

Praise for ActionScript for Flash MX: The Definitive Guide

“Like its predecessor, ActionScript for Flash MX: The Definitive Guide, Second Edition
(ASDG2) is the must-have book for ActionScript developers. Moock has delivered a
comprehensive revision that not only details the myriad new features in Flash MX but
explains the underlying shifts in methodology (especially with components and events) in a
clear and accessible manner.”

— Robert Penner, Author of Robert Penner’s Programming Macromedia
Flash MX

“I love this book. It’s an approachable, yet incredibly in-depth exploration of ActionScript.
If you’re working with Flash MX—designer or programmer—this is a must have.”

— Hillman Curtis, Founder of hillmancurtis, Inc.
(http://www.hillmancurtis.com), Author of Flash Web Design and
MTIV: Process, Inspiration and Practice for the New Media Designer

“You can’t talk about this book without resorting to superlatives. Moock’s ASDG2 is the
most essential book on Flash programming you can buy. An exhaustive and indispensable
reference, it pays equal attention to standard cases, best practices, and hidden gotchas.
There is no ActionScripter who can’t learn more about the language through reading it.”

— Nigel Pegg, Component Engineer, Macromedia (Developer of the
Flash UI Components)

“As a developer, instructor, and fellow author, I can’t praise ASDG2 enough. This book is
simply indispensable for anyone working with Macromedia Flash. Colin has an incredible
mastery of ActionScript and is able to convey his knowledge in a clear, concise, and often
witty manner.”

— Branden J. Hall, Flashcoders List Founder/Admin, Author of Object-
Oriented Programming with ActionScript

“Colin has once again created a must-have reference for Flash developers. The in-depth
coverage of Flash MX ActionScript makes this the most comprehensive resource and refer-
ence available. ASDG2 will once again be my reference of choice.”

— Dave Yang, CEO and Developer, Quantumwave Interactive Inc.

“When the first edition of this book came out, it included information that simply did not
exist anywhere else. This is twice as true for the second edition, which now deals with the
ever more complex Flash MX. Once again, Moock and O’Reilly have produced the best-
written, most organized, and meticulously proofed resource for Flash MX developers of all
levels. Whether you are a designer, programmer, or artist, this book is invaluable to your
development and expression with Flash MX.”

— Amit Pitaru, Artist and Technologist (http://www.pitaru.com,
http://www.insertsilence.com), Pratt Institute & NYU
(http://itp.nyu.edu) Instructor, contributor to New Masters of Flash:
The 2002 Annual

“This book is the ‘End All’ ActionScript resource by the man who quite frankly started it all.”

— Todd Purgason, Creative Director and Co-founder of Juxt Interactive
(http://www.juxtinteractive.com), Author of Flash Deconstruction

“ASDG2 is unquestionably the essential book for ActionScript programming in Flash MX.
It has proven invaluable even for the engineers on the Macromedia Flash team, who see it
as complementary to our own product documentation. Moock’s meticulous attention to
detail, evident throughout this fine volume, combined with his easygoing instructional
style, ensure the book will be appreciated by newcomers and experts alike.”

— Gary Grossman, Creator of ActionScript, Macromedia

“ASDG2 is a brilliantly concise and direct resource. It is broad and thorough, leaving prac-
tically no stone in Flash unturned. It is the only Flash book that I own, and there are many
times that I would have been left tearing out my hair without it. Something about the way
that Colin structures information and ideas makes even the most gruesomely technical
regions of Flash seem natural to me.”

— James Patterson, Artist (http://www.presstube.com), contributor to
New Masters of Flash

“ASDG2 is the only place to go to learn how to take advantage of everything Flash MX can
actually do. Even Macromedia doesn’t go into the detail that Colin Moock does. Whether
you are taking a week to learn ActionScript or have an hour to work around a problem,
ASDG2 is the only reference that will get you through it. Best of all, Moock is a wonderful
writer, and he’s excited! Never has a book on programming been so enjoyable to read.”

— Josh Ulm, Founder of ioResearch Studios (http://www.ioresearch.com)
and The Remedi Project (http://www.theremediproject.com)

“Moock’s book is the one that never leaves the desktop. Whether you need answers in the
middle of a tight project deadline or are looking to deepen your coding knowledge, it’s the
invaluable guide to the ins and outs of ActionScript.”

— Glenn Thomas, Director and Founder, Smashing Ideas, Inc.
(http://www.smashingideas.com), Author, Flash Studio Secrets,
Co-author of Flash Enabled

“ASDG2 is quite simply the most precise, well constructed book on Flash programming in
print. Colin Moock obviously has a passion for getting it right.”

— Jared Tarbell, Computational Artisan, (http://www.levitated.net),
contributor to Flash Math Creativity and Fresh Flash

“While there’s a vast array of Flash books on the market (including my own!), time and
time again, I recommend only one book: Colin Moock’s ASDG2. Whether on its own or as
a companion to any other Flash book you might buy, Colin’s book provides a definitive
holy grail of new concepts for Flash professionals around the world, and helps us keep our
syntax correct!”

— Joshua Davis, Artist and Technologist (http://www.praystation.com),
Author of Flash to the Core

ActionScript for Flash MX
The Definitive Guide

ActionScript for Flash MX
The Definitive Guide

SECOND EDITION

Colin Moock

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

ActionScript for Flash MX: The Definitive Guide, Second Edition
by Colin Moock

Copyright © 2003, 2001 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information, con-
tact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Bruce Epstein

Production Editor: Brian Sawyer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

May 2001: First Edition. Originally published under the title ActionScript:
The Definitive Guide.

December 2002: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. ActionScript for Flash MX, Second Edition, the image of a siren,
and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00396-X

[M] [5/06]

vii

Table of Contents

Foreword . xiii

Preface . xvii

Part I. ActionScript Fundamentals

1. A Gentle Introduction for Nonprogrammers . 3
Some Basic Phrases 5
Further ActionScript Concepts 13
Building a Multiple-Choice Quiz 22

2. Variables . 38
Creating Variables (Declaration) 38
Assigning Values to Variables 42
Changing and Retrieving Variable Values 44
Types of Values 45
Variable Scope 47
Loading External Variables 59
Some Applied Examples 60

3. Data and Datatypes . 63
Data Versus Information 63
Retaining Meaning with Datatypes 63
Creating and Categorizing Data 64
Datatype Conversion 67
Primitive Data Versus Composite Data 73
Copying, Comparing, and Passing Data 74

viii | Table of Contents

4. Primitive Datatypes . 78
The Number Type 78
Integers and Floating-Point Numbers 78
Numeric Literals 78
Working with Numbers 82
The String Type 83
Working with Strings 88
The Boolean Type 106
Undefined 107
Null 109

5. Operators . 111
General Features of Operators 111
The Assignment Operator 115
Arithmetic Operators 116
The Equality and Inequality Operators 121
The Strict Equality and Inequality Operators 125
The Comparison Operators 127
The Flash 4 String Operators 130
The Logical Operators 131
The Grouping Operator 136
The Comma Operator 137
The void Operator 137
Other Operators 138

6. Statements . 144
Types of Statements 144
Statement Syntax 145
The ActionScript Statements 147
Statements Versus Actions 154

7. Conditionals . 155
The if Statement 156
The else Statement 157
The else if Statement 159
The switch Statement 160
Compact Conditional Syntax 162

Table of Contents | ix

8. Loop Statements . 164
The while Loop 164
Loop Terminology 167
The do-while Loop 168
The for Loop 169
The for-in Loop 170
Stopping a Loop Prematurely 172
Timeline and Clip Event Loops 175
An Alternative to Timeline Loops:setInterval() 180

9. Functions . 182
Creating Functions 183
Running Functions 183
Passing Information to Functions 184
Exiting and Returning Values from Functions 189
Function Literals 191
Function Availability and Life Span 192
Function Scope 194
Function Parameters Revisited 199
Recursive Functions 203
Nested Functions 205
Built-in Functions 208
Functions as Objects 209
Centralizing Code 212
The Multiple-Choice Quiz Revisited 213

10. Events and Event Handling . 220
Synchronous Code Execution 220
Event-Based Asynchronous Code Execution 220
Types of Events 221
Event Handling 222
Event Handler Properties 222
Listener Events 225
Flash 5’s on() and onClipEvent() Handlers 228
Event Handler Lifespan 231
Event Handler Scope 231
Values of the this Keyword 237

x | Table of Contents

Flash 5–style onClipEvent() Order of Execution 237
Copying Movie Clip Event Handlers 239
Refreshing the Screen with updateAfterEvent() 240
Code Reusability 242
Dynamic Movie Clip Event Handlers 242
Event Handlers Applied 243

11. Arrays . 246
What Is an Array? 246
The Anatomy of an Array 247
Creating Arrays 248
Referencing Array Elements 251
Determining the Size of an Array 252
Named Array Elements 254
Adding Elements to an Array 256
Removing Elements from an Array 261
General Array-Manipulation Tools 264
Arrays as Objects 269
Multidimensional Arrays 270
The Multiple-Choice Quiz, Take 3 271

12. Objects and Classes . 274
The Anatomy of an Object 277
Instantiating Objects 278
Object Properties 279
Object Methods 281
Classes and Object-Oriented Programming 281
Using Standalone Object Instances as Associative Arrays 300
The Almighty Prototype Chain 302
Built-in ActionScript Classes and Objects 313
OOP Quick Reference 315
Further Topics 320
Simulating Namespaces 321
The Multiple-Choice Quiz, OOP Style 322

13. Movie Clips . 326
The “Objectness” of Movie Clips 326
Types of Movie Clips 328
Creating Movie Clips 331

Table of Contents | xi

Movie and Instance Stacking Order 340
Referring to Instances and Main Movies 346
Method Versus Global Function Overlap Issues 360
Drawing in a Movie Clip at Runtime 362
Using Movie Clips as Buttons 364
Input Focus and Movie Clips 366
Building a Clock with Clips 368

14. Movie Clip Subclasses and Components . 373
Creating the Library Symbol 376
Creating and Invoking the Subclass Constructor 377
Assigning the MovieClip Superclass 379
Packaging Subclass Code and Library Symbols Together 380
Making Movie Clip Components 381
MovieClip Sub-Subclasses 387
Summary 389

15. Lexical Structure . 392
Whitespace 392
Statement Terminators (Semicolons) 393
Comments 395
Reserved Words 396
Identifiers 397
Case Sensitivity 398

16. ActionScript Authoring Environment . 400
The Actions Panel 400
Adding Scripts to Frames 402
Adding Scripts to Buttons 404
Adding Scripts to Movie Clips 405
Where’s All the Code? 406
Productivity 407
Externalizing ActionScript Code 407
Defining Components 409

17. Building a Flash Form . 418
The Flash Form Data Cycle 418
Creating a Flash Fill-in Form 421

xii | Table of Contents

Part II. Language Reference

ActionScript Language Reference . 433
Global Functions 434
Global Properties 434
Built-in Classes and Objects 435
Entry Headings 436
Alphabetical Language Reference 437

Part III. Appendixes

A. Resources . 965

B. Latin 1 Character Repertoire and Keycodes . 971

C. Backward Compatibility and Player Build Updates . 978

D. Differences from ECMA-262 and JavaScript . 989

E. HTML Support in Text Fields . 992

F. Support for GET and POST . 1002

G. Flash UI Component Summary . 1004

H. Embedding a Flash Movie in a Web Page . 1013

Index . 1019

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiii

Foreword

A scant eighteen months have passed since I penned the Foreword for the first edi-
tion of ActionScript: The Definitive Guide. Since that time, the first edition has estab-
lished itself as the essential guide to ActionScript programming. It’s become so
indispensable to so many developers that it seems as if it has existed for a much
longer time.

Flash MX, which shipped in March 2002, was the most ambitious release of Flash to
date. The team of talented individuals that contributed to its creation was larger than
ever, and we delivered over 100 major new features. ActionScript was a key focus,
which required a change in the way it was developed. Prior to Flash MX, Action-
Script was developed by a handful of individuals, including myself. In MX, our ambi-
tious ActionScript agenda required many engineers. With the additional resources,
we were able to deliver a vastly improved script editor and debugger, optimize per-
formance, and add a plethora of new APIs providing new capabilities for Action-
Script programmers.

There is a great deal of excitement about Flash at Macromedia today. While the pub-
lic may think of Flash as simply an animation tool, the Flash developer community is
beginning to recognize that Flash is something broader. With Flash MX, web devel-
opers now have the means to deliver rich, interactive user experiences over the
Web—not only the traditional uses of Flash, such as cartoons and motion graphics,
but also sophisticated web applications.

Flash always has been, and seems destined to remain, the best way to give your web
site some pizzazz, but serious web application developers are straining against the
limitations of HTML. They are searching for a new platform that offers more attrac-
tive, engaging, and usable experiences to their users—a rich client—and they are
finding Flash to be an ideal delivery vehicle. Flash’s cross-platform consistency and
ubiquitous distribution base offer a runtime technology upon which developers can
build a new breed of web applications that are more interesting and nimble than
those that existed previously. I’d wager that you’ll be seeing a broad spectrum of new
uses for Flash, from multiplayer games to e-commerce to data visualization. And

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Foreword

Macromedia is committed to ensuring that Flash keeps up with the new demands
placed on it by application developers. ActionScript plays an important role in this
new vision for Flash MX. Because the usefulness of the Flash platform depends on
the power of its scripting language, we set out to make ActionScript powerful
enough to satisfy even the most ambitious web developer.

This initiative to make Flash a true application platform posed special challenges for
developing Flash MX. Flash is, in a sense, a product being pulled in many directions
at once, as it addresses the needs of many different customers, from character anima-
tion to motion graphics to the growing field of rich application development. Script-
ing enhancements were seen as critical, but we realized that it was equally important
to enhance Flash’s abilities for creative expression, because visual artistry is the heart
and soul of Flash.

To ensure that we fulfilled the varied needs of our customers, we divided the Flash
engineering team into three groups, each with its own mandate:

Approachable
Provide an excellent initial experience for new users

Creative
Enhance Flash’s abilities of creative expression

Power
Beef up ActionScript into a powerful tool for developing complex applications

I was delighted to lead the Power team, which went about enhancing ActionScript to
support the notion of “Flash as a platform.” We revised and enhanced Flash’s object
and event models; we refined Flash 5 Smart Clips into a more robust component
architecture; and we rewrote frequently used ActionScript objects to optimize perfor-
mance. In addition, we added power tools for developers, such as Code Hints and
the revamped Debugger.

We weren’t the only ones working on ActionScript, however. The union of Macro-
media and Allaire in 2001 brought the company formidable server expertise. The
folks at the new Macromedia office in Newton, Massachusetts built Macromedia
Flash Remoting MX (Flash Remoting), a new server-side technology permitting
direct and easy-to-use communication with the back end. The all-stars on the Macro-
media Flash Communication Server MX (Comm Server) team pushed the envelope
on what can be done with ActionScript, introducing new ActionScript APIs (includ-
ing ServerSide ActionScript) that enable truly trailblazing functionality: live two-way
communications and collaboration over the Internet!

Another entire team was dedicated to the task of building components. The Compo-
nents Team—of which two members served as technical editors for this book—built
UI components that enable the quick construction of HTML-like forms, and addi-
tional controls that go beyond what is possible with HTML, such as a full-blown tree

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Foreword | xv

control, calendar control, and a data grid. Combined with Flash Remoting, the com-
ponents are a formidable force for building data-driven applications.

The components in Flash MX offer a potent taste of the future: high-level abstrac-
tions that can quickly be assembled into interactive content and applications. At
Macromedia, we will seek to make the construction and usage of components easier
and even more powerful in future releases of Flash. The components offered with
Comm Server are a great example of that power. Even without components, using
Comm Server, it is relatively easy to build a videoconferencing application in only a
few lines of ActionScript. Comm Server components make it even easier; by simply
dragging a few components, novices can effectively script without using Action-
Script. This is the direction we’re interested in, because it helps novice users become
productive immediately. Rest assured that as ActionScript and Flash become more
approachable, greater possibilities will open up for advanced developers. By taking
care of the mundane plumbing and commonly used UI components, we enable
expert users and programmers to be even more productive. Flash MX’s enhanced
object model and component architecture allows skilled developers to extend exist-
ing components or develop their own custom libraries. So, whereas this book doesn’t
cover the existing components in detail, it offers advanced and aspiring developers
the tools to create their own. It is always exciting to see the new directions develop-
ers take ActionScript once they have the tools and an understanding of how to use
them.

Therefore, this second edition is unquestionably the essential book for ActionScript
programming in Flash MX. It has proven invaluable even for the engineers on the
Macromedia Flash team, who see it as complementary to our own product documen-
tation. This book is the product of Colin Moock’s boundless talent and energy,
which have driven him to delve deeply into ActionScript, probing its inner secrets for
your benefit. His meticulous attention to detail, evident throughout this fine vol-
ume, combined with his easygoing instructional style, ensure the book will be appre-
ciated by newcomers and experts alike. Enjoy the book, and enjoy ActionScript in
Flash MX!

—Gary Grossman
Creator of ActionScript

Senior Engineering Manger
Macromedia Flash Team

October 2002

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvii

Preface

Welcome to ActionScript for Flash MX: The Definitive Guide, Second Edition! This
edition sports massive changes from the first edition, with hundreds of pages of new
material and exhaustive rewrites that bring old material up to date with best prac-
tices for Flash MX. I hope you’re as excited to read it as I was to write it!

Like the first edition, this book teaches ActionScript from the ground up, covering
both basic concepts and advanced usage, but with a special focus on Macromedia
Flash MX techniques. In Part I, we’ll explore ActionScript fundamentals—from vari-
ables and movie clip control to advanced topics such as objects, classes, and server
communication. In Part II, the Language Reference, we’ll cover every object, class,
property, method, and event handler in the core ActionScript language. You’ll use
the Language Reference regularly to learn new things and remind yourself of the
things you always forget, so keep this book on your desk, not on your shelf!

Though ActionScript’s complexity has increased in Flash MX, you do not have to be
a programmer to read this book. I have continued to be mindful of the beginner
throughout this edition. The text moves pretty quickly, but a prior knowledge of
programming is not required to read it. All you need is experience with the non-
ActionScript aspects of Flash and an eagerness to learn. Of course, if you are already
a programmer, so much the better; you’ll be applying your code-junkie skills to
ActionScript in no time. To make the transition to Flash easier for experienced pro-
grammers, I’ve made a special effort to draw helpful analogies to languages such as
JavaScript, Java, and C.

Above all, this book truly is a Definitive Guide to ActionScript in Flash MX. It’s the
product of nearly four years of research, thousands of emails to Macromedia employ-
ees, and feedback from users of all levels. I hope that it is self-evident that I’ve suf-
fused the book with both my intense passion for the subject and the painfully won,
real-world experience from which you can benefit immediately. It covers Action-
Script with exhaustive authority and—thanks to a technical review by Gary Gross-
man, the creator of ActionScript—with unparalleled accuracy.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Second Edition Quick Start
If you’re a returning first-edition reader dying to sink your teeth into this edition,
here are the highlights I recommend you start with. But don’t end your exploration
with this list. Read on to learn about many more important updates to this edition.

The following chapters in Part I, ActionScript Fundamentals, have been heavily
rewritten and enhanced. They cover some of the most exciting additions, such as
components, and meaningful changes to the way ActionScript handles events and
deals with objects.

• Chapter 9, Functions

• Chapter 10, Events and Event Handling

• Chapter 12, Objects and Classes

• Chapter 14, Movie Clip Subclasses and Components

See also the revised and new appendixes, especially:

• Appendix C, Backward Compatibility and Player Build Updates

• Appendix E, HTML Support in Text Fields

• Appendix F, Support for GET and POST

• Appendix G, Flash UI Component Summary

• Appendix H, Embedding a Flash Movie in a Web Page

The following entries in Part II, the Language Reference, are either all-new or have
been heavily revised since the first edition. For example, you’ll want to read up on
the new SharedObject object and check out the Drawing API methods added to the
MovieClip class.

• Accessibility object

• Button class

• Capabilities object

• Function class

• _global object

• #initclip and #endinitclip pragmas

• LoadVars class

• LocalConnection class

• MovieClip class (new events and the Drawing API)

• Object class

• setInterval() and clearInterval() global functions

• SharedObject object

• Sound class

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

• Stage object

• System object

• TextField class

• TextFormat class

• Listener Events for Key, Mouse, TextField, and Stage (see Table P-1)

What’s New in Flash MX ActionScript
ActionScript evolved tremendously from Flash 5 to Flash MX (as the authoring tool is
known) and the corresponding Flash Player 6, and this book has evolved along with
it. See Table P-2 in this Preface for details on the Flash version naming conventions.

To preview many of the new features in action, visit:

http://www.moock.org/webdesign/lectures/newInMX

Table P-1 provides a high-level overview of the major additions to ActionScript and
tells you where to find more information about each new topic in this book. Unless
otherwise stated, cross-references are to Part II, the Language Reference.

Table P-1. New features in Flash MX ActionScript

Feature For details, see...

Drawing API: draw strokes, shapes, and fills at runtime using
new MovieClip methods

MovieClip.beginFill(), MovieClip.beginGradientFill(),
MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(),
MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo();
“Drawing in a Movie Clip at Runtime”in Chapter 13

Load JPEG-format images at runtime MovieClip.loadMovie(), loadMovie()

Load MP3-format sounds at runtime Sound.loadSound()

Check the length of a sound and the amount of time it has
been playing

Sound.position, Sound.duration

Detect when a sound finishes playing Sound.onSoundComplete()

Create, manipulate, and format text fields at runtime The TextField class, the TextFormat class,
MovieClip.createTextField()

Mask or unmask a movie clip at runtime MovieClip.setMask()

Create movie clips from scratch at runtime MovieClip.createEmptyMovieClip()

Determine a movie clip’s depth at runtime MovieClip.getDepth()

Execute a function or method periodically setInterval(), clearInterval()

Manipulate XML, string, and array data faster due to Flash
Player performance improvements

The XML class, the String class, the Array class

Store data locally (much like JavaScript cookies) The SharedObject object

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

What’s New in the Second Edition
The second edition of ActionScript for Flash MX: The Definitive Guide is not merely a
“tack-on” update to the first edition (which was titled ActionScript: The Definitive
Guide). The entire text has been revised and restructured to highlight the latest Flash
MX ActionScript features. Nearly every paragraph has been updated, and 400 pages
have been added to cover ActionScript’s new capabilities. Legacy descriptions of
Flash 4 ActionScript syntax have been moved from the body of the book to

Create packaged code modules with MovieClip subclasses and
components

#initclip, #endinitclip, Object.registerClass(),
attachMovie(); Chapter 14

Communicate between two Flash Players on the same com-
puter

The LocalConnection class

Declare global variables _global; “Movie Clip Variables and Global Variables” in
Chapter 2

Use international characters in the Unicode character set “The String Type” in Chapter 4, Appendix C

Define event handlers on movie clips using callback functions Chapter 10

Use event listeners to respond to events from any object Chapter 10 and Key.addListener(), Mouse.addListener(),
Stage.addListener(), Selection.addListener(),
TextField.addListener()

Add button behavior to a movie clip “Using Movie Clips as Buttons” in Chapter 13

Control button objects at runtime The Button class

Make content accessible to screen readers for the visually
impaired

The Accessibility object

Check the movie width and height at runtime, and reposition
movie elements when the movie is resized

Stage.height, Stage.width, Stage.onResize()

Use lexical and nested function scope, or execute a function
as a method of an arbitrary object

Function.call(), Function.apply(); “The Scope Chain” in
Chapter 2; “Function Scope” in Chapter 9

Access Player and system information such as screen resolu-
tion, operating system, and current language

The Capabilities object

Capture keyboard and mouse input events with a centralized
input API

The Key object, the Mouse object

Load variables using an intuitive variable loading class rather
than the loadVariables() function

The LoadVars class

Monitor the download progress of XML or loading variables XML.getBytesLoaded(), LoadVars.getBytesLoaded()

Control the tab order for buttons, text fields, and movie clips TextField.tabIndex, Button.tabIndex,
MovieClip.tabIndex

Turn off the hand cursor for buttons Button.useHandCursor,
MovieClip.useHandCursor

Add getter/setter properties to an object, and receive notifi-
cation when a property changes

Object.addProperty(), Object.watch()

Table P-1. New features in Flash MX ActionScript (continued)

Feature For details, see...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Appendix C or online technotes. We made this choice to keep the book streamlined,
although it is still considerably beefier than the first edition. By the time you read
this, Flash Player 6 will be nearly ubiquitous, so it doesn’t make sense to cover Flash
4 in detail anymore. We cover enough of it to help you understand and upgrade any
legacy code you may own or encounter. We’ve also paid close attention to changes
between Flash 5 and Flash 6 to help you understand the new paradigms and upgrade
legacy code. The legacy code examples from the first edition will all remain available
at http://www.moock.org/asdg/codedepot.

Updated Code Examples
All code examples from the first edition have been rewritten to use Flash MX syntax
and best practices. For example:

• The quiz samples now use callback functions—rather than Flash 5–style on()
handlers—for button event handlers.

• Text fields that were formerly drawn in the authoring tool are now generated
programmatically with createTextField().

• Classes are defined on _global (the new property that holds global variables)

• The object-oriented LoadVars class is used instead of the older loadVariables()
global function.

Likewise, dozens of new Flash MX-specific examples have been added. Here are just
a few of the interesting ones:

• A completely code-based, object-oriented quiz, downloadable from the online
Code Depot (described later in this Preface)

• A configurable text ticker (see TextField.hscroll)

• An array-to-table converter (see TextFormat.tabStops)

• A sound preloader (see Sound.getBytesLoaded())

Hundreds of Tweaks
Subtle details have been added throughout this book to augment the first edition’s
content. Here are just a few of the hundreds of tweaks made:

• MovieClip._x discusses twips (the minimum distance a clip can be moved).

• MovieClip._visible warns that button events don’t fire when _visible is false.

• XML.parseXML() covers CDATA and predefined XML entities (&, <, >, ", and ')
at length.

• MovieClip.getBytesLoaded() features a list of possible return values based on the
asynchronous execution of loadMovie().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

• Chapter 2 discusses qualified and unqualified variable references and Hungarian
notation.

• Chapter 4 explicitly contrasts null with delete and undefined.

Of course, there are plenty of not-so-subtle changes too. We’ll look at them next.

Major Revisions Since the First Edition
The following list describes the major content and structural changes in this second
edition. Note that some of these chapters were in Part II, Applied ActionScript, in the
first edition. Other material from the first edition’s Part II was redistributed else-
where in this second edition, and some content was moved to online technotes.
Despite the organizational change, rest assured that this second edition includes doz-
ens of applied examples sprinkled liberally throughout the entire book. The Lan-
guage Reference, formerly Part III in the first edition, is now Part II.

Chapter 1, A Gentle Introduction for Nonprogrammers

• Added an introduction to object-oriented programming

• Revised the quiz tutorial for Flash MX

• Revised the event handler section for Flash MX

Chapter 2, Variables

• Added recommended suffixes for variable names

• Added global variable coverage

• Added a section on loading external variables

• Added an explicit discussion of the scope chain

Chapter 3, Data and Datatypes

• Added the section “Copying, Comparing, and Passing Data” (formerly in
Chapter 15)

Chapter 4, Primitive Datatypes

• Added coverage of Unicode

Chapter 5, Operators

• Added coverage of the strict equality and instanceof operators

Chapter 6, Statements

• Added switch statement coverage

• Revised the description of with to include the scope chain

• Removed the legacy call statement (now covered in the Language Reference only)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

Chapter 8, Loop Statements

• Added a section on using setInterval() to execute code repeatedly

• Revised “Timeline and Clip Event Loops” to use Flash MX features (MovieClip.
createEmptyMovieClip() and the MovieClip.onEnterFrame() handler)

Chapter 9, Functions

• Added a section on the differences between function literals and the function
statement

• Added coverage of nested functions

• Revised “Function Scope” to cover lexical scope in more detail

• Revised the quiz tutorial for Flash MX

Chapter 10, Events and Event Handling

• Added complete coverage of event handler properties

• Added coverage of event listeners, new in Flash MX

• Added an in-depth discussion of scope, including Table 10-1, which compares
old scope rules to new scope rules

• Added a description of the this keyword within various handlers, including a
summary in Table 10-2

• Moved all specific button and movie clip event descriptions to the Language Ref-
erence (see also Table 10-3)

Chapter 11, Arrays

• Added coverage of the Array.sortOn() method

• Revised the quiz tutorial for Flash MX

Chapter 12, Objects and Classes

• Revised the chapter entirely to focus more squarely on the process of making a
class with methods and properties

• Added coverage of Flash MX’s super keyword, used to invoke a superclass con-
structor and its methods

• Added a formal discussion of the prototype chain

• Added a formal discussion of issues with standard superclass assignment

• Added a section on static methods and properties

• Added a description of rendering an object to screen

• Added an object-oriented programming (OOP) application template

• Added an “OOP Quick Reference” section

• Added a brief discussion of UML and design patterns

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

Chapter 13, Movie Clips

• Added information on creating a blank movie clip from scratch using
MovieClip.createEmptyMovieClip()

• Added a section on drawing in a movie clip at runtime using the new Drawing
API

• Added a section on implementing button behavior for a movie clip

• Added a section on handling input focus for movie clips

• Revised (fixed) the first edition’s partially erroneous description of MovieClip.
duplicateMovieClip() depths

• Moved the list of MovieClip methods and properties to the Language Reference

• Moved the legacy Tell Target discussion to Appendix C

• Updated the clock example to use Flash MX best practices

• Removed the quiz example, which is superseded by the new downloadable OOP
quiz (the legacy version is still available online)

Chapter 14, Movie Clip Subclasses and Components (all new)

• Covers how to make movie clip subclasses (specialized types of movie clip sym-
bols associated with a class)

• Covers how to create a basic component, of which the Flash UI Components are
a complex example

Chapter 15, Lexical Structure (previously Chapter 14)

• Revised the list of reserved words

• Removed and redistributed old Chapter 15, content as follows:

• Moved “Copying, Comparing, and Passing Data” to Chapter 3

• Moved “Bitwise Programming” to online technote at http://www.moock.org/
asdg/technotes

• Removed “Advanced Function Scope Issues” (the issue discussed was fixed
in Flash MX)

• Moved “The MovieClip Datatype” to online technote at http://www.moock.
org/asdg/technotes

Chapter 16, ActionScript Authoring Environment

• Revised the section on legacy Smart Clips to cover new Flash MX Components
architecture instead

Chapter 17, Building a Flash Form

• Revised the code example and tutorial to use LoadVars class instead of
loadVariables()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxv

Redistributed old Chapter 18, On-Screen Text Fields (in first edition only)

• Contents of the entire chapter moved to the Language Reference (under
TextField class) and to Appendix E (and augmented with substantial additions to
the TextField class)

Removed old Chapter 19, Debugging (in first edition only)

• Entire chapter moved to online technote at http://www.moock.org/asdg/technotes

Part II, Language Reference (formerly Part III)

• Earlier in this Preface, we highlighted the major changes and additions to the
Language Reference. For a complete list of new methods, properties, classes,
objects, global functions, and directives added to the Language Reference, see
http://www.moock.org/webdesign/lectures/newInMX. (Note that CustomActions
and LivePreview are not included in the Language Reference, as discussed next.)

What’s Not in This Book
Although this book is vast, ActionScript is vaster. It is no longer feasible to cover
every possible ActionScript topic within the confines of a single book. We made a
conscious editorial decision in this edition to omit formal coverage of the following
items (though these topics are covered in passing where relevant):

• Features used exclusively to extend the Flash MX authoring tool (e.g.,
CustomActions and LivePreview). These topics are covered in Macromedia’s
online article “Creating Components in Flash MX” at http://www.macromedia.
com/support/flash/applications/creating_comps.

• Macromedia’s library of Flash UI Components, which extend the authoring tool
beyond the core language. See Appendix G, Flash UI Component Summary, for a
summary of Flash UI Components properties and methods. For resources that
cover Flash UI Components in depth, see “Summary” in Chapter 14.

• The Macromedia Flash Communication Server MX (Comm Server) API (e.g.,
Remote SharedObject, Camera, Microphone, NetConnection, and NetStream).
Comm Server is used to create multiuser web applications with audio and video.
See http://www.macromedia.com/software/flashcom/ for details.

• The basics of the Flash MX authoring tool. However, if you are a programmer
who is new to Flash, we give you enough hints so you can input the code exam-
ples and follow along. To learn Flash MX animation and graphic design, start
with the online help and manual; then explore the web sites listed at http://
www.moock.org/moockmarks.

There is no CD in the back of the book, but all the code examples can be down-
loaded from the online Code Depot (cited later in this Preface).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxvi | Preface

Undocumented ActionScript Features
The Flash development community has a knack for unearthing so-called undocu-
mented features of ActionScript—internal abilities of the language that are not offi-
cially released or sanctioned for use by Macromedia. In general, use of
undocumented features is not recommended because:

• They are not tested for external use and may therefore contain bugs or be
unstable.

• They may be removed from future versions of the language without warning.

In this book, we chose to focus on providing the best possible documentation for fea-
tures that are supported but which may be poorly documented or misdocumented.
Therefore, wholly undocumented or unsupported features are not covered unless:

• Macromedia sources have supplied or confirmed the information directly; or

• Use of the feature is so widespread that it demands discussion.

In either case, descriptions in this book of undocumented features include the
appropriate warning label in full view. This book covers the following undocu-
mented features:

• __proto__ (as used to establish inheritance)

• ASBroadcaster (partial coverage only, in Chapter 12)

• ASSetPropFlags() (partial coverage only, in Chapter 8)

• LoadVars.decode()

• LoadVars.onData()

• Object.hasOwnProperty()

• System.showSettings()

• TextField.condenseWhite

• TextFormat.font’s multiple font abilities

• The XMLNode class

To see what the ActionScript sleuths have discovered, visit (with prudence):

http://chattyfig.figleaf.com/flashcoders-wiki/index.php?Undocumented%20Features

Flash Naming Conventions
With the introduction of the MX family of products, including Flash MX, Macrome-
dia abandoned a standard numeric versioning system for its Flash authoring tool.
The Flash Player, however, is still versioned numerically. Table P-2 describes the
naming conventions used in this book for Flash versions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxvii

What Can ActionScript Do?
ActionScript is used to create all kinds of interactive applications, typically for web-
based use. Here are just a few possibilities: an MP3 player, a multiuser drawing
application, a 3D walkthrough of a home, an online store, a message board, an
HTML editor, and the game Pac-Man. Each of these applications uses a combina-
tion of ActionScript’s capabilities, a sampling of which follows. Begin thinking about
how you can combine these techniques to build your applications.

Timeline Control
Flash movies are composed of frames residing in a linear sequence called the time-
line. Using ActionScript, we can control the playback of a movie’s timeline, play seg-
ments of a movie, display a particular frame, halt a movie’s playback, loop
animations, and synchronize animated content. Movie clips within a main movie
each have their own timeline.

Table P-2. Flash naming conventions used in this book

Name Meaning

Flash MX The Flash MX authoring tool (as opposed to the Flash Player)

Flash Player 6 The Flash Player, version 6. The Flash Player is a browser plugin for major web browsers on
Windows and Macintosh. There are both ActiveX and Netscape-style versions of the plugin, but
they are referred to collectively as “Flash Player 6” except where noted, such as under
Accessibility in the Language Reference.

Flash Player x.0.y.0 The Flash Player, specifically, the release specified by x and y, as in Flash Player 6.0.47.0. See
capabilities.version in the Language Reference for details.

Flash 6 Short for “Flash Player 6,” used primarily in the Language Reference or wherever the distinction
between Flash MX (the authoring tool) and Flash Player 6 (the browser plugin) is irrelevant.

Flash 5 authoring tool The Flash 5 authoring tool (as opposed to the Flash Player), which came before Flash MX

Flash Player 5 The Flash Player, version 5

Flash 5 Short for “Flash Player 5,” used primarily in the Language Reference or wherever the distinction
between Flash 5 (the authoring tool) and Flash Player 5 (the browser plugin) is irrelevant.

Flash 2, Flash 3, and Flash 4 Versions of the Flash Player prior to version 5, used primarily in the Language Reference to indi-
cate which versions of Flash support the given feature.

Standalone Player A version of the Flash Player that runs directly off the local system, rather than as a web
browser plugin or ActiveX control.

Projector A self-sufficient executable that includes both a .swf file and a Standalone Player. Projectors
can be built for either the Macintosh or Windows operating system using Flash’s File ➝ Pub-
lish feature.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxviii | Preface

Interactivity
Flash movies can accept and respond to user input. Using ActionScript, we can cre-
ate interactive elements such as:

• Buttons that react to mouseclicks (e.g., a classic navigation button)

• GUI elements such as list boxes, combo boxes (a.k.a. drop-down menus), and
check boxes

• Content that animates based on mouse movements (e.g., a mouse trailer)

• Objects that can be moved via the mouse or keyboard (e.g., a car in a driving
game)

• Text fields that display information on screen or allow users to supply input to a
movie (e.g., a fill-in form)

Visual and Audio Content Control
ActionScript can be used to examine or modify the properties of the audio and visual
content in a movie. For example, we can change an object’s color and location,
reduce a sound’s volume, or set the font face of a text block. We can also modify
these properties repeatedly over time to produce unique behaviors such as animated
effects, physics-based motion, and collision detection.

Programmatic Content Generation
Using ActionScript, we can generate visual and audio content directly from a movie’s
Library or by duplicating existing content on the Stage. In Flash MX, we can use the
MovieClip class’s Drawing API, createEmptyMovieClip() method, and
createTextField() method to create graphics and text from scratch at runtime. Pro-
grammatically generated content may serve as a strictly static element—such as a
random visual pattern—or as an interactive element—such as a button in a dialog
box, an enemy spaceship in a video game, or an option in a pull-down menu.

Server Communication
One of the most common ways to extend Flash’s functionality is via communication
with some server-side application or script, such as Macromedia ColdFusion MX or
a Perl script. Although communicating with ColdFusion is largely the purview of
Macromedia Flash Remoting MX (Flash Remoting), the core ActionScript language
provides a wide variety of tools for sending information to, and receiving informa-
tion from, any server-side application or script (e.g., Java, PHP, ASP, etc.). The fol-
lowing applications all involve server communication:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxix

Link to a web page
See getURL().

Guest book
See the LoadVars and XML classes, Chapter 17, and the Code Depot, described
in the next section.

Chat application
See the XMLSocket class and the example at http://www.moock.org/chat.

Multiplayer networked game
See the XMLSocket class and http://www.moock.org/unity.

E-commerce transaction
See the LoadVars and XML classes.

Personalized site involving user registration and login
See the LoadVars and XML classes.

Detailed implementations of even this limited number of potential ActionScript
applications are beyond the scope of this book. Instead, our goal is to give you the
fundamental skills to explore the myriad other possibilities on your own. This is not
a recipe book—it’s a lesson in cooking code from scratch. What’s on the menu is up
to you.

The Code Depot
We’ll encounter dozens of code samples over the upcoming chapters. To obtain rele-
vant source files and many other tutorial files not included in the book, visit the
online Code Depot, posted at:

http://www.moock.org/asdg/codedepot

The Code Depot is an evolving resource containing real-world ActionScript applica-
tions and code bases. Here’s a selected list of samples you’ll find in the Code Depot:

• A multiple-choice quiz

• A pan-and-zoom image viewer

• Text field tools, such as an array-to-table converter and a configurable text ticker

• An XML-based chat application

• A guest book application

• A custom mouse pointer and button

• An asteroids game code base

• Programmatic motion effects

• Demos of HTML text fields

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxx | Preface

• Preloaders

• String manipulation

• Interface widgets, such as slider bars and text scrollers

• Mouse trailers and other visual effects

• Volume and sound control

Additionally, any book news, updates, technotes, and errata will be posted here.

Showcase
Practically every Flash site in existence has at least a little ActionScript in it. But some
sites have, shall we say, more than a little. Table P-3 presents a series of destinations
that should provide inspiration for your own work. See also the sites listed in
Appendix A and the author’s bookmarks at http://www.moock.org/moockmarks.

Table P-3. ActionScript Showcase

Topic URL

Experiments in design, interactivity, and scripting http://www.yugop.com

http://www.praystation.com*

http://www.presstube.com

http://www.pitaru.com

http://www.flight404.com

http://www.bzort-12.com

http://www.benchun.net/mx3d/*

http://www.protocol7.com*

http://www.uncontrol.com*

http://flash.onego.ru*

http://www.figleaf.com/development/flash5*

http://nuthing.com

http://www.deconcept.com

http://www.natzke.com

Games http://www.orisinal.com

http://www.gigablast.com

http://www.sadisticboxing.com

http://www.huihui.de

http://www.sarbakan.com

http://www.electrotank.com/games/multiuser

http://www.titoonic.dk/products/games/spider

http://content.uselab.com/acno

http://www.neave.com/webgames

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxxi

Typographical Conventions
In order to indicate the various syntactic components of ActionScript, this book uses
the following conventions:

Menu options
Menu options are shown using the ➝ character, such as File ➝ Open.

Constant width
Indicates code samples, clip instance names, frame labels, property names, and
variable names. Variable names often end with the suffixes shown in Table 2-1
(such as _mc for variables that refer to movie clip instances). Although using
these suffixes is considered the best practice, we sometimes avoided them when
we found they made the surrounding text substantially more difficult to read.
For brevity, therefore, the preferred suffixes have sometimes been omitted.

Italic
Indicates function names, method names, class names, layer names, URLs, file-
names, and file suffixes such as .swf. In addition to being italicized, method and
function names are also followed by parentheses, such as duplicateMovieClip().

Constant width bold
Indicates text that you must enter verbatim when following a step-by-step proce-
dure. Constant width bold is also used within code examples for emphasis, such
as to highlight an important line of code in a larger example.

Constant width italic
Indicates code that you must replace with an appropriate value (e.g., your name
here). Constant width italic is also used to emphasize variable, property,
method, and function names referenced in comments within code examples.

In the Language Reference, we played around with some font conventions. The fol-
lowing conventions looked the best, while maintaining consistency with our overall
approach, so we went for them:

Interface, applications, and dynamic content http://www.mnh.si.edu/africanvoices

http://www.curiousmedia.com

http://www.smallblueprinter.com

http://davinci.figleaf.com/davinci

http://host.oddcast.com

http://www.enteryourinformation.com/broadmoor/onescreen.cfm

* Downloadable .fla files provided. Otherwise, only .swf files available.

Table P-3. ActionScript Showcase (continued)

Topic URL

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxxii | Preface

• Class-level properties are shown with both the class name and property in
constant width, because they should both be entered verbatim, as shown (e.g.,
Stage.width, Math.NaN).

• Instance-level properties are shown with the class or object instance in constant
width italic, because the placeholder should be replaced by a specific instance.
The property itself is shown in constant width and should be entered as shown
(e.g., Button.tabEnabled, where Button should be replaced with a button
instance).

• Method and function names, and the class or object to which they pertain, are
always shown in italics and followed by parentheses, as in MovieClip.
duplicateMovieClip(). Refer to the Language Reference, surrounding material,
and nearby examples to determine whether to include the class name literally, as
in TextField.getFontList(), or replace it with an instance name, such as ball_mc.
duplicateMovieClip().

• Within the Language Reference, for brevity, we often omit the class name when
discussing a property or method of the class. For example, when discussing the
htmlText property of the TextField class, when we say “set the htmlText prop-
erty,” you should infer from context that we mean, “set the someField_txt.
htmlText property, where someField_txt is the identifier for your particular text
field.”

• In some cases, an object property contains a reference to a method or callback
handler. It wasn’t always clear whether we should use constant width to indi-
cate that it is a property (albeit one storing a method name) or italics and paren-
theses to indicate it is a method (albeit one stored in a property). If the line
between a property referring to a method and the method itself is sometimes
blurred, forgive us. To constantly harp on the technical difference would have
made the text considerably less accessible and readable.

• When summarizing properties for a class, the properties may be shown in italics,
rather than constant width, to save space. This applies only when the properties
are summarized under a Properties heading and they aren’t followed by paren-
theses, so it is clear that they’re properties and not methods.

If any or all of this is confusing now, it will be clear by the time you get to the Lan-
guage Reference, having read about objects, classes, and movie clips in Chapters 12,
13, and 14.

Pay special attention to notes and warnings set apart from the text with the follow-
ing icons:

This is a tip. It contains useful information about the topic at hand,
often highlighting important concepts or best practices.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxxiii

This is a warning. It helps you solve and avoid annoying problems or
warns you of impending doom. Ignore at your own peril.

We’d Like to Hear from You
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/actscript2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
As with the first edition, this book would be a mere shadow of itself without the
incredible contributions of Macromedia Flash MX’s engineering, quality assurance,
support, and product management teams. In particular, I can never thank Gary
Grossman enough for his critiques, guidance, and patience, not to mention writing
the Foreword. Other Macromedians who helped shape this text include: Jonathan
Gay, Jeremy Clark, Eric Wittman, Michael Williams, Pete Santangeli, Matt Woben-
smith, Ben Chun, Troy Evans, Lee Thomason, Bentley Wolfe, John Dowdell,
Rebecca Sun, Janice Pearce, Brian Dister, Henriette Cohn, Jeff Mott, Michael Mor-
ris, Deneb Meketa, Tinic Uro, Robert Tatsumi, Colm McKeon, and Mike Chambers.

This book’s editor is Bruce Epstein, who I am convinced is superhuman. His knowl-
edge of writing and programming is exceptional, and his ability to bestow that
knowledge upon a text is astonishing. I am uncommonly fortunate to be coached by
such an outstanding editor (and author in his own right).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxxiv | Preface

Next, it is my honor to present the technical reviewers of this edition, all of whom
are members of Macromedia Flash MX’s engineering team: Gary Grossman, Chris
Thilgen, Gilles Drieu, Nigel Pegg, Slavik Lozben, and Michael Richards. Erica
Norton edited the first edition. Thank you, my friends, for your time and devotion.

The beta readers for this edition are all renowned Flash developers for whom I have
immense respect: Robert Penner (http://www.robertpenner.com), Dave Yang (http://
www.quantumwave.com), Branden Hall (http://www.waxpraxis.org), Amit Pitaru
(http://www.pitaru.com), Michael Kay (http://www.peep.org/wizard/), and Veronique
Brossier (http://www.v-ro.com). This book’s accuracy is in many cases the result of
their keen eyes.

Thanks to Tim O’Reilly for setting a standard of thoroughness, quality, and accu-
racy in everything he publishes. And thanks to O’Reilly’s Brian Sawyer, Claire
Cloutier, Glenn Bisignani, Mike Sierra, Rob Romano, Edie Freedman, Sandy Torre,
and the many copyeditors, indexers, proofreaders, and sales and marketing folks at
O’Reilly who helped bring this book to the shelves.

I owe recognition to my good friend Derek Clayton for regularly sharing his pro-
gramming expertise with me. Derek contributed the Perl code in Chapter 17, the
Java XMLSocket server in the Language Reference, and a generic flat file database sys-
tem, all available from the online Code Depot. He is also the lead developer of Unity
Socket Server, moock.org’s commercial application for creating multiuser applica-
tions in Flash (http://www.moock.org/unity).

To the Flash community: thank you for the inspiration and beauty you create. In
particular, thanks to James Patterson, Yugo Nakamura, Naoki Mitsuse, Joshua
Davis, James Baker, Marcell Mars, Phillip Torrone, Robert Reinhardt, Mark Fennell,
Josh Ulm, Darrel Plant, Todd Purgason, John Nack, Jason Krogh, Hillman Curtis,
Glenn Thomas, Hoss Gifford, Manuel Clement, Andreas Heim, Robert Hodgin,
Margaret Carlson, Erik Natzke, Andries Odendaal, James Tindall, Jon Williams,
Ferry Halim, Jobe Makar, Jared Tarbell, Geoff Stearns, Paul Szypula, Lynda Wein-
man, the beta readers listed earlier, and whomever I’ve inevitably omitted.

Many thanks and much love to my wife, Wendy Schaffer, to my parents, and to fam-
ily and friends. Hopefully this edition wasn’t as draining as the first.

And lastly I’d like to thank you, the reader, for taking the time to read this book. I
hope it helps to make my passion your own.

—Colin Moock
Toronto, Canada

December 2002

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

PART I

I.ActionScript Fundamentals

Part I covers the core syntax and grammar of the ActionScript language: variables,
data, statements, functions, event handlers, arrays, objects, movie clips, and compo-
nents. By the end of Part I, you’ll know everything there is to know about writing
ActionScript programs.

• Chapter 1, A Gentle Introduction for Nonprogrammers

• Chapter 2, Variables

• Chapter 3, Data and Datatypes

• Chapter 4, Primitive Datatypes

• Chapter 5, Operators

• Chapter 6, Statements

• Chapter 7, Conditionals

• Chapter 8, Loop Statements

• Chapter 9, Functions

• Chapter 10, Events and Event Handling

• Chapter 11, Arrays

• Chapter 12, Objects and Classes

• Chapter 13, Movie Clips

• Chapter 14, Movie Clip Subclasses and Components

• Chapter 15, Lexical Structure

• Chapter 16, ActionScript Authoring Environment

• Chapter 17, Building a Flash Form

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3

Chapter 1 CHAPTER 1

A Gentle Introduction
for Nonprogrammers

I’m going to teach you to talk to Flash.

Not just to program in Flash, but to say things to it and listen to what it has to say in
return. This is not a metaphor or simply a rhetorical device. It’s a philosophical
approach to programming.

Programming languages are used to send information to and receive information
from computers. They are collections of vocabulary and grammar used to communi-
cate, just like human languages. Using a programming language, we tell a computer
what to do or ask it for information. It listens, tries to perform the requested actions,
and gives responses. So, while you may think you are reading this book in order to
“learn to program,” you are actually learning to communicate with Flash. But, of
course, Flash doesn’t speak English, French, German, or Cantonese. Flash’s native
language is ActionScript, and you’re going to learn to speak it.

Learning to speak a computer language is sometimes considered synonymous with
learning to program. But there is more to programming than learning a language’s
syntax. What would it be like if Flash could speak English—if we didn’t need to
learn ActionScript in order to communicate with it?

What would happen if we were to say, “Flash, make a ball bounce around the
screen?”

Flash couldn’t fulfill our request because it doesn’t understand the word “ball.”
Okay, okay, that’s just a matter of semantics. What Flash expects us to describe is
the objects in the world it knows: movie clips, buttons, frames, and so on. So, let’s
rephrase our request in terms that Flash recognizes and see what happens: “Flash,
make the movie clip named ball_one bounce around the screen.”

Flash still can’t fulfill our request without more information. How big should the ball
be? Where should it be placed? In which direction should it begin traveling? How
fast should it go? Around which part of the screen should it bounce? For how long?
In two dimensions or three? Hmm . . . we weren’t expecting all these questions. In
reality, Flash doesn’t ask us these questions. Instead, when Flash can’t understand

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: A Gentle Introduction for Nonprogrammers

us, it just doesn’t do what we want it to, or it yields an error message. For now, we’ll
pretend Flash asked us for more explicit instructions, and reformulate our request as
a series of steps:

1. A ball is a circular movie clip symbol named ball.

2. A square is a four-sided movie clip symbol named square.

3. Make a new green ball 50 pixels in diameter.

4. Call the new ball ball_one.

5. Make a new black square 300 pixels wide, and place it in the middle of the
Stage.

6. Place ball_one somewhere on top of the square.

7. Move ball_one in a random direction at 75 pixels per second.

8. If ball_one hits one of the sides of the square, make it bounce (reverse course).

9. Continue until I tell you to stop.

Even though we gave our instructions in English, we still had to work through all the
logic that governs our bouncing ball in order for Flash to understand us. Obviously,
there’s more to programming than merely the syntax of programming languages.
Just as in English, knowing lots of words doesn’t necessarily mean you’re a great
communicator.

Our hypothetical English-speaking-Flash example exposes four important aspects of
programming:

• No matter what the language, the art of programming lies in the formulation of
logical steps.

• Before you try to say something in a computer language, it usually helps to say it
in English.

• A conversation in one language translated into a different language is still made
up of the same basic statements.

• Computers aren’t very good at making assumptions. They also have a very lim-
ited vocabulary.

Most programming has nothing to do with writing code. Before you write even a sin-
gle line of ActionScript, think through exactly what you want to do and write out your
system’s functionality as a flowchart or a blueprint. Once your program has been
described sufficiently at the conceptual level, you can translate it into ActionScript.

In programming—as in love, politics, and business—effective communication is the
key to success. For Flash to understand your ActionScript, you have to get your syn-
tax absolutely correct, down to the last quote, equals sign, and semicolon. And to
assure that Flash knows what you’re talking about, you must refer only to the world
it knows using terms it recognizes. What may be obvious to you is not obvious to a
computer. Think of programming a computer like talking to a child: take nothing for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Some Basic Phrases | 5

granted, be explicit in every detail, and list every step that’s necessary to complete a
task. But remember that, unlike children, Flash will do precisely what you tell it and
nothing that you don’t.

Some Basic Phrases
On the first day of any language school you’d expect to learn a few basic phrases
(“Good day,” “How are you,” etc.). Even if you’re just memorizing a phrase and
don’t know what each word means, you can learn the effect of the phrase and can
repeat it to produce that effect. Once you’ve learned the rules of grammar, expanded
your vocabulary, and used the words from your memorized phrases in multiple con-
texts, you can understand your early phrases in a richer way. The rest of this chapter
will be much like that first day of language school—you’ll see bits and pieces of
code, and you’ll be introduced to some fundamental programming grammar. The
rest of the book will build on that foundation. You may want to come back to this
chapter when you’ve finished the book to see just how far you’ve traveled.

Creating Code
For our first exercise, we’ll add four simple lines of code to a Flash movie. Nearly all
ActionScript programming takes place in the Actions panel. Any instructions we add
to the Actions panel are carried out by Flash when our movie plays. Open the
Actions panel now by following these steps:

1. Launch Flash with a new blank document.

2. On the main timeline, select frame 1 of layer 1.

3. Select Window ➝ Actions (F9). (Note that we use the “ ➝ ” symbol to separate a
menu name from a menu option; you should select the “Actions” item from
Flash’s “Windows” menu.)

The Actions panel is divided into two sections: the Script pane (on the right) and the
Toolbox pane (on the left). The Script pane houses all our code. In Normal Mode,
the top of the Script pane includes a Parameters pane that simplifies code entry for
novices. The Toolbox pane provides us with quick-reference access to the Action-
Script language. You’ll likely recognize the Movie Control Actions, shown in
Figure 1-1, from prior Flash versions.

But there’s a lot more to discover in the Toolbox pane. This book covers Operators,
Functions, Constants, Properties, and Objects in detail. Some of the Communica-
tions components are specific to Macromedia Flash Communication Server MX
(Comm Server) and are beyond the scope of this book. Similarly, the Flash UI Com-
ponents are not part of the core ActionScript language; Appendix G summarizes
their properties and methods. Details on the Flash UI Components are available in
Flash’s documentation, under Help ➝ Tutorials ➝ Introduction to Components.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: A Gentle Introduction for Nonprogrammers

The Toolbox pane’s book-like hierarchical menus can be used to create ActionScript
code. However, in order to learn the syntax, principles, and structural makeup of
ActionScript, we’ll be entering all our code manually.

So-called Actions are more than just Actions—they include various fundamental pro-
gramming-language tools: variables, conditionals, loops, comments, function calls,
and so forth. Although many of these are lumped together in one menu, the generic
name Action obscures the programming structures’ significance. We’ll be breaking
Actions down to give you a programmer’s perspective on those structures. Through-
out the book, I use the appropriate programming term to describe the Action at
hand. For example, instead of writing, “Add a while Action,” I’ll write, “Create a
while loop.” Instead of writing, “Add an if Action,” I’ll write, “Add a new condi-
tional.” Instead of writing, “Add a play Action,” I’ll write, “Invoke the play() func-
tion (or method).” These distinctions are an important part of learning to speak
ActionScript.

Ready to get your hands dirty? Let’s say hello to Flash.

Say Hi to Flash
Before you can type code into the Actions panel, you must disengage the Action-
Script autopilot. From the pop-up menu in the top right corner of the Actions panel,
select Expert Mode, as shown in Figure 1-2. Howdya like that? You’re already an
expert.

For brevity, I’ll refer to any pop-up menu in one of Flash’s panels as an “Options”
menu for the remainder of the book. So I might write, “choose Options ➝ Expert

Figure 1-1. Flash MX Movie Control Actions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Some Basic Phrases | 7

Mode in the Actions panel.” While you’re at it, you can also turn on line numbering
using Options ➝ View Line Numbers. See also Chapter 16 for more details on the
Actions panel.

When you enter Expert Mode, the Parameters pane disappears from the top of the
Actions panel (in Flash 5, the Parameters pane appeared at the bottom of the Actions
panel while in Normal Mode). Don’t worry—we’re not programming with menus,
so we won’t be needing it.

Next, select frame 1 of layer 1 in the main timeline.

Your ActionScript (a.k.a. code) must always be attached to a frame,
movie clip, or button; selecting frame 1 causes subsequently created
code to be attached to that frame. Flash executes the code attached to
a frame when the timeline reaches that frame.

In Expert Mode, you can type directly into the Script pane on the right side of the
Actions panel, which is where we’ll be doing all our programming.

Figure 1-2. Expert Mode selection

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: A Gentle Introduction for Nonprogrammers

Here comes the exciting moment—your first line of code. It’s time to introduce your-
self to Flash. Type the following into the Script pane:

var message = "Hi there, Flash!";

That line of code constitutes a complete instruction, known as a statement. On the
line below it, type your second and third lines of code, shown following this para-
graph. Replace your name here with your first name (whenever you see constant-
width italicized code in this book it means you have to replace that portion of the
code with your own content):

var firstName = "your name here";
trace (message);

Hmmm. Nothing has happened yet. That’s because our code doesn’t do anything
until we export a .swf file and play our movie. Before we do that, let’s ask Flash to
say hi back to us. Type your fourth line of code under the lines you’ve already typed
(man, we’re really on a roll now . . .):

trace ("Hi there, " + firstName + ", nice to meet you.");

Okay, Flash is ready to meet you. Select Control ➝ Test Movie, and see what hap-
pens. Some text should appear in the Output window as shown in Figure 1-3.

Pretty neat, eh? Let’s find out how it all happened. To return to editing the .fla
source file, close the window of the .swf file created by our test.

Keeping Track of Things (Variables)
Remember how I said programming was really just communicating with a com-
puter? Well, it is, but perhaps with a little less personality than I’ve been portraying
so far. In your first line of code:

var message = "Hi there, Flash!";

you didn’t really say hi to Flash. You said something more like this:

Flash, please remember a piece of information for me—specifically, the phrase “Hi
there, Flash!” I may need that information in the future, so please give it a label called
message. If I ask you for message later, give me back the text “Hi there, Flash!”

Figure 1-3. Flash gets friendly

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Some Basic Phrases | 9

Perhaps not as friendly as saying hi, but it illustrates one of the true foundations of
programming: Flash can remember something for you, provided that you label it so
that it can be found later. For example, in your second line of code, we had Flash
remember your first name, and we named the reference to it firstName. Flash remem-
bered your name and displayed it in the Output window, due to the trace() com-
mand, when you tested your movie.

The fact that Flash can remember things for us is crucial in programming. Flash can
remember any type of data, including text (such as your name), numbers (such as
3.14159), and more complex kinds of information that we’ll discuss later.

Official variable nomenclature

It’s time for a few formal terms to describe how Flash remembers things. So far, you
know that Flash remembers data. An individual piece of data is known as a datum. A
datum (e.g., “Hi there, Flash!”) and the label that identifies it (e.g., message) are
together known as a variable. A variable’s label is called its name, and a variable’s
datum is called its value. We say that the variable stores or contains its value. Note
that “Hi there, Flash!” is surrounded by double quotation marks (quotes) to indicate
that it is a string of text, not a number or some other kind of information (a.k.a.
datatype).

In your first line of code, you specified the value of the variable message. The act of
specifying the value of a variable is known as assigning the variable’s value or simply
assignment. But before you can assign a value to a variable, you should first create it
(in ActionScript’s cousin, JavaScript, you must create variables before using them).
We formally bring variables into existence by declaring them using the special key-
word var, which you used earlier.

So, in practice, here’s how I might use more formal terms to instruct you to create
the first line of code you created earlier: declare a new variable named message, and
assign it the initial value “Hi there, Flash!” This means you should enter the follow-
ing code in the Actions panel:

var message = "Hi there, Flash!";

The Wizard Behind the Curtain (the Interpreter)
Recall your first two lines of code:

var message = "Hi there, Flash!";
var firstName = "your name here";

In each of those statements, you created a variable and assigned a value to it. Your
third and fourth lines, however, are a little different:

trace (message);
trace ("Hi there, " + firstName + ", nice to meet you.");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: A Gentle Introduction for Nonprogrammers

These statements use the trace() command. You’ve already seen the effect of that
command—it caused Flash to display your text in the Output window. In the third
line, Flash displayed the value of the variable message. In the last line, Flash also con-
verted the variable firstName to its value (whatever you entered as your name) and
stuck that into the sentence after the words “Hi there,”. The trace() command, then,
causes any specified data to appear in the Output window (which makes it handy for
determining what’s going on when a program is running).

The question is, what made the trace() command place your text in the Output win-
dow? When you create a variable or issue a command, you’re actually addressing the
ActionScript interpreter, which runs your programs, manages your code, listens for
instructions, performs any ActionScript commands, executes your statements, stores
your data, sends you information, calculates values, and even starts up the basic pro-
gramming environment when a movie is loaded into the Flash Player.

The interpreter translates your ActionScript into a language that the computer
understands and can use to carry out your instructions. During movie playback, the
interpreter is always active, dutifully attempting to understand commands you give
it. If the interpreter can understand your commands, it sends them to the com-
puter’s processor for execution. If a command generates a result, the interpreter pro-
vides that response to you. If the interpreter can’t understand the command, it either
sends you an error message or fails silently. The interpreter, hence, acts like a magic
genie—it carries out the orders you specify in your code and reports back to you
from Flash when it’s done. Like a genie, it always does exactly what you say, not nec-
essarily what you think you mean!

Let’s take a closer look at how the interpreter works by examining how it handles a
simple trace() action.

Consider this command as the interpreter would:

trace ("Nice night to learn ActionScript.");

The interpreter immediately recognizes the keyword trace from its special list of legal
command names. The interpreter also knows that trace() is used to display text in
the Output window, so it also expects to be told what text to display. It finds, “Nice
night to learn ActionScript.” between parentheses following the word trace and
thinks, “Aha! That’s just what I need. I’ll have that sent to the Output window right
away!”

Note that the entire command is terminated by a semicolon (;). The semicolon acts
like the period at the end of a sentence; with few exceptions, every ActionScript
statement should end with a semicolon. With the statement successfully understood
and all the required information in hand, the interpreter translates the command for
the processor to execute, causing our text to appear in the Output window.

That’s a gross oversimplification of the internal details of how a computer processor
and an interpreter work, but it illustrates these points:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Some Basic Phrases | 11

• The interpreter is always listening for your instructions.

• The interpreter has to read your code, letter by letter, and try to understand it.
This is the same as you trying to read and understand a sentence in a book.

• The interpreter reads your ActionScript using strict rules—if the parentheses in
our trace() statement were missing, for example, the interpreter wouldn’t be able
to understand what’s going on, and the command would fail.

You’ve only just been introduced to the interpreter, but you’ll be as intimate with it
as you are with a lover before too long: lots of fights, lots of yelling—“Why aren’t
you listening to me?!”—and lots of beautiful moments when you understand each
other perfectly. Strangely enough, my dad always told me the best way to learn a new
language is to find a lover that speaks it. May I, therefore, be the first to wish you all
the best in your new relationship with the ActionScript interpreter. From now on, I’ll
regularly refer to “the interpreter” interchangeably with “Flash” when describing
how ActionScript instructions are carried out.

Extra Info Required (Arguments)
You’ve already seen one case in which we provided the interpreter with the text to
display when issuing a trace() command. This approach is common; we’ll often pro-
vide the interpreter with ancillary data required to execute a command. There’s a
special name for a datum sent to a command: an argument, or synonymously, a
parameter. To supply an argument to a command, enclose the argument in parenthe-
ses, like this:

command(argument);

When supplying multiple arguments to a command, separate them with commas,
like this:

command(argument1, argument2, argument3);

Supplying an argument to a command is known as passing the argument. For exam-
ple, in the code phrase gotoAndPlay(5), the word gotoAndPlay is the name of the
command, and 5 is the argument being passed (in this case the frame number). Some
commands, such as stop(), require parentheses but do not accept arguments. You’ll
learn why in Chapter 9, where we discuss functions in detail.

ActionScript’s Glue (Operators)
Let’s take another look at your fourth line of code, which contains this trace()
statement:

trace ("Hi there, " + firstName + ", nice to meet you.");

See the + (plus) signs? They’re used to join (concatenate) our text together and are
but one of many available operators. The operators of a programming language are
akin to conjunctions (“and,” “or,” “but,” etc.) in human languages. They’re devices

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: A Gentle Introduction for Nonprogrammers

used to combine and manipulate phrases of code. In the trace() example, the plus
operator joins the quoted text “Hi there, “ to the text contained in the variable
firstName.

All operators link phrases of code together, manipulating those phrases in the pro-
cess. Whether the phrases are text, numbers, or some other datatype, an operator
almost always performs some kind of transformation. Very commonly, operators
combine two things together, as the plus operator does. But other operators com-
pare values, assign values, facilitate logical decisions, determine datatypes, create
new objects, and provide various other handy services.

When used with two numeric operands, the plus sign (+) and the minus sign (–), per-
form basic arithmetic. The following command displays “3” in the Output window:

trace(5 - 2);

The less-than operator (<) checks which of two numbers is smaller or determines
which of two letters is alphabetically first:

if (3 < 300) {
 // Do something...
}
if ("a" < "z") {
 // Do something else...
}

The combinations, comparisons, assignments, or other manipulations performed by
operators are known as operations. Arithmetic operations are the easiest operations
to understand, because they follow basic mathematics: addition (+), subtraction (–),
multiplication (*), and division (/). But some operators will be less recognizable to
you, because they perform specialized programming tasks. Take the typeof operator,
for example. It tells us what kind of data is stored in a variable. So, if we create a vari-
able x, and assign it the value 4, we can then ask the interpreter what datatype x con-
tains, like this:

var x = 4;
trace (typeof x);

When this code is executed, Flash displays the word “number” in the Output win-
dow. Notice that we provided the typeof operator with a value upon which to oper-
ate—x—but without using parentheses: typeof x. You might therefore wonder
whether x is an argument of typeof. In fact, x plays the same role as an argument (it’s
an ancillary piece of data needed in the computation of the phrase of code), but in
the context of an operator, it is officially called an operand. An operand is an item
upon which an operator operates. For example, in the expression 4 + 9, the num-
bers 4 and 9 are operands of the + operator.

Chapter 5 covers ActionScript operators in detail. For now, just remember that oper-
ators link together phrases of code in an expression.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Further ActionScript Concepts | 13

Putting It All Together
Let’s review what you’ve learned. Here, again, is line one of our example:

var message = "Hi there, Flash!";

The keyword var tells the interpreter that we’re declaring (creating) a new variable.
The word message is the name of our variable (a name we’ve chosen arbitrarily). The
equals sign is an operator that assigns the text string (“Hi there, Flash!”) to the vari-
able named message. Hence, the text “Hi there, Flash!” becomes the value of message.
Finally, the semicolon (;) tells the interpreter that we’re finished with our first state-
ment.

Line two is pretty much the same as line one:

var firstName = "your name here";

It assigns the text string you typed in place of your name here to the variable
firstName. A semicolon ends our second statement.

We reuse the variables message and firstName in lines three and four:

trace (message);
trace ("Hi there, " + firstName + ", nice to meet you.");

The keyword trace tells the interpreter to display some text in the Output window.
We pass the text to be displayed as an argument. The opening parenthesis marks the
beginning of our argument. The trace() command requires one argument, but that
argument might be a fairly complex expression. For example, in line four, the argu-
ment includes two operations, both of which use the plus operator, joining three
operands. The first operation joins its first operand, “Hi there, ” to the value of its
second operand, firstName. The second operation joins the text “, nice to meet you.”
to the result of the first operation. The closing parenthesis marks the end of our argu-
ment, and the semicolon once again terminates our statement. Technically, paren-
theses demarcate a list of one or more arguments. If a command requires more than
one argument, the arguments are separated by commas (the commas in the preced-
ing example are part of the text, because they are enclosed in quotes, and should not
be confused with commas used to separate multiple arguments, as shown later).

Blam! You’ve written your first ActionScript program. That has a nice ring to it, and
it’s an important landmark.

Further ActionScript Concepts
You’ve already seen many of the fundamental elements that make up ActionScript:
data, variables, operators, statements, functions, and arguments. Before we delve
deeper into those topics, let’s sketch out the rest of ActionScript’s core features.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: A Gentle Introduction for Nonprogrammers

Flash Programs
To most computer users, a program is synonymous with an application, such as
Adobe Photoshop or Macromedia Dreamweaver MX. Obviously, that’s not what
we’re building when we program in Flash. Programmers, on the other hand, define a
program as a collection of code (a series of statements), but that’s only part of what
we’re building.

A Flash movie is more than a series of lines of code. Code in Flash is intermingled
with Flash movie elements, such as frames, movie clips, graphics, and buttons. In the
end, there really isn’t such a thing as a Flash “program” in the classic sense of the
term. Instead of complete programs written in ActionScript, we have scripts: code
segments that give programmatic behavior to our movie, just as JavaScript scripts
give programmatic behavior to HTML documents. The real product we’re building is
not a program but a complete Flash movie (the exported .swf file, including its code,
timelines, visuals, sound, and other assets).

Our scripts include most of what you’d see in traditional programs, without the
operating system–level stuff you would write in languages like C++ or Java to place
graphics on the screen or cue sounds. We’re spared the need to manage the nuts and
bolts of graphics and sound programming, which allows us to focus most of our
effort on designing the behavior of our movies.

Expressions
The statements of a script, as we’ve learned, contain the script’s instructions. But
most instructions are pretty useless without data. When we set a variable, for exam-
ple, we assign some data as its value. When we use the trace() command, we pass
data as an argument for display in the Output window. Data is the content we
manipulate in our ActionScript code. Throughout your scripts, you’ll retrieve, assign,
store, and generally sling around a lot of data.

In a program, any phrase of code that yields a single datum when a program runs is
referred to as an expression. The number 7 and the string “Welcome to my web site,”
are both very simple expressions. They represent simple data that will be used as-is
when the program runs. As such, these expressions are called literal expressions, or
literals for short.

Literals are only one kind of expression. A variable may also be an expression (vari-
ables contain data and can stand in wherever data is needed, so they count as expres-
sions). Expressions get even more interesting when they are combined with operators
to form larger expressions. For example, the complex expression 4 + 5 includes two
operands, 4 and 5, but the plus operator makes the entire expression yield the single
value 9. Complex expressions may contain other, shorter expressions, provided that
the entire phrase of code can still be converted into a single value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Further ActionScript Concepts | 15

Here we see the variable message:

var message = "Hi there, Flash!";

If we like, we can combine the variable expression message with the literal expres-
sion “ How are you?” as follows:

message + " How are you?"

which becomes “Hi there, Flash! How are you?” when the program runs. You’ll fre-
quently see complex expressions that include shorter expressions when working with
arithmetic, such as:

(2 + 3) * (4 / 2.5) - 1

It’s important to be exposed to expressions early in your programming career,
because the term “expression” is often used in descriptions of programming con-
cepts. For example, I might write, “To assign a value to a variable, type the name of
the variable, then an equals sign followed by any expression.”

Two Vital Statement Types: Conditionals and Loops
In nearly all programs, we’ll use conditionals to add logic to our programs and loops
to perform repetitive tasks.

Making choices using conditionals

One of the really rewarding aspects of Flash programming is making your movies
smart. Here’s what I mean by smart: Suppose a girl named Wendy doesn’t like get-
ting her clothes wet. Before Wendy leaves her house every morning, she looks out
the window to check the weather, and if it’s raining, she brings an umbrella.
Wendy’s smart. She uses basic logic—the ability to look at a series of options and
make a decision about what to do based on the circumstances. We use the same
basic logic when creating interactive Flash movies.

Here are a few examples of logic in a Flash movie:

• Suppose we have three sections in a movie. When a user goes to each section, we
use logic to decide whether to show her the introduction to that section. If she
has been to the section before, we skip the introduction. Otherwise, we show the
introduction.

• Suppose we have a section of a movie that is restricted. To enter the restricted
zone, the user must enter a password. If the user enters the right password, we
show her the restricted content. Otherwise, we prohibit access.

• Suppose we’re moving a ball across the screen, and we want it to bounce off a
wall. If the ball reaches a certain point, we reverse the ball’s direction. Other-
wise, we let the ball continue traveling in the direction it was going.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: A Gentle Introduction for Nonprogrammers

These examples of movie logic require a special type of statement called a condi-
tional. Conditionals let us specify the terms under which a section of code should—
or should not—be executed. Here’s an example of a conditional statement:

if (userName = = "James Bond") {
 trace ("Welcome to my web site, 007.");
}

The generic structure of a conditional is:

if (this condition is met) {
then execute these lines of code

}

You’ll learn more about the detailed syntax of conditionals in Chapter 7. For now,
remember that a conditional allows Flash to make logical decisions.

Repeating tasks using loops

Not only do we want our movies to make decisions, we want them to do tedious,
repetitive tasks for us. That is, until they take over the world and enslave us and
grow us in little energy pods as . . . wait . . . forget I told you that . . . ahem. Suppose
you want to display a sequence of five numbers in the Output window, and you
want the sequence to start at a certain number. If the starting number is 1, you can
display the sequence like this:

trace (1);
trace (2);
trace (3);
trace (4);
trace (5);

But if you want to start the sequence at 501, you’d have to retype all the numbers as
follows:

trace (501);
trace (502);
trace (503);
trace (504);
trace (505);

We can avoid that retyping by making our trace() statements depend on a variable,
like this:

var x = 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Further ActionScript Concepts | 17

On line 1, we set the value of the variable x to 1. Then at line 2, we display that value
in the Output window. On line 3, we say, “Take the current value of x, add 1 to it,
and stick the result back into our variable x,” so x becomes 2. Then we display the
value of x in the Output window again. We repeat this process three more times. By
the time we’re done, we’ve displayed a sequence of five numbers in the Output win-
dow. The beauty is that if we now want to change the starting number of our
sequence to 501, we just change the initial value of x from 1 to 501. Because the rest
of our code is based on x, the entire sequence changes when we change the initial
value.

That’s an improvement over our first approach, and it works pretty well when we’re
displaying only five numbers, but it becomes impractical if we want to count to
1,000. To perform highly repetitive tasks, we use a loop—a statement that causes a
block of code (i.e., one or more instructions) to be performed a specified number of
times. There are several types of loops, each with its own syntax. One of the most
common loop types is the while loop. Here’s what our counting example would look
like as a while loop instead of as a series of individual statements:

var x = 1;
while (x <= 5) {
 trace (x);
 x = x + 1;
}

The keyword while indicates that we want to start a loop. The expression (x <= 5)
governs how many times the loop should execute (as long as x is less than or equal to
5), and the statements trace(x); and x = x + 1; are executed with each repetition (iter-
ation) of the loop. As it is, our loop saves us only five lines of code, but it could save
us hundreds of lines if we were counting to higher numbers. And our loop is flexi-
ble. To make our loop count to 1,000, we simply change the expression (x <=5) to (x
<=1000):

var x = 1;
while (x <= 1000) {
 trace (x);
 x = x + 1;
}

Like conditionals, loops are one of the most frequently used and important types of
statements in programming.

Modular Code (Functions)
So far, your longest script has consisted of five lines of code. But it won’t be long
before those five lines become 500, or maybe even 5,000. When you want to manage
your code more efficiently, reduce your work, and make your code easier to apply to
multiple scenarios, you’ll learn to love functions. A function is a packaged series of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: A Gentle Introduction for Nonprogrammers

statements that performs some useful action or calculation. In practice, functions
serve mostly as reusable blocks of code.

Suppose you want to write a script that calculates the area of a 4-sided figure. With-
out functions, your script might look like this:

var height = 10;
var width = 15;
var area = height * width;

Now suppose you want to calculate the area of five 4-sided figures. Your code quin-
tuples in length:

var height1 = 10;
var width1 = 15;
var area1 = height1 * width1;
var height2 = 11;
var width2 = 16;
var area2 = height2 * width2;
var height3 = 12;
var width3 = 17;
var area3 = height3 * width3;
var height4 = 13;
var width4 = 18;
var area4 = height4 * width4;
var height5 = 20;
var width5 = 5;
var area5 = height5 * width5;

Because we’re repeating the area calculation over and over, we are better off putting
it in a function once and executing that function multiple times:

function area(height, width){
 return height * width;
}
area1 = area(10, 15);
area2 = area(11, 16);
area3 = area(12, 17);
area4 = area(13, 18);
area5 = area(20, 5);

In this example, we first create the area-calculating function using the function state-
ment, which defines (declares) a function just as var declares a variable. Then we
give our function a name, area, just as we give variables names. Between the paren-
theses, we list the arguments that our function receives every time it’s used: height
and width. And between the curly braces ({ }), we include the statement we want
executed:

return height * width;

After we create a function, we may run the code it contains from anywhere in our
movie by using the function’s name. In our example we called the area() function
five times, passing it the height and width values it expects each time: area(10, 15),
area(11, 16), and so on. The result of each calculation is returned to us, and we store
those results in the variables area1 through area5. This is nice and neat, and much

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Further ActionScript Concepts | 19

less work than the nonfunction version of our code shown earlier. Enclosing reus-
able code within functions save us time and reduces the number of lines of code
needed. It also makes our code much more legible and modular. Someone reading
the code can probably guess what the area() function does, based solely on its name.

Don’t fret if you have questions about this function example; we’ll learn more about
functions in Chapter 9. For now, just remember that functions give us an extremely
powerful way to create complex systems. Functions help us reuse our code and pack-
age its functionality, extending the limits of what is practical to build.

Built-in functions

Notice that functions take arguments just as the trace() command does. Invoking
the function area(4, 5); looks very much the same as issuing the trace() command
such as trace (x); except that the area() function requires two arguments, which are
separated by commas, whereas the trace() command requires a single argument. The
similarity is not a coincidence. As we learned earlier, many Actions, including the
trace() Action, are actually functions. But they are a special type of function that is
built into ActionScript (as opposed to user-defined functions, like our area() func-
tion). It is, therefore, legitimate—and technically more accurate—to say, “Call the
gotoAndStop() function,” than to say, “Execute a gotoAndStop Action.” A built-in
function is simply a reusable block of code that comes with ActionScript for our
convenience. Built-in functions let us do everything from performing mathematical
calculations to controlling movie clips. All the built-in functions are listed in Part II,
the Language Reference. We’ll encounter many of them as we learn ActionScript’s
fundamentals.

Objects and Object-Oriented Programming
We’ve learned that a statement is an ActionScript command that makes Flash do
something. And we know that a function groups multiple statements into a single
convenient command. Functions provide organization for our code that lets us build
more complex programs. Objects take the next logical step—they package a series of
related functions and variables into a single code module.

As a program’s complexity increases, it becomes more and more difficult to describe
its operation as a single linear set of instructions (statements). Objects help us con-
ceptually model the behavior of a program as an interrelated series of self-contained
components, rather than a long list of commands. For example, in the bouncing ball
example from the beginning of this chapter, we could use objects to represent the
bouncing ball and the square room in which the ball bounces. The ball object would
encompass functions that relate to the ball, such as startMoving(), stopMoving(),
and checkForWall(). It would also contain information about the ball, stored in vari-
ables such as velocity, color, and diameter. The room object might include the func-
tions setRoomSize() and addBall() and the variables width and height. When we use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: A Gentle Introduction for Nonprogrammers

objects, our program’s conceptual model is reflected by an intuitive syntax that looks
like this:

room.addBall();
ball.diameter = 5;
ball.startMoving();

In general terms, the object (noun) comes first, followed by a dot (.), followed by
either a function (verb) or a variable (adjective). The function does something to the
object, while the variable tells us something about the object. Functions associated
with an object are often called methods. Variables associated with an object are often
called properties. Here are some examples:

object.method();
boy.run();
someMovieClip.play();

object.property = value;
boy.speed = 5;
someMovieClip._width = 60;

Object-oriented programming (OOP) is an approach in which objects are the funda-
mental building blocks of a program. There are, however, varying degrees of OOP
depending on the language and the developer’s taste. Purists insist that every part of
a program should be contained by an object (this rule is enforced by the Java pro-
gramming language). Others are happy using objects to structure only certain parts
of a program (this is common in ActionScript).

Regardless, you should become familiar with objects, because they are intrinsic to
ActionScript’s makeup. Nearly everything in Flash—from buttons to text fields to
movie clips—is represented in ActionScript by an object. Even if you never organize
your own code with objects, you’ll have to use object-oriented programming tech-
niques to control the buttons, text, and movie clips in your movie. Chapter 12 cov-
ers object-oriented programming in exhaustive detail. For now, just start thinking of
things in Flash, such as movie clips, as objects that can perform certain tasks (e.g.,
play()) or store information (e.g., _width).

Movie Clip Instances
With all this talk about programming fundamentals, I hope you haven’t forgotten
about the basics of Flash. One of the keys to visual programming in Flash is movie
clip instances. As a Flash designer or developer, you should already be familiar with
movie clips, but you may not think of movie clips as programming devices.

Every movie clip has a symbol definition that resides in the Library of a Flash movie.
We can add many copies, or instances, of a single movie clip symbol to a Flash movie
by dragging the clip from the Library onto the Stage. We can also create movie clips
at runtime via ActionScript. All visual programming in Flash involves some degree of
movie clip instance control. For example, a bouncing ball is nothing more than a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Further ActionScript Concepts | 21

movie clip instance that is repositioned on the Stage repetitively. Using ActionScript,
we can alter an instance’s location, size, current frame, rotation, and so forth, during
the playback of our movie.

If you’re unfamiliar with movie clips and instances, see “Working with Movie Clips
and Buttons” under Help ➝ Using Flash before continuing with the rest of this book.

The Event-Based Execution Model
The final topic in our overview of ActionScript fundamentals is the execution model,
which dictates when the code in your movie runs (is executed). You may have code
attached to various frames, buttons, and movie clips throughout your movie, but
when does it all actually run? To answer that question, let’s take a short stroll down
computing history’s memory lane.

In the early days of computing, a program’s instructions were executed sequentially,
in the order that they appeared, starting with the first line and ending with the last
line. The program was meant to perform some action and then stop. That kind of
linear program, called a batch program, doesn’t handle the interactivity required of
an event-based programming environment like Flash.

Event-based programs don’t run in a linear fashion. They run continuously (in an
event loop), waiting for things (events) to happen and executing code segments in
response to those events. In a language designed for use with a visual interactive
environment (such as ActionScript or JavaScript), the events are typically user
actions such as mouseclicks or keystrokes.

When an event occurs, the interpreter notifies your program of the event. Your pro-
gram can then react to the event by asking the interpreter to execute an appropriate
segment of code. For example, if a user clicks a button in a movie, we could execute
some code that displays a different section of the movie (navigation) or submits vari-
ables to a database (form submission).

But programs don’t react to events unless we create event handlers and/or event lis-
teners that tell the interpreter which function to run when a certain event happens. In
Flash MX, we create an event handler using the general form:

someObject.onSomeEvent = someFunction;

Flash MX allows this event syntax for movie clips and buttons,
whereas Flash 5 required a special event syntax for movie clips and
buttons. For details, see Chapter 10.

Events always occur in relation to some object in our program. For example, a but-
ton might rotate the movie clip in which it resides using the following event handler:

rotateButton.onRelease = rotate;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: A Gentle Introduction for Nonprogrammers

In natural language, this tells the interpreter, “When the mouse button is released
over the rotateButton object, execute the rotate function.” The rotate function might
look like this:

function rotate () {
 this._parent._rotation = 45;
}

A function that is executed when an event occurs is known as a callback function. As
we’ll learn in Chapter 10, within a callback function, the keyword this refers to the
object that defined the event handler (in our case, rotateButton). In the case of a but-
ton reacting to a mouseclick, this refers to the button that was clicked. Using object-
oriented syntax, the movie clip in which the button resides is referred to as this.
_parent (the movie clip is the button’s _parent because it contains the button).
Finally, we set the rotation of the parent movie clip to 45 degrees by assigning 45 to
this._parent._rotation:

this._parent._rotation = 45;

This literally translates to, “Set the rotation of this button’s parent movie clip to 45
degrees.”

Our sample button event handler is commonly written more succinctly as:

rotateButton.onRelease = function () {
 this._parent._rotation = 45;
};

Event-based programs are always running an event loop, ready to react to the next
event. Events are crucial to interactivity. Without events, our scripts wouldn’t do
anything—with one exception: Flash executes any code on a frame when the play-
head enters that frame. The implied event is simply the playhead entering the partic-
ular frame, which is so intrinsic to Flash that no explicit event handler is required.

Events literally make things happen, which is why they come at the end of your first
day of ActionScript language school. You’ve learned what’s involved in writing
scripts and that events govern when those scripts will be executed. I’d say you’re
ready to try your first real conversation.

Building a Multiple-Choice Quiz
Now that we’ve explored the basic principles of ActionScript, let’s apply those prin-
ciples in the context of a real Flash movie. We’ll start our applied study of Flash pro-
gramming by creating a multiple-choice quiz, using very simple programming
techniques, most of which you’ve already learned. We’ll revisit our quiz in later
chapters to see how it can be improved after learning more advanced programming
concepts. We’ll eventually make the code more elegant so that it’s easier to extend
and maintain, and we’ll add more features to our quiz so that it can easily handle any
number of questions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 23

The finished .fla file for this quiz can be found in the online Code Depot, cited in the
Preface. This is a lesson in Flash programming, not Flash production. I assume that
you are already comfortable creating and using buttons, layers, frames, keyframes,
and the Text tool. If not, consult the Flash Help documentation. The quiz shows a
real-world application of the following aspects of ActionScript programming:

• Variables

• Controlling the playhead of a movie with functions

• Button event handlers

• Simple conditionals

• Text field objects used for on-screen display of information

Quiz Overview
Our quiz, part of which is shown in Figure 1-4, will have only two questions. Each
question comes with three multiple-choice answers. Users submit their answers by
clicking the button that corresponds to their desired selections. The selections are
recorded in a variable that is later used to grade the quiz. When all the questions
have been answered, the number of correct answers is tallied, and the user’s score is
displayed.

Building the Layer Structure
When building Flash movies, it’s important to organize your content into manage-
able divisions by keeping different content elements on individual layers. Layering
content is a good production technique in general, but it is essential in Flash pro-
gramming. In our quiz, and in the vast majority of our scripted movies, we’ll keep all
our timeline scripts on a single isolated layer, called scripts. I keep the scripts layer as
the first one in my layer stack so that it’s easy to find.

We’ll also keep all our frame labels on a separate layer, called (surprise, surprise)
labels. The labels layer should live beneath the scripts layer on all your timelines. In
addition to these two standard layers (scripts and labels), our quiz movie has a series
of content layers on which we’ll isolate our various content assets.

Start building your quiz by creating and naming the following layers (using Insert
➝ Layer) and arranging them in this order:

scripts
labels
quiz end
question 2
question 1
choice buttons
housing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: A Gentle Introduction for Nonprogrammers

Now add 30 frames to each of your layers (by highlighting 30 frames in the timeline
and choosing Insert ➝ Frame or F5). Your timeline should look like the one in
Figure 1-5.

Creating the Interface and Questions
Before we get to the scripts that run the quiz, we need to set up the questions and the
interface that will let the user progress through the quiz.

Follow these steps to create the questions and quiz title:

1. With frame 1 of the housing layer selected, use the Text tool to type your quiz
title directly on the Stage.

Figure 1-4. A Flash quiz

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 25

2. At frame 1 of the question 1 layer, add the question number “1” and the text for
Question 1, “When were movie clips introduced into Flash?” Leave room for the
answer text and buttons below your question.

3. Below your question text (still on the question 1 layer), add the text of your three
multiple-choice answers: “Version 1,” “Version 2,” and “Version 3,” each on its
own line.

4. We’ll use Question 1 as a template for Question 2. Select the first frame of the
question 1 layer and choose Edit ➝ Copy Frames (not Edit ➝ Copy).

5. Select frame 10 of the question 2 layer and choose Edit ➝ Paste Frames (not Edit
➝ Paste). A duplicate of your first question appears on the question 2 layer at
frame 10.

6. To prevent Question 1 from appearing behind Question 2, add a blank key-
frame at frame 10 of the question 1 layer using Insert ➝ Blank Keyframe.

7. Back on frame 10 of the question 2 layer, change the question number from “1”
to “2” and change the text of the question to, “When was MP3 audio support
added to Flash?” Change the multiple-choice answers to “Version 3,” “Version
4,” and “Version 5.”

Our questions are almost complete, but we must add the buttons the user will press
to answer each question:

1. Create a simple button symbol (Insert ➝ New Symbol ➝ Button) that looks like a
checkbox or radio button and measures no higher than a line of text (see the
buttons in Figure 1-4).

2. At frame 1 of the choice buttons layer, next to your three Question 1 answers,
place three instances of your checkbox button.

3. Select the topmost button (next to the first answer), and, using the Property
inspector, set the <Instance Name> to choice1_btn.

4. Repeat step 3 to name the remaining two answer buttons choice2_btn and
choice3_btn (from top to bottom).

Figure 1-5. Quiz timeline initial setup

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: A Gentle Introduction for Nonprogrammers

Figure 1-6 shows how your timeline will look after you’ve added the two questions
to the quiz. Notice that we use frames on the timeline to represent so-called applica-
tion states. Each “screen” of the quiz application gets its own frame. Later we’ll add
labels to the question frames and see how this facilitates navigation between frames
within our program, allowing us to display the desired state—in this case, the appro-
priate question—easily.

Initializing the Quiz
Our first order of business in our quiz script is to create the variables we’ll use
throughout our movie.

In our quiz, we create variables on the first frame of the movie, but in
other movies we’ll normally do it after preloading part or all of the
movie. Either way, we want to initialize our variables before any other
scripting occurs.

Once our variables are defined, we invoke the stop() function to keep the user
paused on the first frame (where the quiz starts).

For more complex situations, we may also set the initial state of our application by
calling functions in preparation for the rest of the movie. This step is known as ini-
tialization. A function that starts processes in motion or defines the initial conditions
under which a system operates is traditionally named init.

Before attaching the quiz’s init code, shown in Example 1-1, to frame 1 of the scripts
layer, let’s examine what it does.

Figure 1-6. Quiz timeline with two questions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 27

Line 1 of our init sequence is a comment. Comments are notes that you add to your
code to explain what’s going on. A single-line comment starts with two forward
slashes and (preferably) a space, which is then followed by a line of text:

// This is a comment

Notice that comments can be placed at the end of a line, following your code, like
this:

var x = 5; // This is also a comment

Line 2 of Example 1-1 creates a variable named q1answer. Recall that to create a vari-
able we use the var keyword followed by a variable name, as in:

var favoriteColor;

So, the second through fourth lines of our code declare the variables we’ll need, com-
plete with comments explaining their purpose:

• q1answer and q2answer will contain the value of the user’s answer (1, 2, or 3,
indicating which of the three multiple-choice answers was selected for each
question). We’ll use these values to check whether the user answered the ques-
tions correctly.

• totalCorrect will be used at the end of the quiz to tally the number of questions
that the user answered correctly.

Take a closer look at Line 4 of Example 1-1:

var totalCorrect = 0; // Counts number of correct answers

Line 4 performs double duty; it first declares the variable totalCorrect and then
assigns the value 0 to that variable using the assignment operator, =. We initialize
totalCorrect to 0 because the user hasn’t answered any of the questions correctly at
the beginning of the quiz. The other variables don’t need default values because they
are set explicitly during the quiz.

After our variables have been defined, we call the stop() function, which halts the
playback of the movie at the current frame—in this case, frame 1—where the quiz
begins:

// Stop the movie at the first question
stop();

Example 1-1. Init code for quiz

// Init main timeline variables
var q1answer; // User's answer for question 1
var q2answer; // User's answer for question 2
var totalCorrect = 0; // Counts number of correct answers

// Stop the movie at the first question
stop();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: A Gentle Introduction for Nonprogrammers

Observe, again, the use of the comment before the stop() function call. That com-
ment explains the intended effect of the code that follows.

Comments are optional, but they help clarify our code in case we leave
it for a while and need a refresher when we return, or if we pass our
code onto another developer. Comments also make code easy to scan,
which is important during debugging.

Now that you know what our init code does, let’s attach it to frame 1 of our quiz
movie’s scripts layer:

1. Select frame 1 of the scripts layer.

2. Use Window ➝ Actions (F9) to open the Actions panel.

3. Make sure you’re using Expert Mode, which can be set as a permanent prefer-
ence via the pop-up Options menu in the top right corner of the Actions Panel.

4. In the right side of the Actions panel, type the init code as shown earlier in
Example 1-1.

Adding Frame Labels
We’ve completed our quiz’s init script and built our questions. We will now add

some frame labels to help control the playback of our quiz.

In order to step the user through our quiz one question at a time, we’ve separated the
content for Question 1 and Question 2 into frames 1 and 10. By moving the play-
head to those keyframes, we’ll create a slide show effect, where each slide contains a
question. We know that Question 2 is on frame 10, so when we want to display
Question 2, we can call the gotoAndStop() function like this:

gotoAndStop(10);

which causes the playhead to advance to frame 10, the location of Question 2. A sen-
sible piece of code, right? Wrong! Whereas using the specific number 10 with our
gotoAndStop() function works, it isn’t flexible (using literals in this manner is called
hardcoding, which is often ill-advised). If, for example, we added five frames to the
timeline before frame 10, Question 2 would suddenly reside at frame 15, and our
gotoAndStop(10) command would not bring the user to the correct frame. To allow
our code to work even if the frames in our timeline shift, we use frame labels instead
of frame numbers. Frame labels are expressive names, such as q2 or quizEnd, attached
to specific points on the timeline.

Once a frame is labeled, we can use the label to refer to the frame by
name instead of by number. The flexibility of frame labels is indispens-
able. I hardly ever use frame numbers with playback-control functions
like gotoAndStop().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 29

Let’s add all the labels we’ll need for our quiz now, so we can use them later to walk
the user through the quiz questions:

1. On the labels layer, select frame 1.

2. In the Property inspector, for <Frame Label>, type init.

3. At frame 10 of the labels layer, add a blank keyframe.

4. In the Property inspector, for <Frame Label>, type q2.

5. At frame 20 of the labels layer, add a blank keyframe.

6. In the Property inspector, for <Frame Label>, type quizEnd.

Variable Naming Styles
By now you’ve seen quite a few variable names, and you may be wondering about the
capitalization. If you’ve never programmed before, a capital letter in the middle of a
word, as in firstName, or totalCorrect, may seem odd. Capitalizing the second word
(and any subsequent words) of a variable name visually demarcates the words within
that name. We use this technique because spaces and dashes aren’t allowed in a vari-
able name. But don’t capitalize the first letter of a variable name—conventionally, an
initial capital letter is used to name object classes, not variables.

If you use underscores instead of capital letters to separate words in variables, as in
first_name and total_correct, be consistent. Don’t use firstName for some variables
and second_name for others. Use one of these styles so that other programmers will find
your code understandable. In some languages, variable names are case-sensitive,
meaning that firstName and firstname are considered two different variables. Action-
Script, however, treats them as the same thing, though it’s bad form to use two differ-
ent cases to refer to the same variable. If you call a variable xPOS, don’t refer to it
elsewhere as xpos.

Always give your variables and functions meaningful names that help you remember
their purpose. Avoid meaningless names like foo, and use single-letter variables, such
as x or i, only for simple things, such as the index (i.e., counting variable) in a loop.
Don’t confuse x and y (as used in our introductory examples, without an underscore)
with _x and _y. Whereas x and y are arbitrary variable names chosen by the program-
mer, _x and _y are built-in properties that represent the horizontal and vertical position
of, for example, a movie clip. See MovieClip._x in the Language Reference for details.

Some kinds of data in ActionScript have a recommended suffix of the form _suffix (see
Table 2-1 in Chapter 2). For example, movie clips are indicated by the suffix _mc, text
fields by _txt, and buttons by _btn. For clarity, add these to the end of your variable
names, as in: ball_mc, or submit_btn.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: A Gentle Introduction for Nonprogrammers

Scripting the Answer Buttons
Our questions are in place, our variables have been initialized, and our frames have

been labeled. If we were to test our movie now, we’d see Question 1 appear with
three answer buttons that do nothing when clicked, and we’d have no way for the
user to get to Question 2. We need to add some code to the answer buttons so that
they will advance the user through the quiz and keep track of answers along the way.

Recall that we named our button instances choice1_btn, choice2_btn, and choice3_
btn, as shown in Figure 1-7.

To make the Question 1 buttons store the user’s answer and display the next ques-
tion when pressed, we’ll use the code in Example 1-2.

The code for each button consists of two statements that are executed only when a
mouseclick is detected. In natural language, the code for each button says, “When
the user clicks this button, make a note that he chose answer 1, 2, or 3; then proceed
to Question 2.” Let’s dissect how it works, concentrating on the first button only:

Figure 1-7. The answer buttons

Example 1-2. Question 1 button code

// Code executed when button 1 is pressed.
choice1_btn.onRelease = function () {
 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.q1answer = 2;
 this._parent.gotoAndStop("q2");
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.q1answer = 3;
 this._parent.gotoAndStop("q2");
};

choice1_btn

choice2_btn

choice3_btn

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 31

choice1_btn.onRelease = function () {
 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");
};

Line 1 is the beginning of an event handler. It specifies:

• The name of the button that should respond to the event: choice1_btn

• The name of the event to which the button should respond: onRelease (which
occurs when the user clicks and releases the mouse over the button)

• The function to run when the event actually happens: function () { ... }

A function executed in response to an event is known as a callback
function.

The opening curly brace ({) marks the beginning of the block of statements that
should be executed when the onRelease event occurs. The end of the code block is
marked by a closing curly brace (}), which is the end of the event handler’s callback
function.

choice1_btn.onRelease = function () {
 ...
}

The event handler waits patiently for the user to click button 1. When the button is
clicked, Flash executes our callback function, which contains the following two
lines:

 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");

The first line sets our variable q1answer to 1 (the other answer buttons set it to 2 or
3). The q1answer variable stores the user’s answer for the first question. However, as
a matter of good form, we provide not just the name of the q1answer variable, but
also its location in relation to the button. The expression this._parent means “this
button’s parent movie clip” or, synonymously, “the movie clip that contains this but-
ton.” The keyword this represents the button itself, while _parent is the button’s
parent movie clip. So, the complete statement this._parent.q1answer = 1 means, “In
this button’s parent movie clip, set the variable q1answer to 1.” If you’re new to this
syntax, you may find it overly verbose. However, as we’ll learn in Chapter 2, every
variable has a home (usually a movie clip), and we’re normally required to provide
not only a variable’s name but also its location (e.g., this._parent.q1answer, as
opposed to just q1answer).

Once we have recorded the user’s answer for Question 1 in q1answer, we advance to
Question 2 via line 2 of our callback function:

 this._parent.gotoAndStop("q2");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: A Gentle Introduction for Nonprogrammers

Line 2 calls the gotoAndStop() function, passing it the frame label "q2" as an argu-
ment, which advances the movie’s playhead to the frame q2, where Question 2
appears. However, once again we must specify, in relation to the button clicked, pre-
cisely which movie clip’s playhead should move to the label q2. Just as with our vari-
able, we want to control the button’s parent movie clip, so we preface our
gotoAndStop() function call with this._parent.

Each of our answer buttons performs the same basic tasks (sets q1answer and dis-
plays frame q2). Hence, the three button event handlers differ in only two ways:

• Each specifies a different button instance name (choice1_btn, choice2_btn,
choice3_btn).

• Each sets a different value for q1answer, recording the user’s actual answer to the
question.

To apply the event handlers to the Question 1 buttons, enter the code from
Example 1-2 into your script, below the existing init code on frame 1 of the scripts
layer. When you’re done, the Actions panel for frame 1 of the scripts layer should
resemble Figure 1-8.

Figure 1-8. Code on frame 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 33

That takes care of the code for the Question 1 buttons. Let’s move on to the Ques-
tion 2 buttons. They work exactly like the Question 1 buttons, but they must record
the user’s selection for Question 2 instead of Question 1, and they must display the
quiz-end screen, not the next question. Happily, we can reuse the existing buttons in
our movie. We must change only the event handler functions that run when the but-
tons are pressed. To redefine the event handlers for the Question 2 buttons, follow
these steps:

1. At frame 10 of the scripts layer, add a blank keyframe.

2. With frame 10 of the scripts layer still selected, type the code in Example 1-3 into
the Actions panel.

Any script placed on a keyframe in the timeline is automatically executed when the
playhead enters that frame. Hence, when Flash displays frame 10, our new button
code will be applied to the Question 2 buttons.

Our Question 2 button event handlers are the same as they were for Question 1,
except that we use the variable q2answer instead of q1answer, because we want the
buttons to keep track of the user’s response to Question 2. And we use "quizEnd" as
the argument for our gotoAndStop() function to advance the playhead to the end of
the quiz (i.e., the frame labeled quizEnd) after the user answers Question 2.

Having just added event handlers to six buttons, you will no doubt have noticed how
repetitive the code is. The code on each button differs from the code on the others by
only a few text characters. That’s not exactly efficient programming. Our button
code cries out for some kind of centralized command that records the answer and
advances to the next screen in the quiz. In Chapter 9, we’ll see how to centralize our
code with functions.

Example 1-3. Question 2 button code

// Code executed when button 1 is pressed.
choice1_btn.onRelease = function () {
 this._parent.q2answer = 1;
 this._parent.gotoAndStop("quizEnd");
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.q2answer = 2;
 this._parent.gotoAndStop("quizEnd");
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.q2answer = 3;
 this._parent.gotoAndStop("quizEnd");
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: A Gentle Introduction for Nonprogrammers

Building the Quiz End
Our quiz is nearly complete. We have two questions and an answer-tracking script
that lets the user answer the questions and progress through the quiz. We still need a
quiz-ending screen where we score the quiz and tell the user how well he fared.

To build our quiz-end screen, we need to do some basic Flash production and some
scripting. Let’s do the production first:

1. At frame 20 of the question 2 layer, add a blank keyframe. This prevents Ques-
tion 2 from appearing behind the contents of our quiz-end screen.

2. At frame 20 of the choice buttons layer, add a blank keyframe. This prevents our
buttons from appearing behind the contents of our quiz-end screen.

3. At frame 20 of the quiz end layer, add a blank keyframe.

4. While you’re still on that frame, put the following text on the Stage: “Thank you
for taking the quiz.” Make sure to leave some space below for the user’s score.

5. At frame 20 of the scripts layer, add a blank keyframe.

That takes care of the production work for our quiz-end screen. Your end screen
should look something like the one shown in Figure 1-9.

Now let’s work on the quiz-end script. When the playhead lands on our quizEnd
frame, we want to calculate the user’s score. We need a calculation script, shown in
Example 1-4, to execute when the playhead reaches frame 20. Select frame 20 of the
scripts layer; then type the code from the example into the Actions panel.

In the calculation script, we first determine the user’s score, and then we display that
score on the screen. Lines 1, 9, and 12 (if you count intervening blank lines) are code
comments that summarize the functionality of the sections of the script. On line 2,
the first of two conditionals in our calculation script begins. In it, we put our
q1answer variable to use. Notice that because this code is attached directly to our
movie’s timeline, we aren’t required to supply the location of the variable q1answer.

if (q1answer = = 3) {

Example 1-4. Quiz end code

// Tally up user's correct answers.
if (q1answer = = 3) {
 totalCorrect = totalCorrect + 1;
}
if (q2answer = = 2) {
 totalCorrect++;
}

// Create an onscreen text field to display the user's score.
this.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

// Show the user's score in the onscreen text field.
totalOutput_txt.text = "Your final score is: " + totalCorrect + "/2.";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Multiple-Choice Quiz | 35

The keyword if tells the interpreter we’re about to provide a list of statements that
should be executed only if a certain condition is met. The terms of that condition are
described in the parentheses that follow the if keyword: (q1answer = = 3), and the
opening curly brace begins the block of statements to be executed conditionally.
Therefore, line 2 translates into, “If the value of q1answer is equal to 3, then execute
the statements contained in the following curly braces.”

But how exactly does the condition q1answer = = 3 work? Well, let’s break the
phrase down. We recognize q1answer as the variable in which we’ve stored the user’s
answer to Question 1. The number 3 indicates the correct answer to Question 1
(movie clips first appeared in Flash version 3). The double equals sign (= =) is the
equality comparison operator, which compares two expressions. If the expression on
its left (q1answer) equals the one on its right (3), then our condition is met and the
statements within the curly braces are executed. If not, our condition is not met, and
the statements within the curly braces are skipped.

Flash has no way of knowing the right answers to our quiz questions. Checking if
q1answer is equal to 3 is our way of telling Flash to check if the user got Question 1
right. If he did, we tell Flash to add 1 to his total score as follows:

totalCorrect = totalCorrect + 1;

Figure 1-9. Judgment day

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 1: A Gentle Introduction for Nonprogrammers

Line 3 says, “Make the new value of totalCorrect equal to the old value of
totalCorrect plus one,” (i.e., increment totalCorrect). Incrementing a variable is so
common that it has its own special operator, ++.

So, instead of using this code:

totalCorrect = totalCorrect + 1;

we normally write:

totalCorrect++;

which does exactly the same thing, but more succinctly.

At line 4, a curly brace ends the block of statements to execute if our first condition
is met:

}

Lines 5 through 7 are another condition:

if (q2answer = = 2) {
 totalCorrect++;
}

Here we’re checking whether the user answered Question 2 correctly (MP3 audio
support first appeared in Flash 4). If the user chose the second answer, we add 1 to
totalCorrect using the increment operator ++.

Because there are only two questions in our quiz, we’re done tallying the user’s
score. For each question that the user answered correctly, we added 1 to
totalCorrect, so totalCorrect contains the user’s final score. The only thing left is to
show the user his score in an on-screen text field. In Flash MX, we can create a text
field directly with code as follows:

this.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

Here, the keyword this refers to the main movie timeline, which is where we want
the new text field to appear. We then execute createTextField(), which tells Flash to
put a new text field named totalOutput_txt on depth 1, at an x-position of 150 and a
y-position of 200, with a width of 200 and a height of 20. We can display the value of
totalCorrect in the new text field like this:

totalOutput_txt.text = "Your final score is: " + totalCorrect + "/2";

As a new programmer, you’re not expected to understand entirely how this code
works. But it should give you a glimpse of the exciting stuff ActionScript can do. Try
exploring on your own by changing, say, the width and height of the text field, or the
text displayed in it. Text fields are covered exhaustively in the Language Reference,
under the TextField class.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Onward! | 37

Testing Our Quiz
Well, that’s it. Our quiz is finished. You can check whether the quiz works by using
Control ➝ Test Movie. Click on the answers in different combinations to see if your
quiz is keeping score correctly. You can even create a restart button that is available
throughout the quiz by making a button instance named restart_btn (placed on its
own layer, on frame 1 of the main timeline), and adding the following code to frame
1 of the scripts layer:

restart_btn.onRelease = function () {
 this._parent.totalOutput_txt.removeTextField();
 this._parent.gotoAndStop("init");
}

Because totalCorrect is set to 0 in the code on the init frame, the score will reset
itself each time you send the playhead to init.

If you find that your quiz isn’t working, try comparing it with the sample quiz pro-
vided at the online Code Depot.

Onward!
So how does it feel? You’ve learned a bunch of phrases, some grammar, some vocab-
ulary, and even had a drawn-out conversation with Flash (the multiple-choice quiz).
Quite a rich first day of language school, I’d say.

As you can see, there’s a lot to learn about ActionScript, but you can also do quite a
bit with just a little knowledge. Even the amount you know now will give you plenty
to play around with. Throughout the rest of this book, we’ll reinforce the fundamen-
tals you’ve learned by exploring them in more depth and showing them in concert
with real examples. Of course, we’ll also cover some topics that haven’t even been
introduced yet.

Remember: think communication, think cooperation, and speak clearly. And if you
find yourself doing any fantastically engaging work or art that you’d like to share
with others, send it over to me at http://www.moock.org/contact/.

Now that you have a practical frame of reference, you’ll be able to appreciate and
retain the foundational knowledge detailed over the next few chapters. It will give
you a deeper understanding of ActionScript, enabling you to create more complex
movies.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38

Chapter 2CHAPTER 2

Variables

In a typical scripted movie, we have to track and manipulate everything from frame
numbers to a user’s password to the velocity of a photon torpedo fired from a space-
ship. In order to manage and retrieve all that information, we need to store it in vari-
ables, the primary information-storage containers of ActionScript.

A variable is like a bank account that, instead of holding money, holds information
(data). Creating a new variable is like setting up a new account; we establish a place
to store something we’ll need in the future. And, just as every bank account has an
account number, every variable has a name associated with it that is used to access
the data in the variable.

Once a variable is created, we can put new data into it as often as we want—much
like depositing money into an account. Or, we can find out what’s in a variable by
using the variable’s name—much like checking an account’s balance. If we no longer
need our variable, we can “close the account” by deleting the variable.

The key feature to note is that variables let us refer to data that either changes or is
calculated when a movie plays. Just as a bank account’s number remains the same
even though the account balance varies, a variable’s name remains fixed even though
the data it contains may change. Using that fixed reference to access changing con-
tent, we can perform complex calculations, keep track of cards in a card game, save
guest book entries, or send the playhead to different locations based on changing
conditions.

Is that a gleam of excitement I see in your eye? Good, I thought I might have lost you
with all that talk about banks. Let’s start our exploration of variables by seeing how
to create them.

Creating Variables (Declaration)
Creating a variable is called declaration. Declaration is the “open an account” step of
our bank metaphor, where we formally bring the variable into existence. When a
variable is first declared, it is empty—a blank slate waiting to be written upon. In this

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Variables (Declaration) | 39

state, a variable contains a special value called undefined (indicating the absence of
data).

To declare a new variable, we use the var statement. For example:

var speed;
var bookTitle;
var x;

The word var tells the interpreter that we’re declaring a variable, and the moniker
that follows, such as speed, bookTitle, or x, becomes our new variable’s name. We
can create variables anywhere we can attach code: on a keyframe, a button, or a
movie clip.

If you enter code in the Actions panel while on a frame that is not a
keyframe, the code is attached to the nearest preceding keyframe.

We can also declare several variables with one var statement, like this:

var x, y, z;

However, doing so impairs our ability to add comments next to each variable.

Once a variable has been created, we can assign it a value, but before we learn how
to do that, let’s consider some of the subtler details of variable declaration.

Automatic Variable Creation
Many programming languages require you to declare variables before depositing data
into them; failure to do so causes an error. ActionScript is not that strict. If we assign
a value to a variable that does not exist, the interpreter creates a new variable for us.
The bank, to continue that analogy, automatically opens an account when you try to
make your first deposit.

This convenience comes at a cost, though. If we don’t declare our variables our-
selves, we have no central inventory to consult when examining our code. Further-
more, explicitly declaring a variable with a var statement can sometimes yield
different results than allowing a variable to be declared implicitly (i.e., automati-
cally). It’s safest to declare first and use later (i.e., explicit declaration), as practiced
throughout this book.

Legal Variable Names
Before running off to make any variables, be aware that variable names:

• Must be composed exclusively of letters, numbers, dollar signs ($) and under-
scores (No spaces, hyphens, or other punctuation marks are allowed.)

• Must start with a letter, an underscore (e.g., _someVar), or a dollar sign (e.g.,
$someVar)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Variables

• Must not exceed 255 characters (Okay, okay, that’s a lie, but reevaluate your
naming scheme if your variable names exceed 255 characters.)

• Are case-insensitive (Upper- and lowercase letters are treated identically, but you
should be consistent nonetheless.)

These are legal variable names:

var first_name;
var counter;
var reallyLongVariableName;

These are illegal variable names that cause errors:

var 1first_name; // Starts with a number
var variable name with spaces; // Contains spaces
var another-illegal-name; // Contains a hyphen

As a matter of good form, you should append suffixes to your variable names to indi-
cate the type of information stored in the variable.

var firstName_str; // _str means the variable contains a string
var products_array; // _array means the variable contains an array

In Flash MX, some suffixes also activate code hinting in the Actions panel. For exam-
ple, the suffix _txt in the variable name output_txt not only indicates that the vari-
able stores a text field but also causes the Actions panel to display a quick-reference
popup for text fields (the so-called code hint) when the variable name is entered.
Table 2-1 lists the built-in suffixes that activate code hinting in Flash MX.

Table 2-1. Flash MX code hinting suffixes

Suffix Datatype represented

_mc MovieClip

_array Array

_str String

_btn Button

_txt TextField

_fmt TextFormat

_date Date

_sound Sound

_xml XML

_xmlsocket XMLSocket

_color Color

_video Video

_ch FCheckBox*

_pb FPushButton*

_rb FRadioButton*

_lb FListBox*

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Variables (Declaration) | 41

The programming industry’s most popular alternative to Flash’s suggested variable
naming conventions is known as Hungarian notation, developed by a Hungarian
Microsoft engineer, Charles Simonyi. For information, see:

http://msdn.microsoft.com/library/techart/hunganotat.htm

For a discussion of the pros and cons of Hungarian notation, see:

http://ootips.org/hungarian-notation.html

Creating dynamically named variables

Although you’ll rarely, if ever, use dynamically created variable names, it’s possible
to generate the name of a variable programmatically. This technique was used prima-
rily before arrays were introduced in Flash 5, so you will often encounter it in legacy
code intended for Flash 4 or earlier. To create a variable name from any expression,
use the set statement. For example, here we assign the value “bruce” to the variable
player1name:

var i = 1;
set ("player" + i + "name", "bruce");

Arrays and objects, discussed in later chapters, provide us with a much more power-
ful means of tracking dynamically named data and should be used instead of
dynamic variable names.

Declare Variables at the Outset
It’s good practice to declare your application’s variables at the beginning of every
movie’s main script space, which is usually the first keyframe that comes after a
movie’s preloader. Be sure to add a comment explaining each variable’s purpose for
easy identification later. The beginning of a well-organized script might look like
this:

// ^^^^^^^^^^^^^^^^^^^^
// Initialize variables
// ^^^^^^^^^^^^^^^^^^^^
var ballSpeed; // Velocity of ball, max 10
var score; // Player's current score
var hiScore; // High score (not saved between sessions)
var player1; // Name of player 1, supplied by user

_sb FScrollBar*

_cb FComboBox*

_sp FScrollPane*

* Flash UI Components (see Appendix G)

Table 2-1. Flash MX code hinting suffixes (continued)

Suffix Datatype represented

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Variables

We can give variables an initial value at the same time we create them, as follows:

var ballSpeed = 5; // Velocity of ball, default 5, max 10
var score = 0; // Player's current score
var hiScore = 0; // High score (not saved between sessions)
var player1 = "1P"; // Player's name defaults to 1P

For even tidier variable management, object-oriented programmers will want to store
all variables within a class, as discussed in Chapter 12.

Assigning Values to Variables
Now comes the fun part—putting some data into our variables. If you’re still play-
ing along with the bank analogy, this is the “deposit money into our account” step.
To assign a value to a variable, we use:

variableName = value;

where variableName is the name of a variable, and value is the data we’re assigning to
that variable. Here’s an example:

bookTitle = "ActionScript for Flash MX: The Definitive Guide";

On the left side of the equals sign, the word bookTitle is the variable’s name (its iden-
tifier). On the right side of the equals sign, the phrase “ActionScript for Flash MX:
The Definitive Guide” is the variable’s value—the datum you’re depositing. The
equals sign is called the assignment operator. It tells Flash that you want to assign (i.
e., deposit) whatever is on the right of the equals sign to the variable shown on the
left. If the variable on the left doesn’t exist yet, Flash creates it (though relying on the
interpreter to create variables implicitly isn’t recommended).

Here are two more variable assignment examples:

speed = 25;
output = "thank you";

The first example assigns the integer 25 to the variable speed, showing that variables
can contain numbers as well as text. We’ll see shortly that variables can contain
other kinds of data as well. The second example assigns the text “thank you” to the
variable output. Notice that we use straight double quotation marks (" ") to delimit a
text string in ActionScript.

Now let’s look at a slightly more complicated example that assigns the value of the
expression 1 + 5 to the variable y:

y = 1 + 5;

When the statement y = 1 + 5; is executed, 1 is first added to 5, yielding 6, and then
6 is assigned to y. The expression on the right side of the equals sign is evaluated

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Assigning Values to Variables | 43

(calculated or resolved) before assigning the result to the variable on the left side.
Here, we assign an expression that contains the variable y to another variable, z:

z = y + 4;

Once again, the expression on the right of the equals sign is evaluated, and the result
is then assigned to z. The interpreter retrieves the current value of y (the interpreter
checks the variable’s account balance, so to speak) and adds 4 to it. Because the
value of y is 6, z will be set to 10.

The syntax to assign any data—numbers, text, or any other type—to a variable is
similar, regardless of the datatype. Although we haven’t studied arrays yet, you
should already recognize the following as a variable assignment statement:

myList = ["John", "Joyce", "Sharon", "Rick", "Megan"];

As before, we put the variable name on the left, the assignment operator (the equals
sign) in the middle, and the new value to assign to the variable on the right.

To assign the same value to multiple variables in a hurry, we can piggyback assign-
ments alongside one another, like this:

x = y = z = 10;

Variable assignment always works from right to left. The preceding statement assigns
10 to z, then assigns the value of z to y, then assigns the value of y to x.

Don’t confuse an equals sign, which is used to assign a value to a vari-
able, with the algebraic equals sign you learned about in math class.
Furthermore, don’t confuse the equals sign (=), which is the assign-
ment operator, with the double equals sign (= =) used for comparing
two expressions.

In algebra, the following makes no sense, because something can’t be equal to itself
plus one:

x = x +1;

But in a programming language, this statement is perfectly valid and even common.
It says to take the old value of x, add 1 to it, and store the new value back in the vari-
able x. In this case, if the old value of x was 4, the statement would change x to 5.

The following statement is usually incorrect, because it changes the value of x to 5:

if (x = 5) { //do whatever};

Most likely, the programmer intended to compare the current value of x to 5:

if (x = = 5) { //do whatever};

See Chapter 5 for more details on the comparison operator (= =).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Variables

Changing and Retrieving Variable Values
After we create a variable, we can assign and reassign its value as often as we like, as
shown in Example 2-1.

Notice that we changed the variable x’s datatype from numeric to text data by sim-
ply assigning it a value of the desired type. Some programming languages don’t allow
the datatype of a variable to change, but ActionScript does.

Of course, creating variables and assigning values to them is useless if you can’t
retrieve the values later. To retrieve a variable’s value, simply use the variable’s name
wherever you want its value to be used. Anytime a variable’s name appears (except in
a declaration or on the left side of an assignment statement), the name is converted
to the variable’s value.

Here are some examples. Note that _x is a built-in property representing a movie clip’s
horizontal position with no relation to the variable named x used in preceding exam-
ples (see the “Variable Naming Styles” sidebar in Chapter 1, and see MovieClip._x in
the Language Reference).

newX = oldX + 5; // Set newX to the value of oldX plus 5
ball._x = newX; // Set the horizontal position of the
 // ball movie clip to the value of newX
trace(firstName); // Display the value of firstName in the Output window

Note that in the expression ball._x, ball is a movie clip’s name, and ._x indicates its
x-coordinate property (i.e., horizontal position on stage). We’ll learn more about
properties later. The last line, trace(firstName), displays a variable’s value in the Out-
put window while a script is running, which is handy for debugging your code.

Checking Whether a Variable Has a Value
Occasionally, we may wish to verify that a variable has been assigned a value before
we make reference to it. As we learned earlier, a variable that has been declared but
never assigned a value contains the special “nonvalue,” undefined. To determine
whether a variable has been assigned a value, we check if that variable’s value
belongs to the datatype undefined. For example:

if (typeof someVariable != "undefined") {
 // Any code placed here is executed only if someVariable is not undefined
}

Example 2-1. Changing variable values

var firstName; // Declare the variable firstName
firstName = "Graham"; // Set the value of firstName
firstName = "Gillian"; // Change the value of firstName
firstName = "Jessica"; // Change firstName again
firstName = "James"; // Change firstName again
var x = 10; // Declare x and assign it a numeric value
x = "loading...please wait..."; // Assign x a text value

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Types of Values | 45

Note the use of the inequality operator, !=, which determines whether two values are
not equal, and the quotes around “undefined”, because the typeof operator returns a
string. In Flash MX, we can alternatively use the strict inequality operator (!= =) to
check if a value is not equal to undefined or not of the type undefined.

if (someVariable != = undefined) {
 // Any code placed here is executed only if someVariable is not undefined
}

Both the typeof and the strict inequality techniques just shown prevent Flash from
performing automatic datatype conversion when checking if someVariable is
undefined. By contrast, due to automatic datatype conversion, the regular inequality
operator (!=) checks not only whether someVariable is undefined, but also whether it
contains the null value. For example:

if (someVariable != undefined) {
 // Any code placed here is executed if someVariable is not undefined or null
}

The null value is often used by programmers to indicate that a variable is intention-
ally empty, but still exists.

Types of Values
The data we use in ActionScript programming comes in a variety of types. So far,
we’ve seen numbers and text, but other types include Booleans, arrays, functions,
and objects. Before we cover each datatype in detail, let’s examine some datatype
issues that relate specifically to variable usage.

Automatic Typing
Any ActionScript variable can contain any type of data, which may seem unremark-
able, but the ability to store any kind of data in any variable is actually a bit unusual.
Languages like C++ and Java use strictly typed variables; each variable can accept
only one type of data, which must be specified when the variable is declared. Action-
Script variables are automatically typed; when we assign data to a variable, the inter-
preter sets the variable’s datatype for us.

Not only can ActionScript variables contain any datatype, they can also dynamically
change datatypes. If we assign a variable a new value that has a different type than
the variable’s previous value, the variable is retyped automatically. So the following
code is legal in ActionScript:

x = 1; // x is a number
x = "Michael"; // x is now a string
x = [4, 6, "hello"]; // x is now an array
x = 2; // x is a number again

In languages that do not perform automatic retyping, such as C++ and Java, data of
the wrong type is converted to the variable’s existing datatype (or it causes an error if

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Variables

conversion cannot be performed). By comparison, VB.NET allows the programmer
to decide whether the compiler should enforce strict typing. Strict typing may seem
cumbersome, but it can prevent the errors that unsuspecting programmers may
encounter due to automatic and dynamic typing, which we’ll consider in the follow-
ing sections.

Automatic Value Conversion
In some contexts, ActionScript expects a specific type of data. If we use a variable
whose value does not match the expected type, the interpreter attempts to convert
the data to the necessary type. For example, if we use a text variable where a number
is needed, the interpreter will try to convert the variable’s text value to a numeric
value for the sake of the current operation. In Example 2-2, z is set to 2. Why?
Because the subtraction operator expects a number, the value of y is converted from
the string “4” to the number 4, which is subtracted from 6 (the value of x), yielding
the result 2.

Conversely, if we use a numeric variable where a string is expected, the interpreter
attempts to convert the number to a string. In Example 2-3, z is set to the string
“64”, not the number 10. Why? Because the second operand in the expression x + y
is a string. Therefore, the + operator performs string concatenation instead of mathe-
matical addition. The value of x (6) is converted to the string “6” and then concate-
nated with the string “4” (the value of y), yielding the result “64”.

The automatic type conversion that occurs when evaluating a variable as part of an
expression is performed on a copy of the variable’s data—it does not affect the origi-
nal variable’s type. A variable’s type changes only when the variable is assigned a
data value that does not match its previous value’s type. So, at the conclusion of
Example 2-2 and Example 2-3, y remains a string, and x remains a number.

Notice that the operator on line 3 (- in Example 2-2, + in Example 2-3), has a pro-
found impact on the value assigned to z. In Example 2-2 the string “4” becomes the
number 4, whereas in Example 2-3 the opposite occurs (the number 6 becomes the
string “6”), because the rules for datatype conversion are different for the + operator
than for the - operator. We’ll cover data conversion rules in Chapter 3 and opera-
tors in Chapter 5.

Example 2-2. Automatic string-to-number conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x - y; // This sets z to the number 2

Example 2-3. Automatic number-to-string conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x + y; // This sets z to the string "64"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 47

Determining the Type Manually
Automatic datatyping and conversion can be convenient, but, as Example 2-2 and
Example 2-3 illustrate, they may also produce unexpected results. Before performing
commands that operate on mixed datatypes, you may wish to determine a variable’s
datatype using the typeof operator:

productName = "Macromedia Flash"; // String value
trace(typeof productName); // Displays: "string"

Once we know a variable’s type, we can proceed conditionally. Here, for example,
we check whether a variable is a number before proceeding:

if (typeof age = = "number") {
 // okay to carry on
} else {
 trace ("Age isn't a number"); // Display an error message
}

For full details on the typeof operator, see Chapter 5.

Variable Scope
Earlier we learned how to create variables and retrieve their values. But all our vari-
ables were attached to a single frame of the main timeline of a Flash document.
When a document contains multiple frames and multiple movie clip timelines, vari-
able creation and value retrieval becomes a little more complicated.

Timeline Variables
To illustrate the use of timeline variables, let’s consider two simple scenarios.

Scenario 1: Accessing a value defined earlier on the same timeline

What happens when we define a variable in one frame of a timeline and try to access
it later?

Suppose we create a variable, x, in frame 1 of the main timeline. After creating x, we
set its value to 10:

var x;
x = 10;

Then, in the next frame (frame 2), we attach the following code:

trace(x);

When we play our movie, does anything appear in the Output window? We created
our variable in frame 1, but we’re attempting to retrieve its value in frame 2; does our
variable still exist? Yes. The Output window displays 10.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Variables

When you define a variable on a timeline, that variable is accessible
from all the other frames of that timeline.

Scenario 2: Accessing a value defined later on the same timeline

What happens if we try instead to access a variable before the frame in which it is
assigned a value?

Suppose we add the following code to frame 30 of a movie’s main timeline:

password = "let_me_in";
gotoAndStop(15);

and on frame 15 we add:

trace(password);

When the movie plays, we see the following in the Output window:

undefined
let_me_in

Here’s why: when the movie’s playhead reaches frame 15, Flash displays the value of
password in the Output window. The first time through, password does not exist, so
Flash displays undefined. However, when the playhead reaches frame 30, password is
created and assigned the value “let_me_in”. Then the playhead is sent back to frame
15 (gotoAndStop(15)), causing frame 15’s code to execute again. This time, even
though password is defined on a later frame than our trace(password) statement, it is
still part of the same timeline; so, its value exists, and Flash displays it in the Output
window.

Any variable declared on a timeline is available to all the scripts of its
timeline for as long as that timeline exists. However, a variable’s value
is not defined until the script that assigns it a value is reached. Once
the value of a variable is set, the value is maintained, even if the play-
head jumps backward in the timeline. In other words, the value of a
variable is determined by the order in which scripts are executed, as
determined by the movement of the playhead, not the order of the
frames to which scripts are attached on the timeline.

Variable Accessibility (Scope)
The two scenarios we just presented explore issues of scope. A variable’s scope
describes when and where the variable can be manipulated by the code in a movie.
Scope defines a variable’s life span and its accessibility to other blocks of code in our
scripts. To determine a variable’s scope, we must answer two questions: (a) how
long does the variable exist? and (b) from where in our code can we set or retrieve
the variable’s value?

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 49

In traditional programming, variables are often broken into two general scope cate-
gories: global and local. Variables that are accessible throughout an entire program
are called global variables. Variables that are accessible only to limited sections of a
program are called local variables. In addition to these two conventional variable
types, Flash adds timeline variables that are scoped to individual movie clip
instances. Flash 5 supported conventional local variables but did not support true
global variables; Flash MX introduces support for true global variables.

In Flash, all variables are scoped to one of the following:

• A function (local variable)

• The main timeline or a movie clip (timeline variable)

• In Flash MX, the _global object (global variable)

Movie Clip Variables and Global Variables
As shown in the two earlier scenarios, a variable defined on a timeline is available to
all the scripts on that timeline—from the first frame to the last frame. But what hap-
pens if we have more than one timeline in a movie, as described in Scenario 3?

Scenario 3: Variables declared on separate timelines

Suppose we have two basic geometric shapes, a square and a circle, defined as movie
clip symbols. Recall that each movie clip maintains its own independent timeline.

On frame 1 of the square clip symbol, we set the variable x to 3:

var x;
x = 3;

On frame 1 of the circle clip symbol, we set the variable y to 4:

var y;
y = 4;

We place instances of those clips on frame 1, layer 1 of the main timeline, and we
name our instances square and circle.

First question: if we attach the following code:

trace(x);
trace(y);

to frame 1 of the main movie timeline (upon which square and circle have been
placed), what appears in the Output window when the movie plays?

Answer:

undefined
undefined

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Variables

The variable x is defined on the square timeline, and y is defined on the circle time-
line; neither are defined on our main timeline. Because Flash cannot find any vari-
able named x or y on the main timeline, it displays undefined in the Output window.

Variables attached to a movie clip timeline (like that of square or
circle) have scope limited to that timeline. They are not directly acces-
sible to scripts on other timelines, such as our main movie timeline.

Second question: if we place the trace(x) and trace(y) statements on frame 1 of our
square movie clip instead of frame 1 of our main movie timeline, what will appear in
the Output window?

Answer: the value of x, which is 3, and the value of y, undefined.

3
undefined

The value of x is displayed as 3, because x is defined on the timeline of square and is
therefore accessible to the trace() command, which also resides on that timeline. But
the value of y doesn’t appear in the Output window, because y is defined in circle,
which is a separate timeline.

In Flash, a variable attached to an individual timeline (i.e., any movie clip) is directly
accessible to the scripts on that timeline only. Furthermore, two or more movie clips
can legitimately define a variable with the same name. For example, we could create
a variable named x in circle with a value of 25, even though there already is a vari-
able named x in square with a value of 3. The result of trace(x) from square would be
3, but from circle it would be 25.

We refer to variables attached to timelines as timeline variables or movie clip vari-
ables. Now let’s create a global variable that is directly accessible to all the scripts in a
movie (any timeline). We’ll put the following code on frame 1 of the square time-
line, even though the code would have the same effect from any movie clip:

_global.day = "Monday";

Now we place this code on frame 1 of the main movie:

trace(day);

Because the day variable is global, Flash can find it from the main timeline, even
though it was created in square, and the Output window displays:

Monday

As we’ll see in “The Scope Chain,” later in this chapter, when a timeline variable and
a global variable both have the same name, the timeline variable takes precedence.
For example, if we create a timeline variable, day, inside our circle movie clip, as
follows:

var day = "Friday";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 51

and then we check the value of day inside circle:

trace(day);

the Output window displays “Friday” (the timeline variable’s value), not “Monday”
(the global variable’s value). For more information on global variables, see _global in
the Language Reference.

Though true global variables were not supported in Flash 5, it was possible to simu-
late them using the Object class or MovieClip class. To create a variable that is avail-
able on all timelines in Flash 5, use the following statement:

MovieClip.prototype.myGlobalVariable = myValue;

For example:

MovieClip.prototype.msg = "Hello world";

Alternatively, assign the variable as a property of Object, as follows:

Object.msg = "Hello world";

Then, from any other timeline, access msg like this:

trace(Object.msg);

We discuss this technique (and the reason it works) in “The end of the inheritance
chain,” in Chapter 12. In Flash MX, the _global object is the preferred way to store
global variables.

Accessing Variables on Different Timelines
Even though variables on one timeline are not accessible directly to the scripts on
other timelines, they are accessible indirectly. To create, retrieve, or assign a variable
on a separate timeline, we use dot syntax, a standard notation common to object-ori-
ented programming languages such as Java, C++, and JavaScript. Here’s the generic
dot syntax phrasing we use to address a variable on a separate timeline:

movieClipInstanceName.variableName

That is, we refer to a variable on another timeline using the name of the movie clip
that contains the variable, followed by a dot, and finally the variable name itself. In
our earlier scenario, for example, from the main timeline we can refer to the variable
x in the square clip as:

square.x

Also from the main timeline, we can refer to the variable y in the circle clip as:

circle.y

A reference to a variable that includes the variable’s location is known as a qualified
reference. Qualified references tell Flash where to find the variable we’re referring to;
unqualified references require Flash to make assumptions about where the variable
resides, as discussed later in “The Scope Chain.” Hence, it’s always good form to use
qualified references to variables.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Variables

We can use qualified references from our main movie timeline to assign and retrieve
variables in square like this:

square.z = 5; // Assign 5 to z in square
var mainZ; // Create mainZ on the main timeline
mainZ = square.z; // Assign the value of z in square to mainZ

However, using the movieClipInstanceName.variableName syntax, we can’t refer to
variables in square from our circle clip. If we put a reference to square.x on a frame
in circle, the interpreter tries to find a clip called square inside of circle, but square
lives on the main timeline. So, we need a mechanism that lets us refer to the timeline
that contains the square clip (in this case, the main timeline) from the circle clip.
That mechanism comes in the form of two special properties: _root and _parent.

The _root and _ parent properties

The _root property is a direct reference to the main timeline of a movie. From any
depth of nesting in a movie clip structure, we can always address variables on the
main movie timeline using _root, like this:

_root.mainZ // Access the variable mainZ on the main timeline
_root.firstName // Access the variable firstName on the main timeline

We can even combine a reference to _root with references to movie clip instances,
drilling down the nested structure of a movie in the process. For example, we can ref-
erence the variable x, inside the clip square that resides on the main movie timeline,
as:

_root.square.x

This reference works from anywhere in our movie, no matter what the depth of clip
nesting is, because the reference starts at our main movie timeline, _root. Here’s
another nested example showing how to access the variable area in the instance
triangle that resides on the timeline of the instance shapes:

_root.shapes.triangle.area

Any reference to a variable that starts with the _root keyword is called an absolute
reference or a fully qualified reference, because it describes the location of the vari-
able in relation to a fixed, immutable point in our movie: the main timeline.

There are times, however, when we want to refer to variables on other timelines
without referring to the main timeline of a movie. To do so, we use the _parent
property, which refers to the timeline upon which the current movie clip instance
resides. For example, from code attached to a frame of the clip square, we can refer
to variables on the timeline that contains square using this syntax:

_parent.myVariable

References that start with the keyword _parent are called relative references, because
they are resolved relative to the location of the clip in which they occur.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 53

Suppose we have a variable, size, defined on the main timeline of a movie. We place
a clip instance named shapes on our main movie timeline, and on the shapes time-
line we define the variable color. We also place a clip named triangle on the shapes
timeline, as shown in Figure 2-1.

To display the value of the variable color (which is in the shapes clip) from code
attached to the timeline of triangle, we could use an absolute reference starting at
the main timeline, like this:

trace(_root.shapes.color);

But that ties our code to the main movie timeline. To make our code more flexible,
we should instead use the _parent property to create a relative reference, like this:

trace(_parent.color);

Our first approach (using _root) works from the top down; it starts at the main time-
line and descends through the movie clip hierarchy until it reaches the color vari-
able. The second approach (using _parent) works from the bottom up; it starts with
the clip that contains the trace() statement (the triangle clip), and ascends one level
up the clip structure, which happens to be the shapes clip, where it finds the color
variable.

We can use _parent twice in a row, separated by a dot, to ascend the hierarchy of
clips and access our size variable on the main timeline. Here we attach some code to
triangle that refers to size on the main movie timeline:

trace(_parent._parent.size);

Using the _parent property twice in succession ascends two levels up the movie clip
hierarchy, which in this context brings us to the main timeline of the movie.

Your approach to variable addressing will depend on what you want to happen when
you place instances of a movie clip symbol on various timelines. In our triangle
example, if we wanted our reference to color to always point to color as defined in

Figure 2-1. A sample movie clip hierarchy

main timeline

size variable

shapes instance

color variable

triangle instance

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Variables

the shapes clip, we would use the _root syntax, which gives us a fixed reference to
color in shapes. But if we wanted our reference to color to refer to a different color
variable, depending on which timeline held a given triangle instance, we would use
the _parent syntax.

The meaning of _root changes when a .swf file is loaded into a movie
clip. For example, suppose we load myPictures.swf into a movie clip in
container.swf. When myPictures.swf runs independently, _root means
the main timeline of the myPictures.swf file. But when myPictures.swf
runs inside a movie clip of container.swf, _root means the main time-
line of container.swf.

Flash MX makes this problem easy to solve using a global variable. To retain a con-
sistent reference to the main timeline of a movie, even when the movie is loaded into
a movie clip, place the following code on the main timeline:

_global.movieNameMainTimeline = this;

For example:

_global.myPicturesMainTimeline = this;

This command creates a global reference to the main timeline, which allows you to
refer to variables on the main timeline from any other timeline using:

myPicturesMainTimeline.variableName

instead of:

_root.variableName

Accessing variables on different document levels

The _root property refers to the main movie timeline of the current level (i.e., the
current document), but the Flash Player can accommodate multiple documents in its
document stack. The main timeline of any movie loaded in the Player document stack
can be referenced using _leveln, where n is the number of the level on which the
movie resides. Level numbering begins with 0, such as _level0, _level1, _level2,
_level3, and so on. For information on loading multiple movies, see Chapter 13.
Here are some examples of multiple-level variable references:

_level1.firstName // firstName on _level1's main timeline
_level4.ball.area // area in ball clip on _level4's main timeline
_level0.guestBook.email // email in guestBook clip on _level0's main timeline

When referring to variables across movie clip instances, make sure
that you have named your clip instances using the <Instance Name>
field in the Property inspector and referred to them by the same name
in your code. Don’t confuse the symbol name in the Library with the
instance name on the Stage. If your instances are not named, your
code cannot refer to them by name. Unnamed instances and mis-
spelled instance names are extremely common sources of problems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 55

Prior to introducing support for dot syntax in Flash 5, Flash supported an older
“path” style syntax that used backslashes instead of dots. Flash MX still supports the
legacy syntax, but you should update it to the more modern dot syntax as described
in Table C-2 in Appendix C.

Movie Clip Variable Life Span
Earlier, we said that the scope of a variable answers two questions: (a) how long does
the variable exist? and (b) from where in our code can we set or retrieve the vari-
able’s value? For movie clip variables, we have shown the factors involved in answer-
ing the second question. But we skipped answering the first question. Let’s return to
it now with one final variable-coding scenario.

Scenario 4: Life span of movie clip variables

Suppose we create a new movie with keyframes at frames 1, 2, and 3. On frame 1, we
place a clip instance, ball. On the ball timeline, we create a variable, radius. Assume
frame 3 of our main timeline is a blank keyframe (the ball instance is not present
there).

From frame 2 of the main movie timeline, we can find out the value of radius using
this code:

trace(ball.radius);

Here’s the question: if we move this line of code from frame 2 to frame 3 of the main
timeline, what appears in the Output window when our movie plays?

Answer: undefined. When the ball clip is removed from the main timeline at frame
3, all its variables are destroyed in the process.

Movie clip variables last only while the clip in which they reside is
present on stage. Variables defined on the main timeline of a Flash
document persist within each document but are lost if the document is
unloaded from the Player (either via the unloadMovie() function or
because another movie is loaded into the movie’s level).

A variable’s life span is important when scripting movies that contain movie clips
placed across multiple frames on various timelines. Always make sure that any clip
you’re addressing is present on a timeline before you try to use the variables in that
clip.

Local Variables
Movie clip variables are scoped to movie clips and persist as long as the movie clip
on which they are defined exists. Sometimes, that’s longer than we need them to
live. For situations in which we need a variable only temporarily, ActionScript offers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Variables

variables with local scope (i.e., local variables), which live for a much shorter time
than normal movie clip variables.

Local variables are used in functions. If you haven’t worked with functions before,
you should skip the rest of this section and come back to it once you’ve read
Chapter 9.

Functions often employ variables that are needed only within the function. For
example, suppose we have a function that displays the elements of an array:

function displayElements(theArray) {
 var counter = 0;
 while(counter < theArray.length) {
 trace("Element " + counter + ": " + theArray[counter]);
 counter++;
 }
}

The counter variable is required to display the elements of the array, but it has no use
thereafter. We could leave it defined on the timeline, but that’s bad form for two rea-
sons: (a) if counter persists, it takes up memory during the rest of our movie, and (b)
if counter is accessible outside our function, it may conflict with other variables
named counter. We would, therefore, like counter to die after the displayElements()
function has finished.

To cause counter to be deleted automatically at the end of our function, we define it
as a local variable. Unlike movie clip variables, local variables are automatically
marked for deallocation (removal from memory) by the interpreter when the func-
tion that defines them finishes.

To specify that a variable should be local, declare it with the var keyword from inside
your function, as in the preceding displayElements() example.

Take heed, though; when placed outside of a function, the var statement creates a
normal timeline variable, not a local variable. As shown in Example 2-4, the location
of the var statement makes all the difference.

Variables within functions need not be local. We can create or change a movie clip
variable from inside a function by omitting the var keyword. If we do not use the var
keyword, but instead simply assign a value to a variable from within a function,
Flash treats that variable as a nonlocal variable under some conditions. Consider this
variable assignment inside a function:

function setHeight () {
 height = 10;
}

The effect of the statement height = 10; depends on whether height is a local vari-
able or movie clip variable. If height is a previously declared local variable (which it
is not in the example at hand), the statement height = 10; simply modifies the local
variable’s value. If there is no local variable named height, as in this case, the inter-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 57

preter creates a movie clip (nonlocal) variable named height and sets its value to 10.
As a nonlocal variable, height persists even after the function finishes.

Example 2-4 demonstrates local and nonlocal variable usage.

Note that it is possible (though confusing and ill-advised) to have both a local and a
nonlocal variable that share the same name within a script but have different scopes.
Example 2-5 shows such a case.

The Scope Chain
Internally, Flash resolves each unqualified variable reference in our code using a
scope chain, which is simply a hierarchy of places (scopes) to look when a reference
to a variable is resolved (i.e., when the correct variable is located unambiguously and
its value is retrieved). Whenever Flash encounters a variable in a script or function, it
seeks the variable’s value in the scope chain associated with that code. The hunt for
the variable ends when the variable is found somewhere in the scope chain or when
it is not found at all (the variable is undefined.) The scope chain for a frame script
(code attached directly to a movie clip keyframe) includes two scopes, which are tra-
ditionally read from the bottom up:

• Global object (interpreter looks here last)

• Enclosing movie clip object (interpreter looks here first)

Example 2-4. Local and nonlocal variables

var x = 5; // New nonlocal variable, x, is now 5
function variableDemo () {
 x = 10; // Nonlocal variable, x, is now 10
 y = 20; // New nonlocal variable, y, is now 20
 var z = 30; // New local variable, z, is now 30
 trace(x + "," + y + "," + z); // Display values in Output window
}
variableDemo(); // Call our function. Displays: 10,20,30
// Now check the values of x, y, and z after the function has finished.
trace(x); // Displays: 10 (reassignment in our function was permanent)
trace(y); // Displays: 20 (nonlocal variable, y, still exists)
trace(z); // Displays "undefined" in Flash MX or nothing in Flash 5
 // (former local variable, z, is undefined)

Example 2-5. Local and nonlocal variables with the same name

var myColor = "blue";
function hexRed () {
 var myColor = "#FF0000";
 return myColor;
}
trace(hexRed()); // Displays: #FF0000 (the local variable myColor)
trace(myColor); // Displays: "blue" (setting the local variable,
 // myColor, to #FF0000 did not affect the nonlocal version)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Variables

When a variable is referenced in a frame script, Flash checks the current movie clip
for the variable. If the variable is not found in the movie clip (or its prototype), Flash
checks for a global variable of that name. If no global variable is found, Flash returns
undefined. When both a movie clip variable and a global variable of the same name
are defined, Flash retrieves the movie clip variable, because it is first in the search
order for the scope chain. Hence, a movie clip variable always overrides a global vari-
able of the same name.

By contrast, the scope chain for code in a nonnested function includes three scopes
(again, read from the bottom up):

• Global object (_global)

• Enclosing movie clip object

• Local variables

When a variable is referenced from within a function, Flash checks first for a local
variable—defined with the var statement—within the function, as shown in
Example 2-5. If no local variable is found, Flash checks for a movie clip variable in
the movie clip in which the function was defined. (We’ll consider this topic, includ-
ing the behavior for nested functions, more thoroughly in Chapter 9.) If the variable
is not found in that movie clip (or its prototype), Flash checks for a global variable of
the same name. If no global variable is found, Flash returns undefined.

Using the with statement, we can add any object to the scope chain as the first place
Flash should look for variables. For details, see Chapter 5.

Until you’re familiar with the scope chain, you may want to qualify your variable
name references (e.g., myGameMainTimeline.numPlayers versus numPlayers) to tell Flash
explicitly where to look for a variable. Qualified references are unambiguous and are
therefore easiest to understand for all levels of programmers. See “Accessing Vari-
ables on Different Timelines,” earlier in this chapter.

Don’t confuse the scope chain with the prototype chain. Flash uses the scope chain to
look up variables; it uses the prototype chain to look up properties and methods.
We’ll discuss the prototype chain in Chapter 12.

Note that, technically, each scope chain is implemented internally as a series of
objects used by the interpreter to look up variables. See Chapter 9 of this book and
David Flanagan’s eloquent description of JavaScript’s variable scope in JavaScript:
The Definitive Guide (O’Reilly & Associates, Inc.). Bear in mind, however, that
ActionScript adds movie clips to JavaScript’s global and local execution contexts.

Event Handler Scope
As you’ll see in Chapter 10, different kinds of event handlers have different scopes in
Flash. Table 2-2 provides a summary of event handler scope. For each type of han-
dler, an unqualified, nonlocal variable declaration (one without a var statement) will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Loading External Variables | 59

create a new variable in the movie clip listed in the Scope chain column of the table.
We’ll examine this topic more closely in Chapter 10.

Loading External Variables
While most variables are created directly inside Flash, it’s also common to load vari-
ables from an external text file, server script, or web page. Loading external variables
does not mean simply assigning a value from an external source to existing variables.
Loading external variables actually creates new variables at runtime. The following
entries in the Language Reference explain various variable-loading techniques:

• LoadVars

• loadVariables()

• fscommand()

Additionally, in some browsers, JavaScript can set a variable in Flash at runtime
using the syntax:

movieObj.SetVariable("/someClip:firstName", "Colin");

where movieObj is an object reference to the Flash movie embedded in the page. This
technique works only in the following browsers:

• Internet Explorer on Windows

• Netscape 4 on Windows, Macintosh, and Linux

• Netscape 6.2 with Flash Player 6.0.40.0 (or higher) on Windows, Macintosh,
and Linux

For complete details, see:

http://www.moock.org/webdesign/flash/fscommand/

Table 2-2. Event handler scope

Event handler type Scope chain

Callback function Global object

Clip in which the function was defined

Local variables

Listener method Global object

Clip in which the function was defined

Local variables

Movie clip with on() or onClipEvent() handler Global object

Clip that physically bears the handler at authoring time

Button with on() handler Global object

Clip on whose timeline the button resides

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Variables

Similarly, an HTML document’s <OBJECT> and <EMBED> tags can create variables in a
Flash movie, when the movie initially loads, via the FlashVars parameter or a query
string. Variables passed to a Flash movie via FlashVars or a query string must be
URL-encoded according to the rules described in the LoadVars class in the Language
Reference. The following code uses the FlashVars parameter to create the variables
authorName and bookName with the values “Colin Moock” and “ASDG” on the main
timeline of a movie called main.swf:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 CODEBASE="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 WIDTH="550"
 HEIGHT="400">
 <PARAM NAME=movie VALUE="main.swf">
 <PARAM NAME=FlashVars VALUE="authorName=Colin+Moock&bookName=ASDG">

 <EMBED src="main.swf"
 FlashVars="authorName=Colin+Moock&bookName=ASDG"
 WIDTH="550"
 HEIGHT="400"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

The FlashVars parameter requires Flash Player 6 or later and can pass a maximum of
63 KB of data to Flash. To pass data from HTML to earlier Flash Players, append the
parameters to the URL of the .swf filename, as shown in the following example. In
this case, the data transfer limit depends on the web server.

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 WIDTH="550"
 HEIGHT="400">
<PARAM NAME=movie VALUE="main.swf?authorName=Colin+Moock">

 <EMBED src="main.swf?authorName=Colin+Moock"
 WIDTH="550"
 HEIGHT="400"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

The passed variables are always created on the movie’s main timeline. There is no
direct way to set variables in a nested movie clip using FlashVars or a query string.
See Appendix H for more details on the <OBJECT> and <EMBED> tags.

Some Applied Examples
We’ve had an awful lot of variable theory. The following examples provide three
variable-centric code samples that show some of these concepts in use. Refer to the
comments within the code for an explanation of each line of code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Some Applied Examples | 61

Example 2-6 sends the playhead of a movie clip to a random destination.

Example 2-7 determines the distance between two clips. A working version of this
example is available from the online Code Depot.

Example 2-8 converts from Fahrenheit to Celsius. A working version showing bi-
directional conversion is available in the online Code Depot.

Example 2-6. Send the playhead to a random frame on the current timeline

var randomFrame; // Stores the randomly picked frame number
var numFrames; // Stores the total number of frames in the clip
numFrames = this._totalframes; // Store the current movie clip's
 // _totalframes property in numFrames
// Pick a random frame
randomFrame = Math.floor(Math.random() * numFrames + 1);
this.gotoAndStop(randomFrame); // Send playhead of current movie clip to
 // chosen random frame

Example 2-7. Calculate the distance between two movie clips

var c; // A convenient reference to the circle clip object
var s; // A convenient reference to the square clip object
var deltaX; // The horizontal distance between c and s
var deltaY; // The vertical distance between c and s
var dist; // The total distance between c and s
c = _root.circle; // Get reference to the circle clip
s = _root.square; // Get reference to the square clip
deltaX = c._x - s._x; // Compute the horizontal distance between the clips
deltaY = c._y - s._y; // Compute the vertical distance between the clips
// The distance is the square root of (deltaX squared plus deltaY squared).
dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));
// Using variables, the code above creates tidy references that
// are much more readable than the alternative, shown below:
dist = Math.sqrt(((_root.circle._x - _root.square._x) * (_root.circle._x -
_root.square._x)) + ((_root.circle._y - _root.square._y) * (_root.circle._y -
_root.square._y)));

Example 2-8. A Fahrenheit/Celsius temperature converter

// Create variables
var fahrenheit; // Temperature in Fahrenheit
var result; // The value resulting from conversion

// Initialize variables
fahrenheit = 451; // Set a Fahrenheit temperature

// Calculate the Celsius equivalent
result = (fahrenheit - 32) / 1.8;
// Display the result
trace (fahrenheit + " degrees Fahrenheit is " + result + " degrees Celsius.");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Variables

Onward!
Now that we know the fundamentals of storing information in variables, including
advanced topics such as variable scope, it’s time we learn something more about the
content that variables store: data. Over the next three chapters, we’ll learn what data
is, how it can be manipulated, and why it’s an essential part of nearly everything we
build with ActionScript.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

63

Chapter 3 CHAPTER 3

Data and Datatypes

Having worked with variable values in Chapter 2, you’ve already had a casual intro-
duction to data, the information we manipulate in our scripts. In this chapter, we’ll
explore data in more depth, learning how ActionScript defines, categorizes, and
stores data. We’ll also explore how to create and classify data.

Data Versus Information
In the broadest sense, data is anything that can be stored by a computer, from words
and numbers to images, video, and sound. All computer data is stored as a sequence
of 1s and 0s, which you might recognize from high-tech marketing materials:

010101010101010110101011011010101010101010000010101010101011010101010
101010101010101011101010101010101010101010101010111110101010101010101
01010101010101010101010101110

Data is information in its crude state—raw and meaningless. Semantics give informa-
tion meaning. Consider, for example, the number 8008898969. As raw data it isn’t
very meaningful, but when we classify it semantically as the telephone number (800)
889-8969, the data becomes useful information.

This chapter shows how to add meaning to raw computer data so that it becomes
human-comprehensible information.

Retaining Meaning with Datatypes
How do we store information as raw data without losing meaning? By categorizing
our data and defining its datatype, we give it context that defines its meaning.

For example, suppose we have three numbers: 5155534, 5159592, and 4593030. By
categorizing our data—as, say, a phone number, fax number, and parcel tracking
number—the context (and, hence, the meaning) of our data is preserved. When cate-
gorized, each of the otherwise-nondescript seven-digit numbers becomes meaningful.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Data and Datatypes

Programming languages use datatypes to provide rudimentary categories for data.
For example, nearly all programming languages define datatypes to store and manip-
ulate text (a.k.a. strings) and numbers. To distinguish between multiple numbers, we
can use well-conceived variable names, such as phoneNumber and faxNumber. In more
complex situations, we can create our own custom data categories with objects and
object classes, as covered in Chapter 12. Before we think about making our own data
categories, let’s see which categories come built into ActionScript.

The ActionScript Datatypes
When programming, we may want to store a product name, a background color, or
the number of stars to be placed in a night sky. We use the following ActionScript
datatypes to store our data:

string
For text sequences such as “hi there”. A string is a series of characters (alphanu-
merics and punctuation).

number
For numbers, such as 351 and 7.5. Numbers are used for counting and for math-
ematical equations.

boolean
For logical decisions. With Boolean data, we can represent or record the status
of some condition or the result of some comparison. Boolean data has only two
legal values: true and false.

null and undefined
For representing an absence of data, ActionScript provides two special data val-
ues: null and undefined. You can think of them as the only permissible values of
the null and undefined datatypes.

array
For lists of one or more pieces of data.

movieclip
For manipulating movie clip instances.

object
For arbitrary built-in or user-defined classes of data.

Every piece of data we store in ActionScript will fall into one of these categories.
Before studying each datatype in Chapter 4, we’ll consider the general issues that
affect our use of all data.

Creating and Categorizing Data
There are two ways to create a new datum with ActionScript, and both methods
require the use of expressions—phrases of code that represent data in scripts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating and Categorizing Data | 65

A literal expression (or literal for short) is a series of letters, numbers, and punctua-
tion that is the datum. A data literal is a verbatim description of data in a program’s
source code. This contrasts with a variable, which is merely a container that holds a
datum. Each datatype defines its own rules for the creation of literals. For example,
string literals are enclosed in quotes, whereas numeric literals are not. Here are some
examples of literals:

"loading...please wait" // A string literal
1.51 // A numeric literal
["jane", "jonathan"] // An array literal
{x: 10, y: 15} // An object literal

Note that movie clips cannot be represented by literals but are referred to by instance
names.

We can also generate data programmatically with a complex expression. Complex
expressions are phrases of code with a value that must be calculated or computed,
not taken literally. The calculated value is the datum being represented. For exam-
ple, each of these complex expressions results in a single datum:

1999 + 1 // Yields the numeric datum 2000
"1999" + "1" // Yields the string datum "19991"
"hi " + "ma!" // Yields the string datum "hi ma!"
firstName // Yields the value of the variable firstName
_currentframe // Yields the frame number of the playhead's current position
new Date() // Yields a new Date object with the current date and time

Notice that an individual literal expression, such as 1999 or 1, can be a valid part of a
larger complex expression, as in 1999 + 1.

Whether we use a literal expression or a complex expression to create data, we must
store every datum that we want to use later. The result of the expression "hi" + "ma!"
is lost unless we store it, say, in a variable. For example:

// This datum is fleeting and dies immediately after it's created
"hi " + "ma";
// This datum is stored in a variable and can be
// accessed later via the variable welcomeMessage
var welcomeMessage = "hi " + "ma!";

How do we categorize data into the appropriate type? That is, how do we specify
that a datum is a number, a string, an array, or whatever? In most cases, we don’t
categorize new data ourselves; the ActionScript interpreter automatically assigns or
infers each datum’s type based on a set of internal rules.

Automatic Literal Typing
The interpreter infers a literal datum’s type by examining its syntax, as explained in
the comments in the following code fragment:

"animal" // Quotation marks identify "animal" as a string
1.35 // If it contains only integers and a decimal point,
 // it is a number

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Data and Datatypes

true // Special keyword true identifies this as a Boolean
null // Special keyword null identifies this as the null type
undefined // Special keyword undefined identifies the undefined type
["hello", 2, true] // Square brackets and values separated by commas
 // indicate that this is an array
{x: 234, y: 456} // Curly braces and property name/value pairs separated
 // by commas indicate that this is an object

As you can see, using correct syntax with data literals is extremely important. Incor-
rect syntax may cause an error or result in the misinterpretation of a datum’s con-
tent. For example:

animal // Missing quotes--animal is interpreted as a variable,
 // not a string of text
"1.35" // Numbers in quotes are treated as strings, not numbers
1. 35 // Space before the 3 causes an error
"animal // Missing closing quotation mark causes an error

Automatic Complex Expression Typing
The interpreter computes an expression’s value in order to determine its datatype.
Consider this example:

pointerX = _xmouse;

Because _xmouse stores the location of the mouse pointer as a number, the type of the
expression _xmouse will always be a number; so, the variable pointerX also becomes a
number.

Usually, the datatype that is automatically determined by the interpreter matches
what we expect and want. However, some ambiguous cases require us to under-
stand the rules that the interpreter uses to determine an expression’s datatype (see
Example 2-2 and Example 2-3). Consider the following expression:

"1" + 2;

The operand on the left of the + is a string (“1”), but the operand on the right is a
number (2). The + operator works on both numbers (addition) and strings (concate-
nation). Should the value of the expression "1" + 2 be the number 3 or the string
“12”? To resolve the ambiguity, the interpreter relies on a fixed rule: the plus opera-
tor (+) always favors strings over numbers, so the expression "1" + 2 evaluates to the
string “12”, not the number 3. This rule is arbitrary, but it provides a consistent way
to interpret the code. The rule was chosen with typical uses of the plus operator in
mind: if one of the operands is a string, it’s likely that we want to concatenate the
operands, not add them numerically, as in this case:

trace ("The value of x is: " + x);

Combining disparate types of data or using a datum in a context that does not match
the expected datatype causes ambiguity. This forces the interpreter to perform an
automatic datatype conversion according to arbitrary, but predictable, rules. Let’s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Datatype Conversion | 67

examine the cases in which automatic conversions will occur and the results of con-
verting a datum from one type to another.

Datatype Conversion
Take a closer look at the example from the previous section. In that example, each
datum—“1” and 2—belonged to its own datatype; the first was a string and the sec-
ond was a number. We saw that the interpreter joined the two values together to
form the string “12”. Note that the interpreter first had to convert the number 2 into
the string “2”. Only after that automatic conversion was performed could the value
“2” be joined (concatenated) to the string “1”.

Datatype conversion simply means changing the type of a datum. Not all datatype
conversions are automatic; we may also change a datum’s type explicitly in order to
override the default datatype conversion that ActionScript would otherwise perform.
Explicit conversion is known as typecasting, or simply casting.

Automatic Type Conversion
Whenever we use a value in a context that does not match the expected datatype, the
interpreter attempts a conversion. That is, if the interpreter expects data of type A,
and we provide data of type B, the interpreter will attempt to convert our type B data
into type A data. For example, in the following code we use the string “Flash” as the
right-hand operand of the subtraction operator. Since only numbers may be used
with the subtraction operator, the interpreter attempts to convert the string “Flash”
into a number:

999 - "Flash";

Of course, the string “Flash” can’t be successfully converted into a legitimate num-
ber, so it is converted into the special numeric data value NaN (i.e., Not-a-Number).
NaN is a legal value of the number datatype, intended specifically to handle such a sit-
uation. With “Flash” converted to NaN, our expression ends up looking like this to
the interpreter (though we never see this interim step):

999 - NaN;

Both operands of the subtraction operator are now numbers, so the operation can
proceed: 999 - NaN yields the value NaN, which is the final value of our expression.

An expression that yields the numeric value NaN isn’t particularly useful; most con-
versions have more functional results. For example, if a string contains only numeric
characters, it can be converted into a useful number. The expression:

999 - "9"; // The number 999 minus the string "9"

is interpreted as:

999 - 9; // The number 999 minus the number 9

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Data and Datatypes

which yields the value 990 when the expression is resolved. Automatic conversion is
most common with the plus operator, the equality operator, the comparison opera-
tors, and in conditional or loop statements. In order to be sure of the result of any
expression that involves automatic conversion, we have to answer three questions:
(a) what is the expected datatype of the current context? (b) what happens when an
unexpected datatype is supplied in that context? and (c) when conversion occurs,
what is the resulting value?

To answer the first and second questions, we need to consult the appropriate topics
elsewhere in this book (e.g., to determine what datatype is expected in a conditional
statement, see Chapter 7).

The next three tables, which list the rules of automatic conversion, answer the third
question, “When conversion occurs, what is the resulting value?” Table 3-1 shows
the results of converting each datatype to a number.

Table 3-2 shows the results of converting each datatype to a string.

Table 3-1. Converting to a number

Original data Result after conversion

undefined 0

null 0

Boolean 1 if the original value is true; 0 if the original value is false

Numeric string Equivalent numeric value if string is composed only of base-10 numbers, whitespace, exponent, deci-
mal point, plus sign, or minus sign (e.g., “-1.485e2“)

Other strings Empty strings, nonnumeric strings, including strings starting with “x“, “0x“, or “FF“, convert to NaN

“Infinity“ Infinity

“-Infinity“ -Infinity

“NaN“ NaN

Array NaN

Object The return value of the object’s valueOf() method

Movieclip NaN

Table 3-2. Converting to a string

Original data Result after conversion

undefined ““ (the empty string)

null “null“

Boolean “true” if the original value was true; “false” if the original value was false.

NaN “NaN“

0 “0“

Infinity “Infinity“

-Infinity “-Infinity“

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Datatype Conversion | 69

Table 3-3 shows the results of converting each datatype to a Boolean.

Explicit Type Conversion
If the automatic (implicit) type-conversion rules do not suit our purpose, we can
manually (explicitly) change a datum’s type. When we take matters into our own
hands, we must remember that the rules listed in the preceding tables still apply.

Converting to a string with the toString() method

We can invoke the toString()method to convert any datum to a string. For example:

x.toString(); // Get the string value of the variable x.
(523).toString(); // Returns "523". Note that we use parentheses
 // so that the "." isn't treated as a decimal point.

Other numeric value String equivalent of the number. For example, 944.345 becomes “944.345“.

Array A comma-separated list of element values.

Object The value that results from calling toString() on the object. By default, the toString() method of an
object returns “[object Object]“. The toString() method can be customized to return a more use-
ful result (e.g., toString() of a Date object returns: “Sun May 14 11:38:10 EDT 2000“).

Movieclip The path to the movie clip instance, given in absolute terms starting with the document level in the
Player. For example, “_level0.ball“.

Table 3-3. Converting to a Boolean

Original data Result after conversion

undefined false

null false

NaN false

0 false

Infinity true

-Infinity true

Other numeric value true

Nonempty string true if the string can be converted to a valid nonzero number, false if not; in ECMA-262, a non-
empty string always converts to true (Flash diverges from the ECMA standard to maintain compati-
bility with Flash 4)

Empty string (””) false

Array true

Object true

Movieclip true

Table 3-2. Converting to a string (continued)

Original data Result after conversion

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Data and Datatypes

When we invoke the toString() method on a number, we may also provide a numeric
argument indicating the base of the number system in which we’d like the converted
string to be represented. This provides a handy means of switching between hexa-
decimal, decimal, and octal numbers. For example:

var myColor = 255;
var hexColor = myColor.toString(16); // Sets hexColor to "ff"

Converting to a string with the String() function

The String() function has the same result as the toString() method, but it uses a dif-
ferent grammar:

String(x); // Convert x to a string
String(523); // Convert 523 to the string "523"

Don’t confuse the global String() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Converting to a string with empty string concatenation

Because the plus operator (+) favors strings in its automatic conversion rules, concat-
enating the empty string ("") with any datum converts that datum to a string.

// Convert x to a string.
x + "";
// Here we check the character position of the number 2 in 523. We first
// concatenate 523 and "", before invoking a String method on the converted value.
trace((523 + "").indexOf(2));

Converting to a number with the Number() function

Just as the String() function converts data to the string type, the Number() function
converts its argument to the number type. When conversion to a real number is
impossible or illogical, the Number() function returns a special numeric value as
described in Table 3-1. Here are some examples:

Number(age); // Yields the value of age converted to a number
Number("29"); // Yields the number 29
Number("sara"); // Yields NaN

Don’t confuse the global Number() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Because user input in on-screen text fields always belong to the string type, it’s neces-
sary to convert text fields to numbers when performing mathematical calculations.
For example, if we want to find the sum of the text fields price1_txt and price2_txt,
we use:

totalCost = Number(price1_txt.text) + Number(price2_txt.text);

Otherwise, price1_txt and price2_txt will be concatenated as strings, not added as
numbers. For more information on text fields, see TextField in the Language Reference.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Datatype Conversion | 71

Converting to a number by subtracting zero

To trick the interpreter into converting a datum to a number, we can subtract zero
from that datum. Again, the conversion follows the rules described in Table 3-1:

"953" - 0 // Yields 953
"molly" - 0 // Yields NaN
x - 0 // Yields the value of x converted to a number

Converting to a number using the parseInt() and parseFloat() functions

The parseInt() and parseFloat() functions convert a string containing numbers and
letters into a number. The parseInt() function extracts the first integer that appears in
a string, provided that the string’s first nonblank character is a legal numeric charac-
ter. Otherwise, parseInt() yields NaN. The number extracted via parseInt() starts with
the first nonblank character in the string and ends with the character before either
the first nonnumeric character or the first occurrence of a decimal point.

Here are some parseInt() examples:

parseInt("1a") // Yields 1
parseInt("1.3a" // Yields 1
parseInt(" 1a") // Yields 1
parseInt("I am 14 years old") // Yields NaN (the first nonblank
 // character is not a number)
parseInt("14 years old") // Yields 14

// Convert decimal to hexadecimal.
(255).toString(16); // Yields: ff
// Convert hexadecimal to decimal.
parseInt("0xFF"); // Yields 255

The parseFloat() function returns the first floating-point number that appears in a
string, provided that the string’s first nonblank character is a valid numeric charac-
ter. (A floating-point number is a positive or negative number that contains a deci-
mal value, such as -10.5 or 345.678.) Like parseInt(), parseFloat() yields the special
numeric value NaN if the string’s first nonblank character is not a valid numeric char-
acter. The number extracted by parseFloat() is the numeric conversion of the series of
characters that starts with the first nonblank character in the string and ends with the
character before the first nonnumeric character (any character other than +, –, 0–9, a
decimal point, or an e or E when used for exponential notation).

Here are some parseFloat() examples:

parseFloat("1.3a"); // Extracts 1.3
parseFloat("2.75 years old") // Extracts 2.75
parseFloat("1nce upon a time") // Extracts 1
parseFloat("I'm 3.5 feet tall") // Yields NaN

For more information on parseInt() and parseFloat()—including how to specify a
radix to convert between number systems—see the Language Reference.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Data and Datatypes

Converting to a Boolean

When we want to convert a datum to a Boolean, we can use the global Boolean()
function, which uses similar syntax to the String() and Number() functions. For
example:

Boolean(5); // The result is true
Boolean(x); // Converts value of x to a Boolean

Don’t confuse the global Boolean() function with the built-in class constructor of the
same name. Both are described in the Language Reference.

Conversion Duration
All type conversions performed on variables, array elements, and object properties
are temporary unless the conversion happens as part of an assignment. Here we see a
temporary conversion:

var x = "10"; // x is a string.
y = x - 5; // y is now 5; x's value was temporarily converted to a number.
trace(typeof x); // Displays: "string"; the conversion was temporary because
 // it occurred incidentally while evaluating an expression.

Here we see a permanent conversion that is the result of an assignment:

x = "10"; // x is a string.
x = x - 5; // x is converted permanently to a number.
trace(typeof x); // Displays: "number"; the conversion was permanent because
 // it occurred as part of an assignment.

Determining the Type of an Existing Datum
To determine what kind of data is held in a given expression before, say, proceeding
with a section of code, we use the typeof operator, as follows:

typeof expression;

The typeof operator returns a string telling us the datatype of expression, according
to Table 3-4.

Table 3-4. Return values of typeof

Original datatype typeof return value

Number “number“

String “string“

Boolean “boolean“

Object “object“

Array “object“

null “null“

Movieclip “movieclip“

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Primitive Data Versus Composite Data | 73

Here are a few examples:

trace(typeof "game over"); // Displays: "string" in the Output window
var x = 5;
trace(typeof x); // Displays: "number"
var now = new Date();
trace(typeof now); // Displays: "object"

As shown in Example 3-1, when combined with a for-in statement, typeof provides a
handy way to find all the movie clip instances on a timeline. Once the clips are iden-
tified, we can assign them to an array for programmatic handling. (If you can’t fol-
low all of Example 3-1, revisit it after completing Part I.)

Primitive Data Versus Composite Data
So far we’ve been working mostly with numbers and strings, which are the most
common primitive datatypes. Primitive datatypes are the basic units of a language;
each primitive value represents a single datum (as opposed to an array of multiple
items) and holds that datum directly, rather than holding its address elsewhere in
memory.

ActionScript supports these primitive datatypes: number, string, boolean, undefined,
and null. ActionScript does not have a separate single-character datatype (e.g., char)
as found in C/C++ (strings are a primitive datatype in ActionScript, and not arrays of
chars as they are in C/C++).

Function “function“

undefined “undefined“

Example 3-1. Populating an array with dynamically identified movie clips

// Create an array in which to store the clips.
var childClips = new Array();

// Check all the properties of the main timeline.
for (prop in _root) {
 // If the current property is a movie clip...
 if (typeof _root[prop] = = "movieclip") {
 // ...add it to the clips array.
 childClips.push(_root[prop]);
 }
}

// Now that our array is populated, we can use it to manipulate the clips it contains.
childClips[0]._x = 0; // Place the first clip on the left of the Stage.
childClips[1]._y = 0; // Place the second clip at the top of the Stage.

Table 3-4. Return values of typeof (continued)

Original datatype typeof return value

