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Preface

Topological K-theory first appeared in a 1961 paper by Atiyah and
Hirzebruch; their paper adapted the work of Grothendieck on algebraic
varieties to a topological setting. Since that time, topological K-theory
(which we will henceforth simply call K-theory) has become a power-
ful and indespensible tool in topology, differential geometry, and index
theory. The goal of this book is to provide a self-contained introduction
to the subject.

This book is primarily aimed at beginning graduate students, but
also for working mathematicians who know little or nothing about the
subject and would like to learn something about it. The material in this
book is suitable for a one semester course on K-theory; for this reason,
I have included exercises at the end of each chapter. I have tried to keep
the prerequisites for reading this book to a minimum; I will assume that
the reader knows the following:

• Linear Algebra: Vector spaces, bases, linear transformations, simi-
larity, trace, determinant.

• Abstract Algebra: Groups, rings, homomorphisms and isomorph-
isms, quotients, products.

• Topology: Metric spaces, completeness, compactness and connect-
edness, local compactness, continuous functions, quotient topology, sub-
space topology, partitions of unity.

To appreciate many of the motivating ideas and examples in K-theory,
it is helpful, but not essential, for the reader to know the rudiments of
differential topology, such as smooth manifolds, tangent bundles, differ-
ential forms, and de Rham cohomology. In Chapter 4, the theory of
characteristic classes is developed in terms of differential forms and de
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Rham cohomology; for readers not familiar with these topics, I give a
quick introduction at the beginning of that chapter. I do not assume that
the reader has any familiarity with homological algebra; the necessary
ideas from this subject are developed at the end of Chapter 1.

To keep this book short and as easy to read as possible (especially for
readers early in their mathematical careers), I have kept the scope of
this book very limited. Only complex K-theory is discussed, and I do
not say anything about equivariant K-theory. I hope the reader of this
book will be inspired to learn about other versions of K-theory; see the
bibliography for suggestions for further reading.

It is perhaps helpful to say a little bit about the philosophy of this
book, and how this book differs from other books on K-theory. The
fundamental objects of study in K-theory are vector bundles over topo-
logical spaces (in the case of K0) and automorphisms of vector bundles
(in the case of K1). These concepts are discussed at great length in
this book, but most of the proofs are formulated in terms of the equiva-
lent notions of idempotents and invertible matrices over Banach algebras
of continuous complex-valued functions. This more algebraic approach
to K-theory makes the presentation “cleaner”(in my opinion), and also
allows readers to see how K-theory can be extended to matrices over gen-
eral Banach algebras. Because commutativity of the Banach algebras is
not necessary to develop K-theory, this generalization falls into an area
of mathematics that is often referred to as noncommutative topology.
On the other hand, there are important aspects of K-theory, such as the
existence of operations and multiplicative structures, that do not carry
over to the noncommutative setting, and so we will restrict our attention
to the K-theory of topological spaces.

I thank my colleagues, friends, and family for their encouragement
while I was writing this book, and I especially thank Scott Nollet and
Greg Friedman for reading portions of the manuscript and giving me
many helpful and constructive suggestions.
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1

Preliminaries

The goal of K-theory is to study and understand a topological space
X by associating to it a sequence of abelian groups. The algebraic
properties of these groups reflect topological properties of X, and the
overarching philosophy of K-theory (and, indeed, of all algebraic topol-
ogy) is that we can usually distinguish groups more easily than we can
distinguish topological spaces. There are many variations on this theme,
such as homology and cohomology groups of various sorts. What sets
K-theory apart from its algebraic topological brethren is that not only
can it be defined directly from X, but also in terms of matrices of con-
tinuous complex-valued functions on X. For this reason, we devote a
significant part of this chapter to the study of matrices of continuous
functions.

Our first step is to look at complex vector spaces equipped with an
inner product. The reader is presumably familiar with inner products on
real vector spaces, but possibly not the complex case. For this reason,
we begin with a brief discussion of complex inner product spaces.

1.1 Complex inner product spaces

Definition 1.1.1 Let V be a finite-dimensional complex vector space
and let C denote the complex numbers. A (complex) inner product on
V is a function 〈·, ·〉 : V × V −→ C such that for all elements v, v′, and
v′′ in V and all complex numbers α and β:

(i) 〈αv + βv′, v′′〉 = α 〈v, v′′〉 + β 〈v′, v′′〉 ;
(ii) 〈v, αv′ + βv′′〉 = α 〈v, v′〉 + β 〈v, v′′〉 ;
(iii) 〈v′, v〉 = 〈v, v′〉;
(iv) 〈v, v〉 ≥ 0, with 〈v, v〉 = 0 if and only if v = 0.
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2 Preliminaries

For each v in V, the nonnegative number ‖v‖in =
√
〈v, v〉 is called the

magnitude of v. A vector space equipped with an inner product is called
a (complex) inner product space. A vector space basis {v1, v2, . . . , vn}
of V is orthogonal if 〈vj , vk〉 = 0 for j �= k, and orthonormal if it is
orthogonal and ‖vk‖in = 1 for all 1 ≤ k ≤ n.

Proposition 1.1.2 Every complex inner product space V admits an
orthonormal basis.

Proof The proof of this proposition follows the same lines as the cor-
responding fact for real inner product spaces. Start with any vector
space basis {v1, v2, . . . , vn} of V and apply the Gram–Schmidt process
inductively to define an orthogonal basis

v′1 = v1

v′2 = v2 −
〈v2, v

′
1〉

〈v′1, v′1〉
v′1

...

v′n = vn − 〈vn, v′
1〉

〈v′1, v′
1〉

v′1 −
〈vn, v′

2〉
〈v′2, v′2〉

v′2 − · · · −
〈
vn, v′

n−1

〉〈
v′n−1, v

′
n−1

〉v′n−1.

Then {
v′1

‖v′1‖in

,
v′2

‖v′2‖in

, · · · ,
v′n

‖v′n‖in

}
is an orthonormal basis of V.

For elements (z1, z2, . . . , zn) and (z′1, z
′
2, . . . , z

′
n) in the vector space

Cn, the formula

〈(z1, z2, . . . , zn), (z′1, z
′
2, . . . , z

′
n)〉 = z1z′1 + z2z′2 + · · · + znz′n

defines the standard inner product on Cn. For each 1 ≤ k ≤ n, define ek

to be the vector that is 1 in the kth component and 0 elsewhere. Then
{e1, e2, · · · , en} is the standard orthonormal basis for Cn.

Proposition 1.1.3 (Cauchy–Schwarz inequality) Let V be an inner
product space. Then

| 〈v, v′〉 | ≤ ‖v‖in ‖v′‖in

for all v and v′ in V.
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Proof If 〈v, v′〉 = 0, the proposition is trivially true, so suppose that
〈v, v′〉 �= 0. For any α in C, we have

0 ≤ ‖αv + v′‖2
in = 〈αv + v′, αv + v′〉

= |α|2 ‖v‖2
in + ‖v′‖2

in + α 〈v, v′〉 + α 〈v, v′〉

= |α|2 ‖v‖2
in + ‖v′‖2

in + 2 Re(α 〈v, v′〉),

where Re(α 〈v, v′〉) denotes the real part of α 〈v, v′〉. Take α to have the
form t〈v, v′〉| 〈v, v′〉 |−1 for t real. Then the string of equalities above
yields

‖v‖2
in t2 + 2| 〈v, v′〉 |t + ‖v′‖2

in ≥ 0

for all real numbers t. This quadratic equation in t has at most one real
root, implying that

4| 〈v, v′〉 |2 − 4 ‖v‖2
in ‖v′‖2

in ≤ 0,

whence the proposition follows.

Proposition 1.1.4 (Triangle inequality) Let V be an inner product
space. Then

‖v + v′‖in ≤ ‖v‖in + ‖v′‖in

for all v and v′ in V.

Proof Proposition 1.1.3 gives us

‖v + v′‖2
in = 〈v + v′, v + v′〉

= 〈v, v〉 + 〈v, v′〉 + 〈v′, v〉 + 〈v′, v′〉

= ‖v‖2
in + ‖v′‖2

in + 2 Re 〈v, v′〉

≤ ‖v‖2
in + ‖v′‖2

in + 2| 〈v, v′〉 |

≤ ‖v‖2
in + ‖v′‖2

in + 2 ‖v‖in ‖v′‖in

= (‖v‖in + ‖v′‖in)2 .

We get the desired result by taking square roots.

Definition 1.1.5 Let V be an inner product space and let W be a vector
subspace of V. The vector subspace

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ W}

is called the orthogonal complement of W in V.



4 Preliminaries

Proposition 1.1.6 Let V be an inner product space and suppose that
W is a vector subspace of V. Then V ∼= W ⊕W⊥.

Proof If u is in the intersection of W and W⊥, then ‖u‖in = 〈u, u〉 = 0,
whence u = 0. Take v in V, and suppose that v = w1 + w⊥

1 = w2 + w⊥
2

for w1, w2 in W and w⊥
1 , w⊥

2 in W⊥. Then w1 − w2 = w⊥
2 − w⊥

1 is in
W ∩W⊥ and therefore we must have w1 = w2 and w⊥

1 = w⊥
2 . To show

that such a decomposition of v actually exists, choose an orthonormal
basis {w1, w2, . . . , wm} of W and set w =

∑m
k=1 〈v, wk〉wk. Clearly w is

in W. Moreover, for every 1 ≤ j ≤ m, we have

〈v − w,wj〉 = 〈v, wj〉 − 〈w,wj〉

= 〈v, wj〉 −
m∑

k=1

〈v, wk〉 〈wk, wj〉

= 〈v, wj〉 − 〈v, wj〉 = 0,

which implies that v − w is in W⊥.

Definition 1.1.7 Let V be an inner product space, let W be a vector
subspace of V, and identify V with W⊕W⊥. The linear map P : V −→ W
given by P(w,w⊥) = w is called the orthogonal projection of V onto W.

We close this section with a notion that we will need in Chapter 3.

Proposition 1.1.8 Let V and W be inner product spaces, and suppose
that A : V −→ W is a vector space homomorphism; i.e., a linear map.
Then there exists a unique vector space homomorphism A∗ : W −→ V,
called the adjoint of A, for which 〈Av, w〉 = 〈v,A∗w〉 for all v in V and
w in W.

Proof Fix orthonormal bases {e1, e2, . . . , em} and {f1, f2, . . . , fn} for
V and W respectively. For each 1 ≤ i ≤ m, write Aei in the form
Aei =
∑n

j=1 ajifj and set A∗fj =
∑m

i=1 ajiei Then

〈Aei, fj〉 = aji = 〈ei, A
∗fj〉

for all i and j, and parts (i) and (ii) of Definition 1.1.1 imply that
〈Av, w〉 = 〈v,A∗w〉 for all v in V and w in W.

To show uniqueness, suppose that B : W −→ V is a linear map
with the property that 〈Av, w〉 = 〈v,A∗w〉 = 〈v,Bw〉 for all v and w.
Then 〈v, (A∗ − B)w〉 = 0, and by taking v = (A∗ − B)w we see that
(A∗ − B)w = 0 for all w. Thus A∗ = B.
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To prove that A∗ is a vector space homomorphism, note that

〈v,A∗(αw + βw′)〉 = 〈Av, αw + βw′〉
= α 〈Av, w〉 + β 〈Av, w′〉
= α 〈v,A∗w〉 + β 〈v,A∗w′〉
= 〈v, αA∗w + βA∗w′〉

for all v in V, all w and w′ in W, and all complex numbers α and β.
Therefore A∗(αw + βw′) = αA∗w + βA∗w′.

Proposition 1.1.9 Let U , V, and W be inner product spaces, and sup-
pose that A : U −→ V and B : V −→ W are vector space homomor-
phisms. Then:

(i) (A∗)∗ = A;
(ii) A∗B∗ = BA∗;
(iii) A∗ is an isomorphism if and only if A is an isomorphism.

Proof The uniqueness of the adjoint and the equalities

〈A∗v, u〉 = 〈u, A∗v〉 = 〈Av, u〉 = 〈v,Au〉

for all u in U and v in V give us (i), and the fact that

〈BAu, w〉 = 〈Au, B∗w〉 = 〈u, A∗B∗w〉

for all u in U and w in W establishes (ii).
If A is an isomorphism, then U and V have the same dimension and

thus we can show A∗ is an isomorphism by showing that A∗ is injective.
Suppose that A∗v = 0. Then 0 = 〈u, A∗v〉 = 〈Au, v〉 for all u in U . But
A is surjective, so 〈v, v〉 = 0, whence v = 0 and A∗ is injective. The
reverse implication in (iii) follows from replacing A by A∗ and invoking
(i).

1.2 Matrices of continuous functions

Definition 1.2.1 Let X be a compact Hausdorff space. The set of all
complex-valued continuous functions on X is denoted C(X). If m and
n are natural numbers, the set of m by n matrices with entries in C(X)
is written M(m,n,C(X)). If m = n, we shorten M(m,n,C(X)) to
M(n, C(X)).

Each of these sets of matrices has the structure of a Banach space:
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Definition 1.2.2 A Banach space is a vector space V equipped with
a function ‖·‖ : V −→ [0,∞), called a norm, satisfying the following
properties:

(i) For all v and v′ in V and α in C:

(a) ‖αv‖ = |α| ‖v‖;
(b) ‖v + v′‖ ≤ ‖v‖ + ‖v′‖.

(ii) The formula d(v, v′) = ‖v − v′‖ is a distance function on V and
V is complete with respect to d.

The topology generated by d(v, w) = ‖v − w‖ is called the norm topol-
ogy on V; an easy consequence of the axioms is that scalar multiplication
and addition are continuous operations in the norm topology.

Note that when X is a point we can identify C(X) with C.

Lemma 1.2.3 For all natural numbers m and n, the set of matrices
M(m,n, C) is a Banach space in the operator norm

‖A‖op = sup
{
‖A�z‖in

‖�z‖in

: �z ∈ Cn, �z �= 0
}

= sup {‖A�z‖in : ‖�z‖in = 1} .

Proof For each A in M(m,n, C), we have

‖A‖op = sup
{
‖A�w‖in

‖�w‖in

: �w �= 0
}

= sup
{∥∥∥∥A( �w

‖�w‖in

)∥∥∥∥
in

: �w �= 0
}

= sup{‖A�z‖in : ‖�z‖in = 1},

and thus the two formulas for the operator norm agree. The equation
‖A(λ�z)‖in = |λ| ‖A�z‖in yields ‖λA‖op = |λ| ‖A‖op, and the inequality
‖A1 + A2‖op ≤ ‖A1‖op + ‖A2‖op is a consequence of Proposition 1.1.4.

To show completeness, let {Ak} be a Cauchy sequence in M(m,n, C).
Then for each �z in Cn, the sequence {Ak�z} in Cm is Cauchy and therefore
has a limit. Continuity of addition and scalar multiplication imply that
the function �z �→ limk→∞ Ak�z defines a linear map from Cn to Cm. Take
the standard vector space bases of Cm and Cn and let A denote the
corresponding matrix in M(m,n, C); we must show that {Ak} converges
in norm to A.
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Fix ε > 0 and choose a natural number N with the property that
‖Ak − Al‖op < ε/2 for k, l > N . Then

‖Ak�z − A�z‖in = lim
l→∞

‖Ak�z − Al�z‖in

≤ lim sup
l→∞

‖Ak − Al‖op ‖�z‖in

< ε ‖�z‖in

for all �z �= 0 in Cn. Hence ‖Ak − A‖op < ε for k > N , and the desired
conclusion follows.

For the case where m = n = 1, the norm on each z in M(1, C) = C

defined in Lemma 1.2.3 is simply the modulus |z|.

Proposition 1.2.4 Let X be a compact Hausdorff space and let m and
n be natural numbers. Then M(m,n,C(X)) is a Banach space in the
supremum norm

‖A‖∞ = sup{‖A(x)‖op : x ∈ X}.

Proof The operations of pointwise matrix addition and scalar multipli-
cation make M(m,n,C(X)) into a vector space. Note that

‖αA‖∞ = sup{‖αA(x)‖op : x ∈ X}
= sup{|α| ‖A(x)‖op : x ∈ X} = |α| ‖A‖∞

and

‖A + B‖∞ = sup{‖A(x) + B(x)‖op : x ∈ X}
≤ sup{‖A(x)‖op : x ∈ X} + sup{‖B(x)‖op : x ∈ X}
= ‖A‖∞ + ‖B‖∞

for all A and B in M(m,n,C(X)) and α in C, and thus ‖·‖∞ is indeed a
norm.

To check that M(m,n,C(X)) is complete in the supremum norm, let
{Ak} be a Cauchy sequence in M(m,n,C(X)). For each x in X, the
sequence {Ak(x)} is a Cauchy sequence in M(m,n, C) and therefore by
Lemma 1.2.3 has a limit A(x). To show that this construction yields an
element A in M(m,n,C(X)), we need to show that the (i, j) entry Aij

of A is in C(X) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Fix i and j. To simplify notation, let f = Aij , and for each natural

number k, let fk = (Ak)ij ; note that each fk is an element of C(X) =
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M(1, C(X)). Endow Cm and Cn with their standard orthonormal bases.
For each x in X, we have fk(x) = 〈Ak(x)ej , ei〉 and f(x) = 〈A(x)ej , ei〉.
Then for all natural numbers k and l, Proposition 1.1.3 gives us

|fk(x) − fl(x)| = | 〈Akej , ei〉 − 〈Alej , ei〉 |
= | 〈(Ak − Al)ej , ei〉 |
≤ ‖(Ak − Al)ej‖in ‖ei‖in

≤ ‖Ak − Al‖op ‖ej‖in ‖ei‖in

= ‖Ak − Al‖op .

Therefore {fk(x)} is Cauchy and thus converges to f(x).
To show that f is continuous, fix ε > 0 and choose a natural number M

with the property that ‖fk − fM‖∞ < ε/3 for all k > M . Next, choose
x′ in X and let U be an open neighborhood of x′ with the property that
|fM (x′) − fM (x)| < ε/3 for all x in U . Then

|f(x′) − f(x)| ≤ |f(x′) − fM (x′)| + |fM (x′) − fM (x)| + |fM (x) − f(x)|

< lim
k→∞

|fk(x′) − fM (x′)| + ε

3
+ lim

k→∞
|fM (x) − fk(x)|

≤ lim sup
k→∞

‖fk − fM‖∞ +
ε

3
+ lim sup

k→∞
‖fM − fk‖∞

< ε

for all k > M and x in U , whence f is continuous.
The last step is to show that the sequence {Ak} converges in the

supremum norm to A. Fix ε > 0 and choose a natural number N so
large that ‖Ak − Al‖∞ < ε/2 whenever k and l are greater than N .
Then

‖Ak(x) − A(x)‖op = lim
l→∞

‖Ak(x) − Al(x)‖op

≤ lim sup
l→∞

‖Ak − Al‖∞

≤ ε

2
< ε

for k > N and x in X. This inequality holds for each x in X and
therefore

lim
k→∞

‖Ak − A‖∞ = 0.

In this book we will work almost exclusively with square matrices.
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This will allow us to endow our Banach spaces M(n, C(X)) with an
additional operation that gives us an algebra:

Definition 1.2.5 An algebra is a vector space V equipped with a mul-
tiplication V × V −→ V that makes V into a ring, possibly without unit,
and satisfies α(vv′) = (αv)v′ = v(αv′) for all v and v′ in V and α in C.
If in addition V is a Banach space such that ‖vv′‖ ≤ ‖v‖ ‖v′‖ for all v

and v′ in V, we call V a Banach algebra.

Proposition 1.2.6 Let X be a compact Hausdorff space and let n be a
natural number. Then M(n, C(X)) is a Banach algebra with unit under
matrix multiplication.

Proof Proposition 1.2.4 tells us that M(n, C(X)) is a Banach space,
and the reader can check that M(n, C(X)) is an algebra under pointwise
matrix multiplication. To complete the proof, observe that

‖AB‖∞ = sup{‖A(x)B(x)‖op : x ∈ X}
≤ sup{‖A(x)‖op : x ∈ X} sup{‖B(x)‖op : x ∈ X}
= ‖A‖∞ ‖B‖∞

for all A and B in M(n, C(X)).

Before we leave this section, we establish some notation. We will
write the zero matrix and the identity matrix in M(n, C(X)) as 0n and
In respectively when we want to highlight the matrix size. Next, suppose
that B is an element of M(n, C(X)) and that A is a subspace of X. Then
B restricts to define an element of M(n, C(A)); we will use the notation
B|A for this restricted matrix.

Finally, we will often be working with matrices that have block diago-
nal form, and it will be convenient to have a more compact notation for
such matrices. Given matrices A and B in M(m,C(X)) and M(n, C(X))
respectively we set

diag(A, B) =
(

A 0
0 B

)
∈ M(m + n, C(X)).

We will use the obvious extension of this notation for matrices that are
comprised of more than two blocks.
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1.3 Invertibles

Invertible matrices play several important roles in defining K-theory
groups of a topological space. In this section we will prove various
results about such matrices.

Definition 1.3.1 Let X be compact Hausdorff. For each natural number
n, the group of invertible elements of M(n, C(X)) under multiplication
is denoted GL(n, C(X)).

We begin by defining an important family of invertible matrices.

Definition 1.3.2 Let n be a natural number. For every 0 ≤ t ≤ 1,
define the matrix

Rot(t) =
(

cos(πt
2 )In − sin(πt

2 )In

sin(πt
2 )In cos(πt

2 )In

)
.

Note that for each t, the matrix Rot(t) is invertible with inverse

Rot−1(t) =
(

cos(πt
2 )In sin(πt

2 )In

− sin(πt
2 )In cos(πt

2 )In

)
.

Proposition 1.3.3 Let X be a compact Hausdorff space, let n be a
natural number, and suppose S and T are elements of GL(n, C(X)).
Then

diag(S, In)Rot(t) diag(T, In)Rot−1(t)

is a homotopy in GL(2n, C(X)) from diag(ST, In) to diag(S, T).

Proof Compute.

Proposition 1.3.4 Let X be a compact Hausdorff space, let n be a
natural number, and suppose that S in M(n, C(X)) has the property that
‖In − S‖∞ < 1. Then S is in GL(n, C(X)) and

∥∥S−1
∥∥
∞ ≤ 1

1 − ‖In − S‖∞
.


