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J I N D Ř I C H Z A P L E T A L
University of Florida



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-87426-7

ISBN-13 978-0-511-37288-9

© J. Zapletal 2008

2008

Information on this title: www.cambridge.org/9780521874267

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521874267


Contents

1 Introduction page 1
1.1 Welcome 1
1.2 Navigation 2
1.3 Notation 5
1.4 Background 6

2 Basics 15
2.1 Forcing with ideals 15
2.2 Properness 25
2.3 Topological representation of names 29

3 Properties 33
3.1 Continuous reading of names 33
3.2 Fubini properties of ideals 37
3.3 Bounding forcings 42
3.4 Bounding and not adding splitting real 46
3.5 Preservation of Baire category 52
3.6 Preservation of outer Lebesgue measure 58
3.7 The countable chain condition 64
3.8 �1

1 on �
1
1 ideals 70

3.9 Dichotomies 78
3.10 Games on Boolean algebras 87
3.11 Ramsey properties 106
3.12 Pure decision property 111

v



vi Contents

4 Examples 113
4.1 Ideals �-generated by closed sets 113
4.2 Porosity ideals 131
4.3 Capacities 143
4.4 Hausdorff measures and variations 179
4.5 Pavement submeasures 194
4.6 Analytic P-ideal forcings 209
4.7 Other examples 213

5 Operations 225
5.1 The countable support iteration 225
5.2 Side-by-side product 239
5.3 Unions of �-ideals 247
5.4 Illfounded iteration 252
5.5 Directed systems of ideals 264

6 Applications 269
6.1 Cardinal invariant inequalities 269
6.2 Duality theorems 278
6.3 Preservation theorems 285

7 Questions 303
7.1 Basics 303
7.2 Properties 303
7.3 Examples 304
7.4 Operations 306
7.5 Applications 306

Bibliography 307
Index 313



1
Introduction

1.1 Welcome

This book reports on the state of a research program that I initiated in 1999. It
connects the practice of proper forcing introduced by Shelah [64] with the study
of various �-ideals on Polish spaces from the point of view of abstract analysis,
descriptive set theory, measure theory, etc. It turns out that the connection is far
richer than I dared to imagine in the beginning. Its benefits include theorems about
methodology of forcing as well as isolation of new concepts in measure theory
or abstract analysis. It is my sincere hope that this presentation will help to draw
attention from experts from these fields and to bring set theory and forcing closer
to the more traditional parts of mathematics.

The book uses several theorems and proofs from my earlier papers; in several
cases I coauthored these papers with others. The first treatment of the subject in
[83] is superseded here on many accounts, but several basic theorems and proofs
remain unchanged. The papers [18], [67], [82], [86], and [87] are incorporated into
the text, in all cases reorganized and with significant improvements.

Many mathematicians helped to make this book what it is. Thanks should
go in the first place to Bohuslav Balcar for his patient listening and enlight-
ening perspective of the subject. Vladimir Kanovei introduced me to effective
descriptive set theory. Ilijas Farah helped me with many discussions on measure
theory. Joerg Brendle and Peter Koepke allowed me to present the subject mat-
ter in several courses, and that greatly helped organize my thoughts and results.
Last but not least, the influence of the mathematicians I consider my teach-
ers (Thomas Jech, Hugh Woodin, and Alexander Kechris) is certainly apparent
in the text.

I enjoyed financial support through NSF grant DMS 0300201 and grant GA ČR
201-03-0933 of the Grant Agency of Czech Republic as I wrote this book.
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2 Introduction

1.2 Navigation

This is not a textbook. The complexity of the subject is such that it is impossible
to avoid forward references and multiple statements of closely related results, and
to keep the book organized in a logical structure at the same time. As a result, the
linear reading of the book will be necessarily interspersed with some page flipping.
This section should help the reader to find the subjects he is most interested in.

Chapter 2 provides the basic definitions, restatements of properness, and basic
implications of properness, such as the reading of reals in the generic extension
as images of the generic point under ground model coded Borel functions. Every
reader should start with this chapter. A sample theorem:

Theorem 1.2.1. Suppose that I is a �-ideal on a Polish space X. The forcing PI

of I-positive Borel sets ordered by inclusion adds a single point ẋgen ∈ X such that
a set B belongs to the generic filter if and only if it contains the generic point ẋgen.

Chapter 3 investigates the possible finer forcing properties of the forcings of
the form PI . These divide into three basic groups. The first group is that of Fubini
forcing properties, introduced in Section 3.2. These correspond to the classical
preservation properties such as the bounding property or preservation of outer
Lebesgue measure. A sample theorem:

Theorem 1.2.2. Suppose that I is a �-ideal on a Polish space X such that the
forcing PI is proper. The following are equivalent:

1. PI is bounding;
2. for every Polish topology � on the space X that yields the same Borel structure

as the original one, every Borel I-positive set contains a �-compact I-positive
subset.

The second group of properties is entirely absent in the combinatorial treatment
of forcings. These are the descriptive set theoretic properties of the ideals, rep-
resented by the various dichotomies of Section 3.9 and the �1

1 on �
1
1 property.

The dichotomies are constantly invoked in the proofs of absoluteness theorems and
preservation theorems. The �1

1 on �
1
1 property of ideals allows ZFC treatment of

such operations as the countable support iteration, product, and illfounded iteration,
with a more definite understanding of the underlying issues. A sample theorem:

Theorem 1.2.3. (LC+CH) Suppose that I is a �-ideal generated by a universally
Baire collection of analytic sets such that every I-positive �

1
2 set has an I-positive

Borel subset. If the forcing PI is �-proper then every function f ∈ 2�1 in the
extension either is in the ground model or has a countable initial segment which is
not in the ground model.
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Here, LC denotes a suitable large cardinal assumptions, as explained in the next
section.

The third group of properties is connected with determinacy of games on Boolean
algebras. A number of forcing properties can be expressed in terms of infinitary
games of the poset PI which are determined in the definable context. The games
are usually variations on standard fusion arguments, and the winning strategies are
a necessary tool in the treatment of product forcing, illfounded iteration, and other
subjects. A sample application:

Theorem 1.2.4. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. The following are equivalent:

1. PI preserves Baire category;
2. there is a collection T of Polish topologies on the space X such that I is the

collection of all sets which are �-meager for every topology � ∈ T .

Chapter 4 gives a number of classes of �-ideals I for which I can prove that
the forcing PI is proper. While the presentation is based on a joint paper with
Ilijas Farah [18], it is nevertheless greatly expanded. There are two very distinct
groups of ideals in this respect: the ideals satisfying the first dichotomy, whose
treatment occupies almost the whole chapter, and the ideals that do not satisfy the
first dichotomy, treated in Section 4.7. It seems that the former group is much
larger. Its treatment is divided into several very populous subgroups, each treated
in its own section. These subgroups are typically connected with a basic underlying
idea from abstract analysis, such as capacities or Hausdorff measures. The sections
are all very much alike: first comes the definition of the class of ideals, then the
properness theorem, then the dichotomy theorem (which, mysteriously, is always
proved in the same way as properness), then several general theorems regarding
the finer forcing properties of the ideals. The section closes with a list of examples.
A sample result:

Theorem 1.2.5. Suppose that � is an outer regular subadditive capacity on a
Polish space X. Let I = �A ⊂ X � ��A	 = 0
. Then:

1. if the capacity is stable then the forcing PI is proper;
2. if the forcing PI is proper and the capacity is strongly subadditive then the

forcing PI preserves outer Lebesgue measure;
3. if the forcing PI is proper and the capacity is Ramsey then the forcing does not

add splitting reals;
4. every capacity used in potential theory is stable.
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My original hope that the idealization of forcings would closely relate to the
creature forcing technology [58] proved to be naive; the symmetric difference of the
two approaches turned out to be quite large. Nevertheless, in several cases I could
identify a precise correspondence between a class of ideals and a class of creature
forcings.

Chapter 5 relates operations on ideals with operations on forcings. The key case
here is that of the countable support iteration which corresponds to a transfinite
Fubini product of ideals, Section 5.1. The other operations I can handle are side-
by-side product with a great help from determinacy of games on Boolean algebras,
the illfounded iteration, which provides a treatment dual to and more general than
that of [43], the towers of ideals which is a method of obtaining forcings adding
objects more complex than just reals, and the union of ideals, which forcingwise is
an entirely mysterious operation. A sample theorem:

Theorem 1.2.6. (LC) Suppose that I� � � ∈ � is a collection of universally Baire
�-ideals on some Polish spaces such that the forcings PI�

are all proper and
preserve Baire category bases. Then the countable support side-by-side product of
these forcings is proper as well and preserves Baire category bases. In addition,
the ideals satisfy a rectangular Ramsey property.

Chapter 6 is probably the primary reason why a forcing practitioner may want
to read this book; however its methods are entirely incomprehensible without the
reading of the previous chapters. There are several separate sections.

Section 6.1 contains the absoluteness results which originally motivated the work
on the subject of this book. There are many theorems varying in the exact large
cardinal strength necessary and in the class of problems they can handle, but on
the heuristic level they all say the same thing. If � is a simply definable cardinal
invariant and I is a �-ideal such that the forcing PI is proper, then if the inequality
� < cov∗�I	 holds in some extension then it holds in the iterated PI extension.
Moreover, there is a forcing axiom CPA(I) which holds in the iterated PI extension
and which then must directly imply the inequality � < cov∗�I	. The CPA-type
axioms have been defined independently in the work of Ciesielski and Pawlikowski
[9] in an effort to axiomatize the iterated Sacks model. A sample theorem:

Theorem 1.2.7. (LC) Suppose that � is a tame cardinal invariant and �< � holds in
some forcing extension. Then ℵ1 = � < � holds in every forcing extension satisfying
CPA; in particular it holds in the iterated Sacks model.

Section 6.2 considers the duality theorems. These are theorems that partially
confirm the old duality heuristic: if I
 J are �-ideals and the inequality cov�I	 ≤
add�J	 is provable in ZFC, then so should be its dual inequality non�I	 ≥ cof�J	.
This is really completely false, but several theorems can be proved that rescue
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nontrivial pieces of this unrealistic expectation. This is the one part of this book
where the combinatorics of uncountable cardinals actually enters the computation
of inequalities between cardinal invariants, with considerations involving various
pcf and club guessing structures. A sample theorem:

Theorem 1.2.8. Suppose that J is a �-ideal on a Polish space generated by a
universally Baire collection of analytic sets. If ZFC+LC proves cov�I	 = � then
ZFC + LC proves non�I	 ≤ ℵ2.

Section 6.3 gives a long list of preservation theorems for the countable support
iteration of definable forcings. Compared to the combinatorial approach of Shelah
[64], these theorems have several advantages: they connect well with the motivating
problems in abstract analysis, and they have an optimal statement. Among their
disadvantages I must mention the restriction to definable forcings and the necessity
of large cardinal assumptions for a full strength version. Many of the preservation
theorems of this section have no combinatorial counterpart. A sample result:

Theorem 1.2.9. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. Suppose that � is a strongly subadditive
capacity. If PI forces every set to have the same �-mass in the ground model as it
has in the extension, then even the countable support iterations of the forcing PI

have the same property.

1.3 Notation

My notation follows the set theoretic standard of [29]. If T is a tree of finite
sequences ordered by extension then �T� denotes the set of all infinite paths through
that tree; if T ⊂ 2<� then �T� is a closed subset of the space 2�. If X
Y are
Polish spaces and A ⊂ X × Y is a set then the expression proj�A	 denotes the
set �x ∈ X � ∃y ∈ Y 	x
 y
 ∈ A
, for a point x ∈ X the expression Ax stands for
the vertical section �y ∈ Y � 	x
 y
 ∈ A
, and for a point y ∈ Y the expression Ay

stands for the horizontal section �x ∈ X � 	x
 y
 ∈ A
. For a Polish space X, K�X	
is the hyperspace of its compact subsets with the Vietoris topology and P�X	 is
the space of probability Borel measures on X. The expression B�X	 denotes the
collection of all Borel subsets of the space X. The word “measure” refers to a
�-additive Borel measure. If a set function is �-subadditive rather than �-additive
then I use the word “submeasure.” The value of a measure (submeasure, capacity)
� at a set B is referred to as the �-mass of the set B. A tower of models is a
sequence 	M� � � ∈ �
 where � is an ordinal and M�’s are elementary submodels
of some large structure (typically 	H�
∈
 for a suitable large cardinal �) such that
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�′ ∈ � ∈ � implies M�′ ∈ M�. The tower is continuous if for limit ordinals � ∈ �,
M� = ⋃

�∈� M� .
One important deviation from the standard set theoretical usage is the liberal

use of large cardinal assumptions. In order to prove suitably general theorems of
a statement that is easy to understand and refer to, I frequently have to resort to
a large cardinal assumption of this or that kind. There are only three classes of
applications of large cardinal assumptions in this book–absoluteness, determinacy
of (long and complex) games, and definable uniformization. The minimum large
cardinal necessary for each of these applications is different, sometimes difficult
to state, sometimes unknown, and invariably completely irrelevant for the goals
of this book; the existence of a supercompact cardinal is always sufficient. As a
result, I decided to denote the use of large cardinal assumptions by a simple (LC)
preceding the statement of the theorems. For most but not all specific applications
of the general theorems in this book the large cardinal assumption can be eliminated
by manual construction of all the winning strategies and uniformization functions
necessary. At least in one case (the countable support iteration of Laver forcing) I
made an effort to show that the key dichotomy requires a large cardinal assumption,
and in the rather restrictive case of �1

1 on �
1
1 ideals almost all general theorems in

this book are proved in ZFC.
The labeling of the various claims in this book is indicative of their position

and function. Facts are statements that are proved elsewhere, and I will not restate
their proofs. Theorems are quotable self-standing statements, ready for use in the
reader’s work. Propositions are self-standing statements referred to at some other,
possibly quite distant, place in the book. Finally, claims and lemmas appear in
the proofs of theorems and propositions, and they are not referred to in any other
place.

1.4 Background

The subject of this book demands the reader to be proficient in several areas of set
theory and willing to ask at least the basic questions about several other fields of
mathematics. This section sums up the basic definitions and results which are taken
for granted in the text.

1.4.1 Polish spaces

A Polish space is a separable completely metrizable topological space. Many Polish
spaces occur in this book. If T is a countably branching tree without endnodes, then
the set �T� of all infinite branches through the tree T equipped with the topology
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generated by the sets Ot = �x ∈ �T� � t ⊂ x
 is a Polish space, with important special
cases the Cantor space 2� and the Baire space ��.

I will make use of basic theory of Polish spaces as exposed in [40]. Every
uncountable Polish space X is a Borel bijective image of the Cantor space and it
is a continuous bijective image of a closed subset of the Baire space. A G� subset
of a Polish space is again Polish in the inherited topology. Every Polish space is
homeomorphic to a G� subset of the Hilbert cube.

There are several useful operations on Polish spaces. If X
Y are Polish spaces
then their product is again Polish; even a product of countably many Polish spaces
is still Polish. If X is a Polish space then K�X	 denotes the space of all compact
subsets of X equipped with Vietoris topology generated by sets of the form �K ∈
K�X	 � K ⊂ O
 and �K ∈ K�X	 � K ∩O 
= 0
 for open sets O ⊂ X. The space K�X	
is referred to as the hyperspace of X; it is Polish and if X is compact then K�X	 is
compact as well.

It is possible to change the topology on a Polish space to a new, more convenient
one. Whenever X is Polish with topology � and Bn � n ∈ � are �-Borel subsets of
X then there is a Polish topology � extending � such that the sets Bn � n ∈ � are
�-clopen and the �-Borel sets are exactly the �-Borel sets.

1.4.2 Definable subsets of Polish spaces

Definability of subsets of Polish spaces plays a critical role. Let X be a Polish
space, with a countable topology basis O. Borel sets are those sets which can
be obtained from the basic open sets by a repeated application of countable union,
countable intersection, and taking a complement. This is a class of sets closed under
continuous preimages and continuous one-to-one images, but not under arbitrary
continuous images. Analytic sets are those that can be obtained as continuous
images of Borel sets. This is a class of sets containing the Borel sets, closed under
continuous images, countable unions and intersections, but not under complements.
Every analytic set A ⊂ X is a projection of a closed subset C ⊂ X×��, A = proj�C	.
Every analytic subset of the Baire space is of the form proj�T�. Every analytic set
whose complement is analytic is in fact Borel.

The paper [20] isolated an important and very practical broad definability class
of subsets of Polish spaces. A set A ⊂ 2� is universally Baire if there are class trees
S
T ⊂ �2×Ord	<� which in all set generic extensions project into complementary
subsets of 2� and A = proj�T�. A subset of another Polish space is universally
Baire if it is in Borel bijective correspondence with a universally Baire subset of
the Cantor space. Equivalently, a set is universally Baire if all of its continuous
preimages have the property of Baire.
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In ZFC, analytic sets and coanalytic sets are universally Baire, and consistently
the class of universally Baire sets does not reach far beyond that. However, under
large cardinal assumptions the class of universally Baire sets expands considerably.
If there is a proper class of Woodin cardinals then the class of universally Baire
sets is closed under complementation and continuous images and preimages, and
every set of reals in the model L��	 is universally Baire.

1.4.3 Measure theory

Let X be a Polish space. A submeasure on X is a map � � P�X	 → �+ such that
��0	 = 0, A ⊂ B → ��A	 ≤ ��B	 and ��

⋃
n An	 ≤ �n��An	 whenever An � n ∈ � is

a countable collection of subsets of the space X. The submeasures on uncountable
Polish spaces in this book will always be countably subadditive in this sense. The
submeasure � is outer regular if ��A	 = inf���O	 � A ⊂ O
O open
 and it is outer
if ��A	 = inf���B	 � A ⊂ B � B Borel
.

A Borel measure (or measure) is a map � � B�X	 → �+ such that ��0	 = 0,
A ⊂ B → ��A	 ≤ ��B	 and ��

⋃
n An	 = �n��An	 if An � n ∈ � is a countable

collection of pairwise disjoint Borel sets. Finite Borel measures on Polish spaces are
outer regular and tight: ��A	 = inf���O	 � A ⊂ O
O open
 = sup���K	 � K ⊂ A
K
compact
. I will need a criterion for the restriction of a submeasure � on X to
the Borel subsets of X to be a measure. If d is a complete separable metric on
X and for every pair of closed sets C0
C1 ⊂ X which are nonzero distance apart,
��C0 ∪C1	 = ��C0	+��C1	 then indeed � � B�X	 is a measure. In this situation I
will say that � is a metric measure.

A capacity on a Polish space X is a map � � P�X	 → �+ such that ��0	 = 0,
A ⊂ B → ��A	 ≤ ��B	, ��

⋃
n An	 = supn ��An	 whenever An � n ∈ � is a countable

inclusion-increasing sequence of subsets of the space X, and ��K	 = inf���O	 �
K ⊂ O
O open
 for compact sets K ⊂ X. Capacities are tight on analytic sets: if
A ⊂ X is analytic then ��A	 = sup���K	 � K ⊂ A � K compact
.

1.4.4 Determinacy

Infinitary games of all kinds, lengths, and complexities are a basic feature of this
book. The key problem always is whether one of the players must have a winning
strategy, an issue referred to as the determinacy of the game in question.

An integer game of length � is specified by the payoff set A ⊂ ��. In the game,
Players I and II alternate infinitely many times, each playing an integer in his turn.
Player I wins if the infinite sequence they obtained belongs to the set A, otherwise
Player II wins. Insignificant variations of this concept, which are nevertheless much



1.4 Background 9

more intuitive and easier to use, obtain when Players I and II can use moves from
some other countable set in place of �.

Fact 1.4.1. [49] Games with Borel payoff set are determined. [20] If large cardinals
exist then games with universally Baire payoff set are determined.

A significant variation occurs if the players are allowed to choose their moves
from a set larger than countable. Let U be an arbitrary set, and let A ⊂ U� be a set.
The associated game with payoff A of length � is played just as in the previous
paragraph. To state the determinacy theorems, consider U� as a topological space
with basic open neighborhoods of the form Ot = ��u ∈ U� � t ⊂ �u
 as t varies over
all finite sequences of elements of the set U .

Fact 1.4.2. [48] Games with Borel payoff set are determined. Suppose that large
cardinals exist, A ⊂ U� is a Borel set, f � A → X is a continuous function into a
Polish space, and B ⊂ X is a universally Baire set. The game with payoff set f−1B
is determined, and moreover there is a winning strategy which remains winning in
all set generic extensions.

Still another significant variation occurs if the moves of the two players come
from some fixed Polish space X and the game has � many rounds for some
countable ordinal �. Consider the space X� equipped with the standard Polish
product topology.

Fact 1.4.3. [55] (LC) Games with real entries, countable length, and universally
Baire payoff set are determined.

The games of longer than countable length are important and interesting, and in
this book they appear in Section 6.1. However, I will never be concerned with their
determinacy.

In numerous places I will refer to the Axiom of Determinacy (AD) and its
variations, such as AD+, and the natural models for these axioms.

Definition 1.4.4. The Axiom of Determinacy (AD) is the statement that integer
games with arbitrary payoff set are determined. AD+ is the statement: every set of
reals is �-Borel and games with ordinal entries, length �, and payoff sets which
are preimages of subsets of �� under continuous maps Ord� → �� are determined.

Happily, I will never have to delve into the subtleties of AD+. Let me just state
that it is an open question whether AD is in fact equivalent to AD+. In this book,
I will need the following two pieces of information about the axiom AD+:

Fact 1.4.5. Suppose that suitable large cardinals exist. Then L��	 �=AD+. If
� is a class of universally Baire sets closed under continuous preimages then
L��	��	 �=AD+.
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Fact 1.4.6. [28] (ZF+DC+AD+) If � ∈ � is a regular uncountable cardinal then
there is a set A ⊂ �� and a prewellordering ≤ on A of length � such that every
analytic subset of A meets fewer than � many classes.

Here as usual � is the supremum of lengths of prewellorderings of the real
numbers.

1.4.5 Forcing

The standard reference book for forcing terminology and basic facts is [29]. Suppose
that P
≤ is a partially ordered set, a poset for short. P is separative if for every
p
q ∈ P, if every r ≤ p is compatible with q then p ≤ q. The separative quotient
of P is the partially ordered set of E-equivalence classes on P where pEq if
every extension of p is compatible with q and vice versa, every extension of q is
compatible with p, with the ordering inherited from the poset P. The separative
quotient of P is separative. The posets considered in this book are generally not
separative, and no effort is wasted on considering their separative quotients instead.
Every separative poset P is isomorphic to a dense subset of a unique complete
Boolean algebra denoted by RO�P	.

There is a historically and mathematically important forcing model mentioned
in many places in the book, the choiceless Solovay model. Let me briefly out-
line its construction and basic features. Let � be an inaccessible cardinal and
G ⊂ Coll��
< �	 be a generic filter. Consider the submodel M ⊂ V �G� con-
sisting of those sets hereditarily definable in V �G� from real parameters and
parameters in the ground model. This is the definition of the choiceless Solovay
model.

Fact 1.4.7. The basic features of the Solovay model include

1. for every real number r ∈ M the model M is a choiceless Solovay model over
the model V �r�;

2. every set of reals is a wellordered union of length � = �M
1 of Borel sets.

The book contains several isolated references to the nonstationary tower forcing
Q� discovered by Woodin [79], recently exposed in [45]. If � is a Woodin cardinal
and G ⊂ Q� is a generic filter, then in V �G� there is an elementary embedding j �
V → M such that the model M is transitive, contains the same countable sequences
of ordinals as V �G�, and �M

1 = �.
On several occasions I will refer to the Gandy–Harrington forcing [47]. This is

the countable forcing of all nonempty lightface �1
1 subsets of some fixed Polish

space. As a countable forcing, this is similar to Cohen forcing; its worth derives
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from its particular representation. The forcing adds a single point in the Polish space
which belongs to all sets in the generic filter. Note that there are some atoms in the
forcing–the �1

1 singletons, but there are nonatomic parts too. I will also consider
the obvious relativized variations of the Gandy–Harrington forcing.

Throughout the book, I will use a trick commonplace in the literature. Let P
be a partial ordering, M a countable elementary submodel of some large structure
(the structure is typically H� for some large ordinal �, never to be exactly spelled
out) containing all the necessary information (the objects previously named in the
argument, including the poset P). An M-generic filter g ⊂ P is a filter on P ∩M
which intersects every dense subset of P which happens to be an element of the
model M . The expression M�g� describes the generic extension of the transitive
collapse of the model M by the collapsed image of the filter g. If ẋ is a P-name
for an element of �� then ẋ/g is the element of �� defined by ẋ/g�n	 = m ↔
∃p ∈ g p � ẋ�ň	 = m̌. The complexity of this operation is recorded in the following
fact.

Fact 1.4.8. Suppose that P is a forcing, ẋ a P-name for an element of ��, and M
is a countable elementary submodel of a large enough structure. The set A = �y ∈
�� � ∃g ⊂ M ∩P g is M-generic and y = ẋ/g
 is Borel.

Proof. Let Q ⊂ r�o��P	 be the complete Boolean algebra generated by the name
ẋ. Then A = �y ∈ �� � ∃g ⊂ M ∩ Q g is M-generic and y = ẋ/g
. Let N by the
transitive collapse of the model M , and consider the Polish space X of all N -generic
filters on ��Q	 with the usual topology. Then A is the image of the space X under
the continuous injection g �→ ẋ/g, and so A is Borel by a classical theorem of Lusin
[40], 15.1.

1.4.6 Absoluteness

The universally Baire sets (in particular, the analytic and coanalytic sets) have a
natural interpretation in forcing extensions. Suppose A ⊂ 2� is universally Baire,
as witnessed by trees T
S ⊂ �2 × Ord	<� which project to complements in all set
forcing extensions and A = proj�T�. If V �G�
G ⊂ P is an arbitrary set forcing
extension then AV �G�, the interpretation of the set A in the model V �G�, is defined
as �proj�T�	V �G�. A wellfoundedness argument shows that the interpretation does
not depend on the choice of the witness trees T
S. I will use this feature to
denote by Ȧ the P-name for the interpretation of the set A in the extension,
and when speaking about this extended interpretation, I will frequently omit the
superscript in the expression AV �G�. This usage is commonplace throughout the
book.
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The following facts connecting the validity of certain sentences in generic
extensions and the ground model are indispensable throughout the book.

Fact 1.4.9. (Analytic absoluteness) Suppose that M is a transitive model of set
theory, �x ∈ M ∩�� is a sequence of parameters, and � is a �1

1 formula with free
variables. Then ���x	 holds if and only if M �= ���x	 holds.

This is typically used in a situation where M is a generic extension of the transitive
collapse of some countable elementary submodel of a large enough structure.

Fact 1.4.10. (Shoenfield absoluteness) Suppose that M is a transitive model of set
theory containing all countable ordinals, �x ∈ M ∩�� is a sequence of parameters,
and � is a �1

2 formula with free variables. Then ���x	 holds if and only if M �= ���x	
holds.

This is typically used in a generic extension with M equal to the ground model.

Fact 1.4.11. [79] (Universally Baire absoluteness) (LC) Suppose that �A is a finite
sequence of universally Baire sets and M is a countable elementary submodel of
some large structure containing �A. Suppose that M�g� is a generic extension of the
transitive collapse of the model M and �x ∈ � is a finite sequence of parameters
in the model M�g�. Suppose that � is a formula quantifying over reals only. Then
���x
 �A	 holds if and only if M�g� �= ���x
 �A	 holds.

Fact 1.4.12. [45] (�2
1 absoluteness) (LC+CH) Suppose that �A is a finite sequence

of universally Baire sets and � is a formula of the form ∃B ⊂ �� � where �

quantifies only over real numbers. If ���A	 holds in some generic extension, then
���A	 holds.

1.4.7 Cardinal invariants of the continuum

The original motivation for the work contained in this book were the problems
associated with comparison of cardinals defined in various ways from Polish spaces.
I use [2] as a canonical reference.

Among the cardinal invariants that frequently occur in this book, let me quote
�= the least size of a maximal almost disjoint family of subsets of �, � = the least
size of modulo finite unbounded subset of ��, �= the size of the continuum, �= the
least size of modulo finite dominating subset of ��.

Given a �-ideal I on a Polish space X, I will consider the cardinals cov�I	 = the
least number of sets in the ideal I necessary to cover the whole space, non�I	 = the
smallest possible size of an I-positive set, add�I	 = the smallest size of a family
of I-small sets whose union is not I-small, and cof�I	 = the smallest possible size
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of a basis for the ideal I . It will be of advantage to consider starred variations
of these cardinals: cov∗�I	 = the least number of sets in the ideal I necessary to
cover some Borel I-positive set, non∗�I	 = the least cardinal such that every Borel
I-positive set contains an I-positive subset of this size, and similarly for add∗

and cof∗.





2
Basics

2.1 Forcing with ideals

2.1.1 The key definition

Definition 2.1.1. Suppose that X is a Polish space and I is a �-ideal on the space
X. The symbol PI denotes the partial order of I-positive Borel sets ordered by
inclusion.

I will always tacitly assume that the Polish space X is uncountable and the ideal
I contains all singletons. There are several cases in which this will not hold, and
they will be pointed out explicitly. Note that the poset PI depends only on the
membership of Borel sets in the ideal I , but it will frequently be of interest to look
at the membership of non-Borel sets in I .

It is clear that the partial order PI is not separative, and its separative quotient is
the �-algebra B�X� mod I . There is exactly one property all partial orders of this
kind share.

Proposition 2.1.2. The poset PI adds an element ẋgen of the Polish space X such
that for every Borel set B ⊂ X coded in the ground model, B ∈ G iff ẋgen ∈ B.

Proof. It is easy to see that the closed sets contained in the generic filter form a
collection closed under intersection which contains sets of arbitrarily small diameter.
A completeness argument shows that such a collection has a nonempty intersection
containing a single point, and ẋgen is a name for the single point in the intersection.
Another way to describe the generic point is to say that it is the unique element in
all basic open sets in the generic filter.

By induction on the complexity of the Borel set B prove that B � ẋgen ∈ Ḃ. For
closed sets this follows from the definition of the name ẋgen. Suppose that B =⋃

n Cn

and we already know that each set Cn forces ẋgen ∈ Ċn. Whenever D ⊂ B is an
I-positive Borel set then for some number n, D ∩ Cn is I-positive, D ∩ Cn ⊂ Cn

15
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and D ∩ Cn � ẋgen ∈ Ċn ⊂ Ḃ. By the genericity, B � ẋgen ∈ Ḃ. Now suppose that
B = ⋂

n Cn and we already know that each set Cn forces ẋgen ∈ Ċn. Then for every
number n, B � ẋgen ∈ Ċn since B ⊂ Cn. In other words, B � ẋgen ∈ ⋂

n Cn = Ḃ as
desired. Since the Borel sets in Polish spaces are obtained from closed sets by a
repeated application of countable union and intersection, the induction is complete.

Now it is not difficult to prove that C � ẋgen ∈ Ḃ iff C \ B ∈ I . On one hand,
if C \B ∈ I then every strengthening of the condition C is compatible with B and
the previous paragraph applies to show that C � ẋgen ∈ Ḃ. On the other hand, if
C \B � I , then C \B ⊂ C is a condition strengthening C which forces ẋgen ∈ Ċ \ Ḃ

by the previous paragraph again, in particular ẋgen � Ḃ.
The proposition follows.

Note the key role played by the closure of the ideal I under countable unions in
the argument. An important observation is that the forcings of the form PI can be
presented in various forms.

Definition 2.1.3. Suppose I is a �-ideal on a Polish space X. A different presen-
tation of the poset PI is a Borel bijection f � X → Y between X and another Polish
space Y , the �-ideal J on the space Y given by A ∈ J ↔ f−1A ∈ I , and the resulting
poset PJ .

If f� J constitute a different presentation of the forcing PI then the function f
extends to a bijection f̂ � PI → PJ given by f̂ �A� = f ′′A. Note that one-to-one Borel
images of Borel sets are Borel by a theorem of Lusin [40], 15.1, and therefore the
image of the function f̂ indeed consists of Borel sets.

While a given forcing PI can have many presentations, it is true that some
presentations are more natural than others. In fact, I will frequently derive some
forcing properties of the poset PI from the topological features of a certain natural
presentation. The forcing properties of PI then persist through different presentations
while the topological features may not. Note that there is a Borel bijection between
any two uncountable Polish spaces, and so the nature of the Polish space does not
restrict the kind of partial orders that can live on it. It may be occasionally difficult
to decide whether a given presentation is the simplest possible one or the one most
suitable to study.

2.1.2 Representation theorems

The study of the partial orders of the form PI does entail a certain restriction in
generality, but not too great a restriction. The following results show that many
forcings encountered in practice can be presented as PI for a suitable �-ideal I on
a Polish space.
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Fact 2.1.4. [68] Suppose that B is a �-complete countably �-generated Boolean
algebra. Then there is a �-ideal I on the Cantor space such that B is isomorphic
to B�2�� mod I .

Corollary 2.1.5. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion, such that for every tree T ∈ P and every node t ∈ T the
tree T � t is in P as well. Then P is in the forcing sense equivalent to a forcing of
the form PI .

Proof. If Ġ is a name for the generic filter write ẋgen for the generic real: ẋgen =
⋃⋂

Ġ ∈ 2�. Let P ⊂ B be the complete Boolean algebra generated by the poset P.
I will show that the �-algebra C ⊂ B �-generated by the elements bt = 	ť ⊂ ẋgen	 �
t ∈ 2<� is dense. By the previous fact the algebra C is isomorphic to some PI and
at the same time poset P is equivalent to it.

It is enough to show that for every tree T ∈ P it is the case that T = cT where
cT = ∧

n

∨
t∈2n∩T bt. It is clear that T ≤ cT . And if cT �≤ T then there would be a

tree S �⊂ T such that S ≤ cT and a node s ∈ S \T of length n ∈ �. Then S � s ∈ P
and clearly S � s � ẋgen � n � Ť , contradicting the assumption that S ≤ cT .

There is frequently a more direct way of deriving the �-ideal from the tree
forcing in question.

Proposition 2.1.6. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion such that for every tree T ∈ P and every node t ∈ T the
tree T � t is in P as well. Suppose moreover that P has the continuous reading of
names. Then the collection I = �A ⊂ 2� � A analytic and for no condition T ∈ P
it is the case that 	T
 ⊂ A� is a �-ideal and the forcing P is in the forcing sense
equivalent to PI .

Here the continuous reading of names is the statement that for every condition
T ∈ P and every name ḟ ∈ �� there is a condition S ⊂ P, natural numbers n0 ∈
n1 ∈ � � � and a function g �

⋃
m�S ∩ 2nm� → � such that for every number m and

every sequence t ∈ S ∩2nm it is the case that S � t � ḟ �m̌� = ǧ�ť�. This is a property
frequently found in practice; consult Section 3.1 for a topological restatement of it.

Proof. Suppose that A = ⋃
An � n ∈ � are analytic sets such that A contains all

branches of some tree T ∈ P. I will produce a tree S ⊂ T and a number n ∈ � such
that all branches of the tree S belong to the set An. This will prove the proposition.

Note that the forcing P adds a canonical generic point ẋgen ∈ 2<� which is a
branch of all trees in the generic filter. Use a Shoenfield absoluteness argument to
show that T � ẋgen ∈ Ȧ and therefore there is a condition T ′ ⊂ T and a number n

such that T ′ � ẋgen ∈ Ȧn.
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Let U ⊂ �2 ×��<� be a tree such that An = proj	U
. There is a name ḟ for an
element of the Baire space �� such that T ′ � �ẋgen� ḟ
 forms a branch through the
tree Ǔ . Use the continuous reading of names to find a tree S ⊂ T ′, natural numbers
n0 ∈ n1 ∈ � � � and a function g �

⋃
m�S ∩ 2nm� → � such that for every number m

and every node t ∈ S ∩ 2nm the condition S � t forces ḟ m̌� = ǧ�ť�. Then for every
branch b through the tree S it must be the case that b together with the function
m �→ g�b � nm� forms a branch through the tree U and therefore b ∈ An. I have just
proved that 	S
 ⊂ An as desired.

Partial orders for adding a real which do not consist of trees and the previous
proposition cannot be applied to them are fairly rare in the practice of definable
forcing. Nevertheless, many of them can be obtained through the methods of this
book. The following is a characterization theorem which does not depend on the
specific combinatorial form of the forcing.

Definition 2.1.7. A forcing P is a universally Baire real forcing if

1. its conditions are elements of some Polish space Y ;
2. there is a name ẋgen for an element of some Polish space X;
3. there is a universally Baire set A ⊂ X ×Y such that for every condition p ∈ P

P � p̌ ∈ Ġ ↔ �ẋgen� p̌
 ∈ Ȧ;
4. for every basic open set O ⊂ X there is a condition p ∈ P such that P � ẋgen ∈

Ȯ ↔ p̌ ∈ Ġ.

Proposition 2.1.8. [83] (LC) Every proper universally Baire real forcing is in the
forcing sense equivalent to one of the form PI .

Proof. I claim that I = �B ⊂ X � B universally Baire and P � ẋgen � Ḃ� is the
�-ideal with the required properties. It is clear that I is closed under countable
unions. Write ẏgen for the PI -name for its generic point in the space X, and let Ġ

be the PI -name for the set �p ∈ P̌ � �ẏgen� p̌
 ∈ Ȧ�. It will be enough to show that
PI � Ġ ⊂ P̌ is a V -generic filter; the proposition then follows by standard abstract
forcing considerations. Suppose that B ∈ PI is a condition, p�q ∈ P are conditions
such that B � p̌� q̌ ∈ Ġ and D ⊂ P is open dense. I must find a condition B′ ∈ PI

and a condition r ∈ P such that B′ ⊂ B, r ≤ p�q, r ∈ D, and B′ � ṙ ∈ Ġ.
Let M be a countable elementary submodel of a large enough structure, let Z be

the Polish space of all M-generic filters on P with the usual topology, let f � Z → X
be a map defined by f�g� = ẋgen/g. This map is continuous by (4) and injective by
(3) of the definition of universally Baire real forcing. Thus the range f ′′Z is Borel
by a classical theorem of Luzin [40], 15.1. Write C = B ∩ rng�f� and for every
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condition r ∈ P ∩M write Cr = C ∩f ′′Or and C̄r = C \f ′′Or , where Or is the open
set of all filters in the space Z containing the condition r. Now,

• C � I . To see this, note that as B � I , there must be a condition r ∈ P such that
r � ẋgen ∈ Ḃ. By elementarity, there must be such a condition in the model M .
Any M-master condition below r forces ẋgen ∈ Ċ, and so C � I as required.

• For every condition r ∈ P ∩ M , Cr � ř ∈ Ġ and C̄r � ř � Ġ if these sets are
I-positive. To see this, note ∀x ∈ Cr M	x
 	= �x� r
 ∈ A, by an absoluteness
argument ∀x ∈ Cr �x� r
 ∈ A, and by the universally Baire absoluteness this
statement will still be true in the PI extension, in particular Cr � ẏgen ∈ Ċr and
�ẏgen� ř
 ∈ Ȧ.

• C̄p� C̄q ∈ I and so Cp ∩Cq � I . This follows from the previous item.

• The sets Cr � r ∈ D∩M is a lower bound of p�q cover the I-positive set Cp ∩Cq,
therefore one of them is I-positive, and Cr = B′ ⊂ B is the required condition.

This completes the proof.

Example 2.1.9. Consider the Sacks forcing P of all perfect binary trees ordered
by inclusion. Corollary 2.1.5, Proposition 2.1.6 and Proposition 2.1.8 all can be
used to show that P = PI for some �-ideal I . None of this abstract reasoning can
replace the information obtained from the perfect set theorem: the �-ideal I is the
ideal of countable subsets of 2�.

2.1.3 Generalizations

There are several ways in which the previous ideas can be generalized, each of
them important and deserving a thorough discussion.

First, one can consider forcing with analytic (projective, universally Baire, etc.)
sets positive with respect to a given �-ideal I . For most of the forcings considered
in this book it will be the case that every I-positive universally Baire set has an
I-positive Borel subset, and so the poset PI is dense in all of these variations, and
under large cardinal assumptions it is dense in the poset �P�X� mod I�L��� – refer
to Section 3.9 for a thorough discussion. Nevertheless, I will have to enter situations
in which this property has not been verified yet, and then the following definition
and proposition will be important.

Definition 2.1.10. Suppose that I is a �-ideal on a Polish space X. The symbol
QI stands for the poset of I-positive analytic sets ordered by inclusion.
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Proposition 2.1.11. Suppose that the �-ideal I is generated by coanalytic sets.
There is a QI -name ẋgen for an element of the Polish space X such that an analytic
set belongs to the generic filter if and only if it contains the point ẋgen in the
extension.

Proof. I will handle the case of X = 2�, the other spaces being Borel bijective
images of 2�. As in the PI case, let ẋgen be the unique point in the intersection of
all basic open sets in the generic filter.

First note that any set A ∈ QI forces ẋgen ∈ Ȧ. To see this, let T ⊂ �2×��<� be
a tree such that A = proj	T
, let G ⊂ QI be a generic filter containing the condition
A and in the generic extension let S ⊂ �<� be the tree consisting of all nodes
t ∈ �<� such that proj	T � �ẋgen � 	t	� t

 ∈ Ġ. Clearly 0 ∈ S and it will be enough
to show that S contains no terminal nodes. Well, if t ∈ S is a node and B ⊂ A is
a condition forcing ť ∈ Ṡ then strengthening the condition B if necessary I may
assume that there is a binary sequence s such that B ⊂ proj	T � �s� t

. By the
�-additivity of the ideal I there must be a number n ∈ � and a bit b ∈ 2 such that
C = B∩proj	T � �s�b� t�n

 � I . Clearly, C � ť�ň ∈ Ṡ as required.

Second, if A�B ∈ QI are sets and A � ẋgen ∈ Ḃ then A∩B � I: if A∩B ∈ I then
let C ∈ I be a coanalytic set including it as a subset, and A\C ∈ QI is a condition
which forces the point ẋgen into itself by the previous paragraph, and by the analytic
absoluteness it forces ẋgen � B, contradicting the assumption. But now A∩B ∈ QI

is a common lower bound of A�B, forcing B ∈ Ġ.

It is remarkable that in all cases when I need to use the forcing QI it is only to
show that in fact PI ⊂ QI is dense. However, the statement that every I-positive
analytic set has an I-positive Borel subset seems to be interesting in its own right.
See Section 3.9 on this and similar dichotomies.

The second way to generalize the forcings of the form PI is to consider spaces
of the form Y � with an uncountable set Y and the standard tree topology instead of
Polish spaces X. For a sequence t ∈ Y <� let Ot be the basic open set determined
by t, Ot = �x ∈ Y � � t ⊂ x�.

Proposition 2.1.12. Suppose that Y is a set and I is a �-ideal on the space Y �

with the following closure property:

(*) if At � t ∈ Y <� are sets in the ideal with At ⊂ Ot, then
⋃

t At ∈ I .

There is a name ẋgen for an element of the space Y � such that in the generic
extension by the poset PI , a Borel set B ⊂ Y � belongs to the generic ultrafilter if
an only if ẋgen ∈ Ḃ.

Proof. Let ẋgen = ⋃
�t ∈ Y <� � Ot ∈ G� where G is the PI -generic filter. It is clear

that the sequences in the union are linearly ordered. Moreover if n ∈ � is a number
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and B ∈ PI is a condition the one of the sets B ∩ Ot � t ∈ Y n is I-positive by the
property (*) and forces the corresponding sequence into the union defining the
sequence ẋgen. Thus PI � ẋgen ∈ Y �.

Before the remainder of the proof note that similarly to Borel subsets of 2� the
Borel subsets of Y � have natural interpretations in every generic extension which
does not depend on the particular Borel definition of the set.

By induction on the complexity of the Borel set B ∈ PI I will show that B �
ẋgen ∈ Ḃ, where Ḃ denotes the interpretation of the Borel set B in the extension.
Suppose first that B is open. If C ⊂ B is any condition then by the property (*) there
must be a sequence t ∈ Y <� such that Ot ⊂ B and C ∩Ot � I . Clearly C ∩Ot ⊂ C
is a condition forcing ẋgen ∈ Ḃ and so B � ẋgen ∈ Ḃ. The remaining steps in the
induction are the same as in Proposition 2.1.2.

Now suppose that B�C ∈ PI are sets such that B � ẋgen ∈ Ċ. I must show that
B∩C � I; then B∩C is the required lower bound of the conditions B�C. Suppose
B ∩C ∈ I . Then B \C is a condition in PI which by the previous paragraph forces
ẋgen into B \C and outside of the set C, contradicting the choice of the set B.

Example 2.1.13. Namba forcing [54]. Let Y = �2 and let I be the ideal of sets
B ⊂ Y � such that there is a map f � Y <� → �2 such that B ⊂ Bf = �y ∈ Y � �
∃�n y�n� ∈ f�y � n��. It is not difficult to see that the ideal I has the closure
property (*) from the previous proposition. I will show that a Borel set B ⊂ Y �

is I-positive if and only if it contains all branches of some Namba tree, that is an
infinite tree T ⊂ Y <� such that all but finitely many of its nodes have ℵ2 many
immediate successors. This means that the Namba forcing is in a natural sense
isomorphic to a dense subset of the poset RI .

Let B ⊂ Y � be a Borel set, and consider the game G between Player I and II.
Player I produces a sequence of ordinals 
n ∈ �2 � n ∈ � and Player II in response
produces a sequence of ordinals �n ∈ �2 � n ∈ �. Moreover Player II must raise a
flag at some round m and for all n > m it must be the case that 
n ∈ �n. Player
II wins if his sequence of answers belongs to the Borel set B. The payoff set of
the game G is Borel and therefore determined by Fact 1.4.2. I will be finished if
I show that Player I has a winning strategy iff B ∈ I and Player II has a winning
strategy iff B contains all branches of some Namba tree.

Suppose first that Player I has a winning strategy � . For every sequence t ∈ Y <�
there are at most 	t	 many ways how the play could reach a position in which Player
I followed his strategy � and Player II produced the sequence t, depending on where
and if Player II decided to raise the flag. Let f�t� = maximum of all the possible
answers by the strategy � in that position. It is easy to see that B ⊂ Bf .

On the other hand, suppose that Player II has a winning strategy � , and let t be
some sequence for which there is a position in which Player II followed his strategy
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� , produced the sequence t and raised the flag at that point. It is easy to see that
then 	T
 ⊂ B for some Namba tree T with trunk t.

Another generalization is to consider spaces XY for a Polish space X and an
uncountable set Y with the standard product topology, a �-ideal I on it and a partial
order RI of I-positive Baire sets ordered by inclusion. Here the Baire sets are those
subsets of the space XY obtained from basic open sets by countable repetition of
countable unions, countable intersections, and complementation. The basic open
sets are those of the form ��x ∈ XY � �x�y� ∈ O� for some basic open set O ⊂ X
and an index y ∈ Y . Such partial orders are the results of the countable support
iterations or products or the tower technology of Section 5.5. Let me include the
basic property here, and defer the detailed treatment to that section.

Proposition 2.1.14. There is a RI -name �xgen for a function from Y to X such that a
Baire set A ⊂ XY belongs to the generic filter if and only if it contains the function
�xgen.

Still another generalization is to consider partial orders P�Y � mod I for a
suitable set Y and an ideal I on it. These partial orders lack the basic feature of the
previously considered cases: the canonical generic object as an element of some
ground model coded simple space. The case Y = � has been extensively studied
[15], [74], [87]. The case Y = �1 and I = the nonstationary ideal has been the subject
of the precipitousness and saturation considerations. The general case of a �-ideal
I has been studied by Gitik and Shelah [24], [25] who showed that the resulting
partial orders cannot be in the forcing sense equivalent to most of the forcings of
the form PJ , where J is a �-ideal on a Polish space.

2.1.4 Basic definability issues

This book deals with suitably definable �-ideals on Polish spaces, with very few
exceptions. The demands on definability vary depending on the large cardinal
axioms one is willing to use. This section spells out several definitions used
throughout the book.

In the presence of large cardinal axioms such as the existence of a supercompact
cardinal, the following definability restriction is used.

Definition 2.1.15. A �-ideal I on a Polish space X is universally Baire if for every
universally Baire set A ⊂ 2� ×X the set �y ∈ 2� � Ay ∈ I� is universally Baire.

Without large cardinals more sophisticated notions of definability and absoluteness
are needed.
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Definition 2.1.16. A �-ideal I on a Polish space X is ZFC-correct if it is defined
by a formula � with a possible real parameter r (so that I = �A ⊂ X � ��A� r��)
and every transitive model M of a large fragment of ZFC containing r is correct
about I on its analytic sets (so that if s ∈ M is a code for an analytic set As then
��As� r� ↔ M 	= ��As� r�).

Note that this definition speaks really about the formula defining the ideal rather
than the ideal itself. It turns out that nearly all definitions of �-ideals considered
in this book are ZFC-correct in this sense. This assertion is never completely
trivial though and its proof is surprisingly close to the determinacy dichotomy and
properness arguments used for other purposes.

Example 2.1.17. The ideals associated with Hausdorff submeasures as in Defini-
tion 4.4.1 are ZFC-correct. To see this, fix a Hausdorff submeasure � on a Polish
space X with the associated �-ideal I generated by sets of finite �-mass. Given
an analytic set A ⊂ X let C ⊂ X × �� be a closed set which projects to A, and
consider the integer game G�C� as in the proof of Theorem 4.4.5. Player I has a
winning strategy in the game G�C� if and only if A ∈ I . Now given a transitive
model M containing the set C, M 	= G�C� is determined. The winning strategy the
model M finds is still a winning strategy in V since the nonexistence of a successful
counterplay is a wellfoundedness statement. Thus the statement A ∈ I is absolute
between M and V .

A measure-theoretic counterpart of the above definition is the following.

Definition 2.1.18. A submeasure � on a Polish space X is ZFC-correct if it is
defined by a formula � with a possible real parameter r (so that ��A� < q ↔
��A�q� r� for every set A ⊂ X) and every transitive model M of a large fragment
of ZFC evaluates �-mass correctly (so that if s ∈ M is a code for an analytic set
As then ��As� r� q� ↔ M 	= ��As� r� q� for every rational number q).

Example 2.1.19. Every pavement submeasure defined from a countable set of Borel
pavers is ZFC-correct. Let � be the pavement submeasure on a Polish space X, let
A ⊂ X be an analytic set, let C ⊂ X ×�� be a closed set projecting to A, and let
q be a rational number. ��A� < q if and only if there is a rational number q′ < q
such that Player I has a winning strategy in the game G�C�q′� as in the proof of
Theorem 4.5.6. As in the previous arguments, whenever M is a transitive model
containing the set C then it finds a winning strategy for one of the players in the
games G�C�q′� for all rationals q′, and these winning strategies of the model M
stay winning in V . Thus M evaluates the �-mass of the set A correctly.

Example 2.1.20. Every outer regular strongly subadditive capacity is ZFC-correct.
It is possible to supply the same argument as above using the integer game from
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Theorem 4.3.6, however here I can use an argument which at least on the surface
has no game theoretic content. Let � be a strongly subadditive capacity on a Polish
space X, determined by its values on the sets from some fixed countable basis
O closed under finite unions. The key fact: Fact 4.3.5, showing that the capacity
� is simply derivable from its values on basic open sets. Now let A ⊂ X be an
analytic set, a projection of a closed subset C ⊂ X × ��. Let M be a transitive
model containing the code for the set C, and let q > 0 be a rational number. By
the definitions, if M 	= ��A� < q then M 	= ∃O ⊂ X O is open, ��O� < q and
A ⊂ O, this set O maintains these properties in V by a wellfoundedness argument,
and therefore even in V , ��A� < q. What happens though if M 	= ��A� > q? The
key fact mentioned above implies that M 	= � is a capacity, and by the Choquet’s
capacitability theorem M 	= ∃K ⊂ X ×�� K compact, K ⊂ C and ��proj�K�� > q.
Now the set K maintains these properties in V by a wellfoundedness argument.
Note that p�K� ⊂ X is a compact set, and therefore its �-mass is the infimum of
��O� � O ∈ O�K ⊂ O, a computation which works the same in the model M as in
V by a wellfoundedness argument again.

The ZFC-correctness is a useful tool in a number of situations such as in the
statement of ZFC-provable preservation theorems. Nevertheless, I will need a more
sophisticated and more restrictive notion as well. Unlike the ZFC-correctness, it
can be stated without a reference to models of ZFC and it has been studied in
descriptive set theory for at least a century.

Definition 2.1.21. A �-ideal I on a Polish space X is �1
1 on �

1
1 if for every analytic

set A ⊂ 2� ×X the set �y ∈ 2� � Ay ∈ I� is coanalytic.

Unlike the ZFC-correctness which places no significant restrictions on the forcing
properties of the poset PI , the �1

1 on �
1
1 condition does have important forcing

consequences – its associated forcing can never add dominating reals. This notion
is studied in detail in Section 3.8. Here, let me just include two connections with
ZFC-correctness.

Proposition 2.1.22. If a �-ideal I on a Polish space X is provably �1
1 on �

1
1 then

it has a ZFC-correct definition.

Proof. Let A ⊂ 2� ×X be a universal analytic set and C ⊂ 2� be a coanalytic set
such that ZFC proves ∀y ∈ 2� Ay ∈ I ↔ y ∈ C. Every transitive model M evaluates
the membership of a point y ∈ 2� in the set C correctly by a wellfoundedness
argument. Thus M evaluates the membership in the ideal I correctly as well.

Proposition 2.1.23. Every ZFC-correct ideal is �1
2 on �

1
1. Every ZFC-correct

submeasure is �1
2 on �

1
1.
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Proof. Let I be a ZFC-correct �-ideal on a Polish space X and let A ⊂ 2� ×X be
an analytic set. I must show that the set �y ∈ 2� � Ay ∈ I� is �1

2 on �
1
1. To see this

note that Ay ∈ I ↔for every countable model M containing the real y, either M is
illfounded or M 	= Ay ∈ I , and Ay � I ↔for every countable model M containing
the real y, either M is illfounded or M 	= Ay � I .

Let � be a ZFC-correct submeasure on a Polish space X, let � ∈ �+ be a
real number, and let A ⊂ 2� × X be an analytic set. I must show that the set
�y ∈ 2� � ��Ay� < �� is �1

2 on �
1
1. This is proved in the same way as in the previous

paragraph.

2.2 Properness

The following definition has been central to the development of the forcing theory
in the last several decades.

Definition 2.2.1. [64] A forcing notion P is proper if for every set X and every
stationary set S ⊂ 	X
ℵ0 it is the case that P � Š is stationary. Another equivalent
restatement is the following. The forcing P is proper if for every large enough
cardinal �, every countable elementary submodel M ≺ H� containing P and every
condition p ∈ P ∩M there is an M-master condition q ≤ p; that is, a condition q
forcing Ġ∩ M̌ meets every dense subset of P which is an element of M , where Ġ
is the name for the P-generic filter.

It turns out that in the context of definable forcing this is exactly the right notion.
In its presence there is a rich structure and extensive theory, in its absence there is
collapse. I will first restate it in the terms of �-ideals:

Proposition 2.2.2. Suppose that I is a �-ideal on a Polish space X. The following
are equivalent:

1. the forcing PI is proper;
2. for every countable elementary submodel M of a large enough structure and

every condition B ∈ M ∩PI the set C = �x ∈ B � x is M-generic� is not in the
ideal I .

Here, a point x ∈ X is M-generic if the collection �A ∈ PI ∩M � x ∈ A� is a filter
on PI ∩M which meets all open dense subsets of the poset PI that are elements of
the model M .

Proof. This is just a restatement of the definitions. First note that the set C is Borel:
C = B ∩⋂

�
⋃

�D ∩M� � D ∈ M is an open dense subset of the poset PI�. If C ∈ I


