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Preface

Nonlinear continuum mechanics is one of the fundamental subjects that form the

foundation of modern computational mechanics. The study of the motion and be-

havior of materials under different loading conditions requires understanding of

basic, general, and nonlinear, kinematic and dynamic relationships that are covered

in continuum mechanics courses. The finite element method, on the other hand, has

emerged as a powerful tool for solving many problems in engineering and physics.

The finite element method became a popular and widely used computational ap-

proach because of its versatility and generality in solving large-scale and complex

physics and engineering problems. Nonetheless, the success of using the continuum-

mechanics-based finite element method in the analysis of the motion of bodies that

experience general displacements, including arbitrary large rotations, has been lim-

ited. The solution to this problem requires resorting to some of the basic concepts in

continuum mechanics and putting the emphasis on developing sound formulations

that satisfy the principles of mechanics. Some researchers, however, have tried to

solve fundamental formulation problems using numerical techniques that lead to

approximations. Although numerical methods are an integral part of modern com-

putational algorithms and can be effectively used in some applications to obtain

efficient and accurate solutions, it is the opinion of many researchers that numerical

methods should only be used as a last resort to fix formulation problems. Sound

formulations must be first developed and tested to make sure that these formula-

tions satisfy the basic principles of mechanics. The equations that result from the use

of the analytically correct formulations can then be solved using numerical methods.

This book is focused on presenting the nonlinear theory of continuum mechan-

ics and demonstrating its use in developing nonlinear computer formulations that

can be used in the large displacement dynamic analysis. To this end, the basic

concepts used in continuum mechanics are first presented and then used to develop

nonlinear general finite element formulations that can be effectively used in the

large displacement analysis. Two nonlinear finite element dynamic formulations will

be considered in this book. The first is a general large-deformation finite element

formulation, whereas the second is a formulation that can be used efficiently to solve

small-deformation problems that characterize very and moderately stiff structures.
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In this latter case, an elaborate method for eliminating the unnecessary degrees of

freedom must be used in order to be able to efficiently obtain a numerical solution.

An attempt has been made to present the materials in a clear and systematic manner

with the assumption that the reader has only basic knowledge in matrix and vector

algebra as well as basic knowledge of dynamics. The book is designed for a course at

the senior undergraduate and first-year graduate level. It can also be used as a ref-

erence for researchers and practicing engineers and scientists who are working in the

areas of computational mechanics, biomechanics, computational biology, multibody

system dynamics, and other fields of science and engineering that are based on the

general continuum mechanics theory.

In Chapter 1 of this book, matrix, vector, and tensor notations are introduced.

These notations will be repeatedly used in all chapters of the book, and, therefore, it is

necessary that the reader reviews this chapter in order to be able to follow the pre-

sentation in subsequent chapters. The polar decomposition theorem, which is funda-

mental in continuum and computational mechanics, is also presented in this chapter.

D’Alembert’s principle and the principle of virtual work can be used to systematically

derive the equations of motion of physical systems. These two important principles

are discussed, and the relationship between them is explained. The use of a finite

dimensional model to describe the continuum motion is also discussed in Section 8;

whereas in Section 9, the procedure for developing the discrete equations of motion

is outlined. In Section 10, the principles of momentum and principle of work and

energy are presented. In this section, the problems associated with some of the finite

element formulations that violate these analytical mechanics principles are discussed.

Section 11 of Chapter 1 is devoted to a discussion on the definitions of the gradient

vectors that are used in continuum mechanics to define the strain components.

In Chapter 2, the general kinematic displacement equations of a continuum are

developed. These equations are used to define the strain components. The Green–

Lagrange strains and the Almansi or Eulerian strains are introduced. The Green–

Lagrange strains are defined in the reference configuration, whereas the Almansi or

Eulerian strains are defined in the current deformed configuration. The relation-

ships between these strain components are established and used to shed light on the

physical meaning of the strain components. Other deformation measures as well as

the velocity and acceleration equations are also defined in this chapter. The impor-

tant issue of objectivity that must be considered when large deformations and in-

elastic formulations are used is discussed. The equations that govern the change of

volume and area, the conservation of mass, and examples of deformation modes are

also presented in this chapter.

Forces and stresses are discussed in Chapter 3. Equilibrium of forces acting on

an infinitesimal material element is used to define the Cauchy stresses, which are

used to develop the partial differential equations of equilibrium. The transformation

of the stress components and the symmetry of the Cauchy stress tensor are among

the topics discussed in this chapter. The virtual work of the forces due to the change

of the shape of the continuum is defined. The deviatoric stresses, stress objectivity,

and energy balance equations are also discussed in Chapter 3.
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The definition of the strain and stress components is not sufficient to describe

the motion of a continuum. One must define the relationship between the stresses

and strains using the constitutive equations that are discussed in Chapter 4. In

Chapter 4, the generalized Hooke’s law is introduced, and the assumptions used

in the definition of homogeneous isotropic materials are outlined. The principal

strain invariants and special large-deformation material models are discussed. The

linear and nonlinear viscoelastic material behavior is also discussed in Chapter 4.

In many engineering applications, plastic deformations occur due to excessive

forces and impact as well as thermal loads. Several plasticity formulations are pre-

sented in Chapter 5. First, a one-dimensional theory is used in order to discuss the

main concepts and solution procedures used in the plasticity analysis. The theory is

then generalized to the three-dimensional analysis for the case of small strains.

Large strain nonlinear plasticity formulations as well as the J2 flow theory are among

the topics discussed in Chapter 5. This chapter can be skipped in its entirety because

it has no effect on the continuity of the presentation, and the developments in

subsequent chapters do not depend on the theory of plasticity in particular.

Nonlinear finite element formulations are discussed in Chapter 6 and 7. Two

formulations are discussed in these two chapters. The first is a large-deformation

finite element formulation, which is discussed in Chapter 6. This formulation,

called the absolute nodal coordinate formulation, is based on a continuum

mechanics theory and employs displacement gradients as coordinates. It leads to

a unique displacement and rotation fields and imposes no restrictions on the

amount of rotation or deformation within the finite element. The absolute nodal

coordinate formulation has some unique features that distinguish it from other

existing large-deformation finite element formulations: it leads to a constant mass

matrix; it leads to zero centrifugal and Coriolis forces; it automatically satisfies

the principles of mechanics; it correctly describes an arbitrary rigid-body

motion including finite rotations; and it can be used to develop several beams,

plate, and shell elements that relax many of the assumptions used in classical

theorems because this formulation allows for the use of more general constitutive

relationships.

Clearly, large-deformation finite element formulations can also be used to solve

small deformation problems. However, it is not recommended to use a large-

deformation finite element formulation to solve a small-deformation problem.

Large-deformation formulations do not exploit some particular features of small-

deformation problems, and, therefore, such formulations can be very inefficient in

the solution of stiff and moderately stiff systems. It turns out that the development

of an efficient small-deformation finite element formulation that correctly describes

an arbitrary rigid-body motion requires the use of more elaborate techniques in

order to define a local linear problem without compromising the ability of the

method to describe large-displacement small-deformation behavior. The finite ele-

ment floating frame of reference formulation, which is widely used in the analysis

of small deformations, is discussed in Chapter 7 of this book. This formulation

allows eliminating high-frequency modes that do not have a significant effect on
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the solution, thereby leading to a lower-dimension dynamic model that can be

efficiently solved using numerical and computer methods.

I would like to thank many students and colleagues with whom I worked for

several years on the subject of flexible body dynamics. I was fortunate to collaborate

with excellent students and colleagues who educated me in this important field of

computational mechanics. In particular, I would like to thank two of my doctorate

students, Bassam Hussein and Luis Maqueda, who provided solutions for several of

the examples presented in Chapter 4 and Chapter 5. I am grateful for the help I

received from Mr. Peter Gordon, the Engineering Editor, and the production staff

of Cambridge University Press. It was a pleasant experience working with them on

the production of this book. I would also like to thank my family for their help,

patience, and understanding during the time of preparing this book.

Ahmed A. Shabana

Chicago, IL, 2007
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1 INTRODUCTION

Matrix, vector, and tensor algebras are often used in the theory of continuum

mechanics in order to have a simpler and more tractable presentation of the subject.

In this chapter, the mathematical preliminaries required to understand the matrix,

vector, and tensor operations used repeatedly in this book are presented. Principles

of mechanics and approximation methods that represent the basis for the formula-

tion of the kinematic and dynamic equations developed in this book are also

reviewed in this chapter. In the first two sections of this chapter, matrix and vector

notations are introduced and some of their important identities are presented. Some

of the vector and matrix results are presented without proofs because it is assumed

that the reader has some familiarity with matrix and vector notations. In Section 3,

the summation convention, which is widely used in continuum mechanics texts, is

introduced. This introduction is made despite the fact that the summation conven-

tion is rarely used in this book. Tensor notations, on the other hand, are frequently

used in this book and, for this reason, tensors are discussed in Section 4. In Section 5,

the polar decomposition theorem, which is fundamental in continuum mechanics, is

presented. This theorem states that any nonsingular square matrix can be decom-

posed as the product of an orthogonal matrix and a symmetric matrix. Other matrix

decompositions that are used in computational mechanics are also discussed. In

Section 6, D’Alembert’s principle is introduced, while Section 7 discusses the virtual

work principle. The finite element method is often used to obtain finite dimensional

models of continuous systems that in reality have infinite number of degrees of

freedom. To introduce the reader to some of the basic concepts used to obtain finite

dimensional models, discussions of approximation methods are included in Section 8.

The procedure for developing the discrete equations of motion is outlined in Section

9, while the principle of conservation of momentum and the principle of work and

energy are discussed in Section 10. In continuum mechanics, the gradients of the

position vectors can be determined by differentiation with respect to different

parameters. The change of parameters can lead to the definitions of strain compo-

nents in different directions. This change of parameters, however, does not change

the coordinate system in which the gradient vectors are defined. The effect of the

change of parameters on the definitions of the gradients is discussed in Section 11.

1
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1.1 MATRICES

In this section, some identities, results, and properties from matrix algebra that are

used repeatedly in this book are presented. Some proofs are omitted, with the

assumption that the reader is familiar with the subject of linear algebra.

Definitions An m� n matrix A is an ordered rectangular array, which can be

written in the following form:

A ¼ aij

� �
¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

2
6664

3
7775 ð1:1Þ

where aij is the ijth element that lies in the ith row and jth column of the matrix.

Therefore, the first subscript i refers to the row number, and the second subscript j

refers to the column number. The arrangement of Equation 1 shows that the matrix

A has m rows and n columns. If m ¼ n, the matrix is said to be square, otherwise the

matrix is said to be rectangular. The transpose of an m� n matrix A is an n�m

matrix, denoted as AT, which is obtained from A by exchanging the rows and

columns, that is AT ¼ aji

� �
.

A diagonal matrix is a square matrix whose only nonzero elements are the

diagonal elements, that is, aij ¼ 0 if i 6¼ j. An identity or unit matrix, denoted as I,

is a diagonal matrix that has all its diagonal elements equal to one. The null or zero

matrix is a matrix that has all its elements equal to zero. The trace of a square matrix

A is the sum of all its diagonal elements, that is,

tr Að Þ ¼
Xn

i¼1

aii ð1:2Þ

This equation shows that tr Ið Þ ¼ n, where I is the identity matrix and n is the di-

mension of the matrix.

A square matrix A is said to be symmetric if

A ¼ AT, aij ¼ aji ð1:3Þ

A square matrix is said to be skew symmetric if

A ¼ �AT, aij ¼ �aji ð1:4Þ

This equation shows that all the diagonal elements of a skew-symmetric matrix

must be equal to zero. That is, if A is a skew-symmetric matrix with dimension n,

then aii ¼ 0 for i ¼ 1, 2, . . . , n: Any square matrix can be written as the sum of

2 Introduction



a symmetric matrix and a skew-symmetric matrix. For example, if B is a square

matrix, B can be written as

B ¼ �Bþ ~B ð1:5Þ

where �B and ~B are, respectively, symmetric and skew-symmetric matrices defined as

�B ¼ 1

2
Bþ BT
� �

, ~B ¼ 1

2
B� BT
� �

ð1:6Þ

Skew-symmetric matrices are used in continuum mechanics to characterize the

rotations of the material elements.

Determinant The determinant of an n� n square matrix A, denoted as Aj j or

det Að Þ, is a scalar quantity. In order to be able to define the unique value of the

determinant, some basic definitions have to be introduced. The minor Mij corre-

sponding to the element aij is the determinant of a matrix obtained by deleting the

ith row and jth column from the original matrix A. The cofactor Cij of the element aij

is defined as

Cij ¼ �1ð ÞiþjMij ð1:7Þ

Using this definition, the determinant of the matrix A can be obtained in terms of

the cofactors of the elements of an arbitrary row j as follows:

Aj j ¼
Xn

k¼1

ajkCjk ð1:8Þ

One can show that the determinant of a diagonal matrix is equal to the product of

the diagonal elements, and the determinant of a matrix is equal to the determinant

of its transpose; that is, if A is a square matrix, then Aj j ¼ AT
�� ��. Furthermore, the

interchange of any two columns or rows only changes the sign of the determinant. It

can also be shown that if the matrix has linearly dependent rows or linearly de-

pendent columns, the determinant is equal to zero. A matrix whose determinant is

equal to zero is called a singular matrix. For an arbitrary square matrix, singular or

nonsingular, it can be shown that the value of the determinant does not change if any

row or column is added or subtracted from another.

It can be shown that the determinant of the product of two matrices is equal to

the product of their determinants. That is, if A and B are two square matrices, then

ABj j ¼ Aj j Bj j.
As will be shown in this book, the determinants of some of the deformation

measures used in continuum mechanics are used in the formulation of the energy

expressions. Furthermore, the relationship between the volume of a continuum

in the undeformed state and the deformed state is expressed in terms of the

1.1 Matrices 3



determinant of the matrix of position vector gradients. Therefore, if the elements of

a square matrix depend on a parameter, it is important to be able to determine the

derivatives of the determinant with respect to this parameter. Using Equation 8, one

can show that if the elements of the matrix A depend on a parameter t, then

d

dt
Aj j ¼

Xn

k¼1

_a1kC1k þ
Xn

k¼1

_a2kC2k þ . . . þ
Xn

k¼1

_ankCnk ð1:9Þ

where _aij ¼ daij=dt. The use of this equation is demonstrated by the following

example.

EXAMPLE 1.1

Consider the matrix J defined as

J ¼
J11 J12 J13

J21 J22 J23

J31 J32 J33

2
4

3
5

where Jij ¼ @ri=@xj, and r and x are the vectors

r x1, x2, x3, tð Þ ¼ r1 r2 r3½ �T, x ¼ x1 x2 x3½ �T

That is, the elements of the vector r are functions of the coordinates x1, x2, and

x3 and the parameter t. If J ¼ Jj j is the determinant of J, prove that

dJ

dt
¼ @ _r1

@r1
þ @ _r2

@r2
þ @ _r3

@r3

� �
J

where @ _ri=@rj ¼ @=@rj

� �
dri=dtð Þ, i, j ¼ 1, 2, 3.

Solution: Using Equation 9, one can write

dJ

dt
¼
X3

k¼1

_J1kC1k þ
X3

k¼1

_J2kC2k þ
X3

k¼1

_J3kC3k

where Cij is the cofactor associated with element Jij. Note that the preceding

equation can be written as

dJ

dt
¼

_J11
_J12

_J13

J21 J22 J23

J31 J32 J33

������
������þ

J11 J12 J13
_J21

_J22
_J23

J31 J32 J33

������
������þ

J11 J12 J13

J21 J22 J23
_J31

_J32
_J33

������
������

In this equation,

_Jij ¼
@ _ri

@xj
¼ @ _ri

@r1

@r1

@xj
þ @ _ri

@r2

@r2

@xj
þ @ _ri

@r3

@r3

@xj
¼
X3

k¼1

@ _ri

@rk
Jkj
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Using this expansion, one can show that

_J11
_J12

_J13

J21 J22 J23

J31 J32 J33

������
������ ¼

@ _r1

@r1

� �
J

Similarly, one can show that

J11 J12 J13
_J21

_J22
_J23

J31 J32 J33

������
������ ¼

@ _r2

@r2

� �
J,

J11 J12 J13

J21 J22 J23
_J31

_J32
_J33

������
������ ¼

@ _r3

@r3

� �
J

Using the preceding equations, it is clear that

dJ

dt
¼ @ _r1

@r1
þ @ _r2

@r2
þ @ _r3

@r3

� �
J

This matrix identity is important and is used in this book to evaluate the rate of

change of the determinant of the matrix of position vector gradients in terms of

important deformation measures.

Inverse and Orthogonality A square matrix A–1 that satisfies the relationship

A�1A ¼ AA�1 ¼ I ð1:10Þ

where I is the identity matrix, is called the inverse of the matrix A. The inverse of the

matrix A is defined as

A�1 ¼ Ct

Aj j ð1:11Þ

where Ct is the adjoint of the matrix A. The adjoint matrix Ct is the transpose of the

matrix of the cofactors (Cij) of the matrix A. One can show that the determinant of

the inverse A�1
�� �� is equal to 1= Aj j.

A square matrix is said to be orthogonal if

ATA ¼ AAT ¼ I ð1:12Þ

Note that in the case of an orthogonal matrix A, one has

AT ¼ A�1 ð1:13Þ

1.1 Matrices 5



That is, the inverse of an orthogonal matrix is equal to its transpose. One can also

show that if A is an orthogonal matrix, then Aj j ¼ ±1; and if A1 and A2 are two

orthogonal matrices that have the same dimensions, then their product A1A2 is also

an orthogonal matrix.

Examples of orthogonal matrices are the 3� 3 transformation matrices that

define the orientation of coordinate systems. In the case of a right-handed coordi-

nate system, one can show that the determinant of the transformation matrix is +1;

this is a proper orthogonal transformation. If the right-hand rule is not followed, the

determinant of the resulting orthogonal transformation is equal to –1, which is an

improper orthogonal transformation, such as in the case of a reflection.

Matrix Operations The sum of two matrices A ¼ aij

� �
and B ¼ bij

� �
is defined as

Aþ B ¼ aij þ bij

� �
ð1:14Þ

In order to add two matrices, they must have the same dimensions. That is, the two

matrices A and B must have the same number of rows and same number of columns

in order to apply Equation 14.

The product of two matrices A and B is another matrix C defined as

C ¼ AB ð1:15Þ

The element cij of the matrix C is defined by multiplying the elements of the ith row

in A by the elements of the jth column in B according to the rule

cij ¼ ai1b1j þ ai2b2j þ . . . þ ainbnj ¼
X

k

aikbkj ð1:16Þ

Therefore, the number of columns in A must be equal to the number of rows in B. If A

is an m� n matrix and B is an n� p matrix, then C is an m� p matrix. In general,

AB 6¼ BA. That is, matrix multiplication is not commutative. The associative law for

matrix multiplication, however, is valid; that is, ABð ÞC ¼ A BCð Þ ¼ ABC, provided

consistent dimensions of the matrices A, B, and C are used.

1.2 VECTORS

Vectors can be considered special cases of matrices. An n-dimensional vector a can

be written as

a ¼ aið Þ ¼

a1

a2

..

.

an

2
6664

3
7775 ¼ a1 a2 . . . an½ �T ð1:17Þ

6 Introduction



Therefore, it is assumed that the vector is a column, unless it is transposed to make it

a row.

Because vectors can be treated as columns of matrices, the addition of vectors is

the same as the addition of column matrices. That is, if a ¼ aið Þ and b ¼ bið Þ are two

n-dimensional vectors, then aþ b ¼ ai þ bið Þ. Three different types of products,

however, can be used with vectors. These are the dot product, the cross product,

and the outer or dyadic product. The result of the dot product of two vectors is

a scalar, the result of the cross product is a vector, and the result of the dyadic

product is a matrix. These three different types of products are discussed in the

following text.

Dot Product The dot, inner, or scalar product of two vectors a and b is defined

as

a � b ¼ aTb ¼ a1b1 þ a2b2 þ . . . þ anbn ¼
Xn

i¼1

aibi ð1:18Þ

Note that the two vectors a and b must have the same dimension. The two vectors

a and b are said to be orthogonal if

a � b ¼ aTb ¼ 0 ð1:19Þ

The norm, magnitude, or length of an n-dimensional vector is defined as

aj j ¼
ffiffiffiffiffiffiffiffiffi
a � a
p

¼
ffiffiffiffiffiffiffiffi
aTa
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

aið Þ2
s

ð1:20Þ

It is clear from this definition that the norm is always a positive number, and it is

equal to zero only when a is the zero vector, that is, all the components of a are equal

to zero.

In the special case of three-dimensional vectors, the dot product of two arbitrary

three-dimensional vectors a and b can be written in terms of their norms as

a � b ¼ aj j bj j cos a, where a is the angle between the two vectors. A vector is said

to be a unit vector if its norm is equal to one. It is clear from the definition of the

norm given by Equation 20 that the absolute value of any element of a unit vector

must not exceed one. A unit vector â along the vector a can be simply obtained by

dividing the vector by its norm. That is, â ¼ a= aj j. The dot product b � â ¼ bj j cos a
defines the component of the vector b along the unit vector â, where a is the angle

between the two vectors. The projection of the vector b on a plane perpendicular

to the unit vector â is defined by the equation b� b � âð Þâ, or equivalently by

b� bj j cos að Þâ.

1.2 Vectors 7



Cross Product The vector cross product is defined for three-dimensional vectors

only. Let a and b be two three-dimensional vectors defined in the same coordinate

system. Unit vectors along the axes of the coordinate system are denoted by the

vectors i1, i2, and i3. These base vectors are orthonormal, that is,

ii � ij ¼ dij ð1:21Þ

where dij is the Kronecker delta defined as

dij ¼
1 i ¼ j

0 i 6¼ j

�
ð1:22Þ

The cross product of the two vectors a and b is defined as

c ¼ a� b ¼
i1 i2 i3

a1 a2 a3

b1 b2 b3

�������
�������

¼ a2b3 � a3b2ð Þi1 þ a3b1 � a1b3ð Þi2 þ a1b2 � a2b1ð Þi3

ð1:23Þ

which can be written as

c ¼ a� b ¼
c1

c2

c3

2
64

3
75 ¼

a2b3 � a3b2

a3b1 � a1b3

a1b2 � a2b1

2
64

3
75 ¼

0 �a3 a2

a3 0 �a1

�a2 a1 0

2
64

3
75

b1

b2

b3

2
64

3
75 ð1:24Þ

This equation can be written as

c ¼ a� b ¼ ~ab ð1:25Þ

where ~a is the skew-symmetric matrix associated with the vector a and is defined as

~a ¼
0 �a3 a2

a3 0 �a1

�a2 a1 0

2
64

3
75 ð1:26Þ

One can show that the determinant of the skew-symmetric matrix ~a is equal to zero.

That is, ~aj j ¼ 0. One can also show that

c ¼ a� b ¼ �b� a ¼ �~ba ð1:27Þ
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In this equation, ~b is the skew-symmetric matrix associated with the vector b. If

a and b are two parallel vectors, it can be shown that

a� b ¼ 0 ð1:28Þ

That is, the cross product of two parallel vectors is equal to zero.

Dyadic Product Another form of vector product used in this book is the dyadic or

outer product. Whereas the dot product leads to a scalar and the cross product leads

to a vector; the dyadic product leads to a matrix. The dyadic product of two vectors

a and b is written as a� b and is defined as

a� b ¼ abT ð1:29Þ

Note that, in general, a� b 6¼ b� a. One can show that the dyadic product of two

vectors satisfies the following identities:

a� bð Þc ¼ a b � cð Þ, a � b� cð Þ ¼ a � bð ÞcT ð1:30Þ

In Equation 30, it is assumed that the vectors have the appropriate dimensions. As

a special case of the identities of Equation 30, one has a� ikð Þc ¼ cka and

a � ik � cð Þ ¼ akcT, where ik, k ¼ 1, 2, 3, . . ., are the base vectors and ak and ck are

the kth elements of the vectors a and c, respectively. Similarly, a� bð Þik ¼ bka and

ik � a� bð Þ ¼ akbT, which show that postmultiplying the dyadic product by one of

the kth base vectors defines the kth element of the second vector multiplied by the

first vector, whereas premultiplying the dyadic product by the kth base vector

defines the kth element of the first vector multiplied by the second vector. The

dyadic product satisfies the following additional properties for any arbitrary vectors

u, v, v1, and v2 and a square matrix A:

u� vð ÞT¼ v� u

A u� vð Þ ¼ Au� vð Þ
u� vð ÞA ¼ u�ATv

� �
u� v1 þ v2ð Þ ¼ u� v1 þ u� v2

9>>>>=
>>>>;

ð1:31Þ

The second and third identities of Equation 31 show that

Au�Avð Þ ¼ A u� vð ÞAT. This result is important in understanding the rule

of transformation of the second-order tensors that will be discussed later in

this chapter. It is left to the reader as an exercise to verify the identities of

Equation 31.

1.2 Vectors 9



EXAMPLE 1.2

Consider the two vectors a ¼ a1 a2½ �T and b ¼ b1 b2 b3½ �T: The dyadic

product of these two vectors is given by

a� b ¼ a1

a2

	 

b1 b2 b3½ � ¼ a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

	 


For a given vector c ¼ c1 c2 c3½ �T, one has

a� bð Þc ¼
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

	 
 c1

c2

c3

2
64

3
75

¼
a1b1

a2b1

	 

c1 þ

a1b2

a2b2

	 

c2 þ

a1b3

a2b3

	 

c3

¼
a1

a2

	 

b1c1 þ

a1

a2

	 

b2c2 þ

a1

a2

	 

b3c3 ¼ a b � cð Þ

Also note that the dyadic product a� b can be written as

a� b ¼ a1

a2

	 

b1

a1

a2

	 

b2

a1

a2

	 

b3

	 

¼ ab1 ab2 ab3½ �

It follows that if R is a 2� 2 matrix, one has

R a� bð Þ ¼ R ab1 ab2 ab3½ � ¼ Rað Þb1 Rað Þb2 Rað Þb3½ �
¼ Ra� bð Þ

Several important identities can be written in terms of the dyadic product. Some of

these identities are valuable in the computer implementation of the dynamic formu-

lations presented in this book because the use of these identities can lead to significant

simplification of the computational algorithms. By using these identities, one can avoid

rewriting codes that perform the same mathematical operations, thereby saving effort

and time by producing a manageable computer code. One of these identities that can

be written in terms of the dyadic product is obtained in the following example.

EXAMPLE 1.3

In the computer implementation of the formulations presented in this book, one

may require differentiating a unit vector r̂ along the vector r with respect to the

components of the vector r. Such a differentiation can be written in terms of

the dyadic product. To demonstrate this, we write

r̂ ¼ 1ffiffiffiffiffiffiffi
rTr
p r ¼ 1

rj j r

10 Introduction



where rj j ¼
ffiffiffiffiffiffiffi
rTr
p

. It follows that

@r̂

@r
¼ 1ffiffiffiffiffiffiffi

rTr
p I� 1

rTr
rrT

� �

This equation can be written in terms of the dyadic product as

@r̂

@r
¼ 1ffiffiffiffiffiffiffi

rTr
p I� 1

rTr
r� r

� �

Projection If â is a unit vector, the component of a vector b along the unit vector

â is defined by the dot product b � â. The projection of b along â is then defined as

b � âð Þâ, which can be written using Equation 30 as b � âð Þâ ¼ â� âð Þb: The matrix

P ¼ â� â defines a projection matrix. For an arbitrary integer n, one can show that

the projection matrix P satisfies the identity Pn ¼ P: This is an expected result

because the vector â� âð Þb ¼ Pb is defined along â and has no components in other

directions. Other projections should not change this result.

The projection of the vector b on a plane perpendicular to the unit vector â is

defined as b� b � âð Þâ, which can be written using the dyadic product as I� â� âð Þb.

This equation defines another projection matrix Pp ¼ I� â� â, or simply

Pp ¼ I� P. For an arbitrary integer n, one can show that the projection matrix

Pp satisfies the identity Pn
p ¼ Pp. Furthermore, PPp ¼ 0 and Pþ Pp ¼ I.

EXAMPLE 1.4

Consider the vector a ¼ 1 2 0½ �T. A unit vector along a is defined as

â ¼ 1ffiffiffi
5
p 1 2 0½ �T

The projection matrix P associated with this unit vector can be written as

P ¼ â� â ¼ 1

5

1 2 0

2 4 0

0 0 0

2
64

3
75

It follows that

P2 ¼ 1

25

5 10 0

10 20 0

0 0 0

2
64

3
75 ¼ 1

5

1 2 0

2 4 0

0 0 0

2
64

3
75 ¼ P
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The projection matrix Pp is defined in this example as

Pp ¼ I� â� â ¼ I� P ¼ 1

5

4 �2 0
�2 1 0
0 0 0

2
4

3
5

Note that P2
p ¼ I� Pð Þ2¼ I� 2Pþ P2 ¼ I� P ¼ Pp. Successive application of

this equation shows that Pn
p ¼ Pp. The reader can verify this fact by the data

given in this example.

1.3 SUMMATION CONVENTION

In this section, another convenient notational method, the summation convention, is

discussed. The summation convention is used in most books on the subject of con-

tinuum mechanics. According to this convention, summation over the values of the

indices is automatically assumed if an index is repeated in an expression. For ex-

ample, if an index j takes the values from 1 to n, then in the summation convention,

one has

ajj ¼ a11 þ a22 þ . . . þ ann ð1:32Þ

and

aijj ¼ ai11 þ ai22 þ . . . þ ainn ð1:33Þ

The repeated index used in the summation is called the dummy index, an example of

which is the index j used in the preceding equation. If the index is not a dummy

index, it is called a free index, an example of which is the index i used in Equation 33.

It follows that the trace of a matrix A can be written using the summation conven-

tion as

tr Að Þ ¼ aii ð1:34Þ

The dot product between two n-dimensional vectors a and b can be written using the

summation convention as

a � b ¼ aTb ¼ aibi ð1:35Þ

The product of a matrix A and a vector b is another vector c ¼ Ab whose com-

ponents can be written using the summation convention as

ci ¼ aijbj ð1:36Þ
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It follows that the components of an n-dimensional vector a ¼ aið Þ defined by the

multiplication a ¼ Rb, where R ¼ Rij

� �
and b ¼ bið Þ, can be written using the sum-

mation convention as ai ¼ Rijbj. Here, i is the free index and j is the dummy index.

The dyadic product between two vectors can also be written using the summa-

tion convention. For example, in the case of three-dimensional vectors, one can

define the base vectors ik, k ¼ 1, 2, 3. Any three-dimensional vector can be written

in terms of these base vectors using the summation convention as a ¼
aiii ¼ a1i1 þ a2i2 þ a3i3. The dyadic product of two vectors a and b can then be

written as

a� b ¼ aiiið Þ � bjij

� �
¼ aibjii � ij ð1:37Þ

For example, if ii ¼ i1 ¼ 1 0 0½ �T, ij ¼ i2 ¼ 0 1 0½ �T, and a and b are arbitrary

three-dimensional vectors, one can show that the dyadic product of the preceding

equation can be written in the following matrix form:

a� b ¼ aibjii � ij ¼
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

2
4

3
5 ð1:38Þ

The dyadic products of the base vectors ii � ij are called the unit dyads. Using

this notation, the dyadic product can be generalized to the products of three or

more vectors. For example, the triadic product of the vectors a, b, and c can be

written as a� b� c ¼ aiiið Þ � bjij
� �

� ckikð Þ ¼ aibjckii � ij � ik: In this book, the

familiar summation sign
P

will be used for the most part, instead of the summation

convention.

1.4 CARTESIAN TENSORS

It is clear from the preceding section that a dyadic product is a linear combination of

unit dyads. The second-order Cartesian tensor is defined as a linear combination of

dyadic products. A second-order Cartesian tensor A takes the following form:

A ¼
X3

i, j¼1

aijii � ij ð1:39Þ

where aij are called the components of A. Using the analysis presented in the pre-

ceding section, one can show that the second-order tensor can be written in the

matrix form of Equation 38. Nonetheless, for a given second-order tensor A, one

cannot in general find two vectors a and b such that A ¼ a� b: Using Equation 39,

one can show that the element aij can be defined as

aij ¼ ii �Aij ð1:40Þ
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The proof of this equation can be obtained using Equation 30 (Spencer, 1997). To

this end, we write

ii �Aij ¼ ii �
X3

k,l¼1

aklik � il

 !
ij ¼ ii �

X3

k,l¼1

akl il � ij
� �

ik

 !

¼ ii �
X3

k,l¼1

akldljik

 !
¼

X3

k,l¼1

akldljdik

 !

¼ aij ð1:41Þ

The unit or identity tensor can be written in terms of the base vectors as

I ¼
X3

i¼1

ii � ii ð1:42Þ

Using the definition of the second-order tensor as a linear combination of dyadic

products, one can show, as previously mentioned, that the components of any sec-

ond-order tensor can be arranged in the form of a 3� 3 matrix. Using this matrix

arrangement of the second-order tensor A, another simple proof of Equation 40 can

be provided. To this end, we note that the product Aij defines column j of the matrix

A denoted as Aj. The dot product ii �Aj defines element i of the vector Aj, which is

the same as aij.

If the components of A are defined using a set of base vectors�ii and�ij defined in

another coordinate system and are denoted as �aij, one has

A ¼
X3

i, j¼1

aijii � ij ¼
X3

i, j¼1

�aij
�ii ��ij ð1:43Þ

Let R ¼ Rij

� �
be the orthogonal matrix of transformation between the two coordi-

nate systems in which the two sets of base vectors are defined, such that

ii ¼ R�ii, �ii ¼ RTii ð1:44Þ

It follows that

�ii ��ij ¼ �ii�i
T

j ¼ RTii i
T
j R ¼ RT ii � ij

� �
R ð1:45Þ

which is the result obtained earlier in Section 2. Substituting the identity of Equation

45 into Equation 43, one obtains

A ¼
X3

i,j¼1

aijii � ij ¼ RT
X3

i,j¼1

�aijii � ij

 !
R ð1:46Þ
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Let A ¼ aij

� �
and �A ¼ �aij

� �
. It then follows from the preceding equation that

A ¼ aij

� �
¼ RT �AR ð1:47Þ

The inverse relationship is given by

�A ¼ RART ð1:48Þ

Using Equation 47, one can show that the elements aij can be written in terms of the

elements �aij as follows:

apq ¼
X3

i,j¼1

RipRjq�aij ð1:49Þ

Using matrix notation, it can also be shown that apq ¼ RT
p

�ARq, where Rk is the kth

column of the tensor R. That is, R ¼ R1 R2 R3½ �. Equation 47, or equivalently

Equation 48, governs the transformation of the second-order tensors. That is, any

second-order tensor must obey this transformation rule. In continuum mechanics,

the elements of tensors represent physical quantities such as moments of inertia,

strains, and stresses. These elements can be defined in any coordinate system. The

coordinate systems used depend on the formulation used to obtain the equilibrium

equations. It is, therefore, important that the reader understands the rule of the

coordinate transformation of tensors and recognizes that such a transformation

leads to the definition of the same physical quantities in different frames of refer-

ence. We must also distinguish between the transformation of vectors and the

change of parameters. The latter does not change the coordinate system in which

the vectors are defined. This important difference will be discussed in more detail

before concluding this chapter.

A tensor that has the same components in any coordinate system is called an

isotropic tensor. An example of isotropic tensors is the unit tensor. It can be shown

that second-order isotropic tensors take only one form and can be written as aI

where a is a scalar and I is the unit or the identity tensor. Second-order isotropic

tensors are sometimes called spherical tensors.

Double Product or Double Contraction If A is a second-order tensor, the

contraction of this tensor to a scalar is defined as
P3

i¼1 aii ¼ a11 þ a22 þ a33 ¼
trðAÞ, where tr denotes the trace of the matrix (sum of the diagonal elements)

(Aris 1962). It can be shown that the trace of a second-order tensor is invariant

under orthogonal coordinate transformations. To this end, one can write, using

Equation 49, aqq ¼
P3

i,j¼1 RiqRjq�aij, which, using the orthogonality of the columns

of the transformation R ¼ Rij

� �
, leads to

P3
q¼1 aqq ¼

P3
q¼1

P3
i,j¼1 RiqRjq�aij

� �
¼
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P3
q,j¼1dqj�aqj ¼

P3
q¼1 �aqq. That is, the trace is indeed invariant under coordinate

transformation. In addition to the trace, the determinant of A is the same as the

determinant of �A, that is, Aj j ¼ �A
�� ��. This important result can also be obtained in

the case of second-order tensors using the facts that the determinant of an orthog-

onal matrix is equal to ±1 and the determinant of the product of matrices is equal to

the product of the determinants of these matrices.

If A and B are second-order tensors, the double product or double contraction is

defined as

A : B ¼ trðATBÞ ð1:50Þ

Using the properties of the trace, one can show that

A : B ¼ trðATBÞ ¼ trðBATÞ ¼ trðBTAÞ ¼ trðABTÞ ¼
X3

i,j¼1

aijbij ð1:51Þ

where aij and bij are, respectively, the elements of the tensors A and B. If a, b, u, and

v are arbitrary vectors and A is a second-order tensor, one can show that the double

contraction has the following properties:

trðAÞ ¼ I : A
A : u� vð Þ ¼ u � Avð Þ
a� bð Þ : u� vð Þ ¼ a � uð Þ b � vð Þ

9=
; ð1:52Þ

It can also be shown that if A is a symmetric tensor and B is a skew symmetric tensor,

then

A : B ¼ 0 ð1:53Þ

It follows that if A is a symmetric tensor and B is an arbitrary tensor,

the definition of the double product can be used to show that A : B ¼ A : BT ¼
A : ðBþBTÞ=2.

If A and B are two symmetric tensors, one can show that

A : B ¼ a11b11 þ a22b22 þ a33b33 þ 2 a12b12 þ a13b13 þ a23b23ð Þ ð1:54Þ

The preceding two equations will be used in this book in the formulation of the

elastic forces of continuous bodies. These forces are expressed in terms of the strain

and stress tensors. As will be shown in Chapters 2 and 3, the strain and stress tensors

are symmetric and are given, respectively, in the following form:

e ¼
e11 e12 e13

e12 e22 e23

e13 e23 e33

2
4

3
5, s ¼

r11 r12 r13

r12 r22 r23

r13 r23 r33

2
4

3
5 ð1:55Þ
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Using Equation 54, one can write the double contraction of the strain and stress

tensors as

e : s ¼ e11r11 þ e22r22 þ e33r33 þ 2 e12r12 þ e13r13 þ e23r23ð Þ ð1:56Þ

Because a second-order symmetric tensor has six independent elements, vector

notations, instead of tensor notations, can also be used to define the strain and stress

components of the preceding two equations. In this case, six-dimensional strain and

stress vectors can be introduced as follows:

ev ¼ e11 e22 e33 e12 e13 e23½ �T

sv ¼ r11 r22 r33 r12 r13 r23½ �T


ð1:57Þ

where subscript v is used to denote a vector. The dot product of the strain and stress

vectors is given by

e � s ¼ eTs ¼ e11r11 þ e22r22 þ e33r33 þ e12r12 þ e13r13 þ e23r23 ð1:58Þ

Note the difference between the results of the double contraction and the dot prod-

uct of Equations 56 and 58, respectively. There is a factor of 2 multiplied by the term

that includes the off-diagonal elements in the double contraction of Equation 56.

Equation 56 arises naturally when the elastic forces are formulated, as will be shown

in Chapter 3. Therefore, it is important to distinguish between the double contrac-

tion and the dot product despite the fact that both products lead to scalar quantities.

Invariants of the Second-Order Tensor Under an orthogonal transformation

that represents rotation of the axes of the coordinate systems, the components of

the vectors and second-order tensors change. Nonetheless, certain vector and tensor

quantities do not change and remain invariant under such an orthogonal transfor-

mation. For example, the norm of a vector and the dot product of two three-

dimensional vectors remain invariant under a rigid-body rotation.

For a second-order tensor A, one has the following three invariants that do not

change under an orthogonal coordinate transformation:

I1 ¼ tr Að Þ
I2 ¼

1

2
tr Að Þð Þ2�trðA2Þ

n o
I3 ¼ det Að Þ ¼ Aj j

9>=
>; ð1:59Þ

These three invariants can also be written in terms of the eigenvalues of the tensor

A. For a given tensor or a matrix A, the eigenvalue problem is defined as

Ay ¼ ky ð1:60Þ
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where k is called the eigenvalue and y is the eigenvector of A. Equation 60 shows that

the direction of the vector y is not affected by multiplication with the tensor A. That

is, Ay can change the length of y, but such a multiplication does not change the

direction of y. For this reason, y is called a principal direction of the tensor A. The

preceding eigenvalue equation can be written as

A� kIð Þy ¼ 0 ð1:61Þ

For this equation to have a nontrivial solution, the determinant of the coefficient

matrix must be equal to zero, that is,

det A� kIð Þ ¼ 0 ð1:62Þ

This equation is called the characteristic equation, and in the case of a second-order

tensor it has three roots k1, k2, and k3. Associated with these three roots, there are

three corresponding eigenvectors y1, y2, and y3 that can be determined to within an

arbitrary constant using Equation 61. That is, for a root ki, i ¼ 1, 2, 3, one can solve

the system of homogeneous equations A� kiIð Þyi ¼ 0 for the eigenvector yi to

within an arbitrary constant, as demonstrated by the following example.

EXAMPLE 1.5

Consider the matrix

A ¼
1 �1 2
0 3 1
0 0 2

2
4

3
5

The characteristic equation of this matrix can be obtained using Equation 62 as

det A� kIð Þ ¼ 1� kð Þ 3� kð Þ 2� kð Þ ¼ 0

The roots of this characteristic equation define the following three eigenvalues

of the matrix A:

k1 ¼ 1, k2 ¼ 2, k3 ¼ 3

Associated with these three eigenvalues, there are three eigenvectors, which can

be determined using Equation 61 as

A� kiIð Þyi ¼ 0, i ¼ 1, 2, 3

or

1� ki �1 2
0 3� ki 1
0 0 2� ki

2
4

3
5 yi1

yi2

yi3

2
4

3
5 ¼ 0, i ¼ 1, 2, 3
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This equation can be used to solve for the eigenvectors associated with the three

eigenvalues k1, k2, and k3. For k1 ¼ 1, the preceding equation yields the

following system of algebraic equations:

0 �1 2
0 2 1
0 0 1

2
4

3
5 y11

y12

y13

2
4

3
5 ¼ 0

This system of algebraic equations defines the first eigenvector to within an

arbitrary constant as

y1 ¼
y11

y12

y13

2
4

3
5 ¼ 1

0
0

2
4
3
5

For k2 ¼ 2, one has

y2 ¼
y21

y22

y23

2
4

3
5 ¼ �3

1
�1

2
4

3
5

The eigenvector associated with k3 ¼ 3 can also be determined as

y3 ¼
y31

y32

y33

2
4

3
5 ¼ 1

�2
0

2
4

3
5

In the special case of a symmetric tensor, one can show that the eigenvalues are

real and the eigenvectors are orthogonal. Because the eigenvectors can be deter-

mined to within an arbitrary constant, the eigenvectors can be normalized as unit

vectors. For a symmetric tensor, one can then write

Ayi ¼ kiyi , i ¼ 1, 2, 3

yT
i yj ¼ dij , i, j ¼ 1, 2, 3

)
ð1:63Þ

If yi, i = 1, 2, 3, are selected as orthogonal unit vectors, one can form the orthogonal

matrix F whose columns are the orthonormal eigenvectors, that is,

F ¼ y1 y2 y3½ � ð1:64Þ

It follows that

AF ¼ Fl ð1:65Þ
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where

l ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 ð1:66Þ

Using the orthogonality property of F, one has

A ¼ FlFT ¼
X3

i¼1

kiyi � yi ð1:67Þ

This equation, which defines the spectral decomposition of A, shows that the or-

thogonal transformation F can be used to transform the tensor A to a diagonal

matrix as

FTAF ¼ l ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 ð1:68Þ

That is, the matrices A and l have the same determinant and the same trace. This

important result is often used in continuum mechanics to study the invariant prop-

erties of different tensors.

Let R be an orthogonal transformation matrix. Using the transformation y ¼ Rz

in Equation 61 and premultiplying by RT, one obtains

RTAR� kI
� �

z ¼ 0 ð1:69Þ

This equation shows that the eigenvalues of a tensor or a matrix do not change under

an orthogonal coordinate transformation. Furthermore, as previously discussed, the

determinant and trace of the tensor or the matrix do not change under such a co-

ordinate transformation. One then concludes that the invariants of a symmetric

second-order tensor can be expressed in terms of its eigenvalues as follows:

I1 ¼ tr Að Þ ¼ k1 þ k2 þ k3

I2 ¼
1

2
tr Að Þð Þ2�trðA2Þ

n o
¼ k1k2 þ k1k3 þ k2k3

I3 ¼ det Að Þ ¼ k1k2k3

9>=
>; ð1:70Þ

Some of the material constitutive equations used in continuum mechanics are for-

mulated in terms of the invariants of the strain tensor. Therefore, Equation 70 will

be used in later chapters of this book.

For a general second-order tensor A (symmetric or nonsymmetric), the invar-

iants are I1 ¼ tr Að Þ, I2 ¼ 1
2 tr Að Þð Þ2�trðA2Þ
n o

, and I3 ¼ det Að Þ, as previously pre-

sented. One can show that the characteristic equation of a second-order tensor can
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be written in terms of these invariants as k3 � I1k
2 þ I2k� I3 ¼ 0. Furthermore, by

repeatedly multiplying Equation 60 n times by A, one obtains Any ¼ kny. Using this

identity after multiplying the characteristic equation k3 � I1k
2 þ I2k� I3 ¼ 0 by y,

one obtains A3 � I1A2 þ I2A� I3I ¼ 0, which is the mathematical statement of the

Cayley–Hamilton theorem, which states that a second-order tensor satisfies its char-

acteristic equation. The simple proof provided here for the Cayley–Hamilton the-

orem is based on the assumption that the eigenvectors are linearly independent. A

more general proof can be found in the literature.

For a second-order skew-symmetric tensor W, one can show that the invariants

are given by I1 ¼ I3 ¼ 0 and I2 ¼ w2
12 þ w2

13 þ w2
23, where wij is the ijth element of

the tensor W. Using these results, the characteristic equation of a second-order

tensor W can be written as k3 þ I2k ¼ 0. This equation shows that W has only one

real eigenvalue, k ¼ 0, whereas the other two eigenvalues are imaginary.

Higher-Order Tensors In continuum mechanics, the stress and strain tensors are

related using the constitutive equations that define the material behavior. This re-

lationship can be expressed in terms of a fourth-order tensor whose components are

material coefficients. In general, a tensor A of order n is defined by 3n elements,

which can be written as aijk...n, provided that these elements as the result of a co-

ordinate transformation take the form

apq...s ¼
Xn

i,j,...,l¼1

RipRjq . . . Rls �aij...l ð1:71Þ

where R ¼ Rij

� �
is the matrix of coordinate transformation. A lower-order tensor

can be obtained as a special case of Equation 71 by reducing the number of indices.

A zero-order tensor is represented by a scalar, a first-order tensor is represented by

a vector, and a second-order tensor can be represented by a matrix. A tensor of

order n is said to be symmetric with respect to two indices if the interchange of these

two indices does not change the value of the elements of the tensor. The tensor is

said to be antisymmetric or skew symmetric with respect to two indices if the in-

terchange of these two indices changes only the sign of the elements of the tensor.

As in the case of the second-order tensors, higher-order tensors can be defined

using outer products. For example, a third-order tensor T can be defined as the outer

product of three vectors u, v, and w as follows:

T ¼ u� v� wð Þ ¼
X3

i,j,k¼1

tijkii � ij � ik ð1:72Þ

where il, l ¼ i, j, k is a base vector. An element of the tensor T takes the form uivjwk.

Roughly speaking, in the case of three-dimensional vectors, one may consider the

third-order tensor a linear combination of a new set of unit dyads that consist of 27

elements (three layers, each of which has nine elements). The elements of layer or

matrix l, l ¼ 1, 2, 3 are given by wl u� vð Þ ¼ Til. Using this definition of the product
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