Normally changes and filelog limit their scope to the file you specify. However, files
that have been renamed, cloned, or branched from other files inherit the history of
their ancestors. You can use the -i flag with changes and filelog to show inherited"
history:

p4 filelog -i //public/revml/1ib/VCP/Dest/texttable.pm
//publlc/revml/llb/VCP/Dest/texttable pm

.. #5 change 4506 edit - testtable handled undef field'

... #4 change 4496 edit '- minor POD cleanups to prevent'
... #3 change 4488 edit '- BFD and Text::Table no longer'
. #2 change 4037 edit '- VCP::Dest::texttable function'

...... branch into //guest/timothee besset/1ib/VCP/Dest/texttable.pmi1
. #1 change 4036 branch '- VCP::Dest::texttable created.’

...... branch from //public/revml/1ib/VCP/Dest/csv.pmii,#4
//public/revml/1ib/VCP/Dest/csv.pm
. #4 change 4021 edit '- Remove all phashes and all ba'

...... branch into //guest/timothee besset/1ib/VCP/Dest/csv.pmi#i
...... branch into //public/revml/1ib/VCP/Dest/texttable.pmi1

. #3 change 4012 edit '- Remove dependance on pseudoha’
. #2 change 3946 edit '- VCP::Source::vss now parses h'
. #1 change 3828 add '~ VCP::Dest::csv dumps rev meta’

P4V’s Revision Graph gives you a bird’s-eye view of a file’s inherited history, as you
can see in Figure 1-8.

.a'f;guestf'timuthee_besset!libNEF‘f’Destt’csv.pm

Gl /&

ApublicdrevmlAib I:F'.-’Desta"cw pm

Mlouest/timothee_beszet/lib Y CP/Dest/terttable. pm

Figure 1-8. A bird’s-eye view of inherited file history

W »

* It’s only coincidence that -1 is the flag that makes changes and filelog show inherited history. The “i” really
stands for “integration”; you’ll see why later in the book.

Browsing Depot Files | 11

Perusing file content

P4V offers a nice content browsing tool for files. If you select a text file in P4V and
click Time-1lapse Vview you’ll see the file’s current content, along with a sliding control
that changes the display to its content at any previous point in time. Other controls
can be used to highlight the age of lines in the file, users who changed the lines, and
the diffs for each revision. The black-and-white screenshot you see in Figure 1-9
doesn’t begin to do justice to the usefulness of this tool.

B] Time-lapse Yiew - //public/revml/revml.dtd (public.perforce.com:166

|| Mode:[Single revision =] [Cantent tange: [3/14/2004 2| to [3/14/2004 5

Least Recent kozt Recent

12/3/2000 barie_slayrmaker | < IELEMENT rew
L

name,
2/19/2003 john_fetkovich SOuUrCe_hane.

source filebranch id.
242842003 john_fetkovich source_repo id,
9/12/2004 barrie_slaymaker ‘action,
321/2003 bame_slapmaker type?,
124342000 barieslayrmaker {cws info|pd_infol:

Figure 1-9. P4V’s Time-lapse View

P4V’s Time-lapse View is generated from the output of the annotate command,
among others. You can get annotated file content in text form as well. For example,
to see each line of a file annotated with a changelist number, you would use:

p4 annotate -c //public/revml/revml.dtd | more
//public/revml/revml.dtd#19 - edit change 4514 (text)

467: <!ELEMENT rev

467: (

467: name,

2743: source_name,

2743: source_filebranch_id,
2802: source_repo_id,

To see plain, unadulterated file content, use the print command:

p4 print //public/revml/revml.dtd | more
//public/revml/revml.dtd#19 - edit change 4514 (text)

<!ELEMENT rev
name,
source_name,
source filebranch id,
source_repo id,

12 | Chapter1: Filesin the Depot

Saving informal copies of files

The print command is also useful for saving informal copies of files. Simply redirect
its output to a local file:

p4 print -q //public/revml/revml.dtd > revml.dtd

(The -q option suppresses the one-line header that print normally outputs.)

Comparing depot files

To compare any two depot files, use the diff2 command. For example:

p4 diff2 //public/jam/README //guest/dick_dunbar/jam/README
==== //public/jam/README#2 (text) -
//guest/dick_dunbar/jam/README#1 (text) ==== identical

(This output has been edited to fit on the page.)
The same command can be used to compare any two revisions of a depot file:

p4 diff2 //public/revml/README#2 //public/revml/README#3
==== //public/revml/README#2 (text) -

//public/revml/README#3 (text) ==== content
45,47c45,46
< make

< make test
< make install

> $ perl -MCPAN -eshell
> cpan> install VCP

In P4V the Tools — Diff files command can be used to diff any two files or revisions.
Figure 1-10 shows an example of a graphical diff in P4V.

3 diffs (Recognize line ending and white space differences) [Tab spacing: & [Encoding: System

//public/revml/README 2 //public/revml/README £3 ;I

INSTALLATION INSTALLATION
Unconpress and untar the source d e

the standard Perl module distribu peEptheRl LA en it dEtalls:J

doing a
make

make test
make install

§ perl -HCPAN -eshell
cpan> install UCP

This convinces CPAN to do all

You should then have a UGP tree a
required modules for you.

Jusr/flocal/lib/perl5/site_perl/uy
in a bin directory somewhere {exa

Figure 1-10. Graphical diff in P4V

Browsing Depot Files | 13

Comparing depot directories

You can also compare any two directories in the depot. For example, to compare //
public/revml to //guest/timothee_besset:

p4 diff2 -q //public/revml/... //guest/timothee_besset/...
==== ... bin/gentrevml#56 - ... bin/gentrevml#1 ==== content
==== ... lib/VCP.pm#19 - ... 1lib/VCP.pmi#1 ==== content

== <none> - lib/VCP/Dest/ab.pm#1 ====

This shows us that there’s a revision of bin/gentrevml in both directories, but their
contents do not match. Same with lib/VCP.pm. And the lib/VCP/Dest/ab.pm file
appears in the //guest/timothee_besset directory but not the //public/revml directory.
(The -q flag is used on the diff2 command to suppress line-by-line text diffs. Note
that the output shown here has been drastically edited to fit the page.)

The same command can be used to compare any two revisions of a directory. For
example:

p4 diff2 -q //public/revml/...@3660 //public/revml/...@4498
==== .../dist/packages.mball#1 - <none> ====

====<none> - .../dist/vcp-rh8#4 ====
==== <none> - .../dist/vcp.exe#10 ====
==== .../dist/vcp.pl#2 - .../dist/vcp.pli#4 ==== content

This shows us that between revisions @3660 and @4498 of the //public/revml direc-
tory, the dist/packages.mball file has been deleted, dist/vcp-rh8 and dist/vcp.exe have
been added, and dist/vcp.pl has been modified.

P4V gives you the same directory comparisons in a much nicer display, as you can
see in Figure 1-11. You can use Tools — Diff files to launch it, or just select Folder
History on a folder and drag one folder revision to another.

] Folder Diff - //public/revml/.....@3660 @4498 (public.perforce.co 5, guest s [=] 5]
|| pitocizs 1 o [;J {1 Unique fles: 143 [] Fie differences: 106 H

Folder: //public/revml/, Urigue files: 13 Folder: //public/revml/, Urigue files: 130
Date: 1/2003 8:41:20 AM | Changelist. 'BE0 Date: 2004 11:18:18.AM Changelist. 445
- bin
La analyze_piclilef2 B analyze_piolilet2 | |
i E build_vcp_executable. pl 5 B build_vcp_executable.plft1l
ﬁ compile_didil E compile_didil
i B dump_filesH1 L B dump_filesH3
B dump_head_revs7 ﬁ dump_head_revs#7
| durp_main_branch_id#t2 | durmp_main_branch_id#t2
| durmp_rev_maptt? |l durmp_rev_maph?
| gertrevmitds | gerhelpd
| hewdurp. plit2 genhtrlt!
|} vepH57 | gertevmiHEE
- dist) hexdump. plti2
- docs test_vep executable.pl3 =

B

Figure 1-11. Comparing directory revisions in P4V

14 | Chapter1: Filesin the Depot

