Object-Oriented Development with ActionScript 2.0

Essential
ActionScri

O, RE I LI_Y® Colin Moock

Flash/ActionScript

O’REILLY*

Essential ActionScript 2.0

Macromedia Flash, already the de facto standard for delivering multimedia over

the Web, is used increasingly to develop web-based applications (so-called Rich
Internet Applications). Introduced in Flash MX 2004 and Flash MX Professional 2004,
ActionScript 2.0 is a major upgrade to Flash’s scripting language, which radically
improves object-oriented development in Flash by formalizing objected-oriented programming
(OOP) syntax and methodology.

Essential ActionScript 2.0, from the author of the widely acclaimed ActionScript for Flash MX:

The Definitive Guide, covers not only ActionScript 2.0 syntax, but also object-oriented design and
object-oriented programming. This book is targeted at ActionScript developers who want to know
how ActionScript 2.0 development differs from ActionScript 1.0, how to upgrade legacy code to
ActionScript 2.0, and how to take maximum advantage of ActionScript 2.0 and its OOP features.
If you are an experienced OOP developer coming from another language such as Java or C++,
Essential ActionScript 2.0 shows you how to leverage your OOP knowledge in Flash.

Part I teaches object-oriented concepts, syntax, and usage in ActionScript 2.0. It covers strict
datatyping, type casting, classes, objects, methods, properties, inheritance, composition, interfaces,
classpaths, packages, and exception handling. Beyond teaching mere basics, it helps you to properly
design and structure your code.

Part II teaches best practices for setting up and architecting an object-oriented project, plus how
user interface components and movie clip subclasses fit into a well-structured Flash application.
You'll learn how to structure entire applications and exchange code with other developers to help
you build more stable, scalable, and extensible applications.

Part III teaches you to apply proven and widely accepted object-oriented programming strategies—
known as design patterns—to Flash. After a briel introduction to design patterns, this section
covers the Observer, Singleton, and Model-View-Controller design patterns, plus the delegation
event model, with particular attention to their implementation in ActionScript 2.0.

“This book delivers a complete education in barnessing the power of ActionScript 2.0, coupled
with the best preactices for doing so. Colin illustrates not just bow to write ActionScript but
bow to write great ActionScript.”

—Gary Grossman, Flash Architect and Creator of ActionScript, Macromedia

www.oreilly.com

US $39.95 CAN $57.95
ISBN-10: 0-596-00652-7
ISBN-13: 978-0-596-00652-5

53995
AW

05 alogeszsl I M

Essential ActionScript 2.0

Colin Moock

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Essential ActionScript 2.0
by Colin Moock

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Bruce Epstein

Production Editor: Sarah Sherman

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:
June 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Essential ActionScript 2.0, the image of a coral snake, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 0-596-00652-7
(M] [6/06]

to gray, the wonderkid

Table of Contents

Foreword Xi

Preface ... XV

Partl. The ActionScript 2.0 Language

1. ActionScript 2.0 Overview, 3
ActionScript 2.0 Features 3
Features Introduced by Flash Player 7 5
Flash MX 2004 Version 2 Components 6
ActionScript 1.0 and 2.0 in Flash Player 6 and 7 8
Let’s Go OOP 12

2. Object-Oriented ActionScript 13
Procedural Programming and Object-Oriented Programming 13
Key Object-Oriented Programming Concepts 14
But How Do I Apply OOP? 19
On with the Show! 23

3. DatatypesandTypeChecking 24
Why Static Typing? 30
Type Syntax 31
Compatible Types 36
Built-in Dynamic Classes 40
Circumventing Type Checking 41
Casting 45
Datatype Information for Built-in Classes 54

ActionScript 2.0 Type Checking Gotchas 55

Up Next: Creating Classes—Your Own Datatypes! 58
Classes 59
Defining Classes 59
Constructor Functions (Take 1) 64
Properties 65
Methods 81
Constructor Functions (Take 2) 112
Completing the Box Class 119
Putting Theory into Practice 123
Authoring an ActionScript 2.0Class 124
Class Authoring Quick Start 124
Designing the ImageViewer Class 125
ImageViewer Implementation (Take 1) 129
Using ImageViewer in a Movie 134
ImageViewer Implementation (Take 2) 138
ImageViewer Implementation (Take 3) 146
Back to the Classroom 157
Inheritance 158
A Primer on Inheritance 158
Subclasses as Subtypes 162
An OOP Chat Example 163
Overriding Methods and Properties 166
Constructor Functions in Subclasses 193
Subclassing Built-in Classes 198
Augmenting Built-in Classes and Objects 201
The Theory of Inheritance 202
Abstract and Final Classes Not Supported 213
Let’s Try Inheritance 214
Authoring an ActionScript 2.0 Subclassl 215
Extending ImageViewer’s Capabilities 215
The ImageViewerDeluxe Skeleton 216
Adding setPosition() and setSize() Methods 217
Autosizing the Image Viewer 218
Using ImageViewerDeluxe 223
Moving Right Along 223

Table of Contents

8. Interfaces 224

The Case for Interfaces 224
Interfaces and Multidatatype Classes 226
Interface Syntax and Use 227
Multiple Type Inheritance with Interfaces 232

Up Next, Packages 236

9. Packages 238
Package Syntax 239
Defining Packages 244
Package Access and the Classpath 245
Simulating Packages in ActionScript 1.0 248
Just a Little More Theory 248

10. Exceptions 249
The Exception-Handling Cycle 250
Handling Multiple Types of Exceptions 255
Exception Bubbling 264
The finally Block 268
Nested Exceptions 271
Control Flow Changes in try/catch/finally 275
Limitations of Exception Handling in ActionScript 2.0 277
From Concepts to Code 280

Partll. Application Development

11. AnOOP Application Framework 283
The Basic Directory Structure 284
The Flash Document (.fla file) 284
The Classes 285
The Document Timeline 287
The Exported Flash Movie (.swf file) 289
Projects in Flash MX Professional 2004 290
Let’s See It in Action! 290

12. Using Components

with ActionScript2.0 291
Currency Converter Application Overview 291
Preparing the Flash Document 292

Table of Contents | vii

The CurrencyConverter Class 295
Handling Component Events 308
Components Complete 315
13. MovieClipSubclasses 316
The Duality of MovieClip Subclasses 317
Avatar: A MovieClip Subclass Example 318
Avatar: The Composition Version 326
Issues with Nested Assets 327
A Note on MovieClip Sub-subclasses 330
Curiouser and Curiouser 331
14. Distributing Class Libraries 332
Sharing Class Source Files 332
Sharing Classes Without Sharing Source Files 338
Solving Real OOP Problems 346
Part lll. Design Pattern Examples in ActionScript 2.0
15. Introductionto DesignPatterns 349
Bring on the Patterns 351
16. The Observer DesignPattern 352
Implementing Observer in ActionScript 2.0 354
Logger: A Complete Observer Example 360
Memory Management Issues with Observer 378
Beyond Observer 380
17. TheSingleton DesignPattern 381
Implementing Singleton in ActionScript 2.0 381
The Singleton Pattern in the Logger Class 383
Singleton Versus Class Methods and Class Properties 384
A Warning Against Singletons as Globals 385
On to User Interfaces 385
18. The Model-View-Controller Design Pattern................ .. 386
The General Architecture of MVC 388
A Generalized MVC Implementation 392
An MVC Clock 398
Further Exploration 421

viii

Table of Contents

19. The Delegation EventModel 423

Structure and Participants 423
The Flow of Logic 427
Core Implementation 427
NightSky: A Delegation Event Model Example 432
Other Event Architectures in ActionScript 442
From Some Place to Some OtherPlace 443

Part1V. Appendixes

A. ActionScript 2.0 Language Quick Reference 447
B. Differences from ECMAScript Edition4 478
Index 481

Table of Contents | ix

Foreword

I came to Macromedia in the summer of 2000, shortly after graduating from college,
to start working as a software engineer on the Flash team. In my first days at the
company, the team was working tirelessly to ship Flash 5, and everyone was too busy
to give me much work to do, let alone guide me in the ways of Macromedia corpo-
rate life. Little did I realize that as I was learning my way around the complex C++
architecture of the Flash authoring tool, ActionScript was also beginning its own
career in the web development industry. Flash 5 was a landmark release for the Flash
authoring tool: it brought ActionScript from an interface that required point-and-
click interaction to a full-fledged scripting language based on the ECMAScript stan-
dard, with a real text editor. I arrived just as the Flash team was putting real script-
ing power in the hands of Flash developers. Over the next two releases of Flash, I
participated in the continuation of that effort, first by producing the ActionScript
debugger in Flash MX and, most recently, by developing the ActionScript 2.0 com-
piler. My past few years are inextricably linked to this language, and it has contrib-
uted to my growth, just as I have contributed to its growth.

In the beginning, my feelings about ActionScript were similar to the feelings a lot of
traditional developers have when coming to the language. I found myself comfort-
able with its flexibility, yet frustrated with its limitations. I was happy to bring fea-
tures such as the debugger to life, because it helped Flash meet my own expectations
of a programming environment. I enjoyed working to close the gaps in Flash’s capa-
bilities, feature by feature. With Flash MX, we made strides by greatly improving the
code editor and by enabling users to debug their ActionScript. However, Action-
Script 1.0 still had one frustrating limitation that we did not address in Flash MX: it
was possible to write code that employed object-oriented programming (OOP) tech-
niques, but doing so was complex and unintuitive and not well integrated with Flash
concepts like library symbols.

With Flash MX 2004 and ActionScript 2.0, we have arrived at yet another major land-
mark in ActionScript’s evolution. ActionScript 2.0 offers a more sophisticated syntax
for the OOP constructs that ActionScript has always supported. ActionScript 2.0 is

Xi

easier to learn than its predecessor, and it is closer to other industry-standard pro-
gramming languages, such as Java and C#. It gives developers the framework needed
to build and maintain large, complex applications. In addition, our implementation
required minimal changes to the Flash Player, meaning that ActionScript 2.0 can be
exported to Flash Player 6, which was already nearly ubiquitous at the time of Flash
MX 2004’s release.

In the short time that ActionScript has been around, developers have found it to be
extraordinarily powerful. Flash places few constraints on the developer’s access to
the MovieClip hierarchy and object model, permitting them to do anything, any-
where. This flexibility has stirred the creativity of our users, enabling them to grow
into ActionScript and experiment with it. However, the lack of structure in Action-
Script 1.0 made applications difficult to scale up, leading to unwieldy projects that
teams found challenging to maintain and organize. It was too easy to write poor
code, not to mention place code in locations almost impossible to find by others
unfamiliar with the project. ActionScript 2.0 aspires to address these pitfalls by
encouraging a structure that all developers can adhere to and understand. Moreover,
the ActionScript 2.0 compiler provides developers with feedback on errors that oth-
erwise wouldn’t be found until they manifested as bugs at runtime. Still, Action-
Script continues to provide extensive and unique control over graphical elements.
We strove to ensure that ActionScript is a powerful language moving forward, with-
out treading on the toes of already-seasoned scripters.

ActionScript 2.0 was also the basis for several other notable elements of Flash MX
2004.

The following are all written in ActionScript 2.0:

* The second generation of components (i.e., the v2 components)

* The new Screens metaphor, which includes Slides and Forms (available only in
Flash MX Professional 2004)

* The sophisticated data integration capabilities

* The multilingual resource support offered by the Strings panel

Building significant, large-scale features using ActionScript 2.0 provided valuable
testing and validation to those of us working on the compiler and informed many of
our design decisions. More importantly, these features give Flash developers compre-
hensive, working examples of ActionScript 2.0 in action (see the Macromedia/Flash
MX 2004/en/First Run/Classes folder under your application’s installation folder).
Likewise, the benefits of ActionScript 2.0 are readily apparent in these features,
which all consist of classes that are well organized in the mx.* class hierarchy. In
addition, it is easier than ever to determine which code corresponds to the different
components, as ActionScript 2.0 has made it possible to eliminate troublesome rel-
ics of ActionScript’s past, such as the #initclip pragma (compiler directive).

xi | Foreword

ActionScript started life as a few scripting commands inserted by mouse clicks. Five
years later, it is a full-featured object-oriented language with which large, complex
applications can be developed. Furthermore, it presents a clean, simple syntax that is
easy to read and straightforward for a beginner to pick up. In my two releases of the
Flash authoring tool, I have learned more and more about ActionScript each step of
the way, and now I am proud to have helped redefine it. Colin Moock’s previous
book, ActionScript for Flash MX: The Definitive Guide, was indispensable to me, even
as I've worked on the new face of ActionScript. It is the single book you’ll find within
easy reach at the desk of every engineer on the Flash team. Many of our engineers
here were already looking forward to this new book, Essential ActionScript 2.0,
before it shipped. And with good reason. In this volume, Moock has once again
applied his insightful, conversational style to complex topics, teaching not only the
syntax of ActionScript 2.0 but also the theory and principles of OOP. He has thor-
oughly researched the relationships between ActionScript 2.0, its predecessor, and
other languages, and he illustrates their differences in precise detail. Moock’s inti-
mate familiarity with Flash and ActionScript is evident in this instructive and
approachable text, which certainly is an essential companion for anyone wishing to
learn and master the ActionScript 2.0 language.

—Rebecca Sun

Senior Software Engineer
Macromedia Flash Team
March 2004

Foreword | xiii

Preface

In September 2003, Macromedia released Flash MX 2004, and, with it, ActionScript
2.0—a drastically enhanced version of Flash’s programming language.

ActionScript 2.0 introduces a formal object-oriented programming (OOP) syntax and
methodology for creating Flash applications. Compared to traditional timeline-based
development techniques, ActionScript 2.0’s OOP-based development techniques
typically make applications:

* More natural to plan and conceptualize

* More stable and bug-free

* More reusable across projects

* Easier to maintain, change, and expand on

 Easier to test

* Easier to codevelop with two or more programmers
Those are some extraordinary qualities. So extraordinary, in fact, that they’ve turned

this book into something of a zealot. This book wants you to embrace ActionScript 2.0
with a passion.

This Book Wants You

This book wants you to use object-oriented programming in your daily Flash work.
It wants you to reap the benefits of OOP—one of the most important revolutions in
programming history. It wants you to understand ActionScript 2.0 completely. And
it will stop at nothing to get what it wants.

Here’s its plan...

First, in Part I, The ActionScript 2.0 Language, this book teaches you the fundamen-
tals of object-oriented concepts, syntax, and usage. Even if you have never tried
object-oriented programming before, Part I will have you understanding and

XV

applying it. Chapter 1 gives an overview of ActionScript 2.0. Chapter 2 teaches you
the basics of OOP and helps you decide how much is right for your projects. Chap-
ters 3 through 10 offer details on classes, objects, methods, properties, inheritance,
composition, interfaces, packages, and myriad other core OOP concepts. If you
already know a lot about OOP because you program in Java or another object-ori-
ented language, this book helps you leverage that prior experience. It draws abun-
dant comparisons between Flash-based OOP and what you already know. Along the
way, it introduces OOP into your regular routine through exercises that demon-
strate real-world Flash OOP in action.

In Part II, Application Development, this book teaches you how to structure entire
applications with ActionScript 2.0. In Chapter 11, you’ll learn best practices for set-
ting up and architecting an object-oriented project. In Chapters 12 and 13, you’ll
learn how user interface components and movie clips fit into a well-structured Flash
application. In Chapter 14, you’ll see how to parcel up and share code with other
developers. All this will help you build more scalable, extensible, stable apps. It’s all
part of this book’s plan.

Finally, in Part IlI, Design Pattern Examples in ActionScript 2.0, you’ll explore a vari-
ety of approaches to various programming situations. You’ll see how to apply proven
and widely accepted object-oriented programming strategies—known as design
patterns—to Flash. The design patterns in Part III cover two key topics in Flash
development: event broadcasting and user interface management. After an introduc-
tion to design patterns in Chapter 15, we’ll explore four common patterns in Chap-
ters 16 through 19. Once you’ve tried working with the patterns presented in Part III,
you’ll have confidence consulting the larger body of patterns available online and in
other literature. And you’ll have the skills to draw on other widely recognized object-
oriented practices. You see, this book knows it won’t be with you forever. It knows it
must teach you to find your own solutions.

This book doesn’t care whether you already know the meaning of the words “class,”
“inheritance,” “method,” “prototype,” or “property.” If you have no idea what OOP
is or why it’s worthwhile, this book is delighted to meet you. If, on the other hand,
you’re already a skilled object-oriented developer, this book wants to make you bet-
ter. It wants you to have the exhaustive reference material and examples you need to
maximize your productivity in ActionScript 2.0.

This book is determined to make you an adept object-oriented programmer. And it’s
confident it will succeed.

What This Book Is Not

While this book is zealous about core ActionScript 2.0 and object-oriented program-
ming, it does not cover every possible ActionScript-related topic. Specifically, you
won’t find much discussion of companion technologies, such as Flash Remoting or

xi | Preface

Flash Communication Server, nor will you find a dictionary-style Language Reference,
as you do in ActionScript for Flash MX: The Definitive Guide (O’Reilly). Whereas that
book describes the Flash Player’s native functions, properties, classes, and objects, this
book teaches you how to use those classes and objects, and how to fit them into your
own custom-built structures. The built-in library of classes available in the Flash Player
changed only incrementally in Flash Player 7, so ActionScript for Flash MX: The Defini-
tive Guide, continues to be a worthwhile reference—even to ActionScript 2.0 develop-
ers. It makes the perfect companion to Essential ActionScript 2.0.

This book does not cover the Screens feature (including Slides and Forms), which is
supported only in Flash MX Professional 2004. Screens are used to develop user
interfaces visually (in the tradition of Microsoft Visual Basic) and to create slideshow
presentations (in the tradition of Microsoft PowerPoint). Although the feature is not
a direct topic of study, you’ll certainly be prepared to explore Screens on your own
once you understand the fundamentals taught by this text.

This book is also not a primer on programming basics, such as conditionals (if state-
ments), loops, variables, arrays, and functions. For a gentle introduction to program-
ming basics in Flash, again see ActionScript for Flash MX: The Definitive Guide.

Finally, this book does not teach the use of the Flash authoring tool, except as it
applies to application development with ActionScript 2.0. For help with the author-
ing tool, such as creating graphics or timeline animations, you should consult the in-
product documentation or any of the fine third-party books available on the topic,
including O’Reilly’s own Flash Out of the Box, by Robert Hoekman, scheduled for
release in the second half of 2004.

Who Should (and Shouldn’t) Read This Book

You should read this book if you are:

* An intermediate ActionScript 1.0 or JavaScript programmer who understands
the basics of variables, loops, conditionals, functions, arrays, and other program-
ming fundamentals.

* An advanced ActionScript 1.0 or ActionScript 2.0 programmer who wants hard
facts about best practices for OOP in ActionScript 2.0, including detailed syntax
and usage information, language idiosyncrasies, and sample application structures.

* A Flash designer who does some programming and is curious to learn more
about application development.

* A programmer migrating to Flash development from another language, such as
Java, C++, Perl, JavaScript, or ASP. (Be prepared to learn the fundamentals of
the Flash authoring tool from the sources mentioned earlier. You should also
read Chapter 13, Movie Clips, in ActionScript for Flash MX: The Definitive Guide,
available online at: http://moock.orglasdg/samples.)

Preface | xvii

You should not read this book if you are a Flash designer/animator with little or no
programming experience. (Start your study of ActionScript with ActionScript for
Flash MX: The Definitive Guide instead.)

ActionScript 2.0 Versus ActionScript 1.0

Chapter 1 introduces ActionScript 2.0 in more detail, but this discussion provides a
brief orientation for ActionScript 1.0 developers.

ActionScript 1.0 and ActionScript 2.0 have the same core syntax. Basics like condition-
als, loops, operators, and other non-object-oriented aspects of ActionScript 1.0 can be
used verbatim in ActionScript 2.0 and are still an official part of the language. In addi-
tion, object creation, property access, and method invocation have the same syntax in
ActionScript 1.0 and ActionScript 2.0. So, generally speaking, ActionScript 2.0 is famil-
iar to ActionScript 1.0 developers. The main difference between the two versions of the
language is object-oriented syntax and authoring tool support for object-oriented
development.

In ActionScript 1.0, object-oriented programming had an unintuitive syntax and
nearly no authoring tool support (e.g., no compiler messages, no class file structure,
no type checking, poor connections between code and movie assets, etc.). With
ActionScript 1.0, object-oriented programming was an awkward, esoteric undertak-
ing. With ActionScript 2.0, it is a natural endeavor. ActionScript 2.0’s more tradi-
tional OOP implementation makes ActionScript 2.0 skills more transferable to and
from other languages.

If you’re an ActionScript 1.0 programmer and have already been applying OOP tech-
niques, ActionScript 2.0 will be a delight (and a relief) to work with. If you’re an
ActionScript 1.0 programmer who doesn’t use OOP, you don’t need to learn OOP in
ActionScript 1.0 before you learn it in ActionScript 2.0. Now is the perfect time to
explore and adopt this important methodology. OOP offers to increase your produc-
tivity, make your projects easier to manage, and improve your code’s quality and
reusability.

Although this book doesn’t spend a lot of time focusing on how to upgrade your
code from ActionScript 1.0 to ActionScript 2.0, after reading it, you should have no
trouble doing so. The book focuses on giving you a strong fundamental understand-
ing of ActionScript 2.0 and I didn’t want to unnecessarily distract from that focus by
talking too much about obsolete ActionScript 1.0 code. That said, keep an eye out
for the numerous ActionScript 1.0 notes that look like this:

Such notes directly compare an ActionScript 1.0 technique with the
analogous ActionScript 2.0 technique, so you can see the difference
between the old way of doing things and the new, improved way.

xvii | Preface

Finally let’s be clear about what I mean by “programming in ActionScript 2.0 versus
ActionScript 1.0.” If you are just creating timeline code and not using ActionScript 2.0
classes, static datatypes, or other OOP features, then it is really moot whether you
refer to your code as “ActionScript 1.0” or “ActionScript 2.0.” Without using OOP
features, ActionScript 2.0 code looks indistinguishable from ActionScript 1.0 code. So
when [say, “we’re going to learn to program in ActionScript 2.0,” of necessity, 'm
assuming you’re creating a meaningful OOP application in which you’re developing
one or more classes. For an example, consider an online form that merely sends an
email. You might implement that form entirely on the Flash timeline using only vari-
ables and functions. If that’s generally all you want to do with your applications, then
frankly, this book might be overkill for your current needs. However, given the
chance, this book will expand your horizons and teach you how to be a skilled object-
oriented programmer and to tackle larger projects. So when I say “programming in
ActionScript 2.0,” I mean “developing object-oriented applications in ActionScript 2.
0.” The emphasis is on “object-oriented development” rather than ActionScript 2.0,
per se, as ActionScript 2.0 is just a means to that end. You may ask, “Is this book
about ActionScript 2.0 syntax, object-oriented design, or object-oriented program-
ming?” The answer is, “All of the above.”

For more information about ActionScript 2.0 and ActionScript 1.0 in relation to
Flash Player 6 and Flash Player 7, see Chapter 1.

Deciphering Flash Versions

With the introduction of the Studio MX family of products, including Flash MX,
Macromedia abandoned a standard numeric versioning system for its Flash author-
ing tool. Subsequent to Flash MX, Macromedia incorporated the year of release in
the product name (products released after September use the following year in the
product name). With the 2004 release, Macromedia also split the Flash authoring
tool into two versions: Flash MX 2004 and Flash MX Professional 2004, as dis-
cussed in Table P-1. The principal features specific to the Professional edition are:

* Screens (form- and slide-based content development)

* Additional video tools

* Project and asset management tools

* An external script editor

* Databinding (linking components to data sources obtained via web services,
XML, or record sets)

* Advanced components (however, Flash MX Professional 2004 components work
happily in Flash MX 2004)

* Mobile device development tools

Preface | xix

The techniques taught in this book can be used in both Flash MX 2004 and Flash
MZX Professional 2004, although I note the rare circumstances in which the two ver-
sions differ as pertaining to development in ActionScript 2.0. Unlike the Flash
authoring tool, the Flash Player is still versioned numerically; at press time, the lat-
est version is Flash Player 7. Table P-1 describes the naming conventions used in this
book for Flash versions.

Table P-1. Flash naming conventions used in this book

Name Meaning
Flash MX The version of the Flash authoring tool that was released at the same time as Flash Player 6.
Flash MX 2004 The standard edition of the Flash authoring tool that was released at the same time as Flash

Player 7. In the general sense, the term “Flash MX 2004” is used to refer to both the standard
edition (Flash MX 2004) and the Professional edition (Flash MX Professional 2004) of the soft-
ware. When discussing a feature that is limited to the Professional edition, this text states the
limitation explicitly.

Flash MX Professional 2004 The Professional edition of the Flash authoring tool that was released at the same time as Flash
Player 7. The Professional edition includes some features not found in the standard edition (see
preceding list). The Professional edition is not required for this book or to use ActionScript 2.0.

Flash Player 7 The Flash Player, version 7. The Flash Player is a browser plugin for major web browsers on
Windows and Macintosh. At press time, Flash Player 6, but not Flash Player 7, was available for
Linux. There are both ActiveX control and Netscape-style versions of the plugin, but I refer to
them collectively as “Flash Player 7.”

Flash Player x.0.y.0 The Flash Player, specifically, the release specified by major version number x and major build
number y, as in Flash Player 7.0.19.0. The minor version number and minor build number of
publicly released versions is always 0.

Standalone Player Aversion of the Flash Player that runs directly as an executable off the local system, rather than
as a web browser plugin or ActiveX control.

Projector A self-sufficient executable that includes both a.swffile and a Standalone Player. Projectors
can be built for either the Macintosh or Windows operating system using Flash’s File — Publish
feature.

Example Files and Resources

The official companion website for this book is:
http://moock.orgleas2

You can download the example files for this book at:
http://moock.org/eas2/examples

More example Flash code can be found at the Code Depot for ActionScript for Flash
MX: The Definitive Guide:

http://moock.org/asdg/codedepot
For a long list of Flash-related online resources, see:

http://moock.org/moockmarks

xx | Preface

For an extensive collection of links to hundreds of ActionScript 2.0 resources, see:

http://'www.actionscripthero.com/adventures

Typographical Conventions

In order to indicate the various syntactic components of ActionScript, this book uses
the following conventions:

Menu options
Menu options are shown using the — character, such as File - Open.

Constant width
Indicates code examples, code snippets, clip instance names, frame labels, prop-
erty names, variable names, and symbol linkage identifiers.

Italic
Indicates function names, method names, class names, package names, layer
names, URLs, filenames, and file suffixes such as .swf. In addition to being itali-
cized in the body text, method and function names are also followed by paren-
theses, such as duplicateMovieClip().

Constant width bold
Indicates text that you must enter verbatim when following a step-by-step proce-
dure. Constant width bold is also used within code examples for emphasis, such
as to highlight an important line of code in a larger example.

Constant width italic
Indicates code that you must replace with an appropriate value (e.g., your name
here). Constant width italic is also used to emphasize variable, property,
method, and function names referenced in comments within code examples.

This is a warning. It helps you solve and avoid annoying problems or
warns of impending doom. Ignore at your own peril.

A
y This is a tip. It contains useful information about the topic at hand,
.‘s often highlighting important concepts or best practices.
'S s
15

This is a note about ActionScript 1.0. It compares and contrasts
ActionScript 1.0 with ActionScript 2.0, helping you to migrate to
ActionScript 2.0 and to understand important differences between the
two versions of the language.

Preface | xxi

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Essential ActionScript 2.0 by Colin Moock.
Copyright 2004 O’Reilly Media, Inc., 0-596-00652-7”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/l0596006527
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.oreilly.com

xxii | Preface

Acknowledgments

Sometimes you’re given the opportunity to thank someone but you know you
won’t be able to fully express the magnitude of your appreciation. You can say
what you want, but ultimately you just have to trust that the person knows how
deeply grateful you are. I trust that Rebecca Sun, Macromedia’s lead ActionScript
2.0 developer, knows.

I'm in a similar boat with Derek Clayton. I've been working with Derek for years on
Unity, our commercial framework for creating multiuser applications (see http://
moock.org/unity). Derek’s been a programming mentor to me since I met my first if
statement, and he’s been a friend for even longer. I learn something from him almost
every day. This book is filled with the wisdom he has imparted to me over the years.

Bruce Epstein, my editor. What can you say? He is, quite simply, the best. No hyper-
bole can exaggerate his merit, nor do it justice, so I shall attempt none.

I’d also like to thank all of the members of O’Reilly’s editorial, production, interior
design, art, marketing, and sales teams including Glenn Bisignani, Claire Cloutier,
Colleen Gorman, Tim O’Reilly, Rob Romano, Sarah Sherman, Ellen Troutman, and
Ellie Volckhausen. Also my thanks to the copy editor, Norma Emory, for helping to
ensure the text’s consistency, readability, and accuracy.

Then there are the members of Macromedia’s Flash team, who have been a constant
source of inspiration, knowledge, and friendship to me since there was a “Flash.” 1
believe that anyone interested in computers is indebted to the whole Flash team for
constantly pioneering new forms of computer-based communication. Above all, for
his unending support and kindness, I owe Gary Grossman a lifetime of deep bows,
obsequious “thank yous,” and long handshakes. Specific members of the Flash team,
past and present, that I'm honored to know and work with are: Nigel Pegg, Michael
Williams, Erica Norton, Waleed Anbar, Deneb Meketa, Matt Wobensmith, Mike
Chambers, Chris Thilgen, Gilles Drieu, Nivesh Rajbhandari, Tei Ota, Troy Evans,
Lucian Beebe, John Dowdell, Bentley Wolfe, Jeff Mott, Tinic Uro, Robert Tatsumi,
Michael Richards, Sharon Seldon, Jody Zhang, Jim Corbett, Karen Cook, Jonathan
Gay, Pete Santangeli, Sean Kranzberg, Michael Morris, Kevin Lynch, Ben Chun, Eric
Wittman, Jeremy Clark, and Janice Pearce.

[was extraordinarily fortunate to have some truly wonderful technical reviewers and
beta readers for this book. Rebecca Sun lent her sage eye to the entire text. Gary
Grossman reviewed key sections, including Chapter 10. The following keen beta
readers guided me throughout the writing process: Alistair McLoed, Chafic Kazoun,
Jon Williams, Marcus Dickinson, Owen Van Dijk, Peter Hall, Ralf Bokelberg, Rob-
ert Penner, and Sam Neff. Special thanks to Mark Jonkman and Nick Reeder for
their consistently thorough examinations of the manuscript.

Preface | xxiii

Love to my wife, Wendy, who completes me. To my family and friends. And to the
trees, for providing the answer to any question, the splendor of any dream, and the
paper upon which this book is printed.

—Colin Moock
Toronto, Canada
March 2004

xxiv | Preface

PART |

The ActionScript 2.0
Language

Part I teaches you the fundamentals of object-oriented concepts, syntax, and usage in
ActionScript 2.0. Even if you have never tried object-oriented programming before,
Part I will have you understanding and applying it. Part I covers classes, objects,
methods, properties, inheritance, composition, interfaces, packages, and myriad
other core OOP concepts. Beyond teaching you the basics of OOP, it helps you
decide how much OOP is right for your projects, and how to structure your classes
and their methods.

Chapter 1, ActionScript 2.0 Overview

Chapter 2, Object-Oriented ActionScript

Chapter 3, Datatypes and Type Checking
Chapter 4, Classes

Chapter 5, Authoring an ActionScript 2.0 Class
Chapter 6, Inheritance

Chapter 7, Authoring an ActionScript 2.0 Subclass
Chapter 8, Interfaces

Chapter 9, Packages

Chapter 10, Exceptions

CHAPTER 1
ActionScript 2.0 Overview

Over the course of this book, we’ll study ActionScript 2.0 and object-oriented pro-
gramming in Flash exhaustively. There’s lots to learn ahead but, before we get into
too much detail, let’s start with a quick summary of ActionScript 2.0’s core features
and Flash Player 7’s new capabilities. If you have an ActionScript 1.0 background,
the summary will give you a general sense of what’s changed in the language. If, on
the other hand, you’re completely new to Flash or to ActionScript, you may want to
skip directly to Chapter 2.

ActionScript 2.0 Features

Introduced in Flash MX 2004 and Flash MX Professional 2004, ActionScript 2.0 is a
major grammatical overhaul of ActionScript as it existed in Flash 5 and Flash MX
(retroactively dubbed ActionScript 1.0). ActionScript 2.0 adds relatively little new
runtime functionality to the language but radically improves object-oriented develop-
ment in Flash by formalizing objected-oriented programming (OOP) syntax and
methodology.

While ActionScript 1.0 could be used in an object-oriented way, it lacked a tradi-
tional, official vocabulary for creating classes and objects. ActionScript 2.0 adds syn-
tactic support for traditional object-oriented features. For example, ActionScript 2.0
provides a class keyword for creating classes and an extends keyword for establishing
inheritance. Those keywords were absent from ActionScript 1.0 (though it was still
possible to create prototypical objects that could be used as classes). The traditional
OOP syntax of ActionScript 2.0 makes the language quite familiar for programmers
coming from other OOP languages such as Java and C++.
N

A
.

Most of the new OOP syntax in ActionScript 2.0 is based on the pro-
:.,“ posed ECMAScript 4 standard. Its specification is posted at hitp://
W www.mozilla.org/js/language/es4.

Here are some of the key features introduced in ActionScript 2.0. Don’t worry if
these features are new to you; the remainder of the book covers them in detail:

The class statement, used to create formal classes. The class statement is covered
in Chapter 4.

The extends keyword, used to establish inheritance. In ActionScript 1.0 inherit-
ance was typically established using the prototype property but could also be
established via the _proto__ property. Inheritance is covered in Chapter 6.

The interface statement, used to create Java-style interfaces (i.e., abstract
datatypes). Classes provide implementations for interfaces using the implements
keyword. ActionScript 1.0 did not support interfaces. Interfaces are covered in
Chapter 8.

The official file extension for class files is .as. Formerly, classes could be defined
in timeline code or in external .as files. ActionScript 2.0 now requires classes to
be defined in external class files. Class files can be edited in Flash MX Profes-
sional 2004’s script editor or in an external text editor.

Formal method-definition syntax, used to create instance methods and class
methods in a class body. In ActionScript 1.0, methods were added to a class via
the class constructor’s prototype property. See Chapter 4.

Formal getter and setter method syntax, which replaces ActionScript 1.0’s
Object.addProperty() method. See Chapter 4.

Formal property-definition syntax, used to create instance properties and class
properties in a class body. In ActionScript 1.0, instance properties could be
added in several ways—via the class constructor’s prototype property, in the con-
structor function, or on each object directly. Furthermore, in ActionScript 1.0,
class properties were defined directly on the class constructor function. See
Chapter 4.

The private and public keywords, used to prevent certain methods and proper-
ties from being accessed outside of a class.

Static typing for variables, properties, parameters, and return values, used to
declare the datatype for each item. This eliminates careless errors caused by
using the wrong kind of data in the wrong situation. See Chapter 3 for details on
type mismatch errors.

Type casting, used to tell the compiler to treat an object as though it were an
instance of another datatype, as is sometimes required when using static typing.
See Chapter 3 for details on casting.

Classpaths, used to define the location of one or more central class repositories.
This allows classes to be reused across projects and helps make source files easy
to manage. See Chapter 9.

Exception handling—including the throw and try/catch/finally statements—used
to generate and respond to program errors. See Chapter 10.

4

Chapter 1: ActionScript 2.0 Overview

* Easy linking between movie clip symbols and ActionScript 2.0 classes via the
symbol Linkage properties. This makes MovieClip inheritance easier to imple-
ment than in ActionScript 1.0, which required the use of #initclip and Object.
registerClass(). See Chapter 13.

Features Introduced by Flash Player 7

In addition to the ActionScript 2.0 language enhancements, Flash Player 7 intro-
duces some important new classes and capabilities. These are available only to Flash
Player 7—format movies playing in Flash Player 7 or later. (For information on export
formats, see “Setting a Movie’s ActionScript Version and Player Version,” later in
this chapter.) Although these features are not the direct topic of study in this book,
we’ll cover a few of them during our exploration of ActionScript 2.0.

The key new features of Flash Player 7 include:
* New array-sorting capabilities

* The ContextMenu and ContextMenultem classes for customizing the Flash Player
context menu that appears when the user right-clicks (Windows) or Ctrl-clicks
(Macintosh) on a Flash movie

* Cross-domain policy files for permitting data and content to be loaded from an
external domain

* ID3 v2 tag support for loaded MP3 files

* Mouse wheel support in text fields (Windows only)

* Improved MovieClip depth management methods

* The MovieClipLoader class for loading movie clips and images

* The Print]ob class for printing with greater control than was previously possible

* Support for images in text fields, including flowing text around images

* Improved text metrics (the ability to obtain more accurate measurements of the
text in a text field than was possible in Flash Player 6)

* Cascading stylesheet (CSS) support for text fields, allowing the text in a movie to
be formatted with a standard CSS stylesheet

* Improved ActionScript runtime performance

* Strict case sensitivity
The topic of this book is the core ActionScript 2.0 language. As such, the preceding
Flash Player features are not all covered in a detailed manner. For more information

on the new features in Flash Player 7, see Flash’s online help under Help — Action-
Script Reference Guide - What’s New in Flash MX 2004 ActionScript.

Features Introduced by Flash Player7 | 5

Flash MX 2004 Version 2 Components

Flash MX introduced components—ready-to-use interface widgets and code modules
that implement commonly needed functionality. Flash’s built-in components make it
relatively easy to create desktop-style Flash applications. Flash MX 2004 introduces
the new v2 components, rewritten from scratch in ActionScript 2.0 and built atop ver-
sion 2 of the Macromedia Component Architecture, which provides a much richer
feature set than its predecessor. The new architecture necessitates new ways of devel-
oping and using components (see Chapter 12 for component usage). Officially, the
v2 components require Flash Player 6.0.79.0 or higher; however, tests show that
many v2 components work in earlier releases of Flash Player 6 (especially Flash
Player 6.0.40.0 and higher). If you want to use a v2 component in a version prior to
Flash Player 6.0.79.0, you should test your application extensively.

A single application produced in either Flash MX 2004 or Flash MX Professional
2004 can include both v2 components and Flash MX’s vl components, provided the
vl components have been updated to support ActionScript 2.0 and the movie is
exported in ActionScript 2.0 format.

Don’t confuse vl and v2 components with the version of ActionScript in which they
are written. Granted, v2 components are written in ActionScript 2.0 and there are no
ActionScript 1.0 versions of the v2 components. However, although v1 components
were written originally in ActionScript 1.0, versions updated to compile under
ActionScript 2.0 are available.

A w
5 The v1 component update for ActionScript 2.0 is available at the Flash
.'a“ Exchange (http://www.macromedia.com/exchange/flash), in the User
T Gk Interface category, under the title “Flash MX Components for Flash

T MX2004.”

If nonupdated v1 components (i.e., those written in ActionScript 1.0) are used with
v2 components in the same movie, some compile-time and runtime errors may
occur, depending on the components used.

Do not mix ActionScript 1.0 OOP techniques with ActionScript 2.0
code. If you are using classes, inheritance, and other OOP features,
make sure all your code is upgraded to ActionScript 2.0.

Key new v2 component features include:

* A new listener event model for handling component events, which lets many
external objects receive a single component’s events

* (CSS-based stylesheet support, making it easier to change text attributes across
components

6 | Chapter1: ActionScript 2.0 Overview

* Focus management to support tabbing between user interface elements

* Depth management to manage the visual stacking of components on screen
* Richer accessibility support (i.e., better support for screen readers)

* Richer skinning (i.e., graphic replacement) support

* Encapsulation of component assets in a single file, allowing easier component
management and sharing

The v2 components tend to be larger than their v1 counterparts. This is especially
true if using only one or two components, as the v2 architecture is optimized for
applications that use at least three or four different component types. Therefore, if
you need only one or two components, and you don’t need focus management or
accessibility support, you’ll get faster (smaller) downloads using the v1 components.

Beware that the default theme (“halo”) for the v2 components does not support cus-
tom colors for scrollbars and buttons. That is, the scrollTrackColor and buttonColor
style properties do not work with the default v2 component theme in Flash MX 2004
and Flash MX Professional 2004. To set the color of buttons and scrollbars on v2
components, you must apply a new theme to the document. See Help — Using Com-
ponents - About Themes — Applying a Theme to a Document.

Table 1-1 shows the complete set of components in Flash MX 2004 and Flash MX
Professional 2004. Professional components that are not available in Flash MX 2004
will still work in that version of the software. That is, a .fla document that contains a
component specific to the Professional edition will open normally and work prop-
erly in Flash MX 2004. Macromedia’s End User License Agreement for Flash MX
2004 does not explicitly prohibit the use of Professional-only components in the
standard edition of the software.

Table 1-1. The v1 and v2 components

Component FlashMX FlashMX2004 FlashPro Notes

Accordion a v2

Alert b, ¢ v2

Button vl v2 v2

CheckBox vl v2 v2

ComboBox vl v2 v2

Data Components V2 Includes DataHolder, DataSet, RDBMSResolver,
WebServiceConnector, XMLConnector, and XUp-
dateResolver

DataGrid b v2

DateChooser ¢d v2

DateField v2

Label a v2 v2

Flash MX 2004 Version 2 Components | 7

Table 1-1. The v1 and v2 components (continued)

Component FlashMX FlashMX2004 FlashPro Notes
List vl v2 v2

Loader b v2 v2

Media Components b v2 MediaController, MediaDisplay, MediaPlayback
Menu d v2

MenuBar v2

NumericStepper v2 v2

ProgressBar b,c v2 v2

RadioButton vl v2 v2

ScrollPane vl v2 v2

TextArea vl v2 v2

TextInput vl v2 v2

Tree ¢ v2

Window c v2 v2

a Similar component available in DRK3 (http://www.macromedia.com/software/drk/productinfo/product_overview/volume3).
b Similar component available in DRKT (http://www.macromedia.com/software/drk/productinfo/product_overview/volume1).
¢ Similar component available in Flash Ul Component Set 2 at the Flash Exchange (http://www.macromedia.com/exchange/flash).
d Similar component available in DRK2 (http://www.macromedia.com/software/drk/productinfo/product_overview/volume2).

In Chapter 12, we’ll learn how to program graphical, OOP applications that use the
V2 components.

ActionScript 1.0 and 2.0
in Flash Player 6 and 7

ActionScript 1.0 is based on the ECMAScript 3 standard (as is JavaScript 1.5),
whereas ActionScript 2.0 is based on the emerging ECMAScript 4 standard (as is the
theoretical JavaScript 2.0). As we learned in the Preface, under “ActionScript 2.0 Ver-
sus ActionScript 1.0,” this common heritage gives the two versions a strong family
resemblance; they share the same syntax for most non-OOP features, such as loops,
conditionals, and operators.

Although ActionScript 2.0 is now the preferred version of ActionScript, ActionScript 1.0
syntax continues to be fully supported by Flash Player 7 and is not deprecated. As we’ll
see shortly, you can author either ActionScript 1.0 or ActionScript 2.0 in Flash MX 2004
and Flash MX Professional 2004 (but you cannot author ActionScript 2.0 in Flash MX).
With a few minor exceptions, noted throughout the text, ActionScript 2.0 code is also
backward compatible with Flash Player 6. However, ActionScript 2.0 is not compatible
with older versions such as Flash Player 5 or Flash Player 4.

If you're an ActionScript 1.0 programmer, you can think of ActionScript 2.0 as a syn-
tactic fagade over ActionScript 1.0. That is, both ActionScript 2.0 and ActionSecript 1.0

8 | Chapter1: ActionScript 2.0 Overview

compile to the same .swf bytecode (with a few minor additions for ActionScript 2.0).
To the Flash Player, at runtime, there’s effectively no difference between ActionScript
1.0 and ActionScript 2.0 (barring the aforementioned minor additions). For example,
once an ActionScript 2.0 class, such as Rectangle, is compiled to a .swf file, it exists as
a Function object at runtime, just as an older ActionScript 1.0 function declaration
used as a class constructor would. Similarly, at runtime, an ActionScript 2.0 Rectangle
instance (r) is given a __proto__ property that refers to Rectangle.prototype, again
making it look to the Flash Player just like its ActionScript 1.0 counterpart.

But for the most part, you don’t need to worry about these behind-the-scenes com-
piler and runtime issues. If you’re moving to ActionScript 2.0 (and I think you
should!), you can permanently forget ActionScript 1.0’s prototype-based program-
ming. In fact, most ActionScript 1.0 techniques for dynamically manipulating objects
and classes at runtime are considered bad practice in ActionScript 2.0, and will actu-
ally lead to compiler errors when mixed with ActionScript 2.0 code. But never fear,
this book highlights problematic ActionScript 1.0 practices and show you how to
replace them with their modern ActionScript 2.0 counterparts.

Setting a Movie’s ActionScript Version and Player Version

Flash MX 2004 lets you export .swf files (a.k.a. movies) in a format compatible with
specific versions of the Flash Player. Don’t confuse this with the version of the Flash
Player the end user has installed (which is beyond your control except for checking
their Player version and suggesting they upgrade when appropriate).

To set the version of a .swf file, use the drop-down list under File - Publish Settings —
Flash — Version. For maximum compatibility, always set your .swf file’s Flash Player
version explicitly to the lowest version required, and no higher. If the .swf file version
is higher than the end user’s version of the Flash Player, it might not display correctly,
and most code execution will fail.

Setting the version of a Flash movie has the following effects:

* The movie will be compatible with (i.e., playable in) the specified version of the
Flash Player (or later versions). In earlier versions, most ActionScript code will
either not execute properly or not execute at all.

* The movie will play properly in the most recent version of the Flash Player, even if it
uses features that have changed since the specified version was released. In other
words, the newest Flash Player will always play older format .swf files properly. For
example, ActionScript identifiers in a Flash Player 6-format .swf file playing in Flash
Player 7 are not case sensitive, even though identifiers in Flash Player 7—format .swf files
are case sensitive. However, there’s one exception: the security changes to the rules of
cross-domain data loading in Flash Player 7 affect Flash Player 6-format .swf files in
some cases. For details see hitp://moock.org/asdg/technotes/crossDomainPolicyFiles.

ActionScript 1.0 and 2.0in Flash Player6and7 | 9

When exporting Flash Player 6— and Flash Player 7—format movies from either Flash
MX 2004 or Flash MX Professional 2004, you can tell Flash whether to compile your
code as if it is ActionScript 1.0 or ActionScript 2.0. Naturally, you should make this
choice at the beginning of development, as you don’t want to rewrite your code at
the end. To specify which version of the ActionScript compiler to use when creating
a .suf file, use the drop-down list under File — Publish Settings — Flash — Action-
Script Version.
W

AN
.

Throughout the remainder of the text, this book assumes you are

A i i i ’ i
W 4. Using ActionScript 2.0’s compiler.
N

When the ActionScript version is set to ActionScript 1.0, the following changes take
effect:

* ActionScript 2.0 syntax is not recognized and ActionScript 2.0 features, such as
type checking (including post-colon syntax) and error handling, can either cause
compiler errors (for Flash Player 6—format movies) or simply fail silently (for
Flash Player 7—format movies).

* Flash 4-style “slash syntax” for variables is allowed (but this coding style is dep-
recated and not recommended).

* Reserved words added in ActionScript 2.0 such as class, interface, and public can
be used as identifiers (but this practice makes code difficult to update and is
highly discouraged).

The following runtime features of ActionScript 2.0 will not work in .swf files
exported to a Flash Player 6—format .swf file, no matter which version of the Flash
Player is used:

* Exception handling (see Chapter 10).

* Case sensitivity. (Scripts exported in Flash Player 6—format .swf files are not case
sensitive, even in Flash Player 7. But beware! ActionScript 1.0 code in a Flash
Player 7—format .swf file is case sensitive when played in Flash Player 7. See
Table 1-2.)

* Type casting (see “Runtime Casting Support” in Chapter 3).

Table 1-2 outlines case sensitivity for various possible permutations of the .swf file
version and the user’s Flash Player version. Note that runtime case sensitivity is unre-
lated to the ActionScript compiler version chosen and is dependent only on the for-
mat of the exported .swf file and the Flash Player version. In other words, both
ActionScript 1.0 and 2.0 are case sensitive when exported in Flash Player 7—format .
swf files and played in Flash Player 7. In other cases, code is case insensitive subject
to the exceptions cited in the footnotes to Table 1-2. Consult my book ActionScript
for Flash MX: The Definitive Guide (O’Reilly) for a full discussion of case sensitivity
and its implications in Flash Player 6.

10 | Chapter1: ActionScript 2.0 Overview

Table 1-2. Runtime case sensitivity support by language, file format, and Flash Player version

Movie compiled as either ActionScript 1.0 or2.0and Played in Flash Player 6 Played in Flash Player 7
Flash Player 6—format .swf file (ase insensitivea (ase-insensitive?
Flash Player 7—format .swf file Not supported® (ase-sensitive

a |dentifiers (i.e., variable and property names), function names, frame labels, and symbol export IDs are case insensitive in Flash Player 6—
format .swffiles. However, reserved words such as “if" are case sensitive, even in Flash Player 6.
b Flash Player 6 cannot play Flash Player 7—format .swffiles.

Changes to ActionScript 1.0 in Flash Player 7

In a Flash Player 7—format .swf file running in Flash Player 7, some ActionScript 1.0
code behaves differently than it does in Flash Player 6. These changes bring Flash
Player 7 closer to full ECMAScript 3 compliance. Specifically:

* The value undefined converts to the number NaN when used in a numeric context
and to the string “undefined” when used in a string context (in Flash Player 6,
undefined converts to the number 0 and to the empty string, “”).

* Any nonempty string converts to the Boolean value true when used in a Boolean
context (in Flash Player 6, a string converts to true only if it can be converted to
a valid nonzero number; otherwise, it converts to false).

* Identifiers (function names, variable names, property names, etc.) are case sensi-
tive. For example, the identifiers firstName and firstname refer to two different
variables in Flash Player 7. In Flash Player 6, the identifiers would refer to a sin-
gle variable. (However, as usual, frame labels and symbol linkage IDs are not
case sensitive.)

The preceding changes affect you only when you are updating a Flash Player 6—format
movie to a Flash Player 7—format movie in order to use a feature unique to Flash Player
7. That is, if you upgrade your movie, you must test and possibly modify your code to
make sure that it operates the same in Flash Player 7 format as it did in Flash Player 6
format. If you do not need Flash Player 7 features in your movie, you can continue to
export it to Flash Player 6 format and it will usually run in Flash Player 7 exactly as it
did in Flash Player 6. This last point cannot be emphasized enough.

R
s

Macromedia goes to great lengths to ensure that movies exported in

older versions of the .swf format, such as Flash Player 6 format, con-

s tinue to operate unchanged even if played in a later Player, such as

" Flash Player 7. However, when you publish a movie in Flash Player 7
format, you must be mindful of the changes implemented since the
previous version of the .swf format. That is, the changes needed in
your ActionScript depend on the .swf file version, not the Flash Player
version.

ActionScript 1.0 and 2.0 in Flash Player6and7 | 11

Of course, any newly created .swf files exported in Flash Player 7 format (and not
just those upgraded from Flash Player 6-format .swf files) must obey the new con-
ventions, so keep them in mind moving forward. Remember that these new conven-
tions bring ActionScript in line with other languages such as JavaScript and Java,
making it easier to port code to or from other languages.

Flash 4 Slash Syntax Is Not Supported in ActionScript 2.0

In Flash 4 and subsequent versions, variables could be referenced with so-called
“slash syntax.” For example, in Flash 4, the following code is a reference to the vari-
able x on the movie clip ball:

/ball:x

That syntax generates the following error if you attempt to use it with the Action-
Script 2.0 compiler, whether exporting in Flash Player 6 or Flash Player 7 format:

Unexpected '/' encountered

Let’s Go OOP

Now that we’ve had a taste of what ActionScript 2.0 has to offer, we can start our
study of object-oriented programming with Flash in earnest. When you’re ready to
get your hands dirty, move on to Chapter 2!

12 | Chapter1: ActionScript 2.0 Overview

CHAPTER 2
Object-Oriented ActionScript

Ironically, Flash users who are new to object-oriented programming (OOP) are often
familiar with many object-oriented concepts without knowing their formal names.
This chapter demystifies some of the terminology and brings newer programmers up
to speed on key OOP concepts. It also serves as a high-level overview of OOP in
ActionScript for experienced programmers who are making their first foray into
Flash development.

Procedural Programming and
Object-Oriented Programming

Traditional programming consists of various instructions grouped into procedures.
Procedures perform a specific task without any knowledge of or concern for the larger
program. For example, a procedure might perform a calculation and return the result.
In a procedural-style Flash program, repeated tasks are stored in functions and data is
stored in variables. The program runs by executing functions and changing variable
values, typically for the purpose of handling input and generating output. Procedural
programming is sensible for certain applications; however, as applications become
larger or more complex and the interactions between procedures (and the program-
mers who use them) become more numerous, procedural programs can become
unwieldy. They can be hard to maintain, hard to debug, and hard to upgrade.

Object-oriented programming (OOP) is a different approach to programming,
intended to solve some of the development and maintenance problems commonly
associated with large procedural programs. OOP is designed to make complex appli-
cations more manageable by breaking them down into self-contained, interacting
modules. OOP lets us translate abstract concepts and tangible real-world things into
corresponding parts of a program (the “objects” of OOP). It’s also designed to let an
application create and manage more than one of something, as is often required by
user interfaces. For example, we might need 20 cars in a simulation, 2 players in a
game, or 4 checkboxes in a fill-in form.

Properly applied, OOP adds a level of conceptual organization to a program. It
groups related functions and variables together into separate classes, each of which is
a self-contained part of the program with its own responsibilities. Classes are used to
create individual objects that execute functions and set variables on one another, pro-
ducing the program’s behavior. Organizing the code into classes makes it easier to
create a program that maps well to real-world problems with real-world compo-
nents. Parts II and III of this book cover some of the common situations you’ll
encounter in ActionScript, and show how to apply OOP solutions to them. But
before we explore applied situations, let’s briefly consider the basic concepts of OOP.

Key Object-Oriented Programming Concepts

An object is a self-contained software module that contains related functions (called
its methods) and variables (called its properties). Individual objects are created from
classes, which provide the blueprint for an object’s methods and properties. That is,
a class is the template from which an object is made. Classes can represent theoreti-
cal concepts, such as a timer, or physical entities in a program, such as a pull-down
menu or a spaceship. A single class can be used to generate any number of objects,
each with the same general structure, somewhat as a single recipe can be used to
bake any number of muffins. For example, an OOP space fighting game might have
20 individual SpaceShip objects on screen at one time, all created from a single
SpaceShip class. Similarly, the game might have one 2dVector class that represents a
mathematical vector but thousands of 2dVector objects in the game.

A
The term instance is often used as a synonym for object. For example,
.‘s the phrases “Make a new SpaceShip instance” and “Make a new
.0 ® . . » . . .

o3 SpaceShip object” mean the same thing. Creating a new object from a

class is sometimes called instantiation.

To build an object-oriented program, we:

1. Create one or more classes.
2. Make (i.e., instantiate) objects from those classes.
3. Tell the objects what to do.

What the objects do determines the behavior of the program.

In addition to using the classes we create, a program can use any of the classes built
into the Flash Player. For example, a program can use the built-in Sound class to cre-
ate Sound objects. An individual Sound object represents and controls a single sound
or a group of sounds. Its setVolume() method can raise or lower the volume of a
sound. Its loadSound() method can retrieve and play an MP3 sound file. And its
duration property can tell us the length of the loaded sound, in milliseconds.
Together, the built-in classes and our custom classes form the basic building blocks
of all OOP applications in Flash.

14 | Chapter2: Object-Oriented ActionScript

Class Syntax

Let’s jump right into a tangible example. Earlier, I suggested that a space fighting
game would have a SpaceShip class. The ActionScript that defines the class might
look like the source code shown in Example 2-1 (don’t worry if much of this code is
new to you; we’ll study it in detail in the coming chapters).

Example 2-1. The SpaceShip class

class SpaceShip {
// This is a public property named speed.
public var speed:Number;

// This is a private property named damage.
private var damage:Number;

// This is a constructor function, which initializes
// each SpaceShip instance.
public function SpaceShip () {

speed = 100;

damage = 0;

}

// This is a public method named fireMissile().
public function fireMissile ():Void {
// Code that fires a missile goes here.

}

// This is a public method named thrust().
public function thrust ():Void {
// Code that propels the ship goes here.

}
}

Notice how the SpaceShip class groups related aspects of the program neatly together
(as do all classes). Variables (properties), such as speed and damage, related to space-
ships are grouped with functions (methods) used to move a spaceship and fire its
weapons. Other aspects of the program, such as keeping score and drawing the back-
ground graphics can be kept separate, in their own classes (not shown in this example).

Object Creation
Objects are created (instantiated) with the new operator, as in:
new ClassName()
where ClassName is the name of the class from which the object will be created.

For example, when we want to create a new SpaceShip object in our hypothetical
game, we use this code:

new SpaceShip()

Key Object-Oriented Programming Concepts | 15

The syntax for creating objects (e.g., new SpaceShip()) is the same in
ActionScript 2.0 as it was in ActionScript 1.0. However, the syntax for
defining classes in ActionScript 2.0 differs from ActionScript 1.0.

Most objects are stored somewhere after they’re created so that they can be used
later in the program. For example, we might store a SpaceShip instance in a variable
named ship, like this:

var ship:SpaceShip = new SpaceShip();

Each object is a discrete data value that can be stored in a variable, an array element,
or even a property of another object. For example, if you create 20 alien spaceships,
you would ordinarily store references to the 20 SpaceShip objects in a single array.
This allows you to easily manipulate multiple objects by cycling through the array
and, say, invoking a method of the SpaceShip class on each object.

Object Usage

An object’s methods provide its capabilities (i.e., behaviors)—things like “fire mis-
sile,” “move,” and “scroll down.” An object’s properties store its data, which
describes its state at any given point in time. For example, at a particular point in a
game, our ship’s current state might be speed is 300, damage is 14.

Methods and properties that are defined as public by an object’s class can be
accessed from anywhere in a program. By contrast, methods and properties defined
as private can be used only within the source code of the class or its subclasses. As
we’ll learn in Chapter 4, methods and properties should be defined as public only if
they must be accessed externally.

To invoke a method, we use the dot operator (i.e., a period) and the function call
operator (i.e., parentheses). For example:

// Invoke the ship object's fireMissile() method.
ship.fireMissile();

To set a property, we use the dot operator and an equals sign. For example:

// Set the ship's speed property to 120.
ship.speed = 120;

To retrieve a property’s value, we use the dot operator on its own. For example:

// Display the value of the speed property in the Output panel.
trace(ship.speed);

Encapsulation

Objects are said to encapsulate their property values and method source code from
the rest of the program. If properly designed, an object’s private properties and the
internal code used in its methods (including public methods) are its own business;

16 | Chapter2: Object-Oriented ActionScript

they can change without necessitating changes in the rest of the program. As long as
the method names (and their parameters and return values) stay the same, the rest of
the program can continue to use the object without being rewritten.

Encapsulation is an important aspect of object-oriented design because it allows dif-
ferent programmers to work on different classes independently. As long as they agree
on the names of the public methods through which they’ll communicate, the classes
can be developed independently. Furthermore, by developing a specification that
shows the publicly available methods, the parameters they require, and the values
they return, a class can be tested thoroughly before being deployed. The same test
code can be used to reverify the class’s operation even if the code within the class is
refactored (i.e., rewritten to enhance performance or to simplify the source code
without changing the previously existing functionality).

In Chapter 4, we’ll learn how to use the private modifier to prevent a method or
property from being accessed by other parts of a program.

Datatypes

Each class in an object-oriented program can be thought of as defining a unique kind
of data, which is formally represented as a datatype in the program.

v
NN

A class effectively defines a custom datatype.

You are probably already familiar with custom datatypes defined by built-in Action-
Script classes, such as the Date class. That is, when you create a Date object using
new Date(), the returned value contains not a string or a number but a complex
datatype that defines a particular day of a particular year. As such, the Date datatype
supports various properties and methods uniquely associated with dates.

Datatypes are used to impose limits on what can be stored in a variable, used as a
parameter, or passed as a return value. For example, when we defined the speed
property earlier, we also specified its datatype as Number (as shown in bold):

// The expression ":Number" defines speed's datatype.

public var speed:Number;
Attempts to store a nonnumeric value in the speed property generate a compile-time
error.

If you test a movie and Flash’s Output panel displays an error containing the phrase
“Type mismatch,” you know that you used the wrong kind of data somewhere in
your program (the compiler will tell you precisely where). Datatypes help us guaran-
tee that a program isn’t used in unintended ways. For example, by specifying that the
datatype of speed is a number, we prevent someone from unintentionally setting

Key Object-Oriented Programming Concepts | 17

speed to, say, the string “very fast.” The following code generates a compile-time
error due to the datatype mismatch:
public var speed:Number = "very fast"; // Error!

// You can't assign a String to a
// variable whose type is Number.

We’ll talk more about datatypes and type mismatches in Chapter 3.

Inheritance

When developing an object-oriented application, we can use inheritance to allow one
class to adopt the method and property definitions of another. Using inheritance, we
can structure an application hierarchically so that many classes can reuse the fea-
tures of a single class. For example, specific Car, Boat, and Plane classes could reuse
the features of a generic Vehicle class, thus reducing redundancy in the application.
Less redundancy means less code to write and test. Furthermore, it makes code eas-
ier to change—for example, updating a movement algorithm in a single class is eas-
ier and less error prone than updating it across several classes.

A class that inherits properties and methods from another class is called a subclass.
The class from which a subclass inherits properties and methods is called the sub-
class’s superclass. Naturally, a subclass can define its own properties and methods in
addition to those it inherits from its superclass. A single superclass can have more
than one subclass, but a single subclass can have only one superclass (although it can
also inherit from its superclass’s superclass, if any). We’ll cover inheritance in detail
in Chapter 6.

Packages

In a large application, we can create packages to contain groups of classes. A pack-
age lets us organize classes into logical groups and prevents naming conflicts
between classes. This is particularly useful when components and third-party class
libraries are involved. For example, Flash MX 2004’s GUI components, including
one named Button, reside in a package named mx.controls. The GUI component
class named Button would be confused with Flash’s built-in Button class if it weren’t
identified as part of the mx.controls package. Physically, packages are directories that
are collections of class files (i.e., collections of .as files).

We'll learn about preventing naming conflicts by referring to classes within a pack-
age, and much more, in Chapter 9.

Compilation

When an OOP application is exported as a Flash movie (i.e., a .swf file), each class is
compiled; that is, the compiler attempts to convert each class from source code to

18 | Chapter2: Object-Oriented ActionScript

bytecode—instructions that the Flash Player can understand and execute. If a class
contains errors, compilation fails and the Flash compiler displays the errors in the
Output panel in the Flash authoring tool. The error messages, such as the datatype
mismatch error described earlier, should help you diagnose and solve the problem.
Even if the movie compiles successfully, errors may still occur while a program is
running; these are called runtime errors. We’ll learn about Player-generated runtime
errors and program-generated runtime errors in Chapter 10.

Starting an Objected-Oriented Application

In our brief overview of OOP in Flash, we’ve seen that an object-oriented applica-
tion is made up of classes and objects. But we haven’t learned how to actually start
the application running. Every Flash application, no matter how many classes or
external assets it contains, starts life as a single .swf file loaded into the Flash Player.
When the Flash Player loads a new .swf file, it executes the actions on frame 1 and
then displays the contents of frame 1.

Hence, in the simplest case, we can create an object-oriented Flash application and
start it as follows:

1. Create one or more classes in .as files.
. Create a fla file.

. On frame 1 of the .fla file, add code that creates an object of a class.

2
3
4. Optionally invoke a method on the object to start the application.
5. Export a .swf file from the .fla file.

6

. Load the .suf file into the Flash Player.

We’ll study more complex ways to structure and run object-oriented Flash applica-
tions in Chapters 5, 11, and 12.

But How Do | Apply O0P?

Many people learn the basics of OOP only to say, “I understand the terminology and
concepts, but I have no idea how or when to use them.” If you have that feeling,
don’t worry, it’s perfectly normal; in fact, it means you’re ready to move on to the
next phase of your learning—object-oriented design (OOD).

The core concepts of OOP (classes, objects, methods, properties, etc.) are only tools.
The real challenge is designing what you want to build with those tools. Once you
understand a hammer, nails, and wood, you still have to draw a blueprint before you
can actually build a fence, a room, or a chair. Object-oriented design is the “draw a
blueprint” phase of object-oriented programming, during which you organize your
entire application as a series of classes. Breaking up a program into classes is a funda-
mental design problem that you’ll face daily in your OOP work. We’ll return to this
important aspect of OOP regularly throughout this book.

But How Do | Apply 00P? | 19

But not all Flash applications need to be purely object-oriented. Flash supports both
procedural and object-oriented programming and allows you to combine both
approaches in a single Flash movie. In some cases, it’s sensible to apply OOP only to
a single part of your project. Perhaps you’re building a web site with a section that
displays photographs. You don’t have to make the whole site object-oriented; you
can just use OOP to create the photograph-display module. (In fact, we’ll do just
that in Chapters 5 and 7!)

So if Flash supports both procedural and object-oriented programming, how much
of each is right for your project? To best answer that question, we first need to
understand the basic structure of every Flash movie. The fundamental organizing
structure of a Flash document (a .fla file) is the timeline, which contains one or more
frames. Each frame defines the content that is displayed on the graphical canvas
called the Stage. In the Flash Player, frames are displayed one at a time in a linear
sequence, producing an animated effect—exactly like the frames in a filmstrip.

At one end of the development spectrum, Flash’s timeline is often used for interac-
tive animation and motion graphics. In this development style, code is mixed directly
with timeline frames and graphical content. For example, a movie might display a
25-frame animation, then stop, calculate some random feature used to display
another animation, and then stop again and ask the user to fill in a form while yet
another animation plays in the background. That is, for simple applications, differ-
ent frames in the timeline can be used to represent different program states (each
state is simply one of the possible places, either physical or conceptual, that a user
can be in the program). For example, one frame might represent the welcome screen,
another frame might represent the data entry screen, a third frame might represent
an error screen or exit screen, and so on. Of course, if the application includes ani-
mation, each program state might be represented by a range of frames instead of a
single frame. For example, the welcome screen might include a looping animation.

When developing content that is heavily dependent on motion graphics, using the
timeline makes sense because it allows for precise, visual control over graphic ele-
ments. In this style of development, code is commonly attached to the frames of the
timeline using the Actions panel (F9). The code on a frame is executed immediately
before the frame’s content is displayed. Code can also be attached directly to the
graphical components on stage. For example, a button can contain code that gov-
erns what happens when it is clicked.

Timeline-based development usually goes hand-in-hand with procedural program-
ming because you want to take certain actions at the time a particular frame is
reached. In Flash, “procedural programming” means executing code, defining func-
tions, and setting variables on frames in a document’s timeline or on graphical com-
ponents on stage.

However, not all Flash content necessarily involves timeline-based motion. If you
are creating a video game, it becomes impossible to position the monsters and the

20 | Chapter2: Object-Oriented ActionScript

player’s character using the timeline. Likewise, you don’t know exactly when the
user is going to shoot the monster or take some other action. Therefore, you must
use ActionScript instead of the timeline to position the characters in response to
user actions (or in response to an algorithm that controls the monsters in some
semi-intelligent way). Instead of a timeline-based project containing predetermined
animated sequences, we have a nonlinear project in which characters and their
behavior are represented entirely in code.

This type of development lends itself naturally to objects that represent, say, the
player’s character or the monsters. At this end of the development spectrum lies tradi-
tional object-oriented programming, in which an application exists as a group of
classes. In a pure object-oriented Flash application, a .fla file might contain only a sin-
gle frame, which simply loads the application’s main class and starts the application
by invoking a method on that main class. Of course, OOP is good for more than just
video games. For example, a Flash-based rental car reservation system might have no
timeline code whatsoever and create all user interface elements from within classes.

Most real-world Flash applications lie somewhere between the extreme poles of
timeline-only development and pure OOP development. For example, consider a
Flash-based web site in which two buttons slide into the center of the screen and
offer the user a choice of languages: “English” or “French.” The user clicks the pre-
ferred language button, and both buttons slide off screen. An animated sequence
then displays company information and a video showing a product demo. The video
is controlled by a MediaPlayback component.

Our hypothetical web site includes both procedural programming and OOP, as
follows:

* Frames 2 and 3 contain preloader code.
¢ Frame 10 contains code to start the button-slide animation.
e Frames 11-25 contain the button-slide animation.

* Frame 25 contains code to define button event handlers, which load a language-
specific movie.

* In the loaded language-specific movie, frame 1 contains code to control the
MediaPlayback component.

In the preceding example, code placed directly on frames (e.g., the preloader code) is
procedural. But the buttons and MediaPlayback component are objects derived from
classes stored in external .as files. Controlling them requires object-oriented pro-
gramming. And, interestingly enough, Flash components are, themselves, movie
clips. Movie clips, so intrinsic to Flash, can be thought of as self-contained objects
with their own timelines and frames. Components (indeed, any movie clip) can con-
tain procedural code internally on their own frames even though they are objects.
Such is the nature of Flash development—assets containing procedural code can be
mixed on multiple levels with object-oriented code.

But How Do | Apply 00P? | 21

As mentioned in the Preface, this book assumes you understand movie
\ clips and have used them in your work. If you are a programmer com-

1kt ing to Flash from another language, and you need a crash course on
* movie clips from a programmer’s perspective, consult Chapter 13 of
ActionScript for Flash MX: The Definitive Guide (O’Reilly), available
online at hitp://moock.org/asdg/samples.

Flash’s ability to combine procedural and object-oriented code in a graphical, time-
based development environment makes it uniquely flexible. That flexibility is both
powerful and dangerous. On one hand, animations and interface transitions that are
trivial in Flash might require hours of custom coding in languages such as C++ or
Java. But on the other hand, code that is attached to frames on timelines or compo-
nents on the Stage is time-consuming to find and modify. So overuse of timeline code
in Flash can quickly (and quietly!) turn a project into an unmaintainable mess.
Object-oriented techniques stress separation of code from assets such as graphics
and sound, allowing an object-oriented application to be changed, reused, and
expanded on more easily than a comparable timeline-based program. If you find
yourself in the middle of a timeline-based project faced with a change and dreading
the work involved, chances are the project should have been developed with object-
oriented principles from the outset. Although OOP may appear to require additional
up-front development time, for most nontrivial projects, you’ll recoup that time
investment many times over later in the project.

Ultimately, the amount of OOP you end up using in your work is a personal deci-
sion that will vary according to your experience and project requirements. You can
use the following list to help decide when to use OOP and when to use procedural
timeline code. Bear in mind, however, that these are just guidelines—there’s always
more than one way to create an application. Ultimately, if the software works and
can be maintained, you’re doing something right.

Consider using OOP when creating;:

* Traditional desktop-style applications with few transitions and standardized user
interfaces

* Applications that include server-side logic

* Functionality that is reused across multiple projects
* Components

* Games

* Highly customized user interfaces that include complex visual transitions
Consider using procedural programming when creating:

* Animations with small scripts that control flow or basic interactivity

22 | Chapter2: Object-Oriented ActionScript

* Simple applications such as a one-page product order form or a newsletter sub-
scription form

* Highly customized user interfaces that include complex visual transitions

You’ll notice that the bulleted item “Highly customized user interfaces that include
complex visual transitions” is included as a case in which you might use both OOP
and procedural programming. Both disciplines can effectively create that kind of
content. However, remember that OOP in Flash is typically more maintainable than
timeline code and is easier to integrate into version control systems and other exter-
nal production tools. If you suspect that your highly customized UI will be used for
more than a single project, you should strongly consider developing it as a reusable
class library or set of components with OOP.

Note that in addition to Flash’s traditional timeline metaphor, Flash MX Profes-
sional 2004 introduced a Screens feature (which includes both Slides and Forms).
Screens provide a facade over the traditional timeline metaphor. Slides and Forms
are akin to the card-based metaphors of programs like HyperCard. Slides are
intended for PowerPoint-style slide presentations, while Forms are intended for VB
developers used to working on multipage forms. Like timeline-based applications,
Screens-based applications include both object-oriented code (i.e., code in classes)
and procedural-style code (i.e., code placed visually on components and on the
Screens of the application). As mentioned in the Preface, this book does not cover
Screens in detail, but the foundational OOP skills you’ll learn in this text will more
than equip you for your own exploration of Screens.

On with the Show!

In this chapter, we summarized the core concepts of OOP in Flash. We’re now
ready to move on with the rest of Part I, where we’ll study all of those concepts
again in detail, applying them to practical situations along the way. If you’re already
quite comfortable with OOP and want to dive into some examples, see Chapters 5,
7, 11, and 12, and all of Part III, which contain in-depth studies of real-world
object-oriented code.

Let’s get started!

Onwith the Show! | 23

CHAPTER 3
Datatypes and Type Checking

ActionScript 2.0 defines a wide variety of datatypes. Some datatypes are native to the
language itself (e.g., String, Number, and Boolean). Others are included in the Flash
Player and are available throughout all Flash movies (e.g., Color, Date, and
TextField). Still other datatypes are defined by components that can be added indi-
vidually to Flash movies (e.g., List, RadioButton, and ScrollPane).

For a primer on ActionScript’s datatypes, see Chapter 3 of ActionScript for Flash MX:
The Definitive Guide (O’Reilly), available online at http://moock.org/asdg/samples.

In addition to using ActionScript 2.0’s datatypes, developers can add new datatypes
to a program by creating classes (covered in Chapter 4) and interfaces (covered in
Chapter 8). Every value in ActionScript 2.0 belongs to a datatype, whether built-in or
programmer-defined. When we work with a value, we must use it only in ways sup-
ported by its datatype. For example, we can call getTime() on a Date object, but we
must not call gotoAndPlay() on a Date object, because the Date class does not sup-
port the gotoAndPlay() method. On the other hand, we can call gotoAndPlay() on a
movie clip because that method is defined by the MovieClip class.

In order for an object-oriented program to work properly, every operation per-
formed on every object should succeed. That is, if a method is invoked on an object,
the object’s class must actually define that method. And if a property is accessed on
an object, the object’s class must define that property. If the object’s class does not
support the method or property, that aspect of the program will fail. Depending on
how we write our code, either the failure will be silent (i.e., cause no error message),
or it will cause an error message that appears in the Output panel. The error mes-
sage helps us diagnose the problem.

We certainly strive to use objects appropriately. We don’t intentionally call
gotoAndPlay() on a Date object, because we know that the gotoAndPlay() method
isn’t supported by the Date class. But what happens if we make a typographical
error? What if we accidentally invoke geTime() (missing a “t”) instead of getTime()
on a Date object?

someDate.geTime() // WRONG! No such method!

24

Our call to geTime() will fail because the Date class defines no such method.

And what happens if we invoke indexOf(') on a value we think is a String, but the
value turns out to be a Number? The call to indexOf() will fail, because the Number
class doesn’t support the indexOf() method. Example 3-1 demonstrates this situation.

Example 3-1. A mistaken datatype assumption

// WRONG! This code mistakenly assumes that getDay() returns
// a string indicating the day (e.g., "Monday", "Tuesday"),
// but getDay() actually returns a number from 0 to 6.
var today;
today = new Date().getDay();
if (today.indexOf("Friday") == 1) {

trace("Looking forward to the weekend!");

}

// The correct code should be:
var today;
today = new Date().getDay();
// Sunday is 0, Monday is 1, ... Friday is 5.
if (today == 5) {
trace("Looking forward to the weekend!");

}

In a large program, these kinds of problems can be exceedingly difficult and time-
consuming to track down. In both the geTime() example and the indexOf() exam-
ple, unless ActionScript reports an error in the Output panel, we’ll have a hard time
identifying the issue and locating its cause in our program.

To help us recognize and isolate datatype-related problems in our code, we use
ActionScript 2.0’s type checking capabilities. That is, we can ask ActionScript to
check the values in our program and warn us with an error message if it detects a
value being used in some inappropriate way. But there’s a catch: in order to provide
this service, ActionScript 2.0 requires that you formally declare the datatype of every
variable, property, parameter, and return value that you want checked. To declare
the datatype of a variable or property, we use this general form, referred to as post-
colon syntax:

var variableOrPropertyName:datatype

Specifying an item’s datatype is often called datatype declaration. For example, this
line of code declares that the datatype of the variable count is Number:

var count:Number;
We'll learn more about datatype syntax later in this chapter.

A
As a best practice, in an ActionScript 2.0 program, you should declare
s the datatype of every variable, property, function parameter, method

'\"‘ @ .
112 parameter, function return value, and method return value.

Datatypes and Type Checking | 25

ActionScript 2.0 performs type checking on every variable, property, parameter, and
return value that has a declared datatype. If your code attempts to store incompatible
types of data in an item that has a declared datatype, a type error appears in the Out-
put panel at compile time. Later we’ll learn precisely what constitutes an “incompati-
ble type,” but for now, you can just assume intuitively that two types are
incompatible when they don’t match (i.e., String and Number, Array and Sound, etc.).

A
Variables, properties, parameters, and return values without a declared
s datatype are not type checked. If you omit the datatype, omit the

'\‘" @ .
13, colon used in post-colon syntax as well.

Type checking helps us guarantee that a program will run the way we intend it to. To
see how, let’s return to Example 3-1 in which a programmer mistakenly attempted to
invoke indexOf() on a numeric value. The source of the programmer’s problem was
the incorrect assumption that Date.getDay() returns a string, when in fact, it returns
a number. The programmer originally assigned the return value of getDay(') to the
variable today without specifying today’s datatype:

var today;

today = new Date().getDay();
Because the code doesn’t specify the datatype of the variable today, the ActionScript 2.0
compiler has no way of knowing that the programmer expects today to contain a string.
The compiler, hence, allows any type of data to be stored in today. The preceding code
simply stores the return value of getDay() into today. Because the return value of
getDay() is a number, today stores a number, not a string. This eventually leads to a
problem with the program.

In ActionScript 2.0, the programmer can prevent the problem from going unnoticed
by declaring the intended datatype of the variable today, as follows (changes shown
in bold):

// ":String" is the datatype declaration

var today:String;

today = new Date().getDay();
In this case, the programmer is still “wrong.” His assumption that getDay() returns a
string is still a problem, but it is no longer a hidden problem. Because the program-
mer has stated his assumption and intent, the ActionScript 2.0 compiler dutifully
generates this error:

Type mismatch in assignment statement: found Number where String is

required.
This error message should elicit great joy. Why? Because known errors are usually
trivial to fix once you understand the error message. The error message states that
the code requires a string but encountered a number instead. We need to work back-
ward to understand the message’s meaning. Why did the code “require” a string? It

26 | Chapter3: Datatypes and Type Checking

was just obeying the programmer’s request! The compiler thinks the code requires a
string because (and for no other reason than) the programmer declared today’s
datatype as String. The error message tells the programmer that he is breaking his
own constraints; the programmer declared a string-only data container (the variable
today) and tried to place a numeric value (the return value of getDay()) into it.

An inexperienced developer might immediately say, “Aha! The problem is that awful
number where a string belongs! I must change the number into a string!” Don’t fall
into that trap, and don’t be misled by the error message.

The programmer originally assumed that Date.getDay() returns a String when it in
fact returns a Number. But the programmer has no control over the value returned by
getDay(), which is defined by the Date class and not the programmer. So the solu-
tion is to accommodate the return value’s correct datatype by storing it in a variable
of type Number instead of type String. Example 3-2 demonstrates.

Example 3-2. Fixing a datatype mismatch error

// This line declares today's type as a Number.

var today:Number;

// Assign the return value of getDay() to today. In this version,

// the variable's datatype matches the datatype of the value returned
// by getDay(), so no type mismatch error occurs.

today = new Date().getDay();

// Sunday is 0, Monday is 1, ... Friday is 5.
if (today == 5) {
trace("Looking forward to the weekend!");

}

Example 3-3 demonstrates an alternative case in which the programmer really does
need a string for display purposes. As usual, getDay() returns a number, so in this
case, the programmer must manually convert the number to a human-readable
string. The trick is to use the number returned by getDay() to extract a string from
an array of day names.

Example 3-3. One way to derive a string from a number

// This line declares today's type as a Number
// and assigns the return value of getDay() to today.
var today:Number = new Date().getDay();

// Populate an array with the names of the days.

var dayNames:Array = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"];

// Make a new variable that stores the human-readable day.

var todayName:String = dayNames[today];

// Display the human-readable day in a text field.
currentDay txt.text = todayName;

// Display the human-readable day in the Output panel.
trace(todayName);

Datatypes and Type Checking | 27

