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GRAVITATIONAL COLLAPSE AND SPACETIME
SINGULARITIES

Physical phenomena in astrophysics and cosmology involve gravitational collapse
in a fundamental way. The final fate of a massive star when it collapses under
its own gravity at the end of its life cycle is one of the most important ques-
tions in gravitation theory and relativistic astrophysics, and is the foundation of
blackhole physics.

General relativity predicts that continual gravitational collapse gives rise to
a spacetime singularity, which may be hidden inside an event horizon or visi-
ble to external observers. This book investigates these issues, and shows how
such visible ultra-dense regions arise naturally and generically as an outcome
of dynamical gravitational collapse. Quantum gravity may take over in these
regimes to resolve the classical spacetime singularity. The quantum effects from
a visible extreme gravity region could then propagate to external observers,
providing a useful laboratory for quantum gravity, and implying interesting
consequences for ultra-high energy astrophysical phenomena in the universe.

This volume will be of interest to graduate students and academic researchers
in gravitation physics and fundamental physics, as well as in astrophysics and
cosmology. It includes a review of recent research into gravitational collapse, and
several examples of collapse models are worked out in detail.

Pankaj S. Joshi conducts research at the Tata Institute of Fundamental
Research, Mumbai. His research interests include gravitation physics, spacetime
structure and quantum gravity, and cosmology and relativistic astrophysics. He
has published many research papers and books in these areas, and has held vis-
iting faculty positions in several countries, lecturing and doing research on these
topics.

Professor Joshi has an excellent international reputation for his work in the
field of gravitation theory. His extensive analysis of general relativistic gravita-
tional collapse has been widely recognized as providing significant insights into
the final end states of a continual collapse, formation of visible singularities, and
nature of cosmic censorship and blackholes.
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Preface

The physical phenomena in astrophysics and cosmology involve gravitational
collapse in a fundamental way. The final fate of a massive star, when it
collapses under its own gravity at the end of its life cycle, is one of the
most important questions in gravitation theory and relativistic astrophysics
today. The applications and basic theory of blackholes vigorously developed
over the past decades crucially depend on this outcome.

A sufficiently massive star many times the size of the Sun would undergo
a continual gravitational collapse on exhausting its nuclear fuel, without
achieving an equilibrium state such as a neutron star or white dwarf. The
singularity theorems in general relativity then predict that the collapse gives
rise to a spacetime singularity, either hidden within an event horizon of grav-
ity or visible to the external universe. The densities and spacetime curvatures
get arbitrarily high and diverge at these ultra-strong gravity regions. Their
visibility to outside observers is determined by the causal structure within
the dynamically developing collapsing cloud, as governed by the Einstein
field equations. When the internal dynamics of the collapse delays the hori-
zon formation, these become visible, and may communicate physical effects
to the external universe. These issues are investigated here, and the treat-
ment is aimed at showing how such visible ultra-dense regions arise naturally
and generically as the outcome of a dynamical gravitational collapse in Ein-
stein gravity. While it predicts the existence of visible singularities; classical
general relativity may no longer hold in these very late stages of the col-
lapse, and quantum gravity may take over to resolve the classical spacetime
singularity. The quantum effects from a visible, the extreme gravity region
could then propagate to outside observers to provide a useful laboratory for
quantum gravity. Blackholes need not form in such a scenario and there may
be interesting consequences for ultra-high energy astrophysical phenomena
in the universe.

The general theory of relativity, which has strong experimental support, is
used here, and its basics and useful features of spacetimes are reviewed. The
necessary tools are developed as needed, but a prior familiarity with general
relativity would help. It is a pleasure to thank many friends and colleagues

ix



x Preface

for numerous discussions and work as cited, on the themes described here.
Special thanks are due to R. Goswami and I. H. Dwivedi for their ideas and
help and for our studies together. A. Mahajan and S. Khedekar helped with
the manuscript.



1
Introduction

Gravitation theory and relativistic astrophysics have gone through exten-
sive developments in recent decades, following the discovery of quasars in
the 1960s, and other very high energy phenomena in the universe such as
gamma ray bursts. Compact objects such as neutron stars and pulsars also
display intriguing physical properties, where the effects of strong gravity
fields are seen to play a fundamental role. When the masses and energy
densities involved in the physical phenomena are sufficiently high, as is the
case in the situations above, it has become increasingly clear that the strong
gravitational fields, as governed by the general theory of relativity, play
an important and much more dominant role. This gravitational dynamics
must be taken into account for any meaningful description of these observed
ultra-high energy objects.

A similar situation involving very strong gravitational fields, and which
may be connected to some of the above phenomena, is that of a massive star
undergoing a continual gravitational collapse at the end of its life cycle. This
happens when the star has exhausted its nuclear fuel that provided a balance
against the internal pull of gravity. This phenomenon, dominated essentially
by the force of gravity, is fundamental to basic theory and astrophysical appli-
cations in blackhole physics that have received increasing attention in past
decades, and also in cosmology. In the past two decades, there have been
extensive investigations of gravitational collapse models within the frame-
work of Einstein’s theory of gravity, and these have provided useful insights
into the final fate of a massive star.

This book is about the phenomena of gravitational collapse. Such a col-
lapse of massive matter clouds is at the heart of the physics and astrophysics
of happenings, some of which are mentioned above, where extremely high
mass and energy densities are involved. For example, several models to
explain gamma ray bursts are in terms of a collapsar, where the gravitational
collapse of a single massive star is invoked to understand such a burst of
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2 Introduction

ultra-high energy. Apart from blackhole physics, gravitational collapse is the
key physical process that is fundamental to the formation of a star itself
from interstellar clouds or nebulae, in the formation of galaxies and clusters
of galaxies, and in structure formation in the universe as a whole. In general,
gravitational collapse of a massive matter cloud would play an important
role in the physical processes and a variety of happenings on a cosmic scale
that involve the force of gravity in an important manner.

A continual gravitational collapse for a massive star would be the situa-
tion when the entire matter cloud collapses and shrinks under the force of its
own gravity. Therefore, gravity overtakes and dominates the other three fun-
damental forces of nature, in particular the weak and strong nuclear forces,
which generically provide the outward pressure in a star to balance it against
the inward pull of gravity of the cloud, in addition to the usual thermal pres-
sures. For massive stars, typically such a collapse takes place when the star
has exhausted its nuclear fuel, and when there is no supporting force left
against the force of its own gravity, which is ever present.

The final outcome of such a collapse depends on the initial mass of the star.
A star with a mass lower than about two to three solar masses will stabilize
as a white dwarf or neutron star after losing some of its original mass. In
these cases, after an initial collapse of the cloud when the star has exhausted
its nuclear fuel, the star again stabilizes at a much smaller radius due to
internal balancing forces provided by either electron or neutron degeneracy
pressures. For heavier stars that are several solar masses, they may again set-
tle to a neutron star final state if the star could throw away the excess mass
in the process of its evolution. However, for more massive stars, none of the
above internal pressures can achieve the required balance, and a continual
gravitational collapse becomes inevitable. The collapse then must proceed
towards creating a spacetime singularity, as predicted by the singularity the-
orems of general relativity theory, which may be hidden within a blackhole
or which may be visible to external observers. A spacetime singularity is a
region where the physical parameters such as mass, energy densities, and
the spacetime curvatures go to their extreme values and blow up, so that the
usual laws of physics break down at such a singularity.

In such extreme regions, however, where the length and time scales are
comparable to the Planck length and time, quantum effects become impor-
tant. These must necessarily be taken into account and combined with the
effects of gravity. At present, we have no mechanism or complete theory to
deal with such quantum effects and the intense force of gravity together in
a unified manner, namely a quantum gravity theory. However, it is widely
believed that a quantum gravity theory, dealing with all forces of nature in
a unified way, would take over from purely classical general relativity when
the collapse reaches extreme matter densities and spacetime curvatures in its
very advanced later stages. In these stages of collapse, it is very likely that
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when the quantum effects are incorporated together with the gravitational
force, the classical spacetime singularity may be resolved, and may no longer
exist in the full theory.

Gravitational collapse is thus a key phenomena for many astrophysical
processes for stars or other larger systems in the universe. In particular, the
very advanced stages of collapse of a massive star are occurrences in nature
where the effects of both gravity and the quantum would be combined. Even
if the final spacetime singularity, as predicted by classical general relativity,
may be resolved, possibly through quantum gravity effects, such a collapse
will necessarily give rise to spacetime regions of ultra-high mass densities and
curvatures, where the physical effects will be extreme.

The important physical issue would then be whether such extreme gravity
regions formed in the gravitational collapse of a massive star are visible to
external observers in the universe. An affirmative answer here would mean
that the physical phenomena of the gravitational collapse of a massive star
could provide a very good laboratory to study quantum gravity effects in the
cosmos, and this may help towards generating clues for an, as yet, unknown
theory of quantum gravity. A laboratory similar to that provided by the
early universe is then created in the later stages of the continual collapse of a
massive star. An additional feature would be that, whereas the early universe
was a unique event that happened only once, the collapse phenomena would
continue to occur whenever a sufficiently massive star in the universe died
on exhausting its nuclear fuel. If such ultra-strong gravity regions become
visible to external observers in the spacetime, an opportunity to observe the
quantum gravity effects in the universe is provided.

The answer to this is determined by the causal structure of spacetime
in the vicinity of a spacetime singularity. This is actually decided by the
dynamics of the gravitational collapse of the matter cloud, as it evolves from
a regular initial data, defined on an initial surface, from which the collapse
develops. This dynamical evolution is governed by the Einstein equations.
In other words, it is only the study of the collapse dynamics of the matter
clouds that would decide the visibility or otherwise of the ultra-strong gravity
regions. If, as the collapse evolves, the event horizons of gravity develop much
before the spacetime singularity forms, then these extreme gravity regions are
hidden away from the external universe, and a blackhole forms as the collapse
outcome. On the other hand, if such horizons are delayed or fail to develop
during collapse, as governed by the internal dynamics of the collapsing cloud,
then the scenario where the extreme gravity regions are visible to external
observers occurs, and a visible naked singularity forms.

The importance of gravitational collapse processes in relativistic astro-
physics was realized when Datt (1938) and Oppenheimer and Snyder (1939)
used general relativity to study the dynamical collapse of a homogeneous
spherical dust cloud under its own gravity. This model gave rise to the
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concept of a blackhole. The term blackhole itself was popularized only later
in the 1960s. The above work established that, under idealized conditions, a
collapsing cloud of matter with zero pressure will necessarily give rise to a
blackhole. Such a blackhole is a region of spacetime from which no light or
matter can escape away to faraway external observers, and which necessarily
covers the spacetime singularity or the regions of extreme physical condi-
tions from the external universe. Specifically, in order to create a blackhole
as the final state of gravitational collapse of the star, an event horizon must
develop in the spacetime earlier than the time when the final spacetime sin-
gularity forms. Such an event horizon is a one-way membrane such that light
or matter can fall into the region covered by it, but cannot escape away. If
the event horizon developed prior to the formation of the singularity, neither
the singularity nor the collapsing matter that has fallen within it would be
observable to an external observer, and a blackhole is said to have formed
as the final endstate of the collapsing star. All the matter of the star is then
supposed to be crushed into the infinite density singularity at the center of
the blackhole.

How early and when the horizon will actually develop in a realistic col-
lapse is determined by the dynamics of the collapsing matter, the physical
conditions within the star, and the dynamical evolution of the cloud as gov-
erned by the Einstein equations of gravity. Investigations in high energy
astrophysics have already used the concept of a blackhole quite extensively.
However, the actual understanding of the phenomena of gravitational col-
lapse, and the conditions under which it can lead to the blackhole formation,
or otherwise, within the framework of general relativity has progressed only
relatively recently.

Further to the early studies mentioned above, it was generally assumed
that the final endstate of collapse of a massive star will be a blackhole only.
However, several important questions remained unanswered. For example,
what would be the effects of non-zero pressures, which would be certainly
important in the later stages of collapse, towards determining the collapse
endstate, or, how will an inhomogeneous cloud collapse, say with a physically
realistic density profile that is higher at the center and decreases slowly as
one moves away from the center of the star? Early work on gravitational
collapse focused only on simple models with idealized conditions, assuming
a totally homogeneous density within the star, zero pressures, and so on,
which would not be physically realistic. For example, a realistic star must
have non-zero internal pressures, and its density would be typically higher
at the center, as compared with its outer layers.

These physical issues and important questions have been crucial to the
foundations of blackhole physics. But, not much attention could be paid to
them, mainly due to the complexity of the equations of general relativity.
This is because, in general, the Einstein equations are non-linear, second
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order partial differential equations that are quite difficult to solve. Therefore,
the only model available until the late 1960s for the dynamical gravitational
collapse of a massive matter cloud was that of a homogeneous, pressureless
spherical cloud. In addition, not much attention was paid to these issues
by the general relativists of the 1940s and 50s, who, by and large, did not
consider such ultra-high energy phenomena to be physically realistic or of
much astrophysical significance.

As indicated above, it was only the discovery in the 1960s of very
high energy astrophysical phenomena that generated a keen theoretical inter-
est in the continual gravitational collapse processes. However, mathematical
difficulties and the complexity of gravity theory did not allow much progress.
Then, the cosmic censorship hypothesis was introduced by Penrose (1969),
which conjectured that the outcome of any generic gravitational collapse of
a massive star must lead necessarily only to a blackhole formation as the
collapse final state. This hypothesis thus suggested that the extreme and
ultra-strong gravity regions, or the spacetime singularity, must always nec-
essarily be covered within an event horizon of gravity, and that the external
observers should never be able to see the singularity. This assumption means
that whatever the physical conditions and forces within the massive stars
may be (for example, they may be inhomogeneous in their density distribu-
tion, the pressures may be non-zero, or they may not be totally spherical
and so on), the outcome of their continual collapse must give rise to a black-
hole only. In other words, this amounts to an assumption of the nature of
the allowed dynamical evolutions of the collapsing clouds, namely that the
Einstein equations must permit only those evolutions that create the event
horizon necessarily much prior to the formation of the final singularity or
the ultra-strong gravity regions. Then, the singularity would be necessarily
hidden within the horizon, which is a one-way surface, not allowing it to
be seen by any external observers.

The cosmic censorship conjecture thus implies that no ultra-strong grav-
ity regions forming in continual collapse will be visible to outside observers.
That is, no naked singularity will develop in the collapse, and the event hori-
zon developing in the dynamical collapse will always manage to cover these.
Hence, the outcome of any gravitational collapse is necessarily a blackhole,
and external observers can never see any ultra-strong gravity regions forming
in the collapse, as indicated in Fig. 1.1.

As yet, a specific mathematical formulation for cosmic censorship that has
been properly defined does not exist. Then, a proof of the same would have to
be obtained within the framework of Einstein’s gravity theory. The cosmic
censorship assumption nevertheless provided a major impetus to develop-
ments in blackhole physics, and two parallel streams of developments took
place. On one hand, the theoretical properties of blackholes were devel-
oped extensively, using cosmic censorship as the basic assumption, thus
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Spacetime singularity

Collapsing matter cloud

Initial surface

Event horizon

Fig. 1.1 The final outcome of a generic gravitational collapse must be a
blackhole according to the cosmic censorship conjecture. Then, the eventual
spacetime singularity of the collapse has to be preceded by the event horizon of
gravity.

creating the laws of blackhole thermodynamics and related aspects (see for
example, Hawking and Ellis, 1973). On the other hand, efforts to estab-
lish the censorship hypothesis continued, as it was clear all along that this
assumption was absolutely fundamental to the theory and applications in
blackhole physics, and so it needed a rigorous formulation and proof within
the framework of general relativity. It is widely recognized that a proof
of the censorship conjecture would place blackhole physics and its applica-
tions on a sound footing, whereas its failure would actually throw blackhole
dynamics and related applications into serious doubt. Hence, the validity,
or otherwise, of the cosmic censorship conjecture has remained an issue of
crucial importance for all these years. The efforts to prove it have not suc-
ceeded for the past three decades, and there are even serious difficulties
in formulating any rigorous mathematical version or a statement for this
conjecture.

The theme that the only way out of this impasse is to study rigorously
the dynamical gravitational collapse phenomena within the framework of
Einstein’s theory of gravity is proposed and developed here. This has been
investigated extensively in the last couple of decades, and some of the
issues that have been addressed include: what is the outcome of a continual
gravitational collapse under physically realistic conditions, as governed by
the Einstein equations? Will it be necessarily a blackhole as hypothesized
by the censorship conjecture, or would it give rise to a naked singularity,
where ultra-strong gravity regions forming in collapse are visible to external
observers? In the latter case, would it be possible to observe the quantum
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gravity effects taking place in these visible ultra-strong gravity regions? Some
of these issues are discussed here.

A detailed study of the collapse phenomena may be the only way towards
any possible physically realistic formulation of censorship, if one exists. Such
a study and investigation of collapse could also lead to novel physical insights
and possibilities emerging out of the intricacies of the gravitational force. It
would appear that beyond the studies so far, mainly of static and stationary
solutions modeling blackholes, investigating dynamical evolutions as permit-
ted by the Einstein equations would offer new insights into the nature of
gravity. This is an arena that has been explored less, and which needs to be
investigated carefully in detail.

To this end, gravitational collapse scenarios with non-zero pressures and
more realistic equations of state for classes of general matter fields are con-
sidered here. A general formalism is developed to treat the spherical collapse
from regular initial data. These considerations also point to why it has not
been possible so far to make any definite progress on the censorship conjec-
ture. It is seen that it is first necessary to acquire a deeper and more extensive
understanding of the dynamical evolutions and gravitational collapse pro-
cesses in general relativity. Recent work on studying and understanding
the final fate of dynamical gravitational collapse in gravitation theory is
discussed. General matter fields are considered so as to include important
physical features in the collapse, such as inhomogeneities in matter distri-
bution, non-vanishing pressures, different forms for the equations of state
of the collapsing matter, and other such aspects. It is seen that in spherical
gravitational collapse, given the matter initial data on an initial surface from
which the collapse develops, there are the rest of the free initial data such
as the velocities of the collapsing shells, and the classes of the dynamical
evolutions as permitted by the Einstein equations, which lead to the final
state that is either a blackhole, or a naked singularity that is a visible ultra-
strong density and curvature region forming in the collapse not covered by
an event horizon. The nature of the outcome depends on the regular initial
data from which the collapse evolves, and the allowed dynamical evolutions
in the spacetime, as permitted by the Einstein equations.

After the basics of the structure and properties of spacetimes and the
essentials of relativity theory are summarized in Chapter 2, the above issues
are discussed in Chapter 3. Collapsing dust clouds, which generalize and
include as a special case the Oppenheimer–Snyder dust collapse models, and
which give an idea of the possible outcomes of gravitational collapse in terms
of a blackhole or a naked singularity, are also discussed in Chapter 3. The
Oppenheimer–Snyder dust collapse scenario is included here as a special case
when the cloud is homogeneous. It is seen, however, that a more realistic den-
sity profile with a density higher at the center and decreasing as one moves
away from center, gives rise to a naked singularity as the collapse endstate
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Outgoing null geodesics

Spacetime singularity

Event horizon

Collapsing matter cloud

Initial surface

Fig. 1.2 If the collapsing cloud is inhomogeneous, with a density higher at the
center, the trapped surface formation and event horizon in the collapse are
delayed to give rise to a naked singularity, where the ultra-strong gravity regions
are visible to outside observers.

(see Fig. 1.2). In general, it is seen that the collapse outcome depends on
the nature of the initial matter profiles and the evolutions allowed by the
Einstein equations. The structure of this spacetime in the homogeneous den-
sity case gives rise to the basic notion and concept of a blackhole. The dust
collapse picture provides a concrete background to the possible final states
of a continual gravitational collapse.

Chapter 4 then studies several useful aspects of spacetime structure,
singularities and collapse, as related to the cosmic censorship hypothesis pos-
sibilities and the structure of naked singularities developing in gravitational
collapse. It is pointed out that while the cosmic censorship does not hold in
general relativity in the obvious sense of ruling out naked singularities from
all physically realistic gravitational collapse models, any definite formulation
of this hypothesis will depend on a detailed analysis of stability and gener-
icity aspects related to collapse scenarios, and the naked singularities and
blackhole phases developing as final outcomes of the gravitational collapse.
Several possibilities towards any plausible formulation are discussed.

In light of the results available so far and the emerging scenario, the key
physical issue is the possible final state of a massive star. The basic problem
to be addressed is: what will the final outcome of the gravitational collapse
of a massive star be when it collapses freely at the end of its life cycle on
exhausting its nuclear fuel under the force of its own gravity? Under realistic
astrophysical conditions, will it turn into a blackhole, or does it terminate as
a naked singularity? Are there any observable consequences in the latter case?
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These physical questions underlie many considerations here on gravitational
collapse.

While theoretical properties of blackholes have been studied rather exten-
sively, the naked singularity solutions in general relativity, arising out of
dynamical collapse studies are relatively less understood as yet. It is some-
times asked how a naked singularity could arise in the collapse, allowing
the light to escape from the extreme gravity regions even when the gravity
fields are so strong. Some of these aspects are discussed in Chapter 5. Also
explored and pointed out here are the physical features, such as the role of
inhomogeneities and spacetime shear, that lead to a naked singularity rather
than a blackhole as the collapse endstate. The physics that possibly causes
a naked singularity in the collapse, rather than a blackhole, is examined.
While it may be stated that a good understanding now exists on spherical
collapse in general for a generic matter field, non-spherical collapse remains
major uncharted territory. This is also closely related to the stability and
genericity aspects of collapse outcomes, and these issues are discussed here.

The information loss paradox and related issues have highlighted some of
the important problems with the blackhole paradigm, which also include the
existence of an infinite density spacetime singularity at the center of a black-
hole, leading to an instability even at the classical level, and uncertainties
of the correctness, or otherwise, of the cosmic censorship conjecture. Under
such a situation, a possibility worth considering could be the avoidance or
delay of trapped surfaces formation as the star evolves, collapsing under grav-
ity. This is the case when a collapse evolution to a naked singularity takes
place, where the trapped surfaces do not form early enough or are avoided
in the spacetime. In that case, in the late stages of the collapse, the star
could radiate away most of its mass. This could then offer a way out of the
blackhole conundrums, whilst also resolving the singularity problem.

As such, the outcomes of a continual collapse, namely the blackhole and
naked singularity, are very different from each other in nature. The naked
singularity, which is more like an event than an object in many cases, could
have quite different physical properties compared with a blackhole. There-
fore, the implications of the visibility of the ultra-high density and curvature
regions to a faraway observer in the spacetime need to be investigated. Such
a scenario offers an intriguing possibility that the quantum gravity effects
may become observable during the later final stages of the collapse. This is
because the ultra-strong gravity regions where quantum gravity effects take
place are now no longer hidden under the event horizon, but are visible and
can, in principle, communicate with external observers. This may offer inter-
esting connections and pointers towards observational effects of quantum
gravity arising from gravitational collapse. These possibilities are discussed
in Chapter 5, where some implications of loop quantum gravity formalism
from such a perspective are indicated.



2
The spacetime manifold

Here, the essential fundamentals of general relativity and related mathemat-
ical aspects are described. For further details, see texts such as Weinberg
(1972), Misner, Thorne, and Wheeler (1973), and Wald (1984). Other neces-
sary techniques are developed in later chapters as necessary. While defining
vectors, tensors, and other quantities, we use both a local and a coordinate
free global approach, and indicate how to make a transition from one to the
other representation, which is useful in several situations.

In Section 2.1 the manifold model for spacetime is introduced. Basic defi-
nitions of a differentiable manifold, and various topological and orientability
properties are discussed. The metric tensor and related aspects are con-
sidered in Section 2.2, and the connection on a spacetime is considered in
Section 2.3. Timelike and null geodesics play a basic role in the considerations
here on gravitational collapse. These are a special set of non-spacelike trajec-
tories that represent the motion of freely falling material particles and light
rays, and they clarify many properties of a spacetime. These are discussed
in Section 2.4. The spacetime curvature is considered in Section 2.5, and
the Einstein equations governing the dynamics of matter in the spacetime
are discussed in Section 2.6. Many exact solutions have been found to the
Einstein equations so far; however, the Schwarzschild and Vaidya geometries
are particularly relevant to gravitational collapse scenarios, and Section 2.7
discusses these.

2.1 The manifold model

The universe is modeled as a four-dimensional spacetime M in general rel-
ativity, together with an indefinite Lorentzian metric tensor g, which has
the signature (−,+,+,+). Conditions ensuring physical reasonability to
the spacetime model are generally assumed. These include the space and

10
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time orientability, and necessary topological regularity conditions such as
the Hausdorffness and connectedness. Here, this basic model of the space-
time universe that underlies Einstein’s theory of gravitation is specified. The
manifold model for the universe naturally incorporates the observed continu-
ity of space and time at the classical level, and the basic principle of general
relativity where the locally flat regions combine to produce a globally curved
continuum. This implies that a smooth change of coordinates is possible
when a transition is made from one coordinate patch to another.

2.1.1 Differentiable manifolds

The n-dimensional Euclidian space Rn is a collection of all n-tuples
(x1, . . . , xn) such that −∞ < xi < ∞, i = 1, . . . , n, and which has the
natural Euclidian metric. An open ball of radius r around any point x in
Rn is the set of all points y such that | x − y |< r, where the modulus
denotes the positive definite distance as defined by the Euclidian metric on
Rn. The open sets in Rn are sets which can be expressed as a union of such
open balls.

Basically, an n-dimensional differentiable manifold is a set that is locally
similar to an open set of Rn. Therefore, locally Euclidian patches are glued
together smoothly to obtain a space which need not be Euclidian globally.

An n-dimensional, C∞, real differentiable manifold is a set M, together
with a collection {uα, φα}, called an atlas for M . Here, the uα values are
subsets of M and the φα values are one–one maps of a given uα onto an open
subset in Rn, which satisfy the following.

(1) The sets uα form a cover for M , that is, any given p in M must be in a
uα for some value of α, and

M =
⋃
α

uα. (2.1)

(2) Whenever two neighborhoods uα and uβ intersect, that is, uα ∩ uβ �= φ,
then the map φα ◦φ−1

β from Rn to Rn, which takes points of φβ(uα ∩uβ)
to points of φα(uα∩uβ), is infinitely differentiable in a continuous manner
(a smooth C∞-function) as a mapping between two open subsets of Rn

(see Fig. 2.1).

Alternatively, it is possible to consider the map φβ ◦ φ−1
α , and the same

condition again holds. Each uα is called a local coordinate neighborhood
or a chart where p ∈ uα has coordinates of φα(p) in Rn. The condition
(2) above ensures that whenever an event p ∈ M undergoes a coordinate
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u�
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f�(q)

f�(u�)
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M

Rn

p

q

Fig. 2.1 All events p and q in the manifold have neighborhoods which are
homeomorphic to subsets in Rn. The points p, q ∈ M have coordinates
of φα(p) and φβ(q). Whenever the neighborhoods in M intersect, there should
be a smooth change of coordinates.

change, the change is necessarily smooth. That is, if {xi} and {yi} are
local coordinates of p ∈ M in uα and uβ respectively, then the functions
xi = xi(y1, . . . , yn) are C∞-functions from Rn to Rn. A maximal or complete
atlas is chosen for the spacetime manifold M, that is, if {uα, φα} is an atlas
for M , one selects for M the atlas that consists of all other atlases that are
compatible with {uα, φα}. This implies that their union with {uα, φα} is also
a C∞-atlas.

This implies that one has included all possible, mutually compatible coor-
dinate systems for the manifoldM. A Cr-manifold is defined in a similar way,
where it is required that the transition functions φα ◦ φ−1

β are r-times
continuously differentiable, where a continuous function is denoted by C0.

The Euclidian plane R2, or Euclidian space Rn, is, in itself, a manifold as
it is covered by a single chart Rn, where φ would be the identity map with
the coordinate range −∞ < xi < ∞ for i = 1, . . . , n. Another example of
such a manifold is the two-sphere S2 defined by

S2 = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1}. (2.2)

The six hemispherical open sets O±
i for i = 1, 2, 3 are given by O±

i =
{(x1, x2, x3) ∈ S2 | ±xi > 0}, which cover S2. Each O±

i is mapped
onto the open disk {(x, y) ∈ R2 | x2 + y2 < 1} by the projection maps such
as f+

1 (x1, x2, x3) = (x2, x3). The overlap functions f±
i ◦ ( f±

j )−1 are C∞-
functions in their domain of definition. Thus, S2 is a two-dimensional,
C∞-manifold that cannot be covered by a single coordinate system. Similarly,
the sphere Sn in n-dimensions is also a differentiable manifold.
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2.1.2 Vectors and one-forms

A function f : M → Rn is called differentiable if the map f ◦ φ−1
α is a C∞-

map for all charts φα as a map from Rn to Rn; Cr-functions can be defined
similarly (Spivak, 1965).

Suppose now M and M ′ are two differentiable manifolds with φα and ψα

denoting charts of M and M ′ respectively. A map h : M → M ′ is called
Cr-differentiable if ψα ◦ h ◦ φ−1

α is always Cr-differentiable as a map from
Rn to Rn for all α. If the dimension of M is n and that of M ′ is n′ with
n > n′, then the map h cannot be one–one. However, if h is one–one, onto,
and continuous from M to M ′ such that h−1 is also a continuous map, then
h is called a homeomorphism. If a homeomorphism and its inverse are both
Cr-maps, then it is called a Cr-diffeomorphism.

A Ck-curve in M is a Ck-map from an interval of R into M . A vector
(or a contravariant vector) (∂/∂t)λ(t0), tangent to a Ck-curve λ(t) at a point
λ(t0), is an operator from the space of all smooth functions on M into R:(

∂

∂t

)
λ(t0)

( f) =
(
∂f

∂t

)
λ(t0)

= lim
s→0

f [λ(t+ s)] − f [λ(t)]
s

, (2.3)

where s denotes a small increment of the parameter t. This is d( f ◦ λ)/dt,
which is the derivative of f in the direction of λ(t) with respect to parameter
t. If f = t, where t is the parameter along the curve,(

∂

∂t

)
λ

(t) = 1. (2.4)

If the xi values are local coordinates in a neighborhood of p = λ(t0), then(
∂f

∂t

)
λ(t0)

=
dxi

dt

∂f

∂xi
|λ(t0), (2.5)

where a repeated index means summation over the values 1, . . . , n. (This
summation convention is used throughout.) Therefore, every tangent vector
at p ∈ M is expressed as a linear combination of the coordinate derivatives,
which are (∂/∂x1)p, . . . , (∂/∂xn)p. Conversely, any linear combination of
these operators that are partial derivatives with respect to coordinates can
be chosen, namely, V i(∂/∂xi)p, with the values of V i being any numbers.
It is then possible to find a curve which admits this linear combination as
a tangent (see for example, Wald, 1984). The vectors (∂/∂xj)p are linearly
independent (if not, then there are numbers V i such that

V i

(
∂

∂xi

)
p

= 0, (2.6)
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p

M

Fig. 2.2 The tangent space Tp at a point p ∈ M , which gives the set of all
directions at that point.

with at least one V i being non-zero, and applying this to the coordinate
functions x1, . . . , xn gives V i = 0 for all i, a contradiction). Therefore, the
vectors (∂/∂xj) span the vector space Tp, the space of all tangent vectors at
p (see Fig. 2.2). The vector space structure here is defined by

(αX + βY )f = α(Xf) + β(Y f), (2.7)

for α, β ∈ R and X,Y ∈ Tp, where X and Y are vectors at p; Tp is also
called the tangent space at p. The basis {(∂/∂xi)p} is called a coordinate
basis of Tp. A general basis is denoted by {ei}, where i = 1, . . . , n, are
linearly independent vectors. Then, for any vector V ∈ Tp,

V = V iei, (2.8)

where the numbers V i are called the components of V with respect to the
basis ei. In a coordinate basis, V i = dxi/dt. Again, {∂/∂xi} forms a basis
of Tp which means the dimension of Tp is n.

For the tangent space Tp at p ∈ M , the vector space of all dual vectors at
p, also called covariant vectors or one-forms at p, can be naturally defined. A
one-form ω at p is a real-valued linear functional on Tp, denoted by ω(X) ≡
〈ω,X〉, and the linearity condition implies

〈ω, αX + βY 〉 = α〈ω, X〉 + β〈ω,Y 〉. (2.9)

Given a tangent space basis {ea}, a unique set of one-forms {ea} is given
by the condition that the one-form eb maps a vector V into V b, that is, the
bth component of V in the basis ea. Therefore,

〈eb,V 〉 = V b, (2.10)

where a, b, . . . and i, j, . . . denote indices for vectors and tensors.
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From the above,

〈ea, eb〉 = δa
b , (2.11)

where the right-hand side is the Kronecker delta function. The linear
combinations of one-forms ω and η are defined by

〈αω + βη,V 〉 = α〈ω,V 〉 + β〈η,V 〉, (2.12)

with α, β ∈ R. Then, {ea} is a basis for the space of all one-forms at p
because any one-form ω can be written as ω = ωae

a with

ωa = 〈ω, ea〉. (2.13)

Therefore, the set of all one-forms at the event p forms a vector space at p,
the dual of Tp, and is denoted by T ∗

p . The basis ea is a dual basis to ea. If
ω ∈ T ∗

p and V ∈ Tp, then

〈ω,V 〉 = 〈ωae
a, V beb〉 = ωaV

bδa
b = ωaV

a. (2.14)

A vector field V on a manifold M is an assignment of a tangent vector Vp

at each p ∈ M . The vector field is said to assign vectors smoothly if, for each
smooth function f on M , the function V (f), the directional derivative of f
along the vector Vp, is also smooth on M at each point p. The coordinate
basis vector fields ∂/∂xi are smooth, and so a vector field will be smooth
provided that its coordinate components V i are smooth functions. Given two
vector fields V and W , a new vector field, called their commutator [V ,W ],
is defined by

[V ,W ]( f) = V [W ( f)] − W [V ( f)]. (2.15)

The commutator for any two coordinate basis vector fields vanishes. If f
and g are any two smooth functions, it can be seen that [V ,W ]( f + g) =
[V ,W ]( f)+[V ,W ](g) and that [V ,W ](αf) = α[V ,W ]( f) for any α ∈ R.
It can be shown that

[V ,W ]( fg) = f [V ,W ](g) + g[V ,W ]( f), (2.16)

which is the product property. By expanding in a coordinate basis it is seen
that the commutator [V ,W ] will be a smooth vector field if and only if both
V and W are smooth. Note that [V ,V ] = 0 and that [V ,W ] = −[W ,V ].
Furthermore, the commutator is linear in each of its arguments with respect
to addition, that is

[V 1 + V 2,W ] = [V 1,W ] + [V 2,W ]. (2.17)
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Any smooth function f on M defines a one-form df , called the differential
of f , by the rule

〈df,V 〉 ≡ V f. (2.18)

Therefore, in a coordinate basis,

〈df,V 〉 = V a ∂f

∂xa
. (2.19)

The local coordinate functions (x1, . . . , xn) are used to define a set of one-
forms (dx1, . . . , dxn), which is a basis dual to the coordinate basis because〈

dxa,
∂

∂xb

〉
=
∂xa

∂xb
= δa

b . (2.20)

Also,

df =
〈
df,

∂

∂xa

〉
dxa =

∂f

∂xa
dxa, (2.21)

which is the usual definition of the differential df.
If f is a non-constant function, the surfaces f = const. define an (n− 1)-

dimensional submanifold of M . Consider the set of all the vectors V ∈ Tp

such that
〈df,V 〉 = V f = 0, (2.22)

then the vectors V are tangent to curves in the f = const. submanifold,
through p. Therefore, the differential df is normal to the surface f = const.
at p.

2.1.3 Topological structure

A C∞-maximal atlas on a spacetime manifold M induces a natural topology
on M, given by the companion Euclidian space by requiring each φα to be
a homeomorphism. Therefore, the open sets in M are pre-images of open
sets in Rn and their unions. Then, the collection {uα} provides a basis for
the spacetime topology, where Rn has its canonical topology, defined by the
metric

d(x, y) =
[
(x1 − y1)2 + · · · + (xn − yn)2

]1/2
(2.23)

for any x, y ∈ Rn.
Several topological regularity conditions that are assumed for a physically

reasonable spacetime manifold are now given. The spacetime is assumed to be
Hausdorff, that is, given p and q with p �= q inM , there are disjoint open sets
uα and uβ in M such that p ∈ uα and q ∈ uβ. Physically interesting space-
time examples such as the Schwarzschild geometry and Robertson–Walker
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models are Hausdorff. This is a reasonable requirement on a spacetime which
ensures the uniqueness of limits of convergent sequences, and incorporates
the intuitive notion of distinct spacetime events.

Next, the spacetime M has no boundary. A boundary represents, in a
sense, the ‘edge’ of the universe, which is not detected by any astronomical
observations. Mathematically, it is common to have manifolds without a
boundary. For example, for a two-sphere S2 in R3, no point in S2 is a
boundary point in the induced topology as implied by the natural topology
on R3, because all neighborhoods of any p ∈ S2 are contained within S2 in
this induced topology. Assume M to be connected, that is, M = X1 ∪ X2,
with X1 and X2 being two open sets and X1 ∩X2 = φ is not possible. This is
because disconnected components of the universe cannot interact by means
of any signals, and the observations are confined to the connected component
where the observer is situated. But, M could be either simply connected or
multiply connected. For further discussion on multiply connected spacetimes
and the notion of a wormhole in the Schwarzschild geometry, see Wheeler
(1962, 1964) and Misner, Thorne, and Wheeler (1973). Such wormholes are
like ‘handles’ in the multiply connected topology of space and can connect
widely separated regions in space.

It is known, however, that such wormholes are not stable and collapse
as soon as created, unless the violation of the energy condition in an aver-
aged sense is allowed, thus implying negative energy fields (see for example,
Deutsch and Candelas, 1980; Lee, 1983; Morris, Thorne, and Yurtsever,
1988). Therefore, a wormhole may be stabilized only by shifting the energy
of vacuum to be negative by some quantum processes. The process of topol-
ogy change could also give rise to a multiply connected spacetime. It is
not clear if the topology of space could change while it evolves in time,
and if so, what physical agencies cause it. A topology change can affect
the structure of spacetime severely to cause naked singularities (Joshi and
Saraykar, 1987).

A spacetime is assumed to be non-compact, because compact spacetimes
violate causality and admit closed timelike curves. One could then enter one’s
own past, which is considered to be highly unphysical. Usually, M is also
taken to be paracompact. An atlas {uα, φα} is called locally finite if there is
an open set containing every p ∈ M that intersects only a finite number of
the sets uα. A manifold M is called paracompact if, for every atlas {uα, φα},
there is a locally finite atlas {Oβ, ψβ} with each Oβ contained in some uα.
For a further discussion on these topological concepts, see Simmons (1963)
and Willard (1970).

For a connected, Hausdorff manifold, the paracompactness property is
equivalent to the existence of a countable base for the topology of M . The
existence of a Lorentz metric globally on M implies any Hausdorff manifold
with a Cr Lorentz metric tensor must be paracompact (Geroch, 1968b).


