I K+ James P ficHugh

OPEN

SOURCE

http://www.cambridge.org/9780521881036

This page intentionally left blank

Open Source

From the Internet’s infrastructure to operating systems like GNU/Linux, the open
source movement comprises some of the greatest accomplishments in computing over
the past quarter century. Its story embraces technological advances, unprecedented
global collaboration, and remarkable tools for facilitating distributed development.
The evolution of the Internet enabled an enormous expansion of open development,
allowing developers to exchange information and ideas without regard to constraints of
space, time, or national boundary. The movement has had widespread impact on
education and government, as well as historic, cultural, and commercial repercussions.
Part I discusses key open source applications, platforms, and technologies used in open
development. Part II explores social issues ranging from demographics and psychology
to legal and economic matters. Part III discusses the Free Software Foundation, open
source in the public sector (government and education), and future prospects.

FADI P. DEEK received his Ph.D. in computer and information science from the New
Jersey Institute of Technology (NJIT). He is Dean of the College of Science and
Liberal Arts and Professor of Information Systems, Information Technology, and
Mathematical Sciences at NJIT, where he began his academic career as a Teaching
Assistant in 1985. He is also a member of the Graduate Faculty — Rutgers University
Ph.D. Program in Management.

JAMES A. M. MCHUGH received his Ph.D. in applied mathematics from the Courant
Institute of Mathematical Sciences, New York University. During the course of his
career, he has been a Member of Technical Staff at Bell Telephone Laboratories (Wave
Propagation Laboratory), Director of the Ph.D. program in computer science at NJIT,
Acting Chair of the Computer and Information Science Department at NJIT, and
Director of the Program in Information Technology. He is currently a tenured Full
Professor in the Computer Science Department at NJIT.

Open Source
Technology and Policy

FADI P. DEEK
New Jersey Institute of Technology

JAMES A. M. McHUGH
New Jersey Institute of Technology

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521881036

© Fadi P. Deck and James A. M. McHugh 2008

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2007

ISBN-13 978-0-511-36412-9 eBook (Adobe Reader)
ISBN-10 0-511-36412-1 eBook (Adobe Reader)

ISBN-13 978-0-521-88103-6 hardback
ISBN-10 0-521-88103-X hardback

ISBN-13 978-0-521-70741-1 paperback
ISBN-10 0-521-70741-2 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521881036
http://www.cambridge.org

To my children,
Matthew, Andrew, and Rebecca

Fadi P. Deek
To my parents, Anne and Peter

To my family, Alice, Pete, and Jimmy
and to my sister, Anne Marie

James A. M. McHugh

Contents

Preface
Acknowledgments

Introduction
1.1 Why Open Source
1.2 Preview

Section One: Open Source — Internet Applications,
Platforms, and Technologies

Open Source Internet Application Projects

2.1 The WWW and the Apache Web Server

2.2 The Browsers

2.3 Fetchmail

2.4 The Dual License Business Model

2.5 The P’s in LAMP

2.6 BitTorrent

2.7 BIND

The Open Source Platform

3.1 Operating Systems

3.2 Windowing Systems and Desktops

3.3 GIMP

Technologies Underlying Open Source Development

4.1 Overview of CVS

4.2 CVS Commands

4.3 Other Version Control Systems

4.4 Open Source Software Development Hosting Facilities
and Directories

vii

page ix
Xi

21
23
37
50
61
70
77
78
80
81
99
111
119
120
124
143

viii

10.

Contents

Section Two: Social, Psychological, Legal, and
Economic Aspects of Open Source

Demographics, Sociology, and Psychology of Open Source
Development

5.1 Scale of Open Source Development

5.2 Demographics and Statistical Profile of Participants
5.3 Motivation of Participants

5.4 Group Size and Communication

5.5 Social Psychology and Open Source

5.6 Cognitive Psychology and Open Source
5.7 Group Problem Solving and Productivity
5.8 Process Gains and Losses in Groups

5.9 The Collaborative Medium

Legal Issues in Open Source

6.1 Copyrights

6.2 Patents

6.3 Contracts and Licenses

6.4 Proprietary Licenses and Trade Secrets
6.5 OSI - The Open Source Initiative

6.6 The GPL and Related Issues

The Economics of Open Source

7.1 Standard Economic Effects

7.2 Open Source Business Models

7.3 Open Source and Commoditization

7.4 Economic Motivations for Participation

Section Three: Free Software: The Movement, the
Public Sector, and the Future

The GNU Project

8.1 The GNU Project

8.2 The Free Software Foundation

Open Source in the Public Sector

9.1 Open Source in Government and Globally
9.2 Open Source in Education

The Future of the Open Source Movement

Glossary
Subject Index
Author Index

159
160
162
164
166
168
181
190
197
206
222
223
228
232
236
243
250
265
266
272
281
285

297
297
302
309
310
316
325

336
351
366

Preface

The story of free and open software is a scientific adventure, packed with
extraordinary, larger-than-life characters and epic achievements. From infra-
structure for the Internet to operating systems like Linux, this movement
involves some of the great accomplishments in computing over the past quarter
century. The story encompasses technological advances, global software collab-
oration on an unprecedented scale, and remarkable software tools for facilitating
distributed development. It involves innovative business models, voluntary and
corporate participation, and intriguing legal questions. Its achievements have
had widespread impact in education and government, as well as historic cul-
tural and commercial consequences. Some of its attainments occurred before
the Internet’s rise, but it was the Internet’s emergence that knitted together the
scientific bards of the open source community. It let them exchange their innova-
tions and interact almost without regard to constraints of space, time, or national
boundary. Our story recounts the tales of major open community projects: Web
browsers that fueled and popularized the Internet, the long dominant Apache
Web server, the multifarious development of Unix, the near-mythical rise of
Linux, desktop environments like GNOME, fundamental systems like those
provided by the Free Software Foundation’s GNU project, infrastructure like
the X Window System, and more. We will encounter creative, driven scientists
who are often bold, colorful entrepreneurs or eloquent scientific spokesmen.
The story is not without its conflicts, both internal and external to the move-
ment. Indeed the free software movement is perceived by some as a threat to
the billions in revenue generated by proprietary firms and their products, or
conversely as a development methodology that is limited in its ability to ade-
quately identify consumer needs. Much of this tale is available on the Internet
because of the way the community conducts its business, making it a uniquely

iX

X Preface

accessible tale. As free and open software continues to increasingly permeate
our private and professional lives, we believe this story will intrigue a wide
audience of computer science students and practitioners, IT managers, policy-
makers in government and education, and others who want to learn about the
fabled, ongoing legacy of transparent software development.

Acknowledgments

Many people helped us during the process of writing and publishing this book.
Although it is impossible to know all of them by name, we offer a word of
appreciation and gratitude to all who have contributed to this project. In par-
ticular, we thank the anonymous reviewers who read the proposal for the text
and carefully examined the manuscript during the earlier stages of the process.
They provided excellent recommendations and offered superb suggestions for
improving the accuracy and completeness of the presented material.

Heather Bergman, Computer Science Editor at Cambridge University Press,
deserves enormous praise for her professionalism and competence. Heather
responded promptly to our initial inquiry and provided excellent insight and
guidance throughout the remaining stages. Her extraordinary efforts were
instrumental in getting this book into the hands of its readers.

X1

1

Introduction

The open source movement is a worldwide attempt to promote an open style
of software development more aligned with the accepted intellectual style of
science than the proprietary modes of invention that have been characteristic
of modern business. The idea — or vision — is to keep the scientific advances
created by software development openly available for everyone to understand
and improve upon. Perhaps even more so than in the conventional scientific
paradigm, the very process of creation in open source is highly transparent
throughout. Its products and processes can be continuously, almost instan-
taneously scrutinized over the Internet, even retrospectively. Its peer review
process is even more open than that of traditional science. But most of all: its
discoveries are not kept secret and it lets anyone, anywhere, anytime free to
build on its discoveries and creations.

Open source is transparent. The source code itself is viewable and available
to study and comprehend. The code can be changed and then redistributed to
share the changes and improvements. It can be executed for any purpose without
discrimination. Its process of development is largely open, with the evolution
of free and open systems typically preserved in repositories accessible via the
Internet, including archives of debates on the design and implementation of the
systems and the opinions of observers about proposed changes. Open source
differs vastly from proprietary code where all these transparencies are generally
lacking. Proprietary code is developed largely in private, albeit its requirements
are developed with its prospective constituencies. Its source code is generally
not disclosed and is typically distributed under the shield of binary executables.
Its use is controlled by proprietary software licensing restrictions. The right to
copy the program executables is restricted and the user is generally forbidden
from attempting to modify and certainly from redistributing the code or possible
improvements. In most respects, the two modalities of program development

2 1 Introduction

are polar opposites, though this is not to say there are not many areas where the
commercial and open communities have cooperated.

Throughout this book, we will typically use the term open source in a
generic sense, encompassing free software as referred to by the Free Soft-
ware Foundation (FSF) and open source software as referred to by the Open
Source Initiative (OSI) organization. The alternative composite terms FLOSS
(for Free/Libre/Open Source Software) or FOSS are often used in a European
context. The two organizations, the FSF and the OSI, represent the two streams
of the free or open source movement. Free software is an intentionally evocative
term, a rallying cry as it were, used by the FSF and intended to resonate with
the values of freedom: user and developer freedom. The FSF’s General Public
License (GPL) is its gold standard for free licenses. It has the distinctive char-
acteristic of preventing software licensed under it from being redistributed in
a closed, proprietary distribution. Its motto might be considered as “share and
share alike.” However, the FSF also recognizes many other software licenses as
free as long as they let the user run a program for any purpose, access its source
code, modify the code if desired, and freely redistribute the modifications. The
OSI on the other hand defines ten criteria for calling a license open source. Like
the FSF’s conditions for free software (though not the GPL), the OSI criteria
do not require the software or modifications to be freely redistributed, allow-
ing licenses that let changes be distributed in proprietary distributions. While
the GPL is the free license preferred by the FSF, licenses like the (new) BSD
or MIT license are more characteristic of the OSI approach, though the GPL
is also an OSlI-certified license. Much of the time we will not be concerned
about the differences between the various kinds of free or open source licenses,
though these differences can be very important and have major implications for
users and developers (see such as Rosen, 2005). When necessary, we will make
appropriate distinctions, typically referring to whether certain free software is
GPL-licensed or is under a specific OSI-certified license. We will elaborate on
software licenses in the chapter on legal issues. For convenience we will also
refer at times to “open software” and “open development” in the same way.

We will begin our exploration by considering the rationale for open source,
highlighting some of'its putative or demonstrable characteristics, its advantages,
and opportunities it provides. We will then overview what we will cover in the
rest of the book.

1.1 Why Open Source

Before we embark on our detailed examination of open source, we will briefly
explore some markers for comparing open and proprietary products. A proper

1.1 Why Open Source 3

comparison of their relative merits would be a massively complex, possibly
infeasible undertaking. There are many perspectives that would have to be
considered, as well as an immense range of products, operating in diverse
settings, under different constraints, and with varied missions. Unequivocal data
from unbiased sources would have to be obtained for an objective comparative
evaluation, but this is hard to come by. Even for a single pair of open and
proprietary products it is often difficult to come to clear conclusions about
relative merits, except for the case of obviously dominant systems like Web
servers (Apache). What this section modestly attempts is to set forth some of
the parameters or metrics that can help structure a comparative analysis. The
issues introduced here are elaborated on throughout the book.

Open source systems and applications often appear to offer significant ben-
efits vis-a-vis proprietary systems. Consider some of the metrics they compete
on. First of all, open source products are usually free of direct cost. They are
often superior in terms of portability. You can modify the code because you
can see it and it’s allowed by the licensing requirements, though there are
different licensing venues. The products may arguably be both more secure
and more reliable than systems developed in a proprietary environment. Open
products also often offer hardware advantages, with frequently leaner platform
requirements. Newer versions can be updated to for free. The development
process also exhibits potential macroeconomic advantages. These include the
innately antimonopolistic character of open source development and its the-
oretically greater efficiency because of its arguable reduction of duplicated
effort. The open source paradigm itself has obvious educational benefits for
students because of the accessibility of open code and the development pro-
cess’ transparent exposure of high-quality software practice. The products and
processes lend themselves in principle to internationalization and localization,
though this is apparently not always well-achieved in practice. There are other
metrics that can be considered as well, including issues of quality of vendor
support, documentation, development efficiency, and so on. We will highlight
some of these dimensions of comparison. A useful source of information on
these issues is provided by the ongoing review at (Wheeler, 2005), a detailed
discussion which, albeit avowedly sympathetic to the open source movement,
makes an effort to be balanced in its analysis of the relative merits of open and
proprietary software.

1.1.1 Usefulness, Cost, and Convenience

Does the open source model create useful software products in a timely fashion
at a reasonable cost that are easy to learn to use? In terms of utility, consider
that open source has been instrumental in transforming the use of computing

4 1 Introduction

in society. Most of the Internet’s infrastructure and the vastly successful Linux
operating system are products of open source style development. There are
increasingly appealing open desktop environments like GNOME and KDE.
Furthermore, many of these products like the early Web servers and browsers
as well as Linux were developed quite rapidly and burst on the market. Fire-
fox is a recent example. It is of course hard to beat the direct price of open
source products since they are usually free. The zero purchase cost is especially
attractive when the software product involved has already been commoditized.
Commoditization occurs when one product is pretty much like another or at
least good enough for the needs it serves. In such cases, it does not pay to
pay more. An open source program like the Apache Web server does not even
have to be best of breed to attract considerable market share; it just has to be
cheap enough and good enough for the purpose it serves. Open source is also
not only freely available but is free to update with new versions, which are
typically available for free download on the same basis as the original. For
most users, the license restrictions on open products are not a factor, though
they may be relevant to software developers or major users who want to mod-
ify the products. Of course, to be useful, products have to be usable. Here the
situation is evolving. Historically, many open source products have been in the
category of Internet infrastructure tools or software used by system administra-
tors. For such system applications, the canons of usability are less demanding
because the users are software experts. For ordinary users, we observe that
at least in the past interface, usability has not been recognized as a strong
suit of open source. Open source advocate Eric Raymond observed that the
design of desktops and applications is a problem of “ergonomic design and
interface psychology, and hackers have historically been poor at it” (Raymond,
1999). Ease of installation is one aspect of open applications where usability
is being addressed such as for the vendor-provided GNU/Linux distributions
or, at a much simpler level, installers for software like the bundled AMP pack-
age (Apache, MySQL, Perl, PHP). (We use GNU/Linux here to refer to the
combination of GNU utilities and the Linux kernel, though the briefer desig-
nation Linux is more common.) Another element in usability is user support.
There is for-charge vendor-based support for many open source products just
as is for proprietary products. Arguments have been made on both sides about
which is better. Major proprietary software developers may have more financial
resources to expend on “documentation, customer support and product train-
ing than do open source providers” (Hahn, 2002), but open source products
by definition can have very wide networks of volunteer support. Furthermore,
since the packages are not proprietary, the user is not locked-in to a particular
vendor.

1.1 Why Open Source 5

1.1.2 Performance Characteristics

Does open source provide products that are fast, secure, reliable, and portable?
The overview in Wheeler (2005) modestly states that GNU/Linux is often either
superior or at least competitive in performance with Windows on the same
hardware environment. However, the same review emphasizes the sensitiv-
ity of performance to circumstances. Although proprietary developers benefit
from financial resources that enable them to produce high quality software, the
transparent character of open source is uniquely suitable to the requirements of
security and reliability.

In terms of security, open source code is widely considered to be highly
effective for mission-critical functions, precisely because its code can be pub-
licly scrutinized for security defects. It allows users the opportunity to security-
enhance their own systems, possibly with the help of an open source consultant,
rather than being locked into a system purchased from a proprietary vendor
(Cowan, 2003). In contrast, for example, Hoepman and Jacobs (2007) describe
how the exposure of the code for a proprietary voting system revealed serious
security flaws. Open accessibility is also necessary for government security
agencies that have to audit software before using it to ensure its operation is
transparent (Stoltz, 1999). Though security agencies can make special arrange-
ments with proprietary distributors to gain access to proprietary code, this access
is automatically available for open source. Open source products also have a
uniquely broad peer review process that lends itself to detection of defects during
development, increasing reliability. Not only are the changes to software pro-
posed by developers scrutinized by project maintainers, but also any bystander
observing the development can comment on defects, propose implementation
suggestions, and critique the work of contributors. One of the most well-known
aphorisms of the open source movement “Given enough eyeballs, all bugs are
shallow” (Raymond, 1998) identifies an advantage that may translate into more
reliable software. In open source “All the world’s a stage” with open source
developers very public actors on that stage. The internal exposure and review
of open source occurs not just when an application is being developed and
improvements are reviewed by project developers and maintainers, but for the
entire life cycle of the product because its code is always open. These theoretical
benefits of open source appear to be verified by data. For example, a significant
empirical study described in Reasoning Inc. (2003) indicates that free MySQL
had six times fewer defects than comparable proprietary databases (Tong, 2004).
A legendary acknowledgment of Linux reliability was presented in the famous
Microsoft Halloween documents (Valloppillil, 1998) which described Linux as
having a failure rate two to five times lower than commercial Unix systems.

6 1 Introduction

The open source Linux platform is the most widely ported operating sys-
tem. It is dominant on servers, workstations, and supercomputers and is widely
used in embedded systems like digital appliances. In fact, its portability is
directly related to the design decisions that enabled the distributed open style
of development under which Linux was built in the first place. Its software
organization allowed architect Linus Torvalds to manage core kernel develop-
ment while other distributed programmers could work independently on so-
called kernel modules (Torvalds, 1999). This structure helped keep hardware-
specific code like device drivers out of the core kernel, keeping the core highly
portable (Torvalds, 1999). Another key reason why Linux is portable is because
the GNU GCC compiler itself is ported to most “major chip architectures”
(Torvalds, 1999, p. 107). Ironically, it is the open source Wine software that
lets proprietary Windows applications portably run on Linux. Of course, there
are open source clones of Windows products like MS Office that work on
Windows platforms. A secondary consideration related to portability is soft-
ware localization and the related notion of internationalization. Localization
refers to the ability to represent a system using a native language. This can
involve the language a system interface is expressed in, character-sets or even
syntactical effects like tokenization (since different human languages are bro-
ken up differently, which can impact the identification of search tokens). It
may be nontrivial for a proprietary package that is likely to have been devel-
oped by a foreign corporation to be localized, since the corporate developer
may only be interested in major language groupings. It is at least more nat-
ural for open software to be localized because the source code is exposed
and there may be local open developers interested in the adaptation. Interna-
tionalization is a different concept where products are designed in the first
place so that they can be readily adapted, making subsequent localization
easier. Internationalization should be more likely to be on the radar screen
in an open source framework because the development model itself is inter-
national and predisposed to be alert to such concerns. However, Feller and
Fitzgerald (2002) who are sympathetic to free software critique it with respect
to internationalization and localization, contrasting what appears to be, for
example, the superior acceptability of the Microsoft IIS server versus Apache
on these metrics. They suggest the root of the problem is that these char-
acteristics are harder to “achieve if they are not factored into the original
design” (p. 113). Generally, open source seems to have an advantage in sup-
porting the customization of applications over proprietary code, because its
code is accessible and modification of the code is allowed by the software
license.

1.1 Why Open Source 7

1.1.3 Forward-looking Effects

Is open source innovative or imitative? The answer is a little of both. On the
one hand, open source products are often developed by imitating the function-
ality of existing proprietary products, “following the taillights” as the saying
goes. This is what the GNOME project does for desktop environments, just like
Apple and Microsoft took off on the graphical environments developed at Xerox
PARC in the early 1980s. However, open development has also been incredibly
innovative in developing products for the Internet environment, from infras-
tructure software like code implementing the TCP/IP protocols, the Apache
Web server, the early browsers at CERN and NCSA that led to the explosion
of commercial interest in the Internet to hugely successful peer-to-peer file
distribution software like BitTorrent. Much of the innovation in computing has
traditionally emerged from academic and governmental research organizations.
The open source model provides a singularly appropriate outlet for deploying
these innovations: in a certain sense it keeps these works public.

In contrast, Microsoft, the preeminent proprietary developer, is claimed by
many in the open community to have a limited record of innovation. A typical
contention is illustrated in the claim by the FSF’s Moglen that “Microsoft’s
strategy as a business was to find innovative ideas elsewhere in the software
marketplace, buy them up and either suppress them or incorporate them in its
proprietary product” (Moglen, 1999). Certainly a number of Microsoft’s sig-
nature products have been reimplementations of existing software (Wheeler,
2006) or acquisitions which were possibly subsequently improved on. These
include QDOS (later MS-DOS) from Seattle Computer in 1980 (Conner, 1998),
FrontPage from Vermeer in 1996 (Microsoft Press Release, 1996), PowerPoint
from Forethought in 1987 (Parker, 2001), and Cooper’s Tripod subsequently
developed at Microsoft into Visual Basic in 1988 (Cooper, 1996). In a sense,
these small independent companies recognized opportunities that Microsoft
subsequently appropriated. For other examples, see McMillan (2006). On the
other hand, other analysts counter that a scenario where free software domi-
nated development could seriously undermine innovation. Thus Zittrain (2004)
critically observes that “no one can readily monopolize derivatives to popular
free software,” which is a precondition to recouping the investments needed to
improve the original works; see also Carroll (2004).

Comparisons with proprietary accomplishments aside, the track record on
balance suggests that the open source paradigm encourages invention. The avail-
ability of source code lets capable users play with the code, which is a return
to a venerable practice in the history of invention: tinkering (Wheeler, 2005).

8 1 Introduction

The public nature of Internet-based open development provides computer sci-
ence students everywhere with an ever-available set of world-class examples of
software practice. The communities around open source projects offer unique
environments for learning. Indeed, the opportunity to learn is one of the most
frequently cited motivations for participating in such development. The model
demonstrably embodies a participatory worldwide engine of invention.

1.1.4 Economic Impact

Free and open software is an important and established feature of the commer-
cial development landscape. Granted, no open source company has evolved to
anything like the economic status of proprietary powerhouses like Microsoft;
nonetheless, the use of open source, especially as supporting infrastructure
for proprietary products, is a widely used and essential element of the busi-
ness strategies of major companies from IBM to Apple and Oracle. Software
companies traditionally rely at least partly on closed, proprietary code to main-
tain their market dominance. Open source, on the other hand, tends to under-
mine monopoly, the likelihood of monopolistic dominance being reduced to the
extent that major software infrastructure systems and applications are open. The
largest proprietary software distributors are U.S. corporations — a factor that is
increasingly encouraging counterbalancing nationalistic responses abroad. For
example, foreign governments are more than ever disposed to encourage a pol-
icy preference for open source platforms like Linux. The platforms’ openness
reduces their dependency on proprietary, foreign-produced code, helps nurture
the local pool of software expertise, and prevents lock-in to proprietary distrib-
utors and a largely English-only mode where local languages may not even be
supported. Software is a core component of governmental operation and infras-
tructure, so dependency on extranational entities is perceived as a security risk
and a cession of control to foreign agency.

At the macroeconomic level, open source development arguably reduces
duplication of effort. Open code is available to all and acts as a public reposi-
tory of software solutions to a broad range of problems, as well as best prac-
tices in programming. It has been estimated that 75% of code is written for
specific organizational tasks and not shared or publicly distributed for reuse
(Stoltz, 1999). The open availability of such source code throughout the econ-
omy would reduce the need to develop applications from scratch. Just as soft-
ware libraries and objects are software engineering paradigms for facilitating
software reuse, at a much grander scale the open source movement proposes to
preserve entire ecosystems of software, open for reuse, extension, and modifi-
cation. It has traditionally been perceived that “open source software is often

1.1 Why Open Source 9

geared toward information technology specialists, to whom the availability of
source code can be a real asset, (while) proprietary software is often aimed
at less sophisticated users” (Hahn, 2002). Although this observation could be
refined, generally a major appeal of open source has been that its code availabil-
ity makes it easier for firms to customize the software for internal applications.
Such in-house customization is completely compatible with all open source
licenses and is extremely significant since most software is actually developed
or custom-designed rather than packaged (Beesen, 2002). As a process, open
source can also reduce the development and/or maintenance risks associated
with software development even when done by private, for-profit companies.
For example, consider code that has been developed internally for a company. It
may often have little or no external sales value to the organization, even though
it provides a useful internal service. Stallman (1999) recounts the example of a
distributed print-spooler written for an in-house corporate network. There was
a good chance the life cycle of the code would be longer than the longevity
of its original programmers. In this case, distributing the code as open source
created the possibility of establishing an open community of interest in the
software. This is useful to the company that owns the code since it reduces
the risk of maintenance complications when the original developers depart.
With any luck, it may connect the software to a persistent pool of experts who
become familiar with the software and who can keep it up to date for their
own purposes. More generally, open development can utilize developers from
multiple organizations in order to spread out development risks and costs, split-
ting the cost among the participants. In fact, while much open source code
has traditionally been developed with a strong volunteer pool, there has also
been extensive industrial support for open development. Linux development is
a prime example. Developed initially under the leadership of Linus Torvalds
using a purely volunteer model, most current Linux code contributions are done
by professional developers who are employees of for-profit corporations.

References

Beesen, J. (2002). What Good is Free Software? In: Government Policy toward Open
Source Software, R.W. Hahn (editor). Brookings Institution Press, Washington,
DC.

Carroll, J. (2004). Open Source vs. Proprietary: Both Have Advantages. ZDNet
Australia. http://opinion.zdnet.co.uk/comment/0,1000002138,39155570,00.htm.
Accessed June 17, 2007.

Conner, D. (1998). Father of DOS Still Having Fun at Microsoft, Microsoft MicroNews,
April 10. http://www.patersontech.com/Dos/Micronews/paterson04_10_98.htm.
Accessed December 20, 2006.

10 1 Introduction

Cooper, A. (1996). Why I Am Called “the Father of Visual Basic,” Cooper Interac-
tion design. http://www.cooper.com/alan/father_of_vb.html. Accessed December
20, 2006.

Cowan, C. (2003). Software security for open-source systems. /[EEE Security and Pri-
vacy, 1, 38-45.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley, Pearson Education Ltd., London.

Hahn, R. (2002). Government Policy toward Open Source Software: An Overview. In:
Government Policy toward Open Source Software, R.W. Hahn (editor). Brookings
Institution Press, Washington, DC.

Hoepman J.H. and Jacobs, B. (2007). Increased Security through Open Source, Com-
munications of the ACM, 50(1), 79-83.

McMillan, A. (2006). Microsoft “Innovation.” http://www.mcmillan.cx/innovation.html.
Accessed December 20, 2006.

Microsoft Press Release. (1996). Microsoft Acquires Vermeer Technologies Inc., Jan-
uary 16th. http://www.microsoft.com/presspass/press/1996/jan96/vrmeerpr.mspx.
Accessed December 20, 2006.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copyright.
First Monday, 4(8). http://www.firstmonday.org/issues/issue4_8/moglen/index.
html. Accessed January 5, 2007.

Parker, I. (2001). Absolute Powerpoint — Can a Software Package Edit Our Thoughts.
New Yorker, May 28. http://www.physics.ohio-state.edu/"wilkins/group/powerpt.
html. Accessed December 20, 2006.

Raymond, E. (1999). The Revenge of the Hackers. In: Open Sources: Voices from the
Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly
Media, Sebastopol, CA, 207-219.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.dk/issues/issue3_3/raymond/index.html. Accessed December 3, 2006.

Reasoning Inc. (2003). How Open Source and Commercial Software Compare: MySQL
white paper MySQL 4.0.16. http://www.reasoning.com/downloads.html. Accessed
November 29, 2006.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property
Law, Prentice Hall, Upper Saddle River, NJ.

Stallman, R. (1999). The Magic Cauldron. http://www.catb.org/esr/writings/magic-
cauldron/. Accessed November 29, 2006.

Stoltz, M. (1999). The Case for Government Promotion of Open Source Soft-
ware. NetAction White Paper. http://www.netaction.org/opensrc/oss-report.html.
Accessed November 29, 2006.

Tong, T. (2004). Free/Open Source Software in Education. United Nations Development
Programme’s Asia-Pacific Information Programme, Malaysia.

Torvalds, L. (1999). The Linux Edge. In: Open Sources: Voices from the Open Source
Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media,
Sebastopol, CA, 101-112.

Valloppillil, V. (1998). Open Source Software: A (New?) Development Methodol-
ogy. http://www.opensource.org/halloween/. The Halloween Documents. Accessed
November 29, 2006.

1.2 Preview 11

Wheeler, D. (2005). Microsoft the Innovator? http://www.dwheeler.com/innovation/
microsoft.html. Accessed November 29, 2006.

Wheeler, D. (2006). Why Open Source Software/Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers! http://www.dwheeler.com/oss_fs_why.html.
Accessed November 29, 2006.

Zittrain, J. (2004). Normative Principles for Evaluating Free and Proprietary Software.
University of Chicago Law Review, 71(1), 265-287.

1.2 Preview

We will view the panorama of open source development through a number of
different lenses: brief descriptive studies of prominent projects, the enabling
technologies of the process, its social characteristics, legal issues, its status
as a movement, business venues, and its public and educational roles. These
perspectives are interconnected. For example, technological issues affect how
the development process works. In fact, the technological tools developed by
open source projects have at the same time enabled its growth. The paradigm
has been self-hosting and self-expanding, with open systems like Concurrent
Versions System (CVS) and the Internet vastly extending the scale on which
open development takes place. Our case studies of open projects will reveal
its various social, economic, legal, and technical dimensions. We shall see
how its legal matrix affects its business models, while social and psycholog-
ical issues are in turn affected by the technological medium. Though we will
separate out these various factors, the following chapters will also continu-
ally merge these influences. The software projects we consider are intended
to familiarize the reader with the people, processes, and accomplishments of
free and open development, focusing on Internet applications and free software
platforms. The enabling technologies of open development include the fasci-
nating versioning systems both centralized and distributed that make enormous
open projects feasible. Such novel modes of collaboration invariably pose new
questions about the social structures involved and their affect on how people
interact, as well as the psychological and cognitive phenomena that arise in the
new medium/modality. Open development is significantly dependent on a legal
infrastructure as well as on a technological one, so we will examine basic legal
concepts including issues like licensing arrangements and the challenge of soft-
ware patents. Social phenomena like open development do not just happen; they
depend on effective leadership to articulate and advance the movement. In the
case of free and open software, we shall see how the FSF and the complemen-
tary OSI have played that role. The long-term success of a software paradigm

12 1 Introduction

requires that it be economically viable. This has been accomplished in free
software in different ways, from businesses based purely on open source to
hybrid arrangements more closely aligned with proprietary strategies. Beyond
the private sector, we consider the public sector of education and government
and how they capitalize on open source or affect its social role. We will close our
treatment by briefly considering likely future developments, in a world where
information technology has become one of the central engines of commerce
and culture.

Section One of the book covers key open source Internet applications and
platforms, and surveys technologies used in distributed collaborative open
development. Section Two addresses social issues ranging from the demograph-
ics of participants to legal issues and business/economic models. Section Three
highlights the role of the Free Software Foundation in the movement, the rela-
tion of open source to the public sector in government and education, and future
prospects. A glimpse of the topics covered by the remaining chapters follows.

Chapter 2 recounts some classic stories of open development related to
the Internet, like Berners-Lee’s groundbreaking work on the Web at CERN, the
development of the NCSA HTTP Web server and Mosaic browser, the Apache
project, and more. These case studies represent remarkable achievements in the
history of business and technology. They serve to introduce the reader unfa-
miliar with the world of open source to some of its signature projects, ideas,
processes, and people. The projects we describe have brought about a social
and communications revolution that has transformed society. The story of these
achievements is instructive in many ways: for learning how the open source
process works, what some of its major attainments have been, who some of
the pioneering figures in the field are, how projects have been managed, how
people have approached development in this context, what motivations have led
people to initiate and participate in such projects, and some of the models for
commercialization. We consider the servers and browsers that fueled the Inter-
net’s expansion, programming languages like Perl and PHP and the MySQL
database so prominent in Internet applications, newer systems like BitTorrent,
Firefox, and others. We also review the Fetchmail project that became famous as
an exemplar of Internet-based, collaborative, bazaar-style development because
of a widely influential essay.

Chapter 3 explores the open source platform by which we mean the open
operating systems and desktops that provide the infrastructure for user inter-
action with a computer system. The root operating system model for open
source was Unix. Legal and proprietary issues associated with Unix led to the
development of the fundamentally important free software GNU project, the
aim of which was to create a complete and self-contained free platform that

1.2 Preview 13

would allow anyone to do all their software development in a free software
environment. The flagship Linux operating system evolved out of a port of a
Unix variant to a personal computer environment and then burgeoned into the
centerpiece project of the open software movement. The Linux and free Unix-
like platforms in turn needed a high-quality desktop style interface and it was
out of this imperative that the two major open desktops GNOME and KDE
emerged, which in turn depended on the fundamental functionality provided by
the X Window System. This chapter recounts these epic developments in the
history of computing, describing the people, projects, and associated technical
and legal issues.

Chapter 4 overviews the key technologies used to manage open source
projects, with a special emphasis on CVS. The free software movement emerged
in the early 1980s, at a time when the ARPANET network with its several
hundred hosts was well-established and moving toward becoming the Inter-
net. The ARPANET allowed exchanges like e-mail and FTP, technologies that
significantly facilitated distributed collaboration, though the Internet was to
greatly amplify this. The TCP/IP protocols that enabled the Internet became
the ARPANET standard on January 1, 1983, about the same time the flagship
open source GNU project was announced by free software leader and advocate
Richard Stallman. By the late 1980s the NSFNet backbone network merged
with the ARPANET to form the emerging worldwide Internet. The exponen-
tial spread of the Internet catalyzed further proliferation of open development.
The specific communications technologies used in open source projects have
historically tended to be relatively lean: e-mail, mailing lists, newsgroups, and
later on Web sites, Internet Relay Chat, and forums. Major open source projects
like Linux in the early 1990s still began operation with e-mail, newsgroups, and
FTP downloads to communicate. Newsgroups provided a means to broadcast
ideas to targeted interest groups whose members might like to participate in
a development project. Usenet categories acted like electronic bulletin boards
which allowed newsgroup participants to post e-mail-like messages, like the
famous comp.os.minix newsgroup on Usenet used by Linus Torvalds to ini-
tiate the development of Linux. A powerful collaborative development tool
was developed during the late 1980s and early 1990s that greatly facilitated
managing distributed software development: the versioning system. Versioning
systems are software tools that allow multiple developers to work on projects
concurrently and keep track of changes made to the code. This chapter describes
in some detail how CVS works. To appreciate what it does it is necessary to
have a sense of its commands, their syntax, and outputs or effects and so we
examine these closely. We also consider newer versioning tools like the decen-
tralized system BitKeeper that played a significant role in the Linux project

14 1 Introduction

for a period of time, its free successor Git, and the Subversion system. Other
means that have facilitated open source development have been the software
hosting facilities that help distributed collaborators manage their open source
projects and provide source code repositories for projects. We describe some
of the services they provide and the major Web sites.

There are many demographic, social, psychological, cognitive, process, and
media characteristics that affect open source development. Chapter 5 overviews
some of these. It also introduces a variety of concepts from the social sciences
that can be brought to bear on the open source phenomenon to help provide
a framework for understanding this new style of human, scientific, and com-
mercial interaction. We first of all consider the basic demographics of the phe-
nomenon, such as the number and scale of projects under development, the kinds
of software that tend to be addressed, population characteristics and motivations
for developers and community participants, how participants interact. We survey
relevant concepts from social psychology, including the notions of norms and
roles, the factors that affect group interactions like compliance, internalization,
and identification, normative influences, the impact of power relationships, and
group cohesion. Ideas like these from the field of social psychology help provide
conceptual tools for understanding open development. Other useful abstractions
come from cognitive psychology, like the well-recognized cognitive biases that
affect group interactions and problem solving. Social psychology also provides
models for understanding the productivity of collaborative groups in terms of
what are called process losses and gains, as well as organizational effects that
affect productivity. The impact of the collaborative medium on group interac-
tions is worth understanding, so we briefly describe some of the classic research
on the effect of the communications medium on interaction. Like the field of
social psychology, media research offers a rich array of concepts and a point of
departure for understanding and analyzing distributed collaboration. Potentially
useful concepts range from the effect of so-called common ground, coupling,
and incentive structures, to the use of social cues in communication, the richness
of informational exchanges, and temporal effects in collaboration. We introduce
the basic concepts and illustrate their relevance to open collaboration.

The open source movement is critically affected by legal issues related to
intellectual property. Intellectual property includes creations like copyrighted
works, patented inventions, and proprietary software. The objective of Chapter 6
is to survey the related legal issues in a way that is informative for understanding
their impact on free and open development. In addition to copyright and patent,
we will touch on topics like software patents, licenses and contracts, trademarks,
reverse engineering, the notion of reciprocity in licensing, and derivative works
in software. The legal and business mechanisms to protect intellectual property

1.2 Preview 15

are intended to address what is usually considered to be its core problem: how
to protect creations in order to provide incentives for innovators. Traditionally
such protection has been accomplished through exclusion. For example, you
cannot distribute a copyrighted work for your own profit without the authoriza-
tion of the copyright owner. The FSF’s GPL that lies at the heart of the free
software movement takes a very different attitude to copyright, focusing not on
how to invoke copyright to exclude others from using your work, but on how
to apply it to preserve the free and open distribution of your work, particularly
when modified. We describe the GPL and the rationales for its conditions. We
also consider the OSI and the motivations for its licensing criteria. The OSI,
cofounded by Eric Raymond and Bruce Perens in 1998, was established to
represent what was believed to be a more pragmatic approach to open develop-
ment than that championed by the FSF. The OSI reflected the experience of the
stream of the free software movement that preferred licenses like the BSD and
MIT licenses which appeared more attractive for commercial applications. It
reflected the attitude of developers like McKusick of the BSD project and Get-
tys of the X Window System. We describe some of the OSI-certified software
licenses including the increasingly important Mozilla Public License. We also
briefly address license enforcement and international issues, and the status and
conditions of the next version of the GPL: GPLv3.

Chapter 7 examines economic concepts relevant to open source develop-
ment, the basic business models for open products, the impact of software com-
moditization, and economic models for why individuals participate in open
development. Some of the relevant economic concepts include vendor lock-in,
network effects (or externalities), the total cost of use of software, the impact
of licensing on business models, complementary products, and the potential for
customizability of open versus proprietary products. The basic open business
models we describe include dual licensing, consultation on open source prod-
ucts, provision of open source software distributions and related services, and
the important hybrid models like the use of open source for in-house devel-
opment or horizontally in synergistic combination with proprietary products,
such as in IBM’s involvement with Apache and Linux. We also examine soft-
ware commoditization, a key economic phenomenon that concerns the extent
to which a product’s function has become commoditized (routine or standard)
over time. Commoditization deeply affects the competitive landscape for pro-
prietary products. We will present some of the explanations that have been put
forth to understand the role of this factor in open development and its impli-
cations for the future. Finally, observers of the open source scene have long
been intrigued by whether developers participate for psychological, social, or
other reasons. We will consider some of the economic models that have been

16 1 Introduction

offered to explain why developers are motivated to work on these projects. One
model, based on empirical data from the Apache project, uses an effect called
signaling to explain why individuals find it economically useful to volunteer
for open source projects. Another model proposes that international differences
in economic conditions alter the opportunity cost of developer participation,
which in turn explains the relative participation rates for different geographic
regions.

The chapter on legal issues recounted the establishment and motivation for
the OSI in 1998 and Chris Peterson’s coinage of the open source designation
as an alternative to what was thought to be the more ideologically weighted
phrase free software. The OSI represents one main stream of the open software
movement. Of course, the stream of the movement represented by the FSF and
the GNU project had already been formally active since the mid-1980s. The
FSF and its principals, particularly Richard Stallman, initiated the free software
concept, defined its terms, vigorously and boldly publicized its motivations and
objectives, established the core GNU project, and led advocacy for the free
software movement. They have been instrumental in its burgeoning success.
Chapter 8 goes into some detail to describe the origin and technical objectives
of the GNU project, which represents one of the major technical triumphs of
the free software movement. It also elaborates on the philosophical principles
espoused by the FSF, as well as some of the roles and services the FSF provides.

Chapter 9 considers the role of open source in the public sector which,
in the form of government and education, has been critical to the creation,
development, funding, deployment, and promotion/advocacy of open software.
The public sector continues to offer well-suited opportunities for using and
encouraging open source, in domains ranging from technological infrastruc-
ture to national security, educational use, administrative systems, and so on,
both domestically and internationally. Open source has characteristics that nat-
urally suit many of these areas. Consider merely the role of the public sector
in supporting the maintenance and evolution of technological infrastructure for
society, an area in which open software has proven extremely successful. The
government has also historically played an extensive role in promoting innova-
tion in science and technology. For example, the federal government was the
leader in funding the development of the Internet with its myriad of underlying
open software components. Thus public investment in open development has
paid off dramatically in the past and can be expected to continue to do so in
the future. The transparency of open source makes it especially interesting in
national security applications. Indeed, this is an increasingly recognized asset
in international use where proprietary software may be considered, legitimately
or not, as suspect. Not only do governmental agencies benefit as users of open

1.2 Preview 17

source, government and educational institutions also play a role in promoting its
expanded use. Governmental policy decisions, whether of a legislative or policy-
driven character, can significantly affect the expansion of open software use in
the government and by the public. For example, nationalistic concerns about the
economic autonomy of local software industries or about national security have
made open source increasingly attractive in the international arena. Lastly, we
will address at some length the uses and advantages of open source in education,
including its unique role in computer science education.

We conclude our book in Chapter 10 with what, we believe, are the likely
scenarios for the prospective roles of open and proprietary software. Our inter-
pretation is a balanced one. On the one hand, the open source paradigm seems
likely to continue its advance toward worldwide preeminence in computer soft-
ware infrastructure, not only in the network and its associated utilities, but also
in operating systems, desktop environments, and standard office utilities. Sig-
nificantly, the most familiar and routine applications seem likely to become
commoditized and open source, resulting in pervasive public recognition of the
movement. The software products whose current dominance seems likely to
decline because of this transformation include significant parts of the current
Microsoft environment from operating systems to office software. However,
despite a dramatic expansion in the recognition and use of open source, this
in no ways means that open software will be dominant in software applica-
tions. To the contrary, the various dual modalities that have already evolved
are likely to persist, with robust open and proprietary sectors each growing and
prevailing in different market domains. While on the one hand, some exist-
ing proprietary systems may see portions of their markets overtaken by open
source replacements, on the other hand proprietary applications and hybrid
modes of commercial development should continue to strengthen. Specialized
proprietary killer-apps serving mega-industries are likely to continue to domi-
nate their markets, as will distributed network services built on open infrastruc-
tures that have been vertically enhanced with proprietary functionalities. Mixed
application modes like those reflected in the WAMP stack (with Windows used
in place of Linux in the LAMP stack) and the strategically significant Wine
project that allows Windows applications to run on Linux environments will
also be important. The nondistributed, in-house commercial development that
has historically represented the preponderance of software development seems
likely to remain undisclosed either for competitive advantage or by default,
but this software is being increasingly built using open source components —
a trend that is already well-established. The hybrid models that have emerged
as reflected in various industrial/community cooperative arrangements, like
those involving the Apache Foundation, the X Window System, and Linux, and

18 1 Introduction

based on industrial support for open projects under various licensing arrange-
ments, seem certain to strengthen even further. They represent an essential
strategy for spreading the risks and costs of software development and provid-
ing an effective complementary set of platforms and utilities for proprietary
products.

SECTION ONE

Open Source — Internet Applications,
Platforms, and Technologies

2

Open Source Internet Application Projects

This chapter describes a number of open source applications related to the
Internet that are intended to introduce the reader unfamiliar with the world
of open development to some of its signature projects, ideas, processes, and
people. These projects represent remarkable achievements in the history of
technology and business. They brought about a social and communications
revolution that transformed society, culture, commerce, technology, and even
science. The story of these classic developments as well as those in the next
chapter is instructive in many ways: for learning how the open source process
works, what some of its major accomplishments have been, who some of the
pioneering figures in the field are, how projects have been managed, how people
have approached development in this context, what motivations have led people
to initiate and participate in such projects, and what some of the business models
are that have been used for commercializing associated products.

Web servers and Web browsers are at the heart of the Internet and free
software has been prominent on both the server and browser ends. Thus the
first open source project we will investigate is a server, the so-called National
Center for Supercomputing Applications (NCSA) Web server developed by
Rob McCool in the mid-1990s. His work had in turn been motivated by the
then recent creation by Tim Berners-Lee of the basic tools and concepts for a
World Wide Web (WWW), including the invention of the first Web server and
browser, HTML (the Hypertext Markup Language), and the HTTP (Hypertext
Transfer Protocol). For various reasons, McCool’s server project subsequently
forked, leading to the development of the Apache Web server. It is instruc-
tive and exciting to understand the dynamics of such projects, the contexts
in which they arise, and the motivations of their developers. In particular, we
will examine in some detail how the Apache project emerged, its organiza-
tional processes, and what its development was like. Complementary to Web

21

22 2 Open Source Internet Application Projects

servers, the introduction of easily used Web browsers had an extraordinary
impact on Web use, and thereby a revolutionary effect on business, technol-
ogy, and society at large. The Mosaic, Netscape, and more recently the Firefox
browser projects that we will discuss even shared some of the same development
context. The success of the Mosaic browser project was especially spectacu-
lar. In fact it was instrumental in catalyzing the historic Internet commercial
revolution. Mosaic’s developer Marc Andreessen later moved on to Netscape,
where he created, along with a powerhouse team of developers, the Netscape
browser that trumped all competition in the browser field for several years. But
Netscape’s stunning success proved to be temporary. After its initial triumph,
a combination of Microsoft’s bundling strategies for Internet Explorer (IE) and
the latter’s slow but steady improvement eventually won the day over Netscape.
Things lay dormant in the browser area for a while until Firefox, a descendant of
the Netscape Mozilla browser, came back to challenge IE, as we shall describe.

The process of computer-supported, distributed collaborative software devel-
opment is relatively new. Although elements of it have been around for decades,
the kind of development seen in Linux was novel. Eric Raymond wrote a famous
essay on Linux-like development in which he recounted the story of his own
Fetchmail project, an e-mail utility. Although Fetchmail is far less significant
as an open source product than other projects that we review, it has come to
have a mythical pedagogical status in the field because Raymond used its devel-
opment — which he intentionally modeled on that of Linux — as an exemplar
of how distributed open development works and why people develop software
this way. Raymond’s viewpoints were published in his widely influential essay
(Raymond, 1998) that characterized open development as akin to a bazaar style
of development, in contrast to the cathedral style of development classically
described in Fred Brooks’ famed The Mythical Man Month (twentieth anniver-
sary edition in 1995). We will describe Fetchmail’s development in some detail
because of its pedagogical significance.

We conclude the chapter with a variety of other important Internet-related
open applications. A number of these are free software products that have
been commercialized using the so-called dual licensing model. These are worth
understanding, first of all because licensing issues are important in open devel-
opment, and secondly because there is an enduring need for viable business
strategies that let creators commercially benefit from open software. The first
of these dual licensed projects that we will consider is the MySQL database
system. MySQL is prominent as the M in the LAMP Web architecture, where
it defines the backend database of a three-tier environment whose other com-
ponents are Linux, Apache, Perl, PHP, and Python. Linux is considered in
Chapter 3. Perl and PHP are considered here. We describe the influential role

2.1 The WWW and the Apache Web Server 23

of Perl and its widely used open source module collection CPAN, as well as the
server-side scripting language PHP that has its own rather interesting model for
commercialization. We also briefly consider Berkeley DB and Sendmail (which
serves a substantial portion of all Internet sites). Both of these are dual licensed
free softwares. Additional business models for free software are examined in
Chapter 7. The peer-to-peer Internet utility BitTorrent is a more recent open
source creation that exploits the interconnectedness of the Internet network in a
novel way and is intellectually intriguing to understand. BitTorrent has, in a few
short years, come to dominate the market for transferring popular, large files
over the Internet. We complete the chapter with a brief look at the fundamental
BIND utility that underlies the domain name system for the Internet, which
makes symbolic Web names possible. The tale of BIND represents a story with
an unexpected and ironic business outcome.

2.1 The WWW and the Apache Web Server

The story of the Apache Web server is a classic tale of open development. It
has its roots in the fundamental ideas for the WWW conceived and preliminar-
ily implemented by Tim Berners-Lee at a European research laboratory. Soon
afterward, these applications were taken up by students at an American univer-
sity, where Berners-Lee’s Web browser and server were dramatically improved
upon and extended as the NCSA Web server and the Mosaic browser. The
NCSA server project would in turn be adopted and its design greatly revised by
a new distributed development team. The resulting Apache server’s entry into
the marketplace was rapid and enduring.

2.1.1 WWW Development at CERN

We begin by highlighting the origins of the Web revolution. The idea for the
WWW was originated by physicist Berners-Lee at the CERN physics laboratory
in Switzerland when he proposed the creation of a global hypertext system
in 1989. The idea for such a system had been germinating in Berners-Lee’s
mind for almost a decade and he had even made a personal prototype of it
in the early 1980s. His proposal was to allow networked access to distributed
documents, including the use of hyperlinks. As an MIT Web page on the inventor
says,

Berners-Lee’s vision was to create a comprehensive collection of information in

word, sound and image, each discretely identified by UDIs and interconnected by

hypertext links, and to use the Internet to provide universal access to that collection
of information (http://web.mit.edu/invent/iow/berners-lee.html).

24 2 Open Source Internet Application Projects

Berners-Lee implemented the first Web server and a text-oriented Web
browser and made it available on the Web in 1991 for the NeXT operating
system. In fact, he not only developed the server and browser, but also invented
HTTP, HTML, and the initial URI version of what would later become URLSs
(uniform resource locators). His HTTP protocol was designed to retrieve HTML
documents over a network, especially via hyperlinks. He designed HTML for
his project by creating a simplified version of an SGML DTD he used at CERN,
which had been intended for designing documentation. He introduced a new
hyperlink anchor tag <a> that would allow distributed access to documents
and be central to the WWW paradigm (Berglund et al., 2004). Berners-Lee kept
his prototype implementations simple and widely publicized his ideas on the
www-talk mailing list started at CERN in 1991. He named his browser World-
WideWeb and called his Web server httpd (Berners-Lee, 2006). The server ran
as a Unix background process (or daemon), continually waiting for incoming
HTTP requests which it would handle.

At about the same point in time, Berners-Lee became familiar with the free
software movement. Indeed, the Free Software Foundation’s Richard Stallman
gave atalk at CERN in mid-1991. Berners-Lee recognized that the free software
community offered the prospect of a plentitude of programmer volunteers who
could develop his work further, so he began promoting the development of Web
browser software as suitable for projects for university students (Kesan and
Shah, 2002)! He had his own programmer gather the software components he
had developed into a C library named libwww, which became the basis for future
Web applications. Berners-Lee’s initial inclination was to release the libwww
contents under the Free Software Foundation’s GPL license. However, there
were concerns at the time that corporations would be hesitant to use the Web
if they thought they could be subjected to licensing problems, so he decided
to release it as public domain instead, which was, in any case, the usual policy
at CERN. By the fall of 1992, his suggestions about useful student projects
would indeed be taken up at the University of Illinois at Urbana—Champaign.
In 1994, Berners-Lee founded and became director of the W3C (World Wide
Web Consortium) that develops and maintain standards for the WWW. For
further information, see his book on his original design and ultimate objective
for the Web (Berners-Lee and Fischetti, 2000).

2.1.2 Web Development at NCSA

The NCSA was one of the hubs for U.S. research on the Internet. It produced
major improvements in Berners-Lee’s Web server and browser, in the form of
the NCSA Web server (which spawned the later Apache Web server) and the

2.1 The WWW and the Apache Web Server 25

Mosaic Web browser. We will discuss the NCSA server project and its successor,
the still preeminent Apache Web server, in this section. The subsequent section
will consider the Mosaic browser and its equally famous descendants, which
even include Microsoft’s own IE.

Like many open source projects, the now pervasive Apache Web server
originated in the creativity and drive of youthful computer science students.
One of them was Rob McCool, an undergraduate computer science major at
the University of Illinois and a system administrator for the NCSA. McCool
and his colleague Marc Andreessen at NCSA had become fascinated by the
developments at CERN. Andreessen was working on a new Web browser (the
Mosaic browser) and thought the CERN server was too “large and cumbersome”
(McCool et al., 1999). He asked McCool to take a look at the server code. After
doing so, McCool thought he could simplify its implementation and improve
its performance relying on his system administration experience. Of course,
this kind of response is exactly what Web founder Berners-Lee had hoped for
when he had widely advertised and promoted his work. Since Andreessen was
developing the new browser, McCool concentrated on developing the server.
The result was the much improved NCSA httpd server.

While McCool was developing the improved httpd daemon, Andreessen
came up with a uniform way of addressing Web resources based on the URL
(Andreessen, 1993). This was a critical development. Up to this point, the
Web had been primarily viewed as a system for hypertext-based retrieval. With
Andreessen’s idea, McCool could develop a standardized way for the Web
server and browser to pass data back and forth using extended HTML tags
called forms in what was later to become the familiar Common Gateway Inter-
face or CGI. As a consequence of this, their extended HTML and HTTP Web
protocols “transcended their original conception to become the basis of general
interactive, distributed, client-server information systems” (Gaines and Shaw,
1996). The client and server could now engage in a dynamic interaction, with
the server interpreting the form inputs from the client and dynamically adapt-
ing its responses in a feedback cycle of client-server interactions. Gaines and
Shaw (1996) nicely describe this innovation as enabling the client to “transmit
structured information from the user back to an arbitrary application gatewayed
through the server. The server could then process that information and generate
an HTML document which it sent back as a reply. This document could itself
contain forms for further interaction with the user, thus supporting a sequence
of client-server transactions.”

In traditional open development style, McCool kept his server project posted
on a Web site and encouraged users to improve it by proposing their own
modifications. At Andreessen’s recommendation, the software was released

