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Preface

Metal oxides having the cubic (or nearly cubic), ABO3 perovskite structure consti-
tute a wide class of compounds that display an amazing variety of interesting prop-
erties. The perovskite family encompasses insulators, piezoelectrics, ferroelectrics,
metals, semiconductors, magnetic, and superconducting materials. So broad and
varied is this class of materials that a comprehensive treatise is virtually impossible
and certainly beyond the scope of this introductory text. In this book we treat
only those materials that possess electronic states described by energy band the-
ory. However, a chapter is devoted to the quasiparticle-like excitations observed in
high-temperature superconducting metal oxides. Although principally dealing with
the cubic perovskites, tetragonal distortions and octahedral tilting are discussed in
the text. Strong electron correlation theories appropriate for the magnetic proper-
ties of the perovskites are not discussed. Discussions of the role of strong electron
correlation are frequent in the text, but the development of the many-electron the-
ory crucial for magnetic insulators and high-temperature superconductors is not
included.

This book is primarily intended as an introductory textbook. The purpose is
to provide the reader with a qualitative understanding of the physics and chem-
istry that underlies the properties of “d-band” perovskites. It employs simple linear
combinations of atomic orbitals (LCAO) models to describe perovskite materials
that possess energy bands derived primarily from the d orbitals of the metal ions
and the p orbitals of the oxygen ions. The results are usually obtained analytically
with relatively simple mathematical tools and are compared with experimental data
whenever possible.

The book is considered appropriate for science and electrical engineering grad-
uate students and advanced undergraduate seniors. It may be used as a primary
text for short courses or specialized topic seminars or it can serve as an auxiliary
text for courses in quantum mechanics, solid-state physics, solid-state chemistry,
materials science, or group theory. The reader will need a basic understanding of
quantum mechanics, and should have had an introductory course in solid-state
physics or solid-state chemistry. Knowledge of group theory is not required, but
some understanding of the role of symmetry in quantum mechanics would be help-
ful. The material covered is considered a prerequisite for understanding the results
of more complex models and numerical energy band calculations. Research scien-
tists seeking a qualitative understanding of the electronic and optical properties of
the perovskites will also find this book useful.

The theoretical results are derived in sufficient detail to allow a typical reader
with a calculus background to reproduce the formulae and derive independent re-
sults. Because most of the results are presented in analytic form, the relationships

ix



x Preface

among the physical variables are transparent and can easily be understood and ex-
plored. Using these analytical results the reader can obtain numerical results for the
electronic, optical, and surface properties of specific materials using nothing more
sophisticated than a programmable hand calculator or a desk computer equipped
with MS QuickBasic c© software.

Many of the topics discussed in the book were originally published by the
authors in research papers and were formulated in terms of Green’s functions. In
order to keep the material in this book as simple as possible the same results are
obtained here by more rudimentary mathematical methods.

For the most part our understanding of the properties of metals is derived from
various versions of the free-electron model (often with imposed periodic boundary
conditions). The simplicity of this model does not diminish its applicability, and in
many instances, particularly in the case of BCS (Bardeen–Cooper–Schrieffer) su-
perconductors, the results obtained are quantitatively correct. Of equal importance
is the pedagogical utility of the free-electron model, which permits scientists and
students alike to make simple calculations and to develop scientific concepts and a
useful intuition about the electronic and optical phenomena of metals.

In the case of compounds whose properties are dominated by the atomic or-
bitals of the constituent ions, the free-electron model is not particularly useful.
For compounds such as the perovskites the physical and chemical properties are
largely dependent upon the crystalline structure and the symmetry of the atomic
orbitals involved in the valence bands and the bands near the Fermi level. The
purpose of this book is to provide a relatively simple but complete description of
the d-band perovskites based on atomic-like orbitals. Models of this type were de-
veloped many years ago by chemists and physicists alike using LCAO and other
similar localized-orbital approaches. Later, such models were “put on the shelf”
as theoretical solid-state physicists moved almost exclusively into the realm of
momentum-space theories. Indeed, for some time it could be said with justifica-
tion that solid-state physicists were the Fourier transform of solid-state chemists.

With the recent discovery of high-temperature superconductivity (HTSC) in
the cuprate compounds interest in the science of the transition metal oxides has
grown enormously. Interestingly, solid-state theorists have returned to real-space
theories to look for an understanding of these materials. It is somewhat ironic that
the original migration to ~k-space was driven, to a large degree, by the success
of the BCS theory in explaining (low-temperature) superconductivity in terms of
a free-electron model. Now, HTSC is leading solid-state physicists back to real-
space approaches. Not withstanding the extreme importance of strong electron
correlations, renormalization effects, holons, and spinons, HTSC experimental data
are most often discussed in terms of local atomic-like orbitals, the symmetry of the
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orbitals and the interactions between them. That is, the data are discussed in the
jargon characteristic of LCAO models.

Although high-temperature superconductors are not, strictly speaking, per-
ovskites, they share many structural and electronic features in common with the
perovskites. For that reason we have included a chapter on the low-lying quasipar-
ticle bands of these exciting, new materials.





1

Introductory discussion of the perovskites

1.1 Introduction

The mineral CaTiO3 was discovered in the Ural Mountains by geologist Gustav Rose
in 1839 and given the name perovskite in honor of the eminent Russian mineralogist,
Count Lev Alexevich von Perovski. The name perovskite is now used to refer to any
member of a very large family of compounds that has the formula ABC3 and for
which the B ion is surrounded by an octahedron of C ions. Perovskites (MgSiO3

and FeSiO3) are the most abundant compounds in the Earth’s crust.

The compounds with the formula ABO3, with O = oxygen and B =a transition
metal ion, are a subclass of the transition metal oxides that belong to the perovskite
family. Table 1.1 provides a brief list of some well-studied ABO3 perovskites. Many
of the perovskites are cubic or nearly cubic, but they often undergo one or more
structural phase transitions, particularly at low temperatures.

The perovskite oxides are extremely interesting because of the enormous va-
riety of solid-state phenomena they exhibit. These materials include insulators,
semiconductors, metals, and superconductors. Some have delocalized energy-band
states, some have localized electrons, and others display transitions between these

Table 1.1. Some perovskite and related oxides.

Insulating Metallic Magnetic Superconducting
SrTiO3(n-type)

WO3 ReO3 PbCrO3 NaxWO3 (t)
NaTaO3 NaWO3 LaCrO3 KxWO3 (t)
SrTiO3 KMoO3 CaMnO3 KxWO3 (h)
BaTiO3 SrNbO3 LaMnO3 RbxWO3 (h)
KTaO3 LaTiO3 LaCoO3 CsxWO3 (h)
LiNbO3 LaWO3 LaFeO3 LixWO3 (h)

t=tetragonal, h =hexagonal

1



2 Introductory discussion of the perovskites

two types of behavior. Many of the perovskites are magnetically ordered and a large
variety of magnetic structures can be found.

The electronic properties of the perovskites can be altered in a controlled man-
ner by substitution of ions into the A or B sites, or by departures from ideal stoi-
chiometry.

The electronic energy bands of the perovskites are very unusual in that they
exhibit two-dimensional behavior that leads to unique structure in properties such
as the density of states, Fermi surface, dielectric function, phonon spectra and the
photoemission spectra.

The perovskites are also important in numerous technological areas. They are
employed in photochromic, electrochromic, and image storage devices. Their ferro-
electric and piezoelectric properties are utilized in other device applications includ-
ing switching, filtering, and surface acoustic wave signal processing.

Many of the perovskites are catalytically active. Development of perovskite
catalyst systems for the oxidation of carbon monoxide and hydrocarbons, and the
reduction of the oxides of nitrogen have been proposed. The perovskites are also
employed in electrochemical applications including the photoelectrolysis of water
to produce hydrogen.

Scientific studies of the perovskites date back many years. The physical prop-
erties of the tungsten bronzes were investigated as early as 1823 [1]. However, it is
only in recent years that experimental and theoretical information on the electronic
structure has begun to become available. Energy band calculations [2], neutron
diffraction and inelastic scattering data [3], photoemission spectra [4], optical spec-
tra [5], and transport data [6] are now available for materials such as ReO3, WO3,
NaWO3, SrTiO3, BaTiO3, KMoO3, KTaO3, LaMnO3, LaCoO3, and a variety of
other perovskites.

Surface studies of single-crystal perovskites have been performed using pho-
toelectron spectroscopies that indicate that the surface properties are extremely
complex and interesting [7].

In this chapter we present brief discussions of some of the properties of the
perovskite oxides. The discussions are qualitative and intended only to give the
reader a general impression of the types of factors that must be considered. More
quantitative discussions are given in later chapters.

In Section 1.2 we describe the structural features of the perovskites. Sections
1.3 through 1.6 give a qualitative discussion of the electronic states starting from a
simple ionic model and then adding ligand field, covalency, and band effects. Section
1.7 deals briefly with localized d-electron states and why many perovskites do not
have conventional energy bands. In Section 1.8 we touch upon the multiplet config-
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urations of localized d electrons and their role in determining the magnetic prop-
erties. In Section 1.9 we discuss briefly superconductivity among the perovskites.
The last section, 1.10, is a summary of some of the technological applications of
the perovskites.

1.2 The perovskite structure

The formula unit for the cubic perovskite oxides is ABO3 where A and B are metal
cations and O indicates an oxygen anion. The structure, illustrated in Fig. 1.1, is
simple cubic (O1

h, Pm3m) with five atoms per unit cell. The lattice constant, 2a, is
close to 4 Å for most of the perovskite oxides.

Figure 1.1. The crystal structure of perovskite oxides with ABO3 formula unit.

The B cation is a transition metal ion such as Ti, Ni, Fe, Co, or Mn. It is
located at the center of an octahedron of oxygen anions. The B site has the full
cubic (Oh) point group symmetry. The A cation may be a monovalent, divalent,
or trivalent metal ion such as K, Na, Li; Sr, Ba, Ca; or La, Pr, Nd. The A ion is
surrounded by 12 equidistant oxygen ions. The A site also has the point group Oh.
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The oxygen ions are not at sites of cubic point group symmetry. Focusing
attention on the oxygen ion marked with an “×” in Fig. 1.1 it may be seen that
the site symmetry is D4h. The B–O axis is a fourfold axis of symmetry and there
are several reflection planes; the yz-plane and planes passing through the edges
containing A sites. The transition metal ion (B site) will experience a cubic ligand
field that lifts the fivefold degeneracy of the d-orbital energies. The oxygen ions
experience an axial ligand field that splits the 2p-orbital energies into two groups.
These splittings are described in the next section.

Well-known examples of cubic perovskites are SrTiO3, KTaO3, and BaTiO3

(above the ferroelectric transition temperature). Many of the perovskites that we
shall want to include in our discussions are slightly distorted from the ideal cubic
structure. If the distortions are moderate the general features are not significantly
different from those of the cubic materials. BaTiO3 and SrTiO3 both have structural
transitions to a tetragonal symmetry at certain critical temperatures. Tetragonal
and orthorhombic distortions are very common among the perovskites.

Another class of compounds that we include in our discussions are the pseudo-
perovskites with the formula unit BO3. Such compounds have the perovskite struc-
ture except that the A sites are empty. Examples of pseudo-perovskites are ReO3

and WO3.

It is possible to form an intermediate class of perovskites from WO3 by adding
alkali ions to the empty A sites. These compounds, known as the tungsten bronzes,
have the formula unit AxWO3 where x varies from 0 to 1 and A is H, Li, Na, K, Rb,
or Cs. The structure is often dependent upon the value of x. WO3 is tetragonally
distorted but becomes cubic for x > 0.5. NaWO3 is cubic.

In our discussions we shall also include substituted or mixed compounds of the
form (A1

xA2
1−x)(B1

yB2
1−y)O3 and oxygen-deficient perovskites, ABO3−x. Including

distorted, substituted, and non-stoichiometric compounds, the class of materials
under consideration is very large. Within this broad class, examples may be found
that display almost any solid-state phenomena known.

1.3 Ionic model

The perovskite oxides are highly ionic, but they also possess a significant covalent
character. The ionic model is an oversimplified picture but it serves well as a starting
point for thinking about the electronic properties. The ionic model assumes that the
A and B cations lose electrons to the oxygen anions in sufficient numbers to produce
O2− ions. The usual chemical valence is assumed for the A cations; K+, Ca2+, and
La3+, for example. The ionic state of the transition metal ion is determined by
charge neutrality. If the charge of the B ion is denoted by qB and that of the A ion
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Table 1.2. Cations commonly found in perovskite-type oxides. In parentheses is
the coordination number, Z, if the radii given are not for 12 coordination; HS and
SL refer to high spin and low spin, respectively. The effective ionic radii (in Å) are
from Shannon [8].

Dodecahedral A site (Z =12) Octahedral B site (Z =6)

Ion Electrons Radius Ion Electrons Radius

Na+ 2p6 1.39 Li+ 1s2 0.76
K+ 3p6 1.64 Cu2+ 3d9 0.73
Rb+ 4p6 1.72 Mg2+ 2p6 0.72
Ag+ 2d10 1.28 (8) Zn2+ 3d10 0.74
Ca2+ 3p6 1.34 Ti3+ 3d1 0.67
Sr2+ 4p6 1.44 V3+ 3d2 0.64
Ba2+ 5p6 1.61 Cr3+ 3d3 0.615
Pb2+ 6s2 1.49 Mn3+(LS) 3d4 0.58
La3+ 4d10 1.36 Mn3+(HS) 3d4 0.645
Pr3+ 4f2 1.18 (8) Fe3+(LS) 3d5 0.55
Nd3+ 4f3 1.27 Fe3+(HS) 3d5 0.645
Bi3+ 6s2 1.17 (8) Co3+(LS) 3d6 0.5456
Ce4+ 5p6 1.14 Co3+(HS) 3d6 0.61
Th4+ 6p6 1.21 Ni3+(LS) 3d7 0.56

Ni3+(HS) 3d7 0.60
Rh3+ 4d6 0.665
Ti4+ 3p6 0.605
Mn4+ 3d3 0.53
Ru4+ 4d4 0.62
Pt4+ 5d6 0.625
Nb5+ 4p6 0.64
Ta5+ 5p6 0.64
Mo6+ 4p6 0.59
W6+ 5p6 0.60

by qA then qB = 6− qA where the three oxygen ions contribute the factor of 6. A
list of the common A ions and their valence states is given in Table 1.2.

Once the charge state of the B ion is determined the number of d electrons
remaining is determined from the atomic electronic configuration (Table 1.2). For
example, for SrTiO3 we have Sr2+ and O2− so that the titanium ion is Ti4+. The
electronic configuration of neutral titanium atom is [Ar] 3d24s2. To form Ti4+ the
outer four electrons are removed leaving the closed-shell Ar core [Ar]. Since O2−
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has the [Ne] configuration, all of the ions of SrTiO3 have closed-shell configurations.
The electronic configuration of W is [Xe] 5d46s2. Thus in WO3 the W6+ ion has
a closed-shell [Xe] core; however, for NaWO3 the W5+ ion has a d1 configuration.
The electronic configurations of relevant transition metal ions are given in Table
1.2.

According to the ionic model when all of the ions have closed-shell configura-
tions the material is an insulator. If the B ion retains d electrons then the perovskite
may be a metallic conductor depending on other factors to be discussed. NaWO3

or ReO3 each have d1 configurations and are good metals. For compounds such
as NaxWO3 it is assumed that there will be x d electrons per unit cell. That is,
the Na donates its electron and the W ions donate the remaining electrons needed
to form O2− ions. One may imagine that there are (1− x) W6+ and x W5+ ions
distributed at random or on an ordered array or that each tungsten ion has an
average valence of W(6−x)+. The proper picture can not be decided from the ionic
model but depends on other considerations. For NaxWO3 experiments show that
metallic d bands are formed so that we may picture an average valency of (6− x)+.
However, among the perovskites examples of ordered and random arrays of mixed
valence B ions can also be found.

1.4 Madelung and electrostatic potentials

Starting from the ionic model, other important effects that determine the electronic
properties can be added. The ionic model described above would apply to isolated or
free ions. The ions are, of course, not isolated but interact in several different ways.
One such interaction is through the electrostatic fields due to the charges on the
ions. The most important electrostatic effect is the Madelung potential. The A and
B ions are surrounded by negatively charged oxygen ions. The electrons orbiting
these ions therefore experience repulsive electrostatic (Madelung) potentials. Con-
versely, the electrons orbiting the oxygen ions are surrounded by positively charged
cations and they experience an attractive Madelung potential. The “site Madelung
potentials” are defined as the electrostatic potentials at the different lattice sites
due to all of the other ions. For example, the Madelung potential at a B site located
at ~R0

B is

VM(~R0
B) =

∑

~RO

e2|qO|
|~R0

B − ~RO|
−

∑

~RA

e2|qA|
|~R0

B − ~RA|
−

∑

~RB 6=~R0
B

e2|qB |
|~R0

B − ~RB |
. (1.1)

In (1.1), eqO, eqA, and eqB are the charges on the oxygen, A, and B ions, re-
spectively, and ~RO, ~RA, and ~RB are the vectors for the corresponding lattice sites.
The site Madelung potentials are very large for the perovskites because of the
large ionic charges. Typical Madelung potentials are 30–50 eV for the B site. For
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A2+B4+O2−
3 perovskites the (full ionic) site potentials [9] are: VM(B)=+45.6 eV,

VM(A)= +19.9 eV, and VM(O)=–23.8 eV. A table of Madelung potentials can be
found in Appendix D.

The stability of the perovskite structure is largely due to the energies associated
with the Madelung potentials. The attractive potential at the oxygen sites allows
the oxygen ions to bind a pair of electrons. In effect the site potential adds to the
electron affinity of the oxygen ion. The affinity of O− for the second electron is
actually positive. This means that the second electron would not be bound on a
free oxygen ion. O2− is stable in the lattice because of the attractive site Madelung
potential. Conversely, a d electron is bound to a Ti4+ ion with an (ionization)
energy of –43 eV. In the absence of the repulsive site Madelung potential, donation
of an electron from the Ti3+ to an O− ion in SrTiO3 would be energetically very
unfavorable. The site Madelung potential adds to the ionization energy so that the d

electron would have an effective binding energy of –43 + 45.6= +2.6 eV (unbound)
for SrTiO3 with the full ionic charges.

Thus, it is seen that the Madelung potentials are responsible for the ionic
configurations.

An orbital centered on an ion has a finite radial extent so that an electron in
such an orbital would sample the electrostatic field over a distance comparable to
the ionic radius. In order to determine the complete effect of the electrostatic field
on the electron state we need to know the behavior of the field as a function of
position near each ion site. If we use the point ion model then,

V (~r) = − e2|qB |
|~r − ~R0

B |
+ Ves(~r) ,

Ves(~r) = −
∑

~RB 6=~R0
B

e2|qB |
|~r − ~RB |

−
∑

~RA

e2|qA|
|~r − ~RA|

+
∑

~RO

e2|qO|
|~r − ~RO|

. (1.2)

The potential near ~R0
B can be found by expanding Ves(~r) in terms of spherical

harmonics centered at ~R0
B . The potential Ves(~r) then takes the form of an electric

multipole expansion. The monopole term is just the site Madelung potential. Thus,
as we have described, the site Madelung potential produces a shift in the energy of
an electron localized on the site.

The higher-order multipoles (dipole, quadrupole, etc.) create an electrostatic
field (with the point group symmetry of the site) which leads to a lifting of the
orbital degeneracies. The effect of the cubic electrostatic field at the B ion site is to
split the fivefold degenerate d states into two groups as shown in Fig. 1.2(c). The
eg group is doubly degenerate corresponding to the d orbitals having wavefunctions
with angular symmetry (x2 − y2)/r2 and (3z2 − r2)/r2. The threefold degenerate
t2g group corresponds to the states (xy/r2), (xz/r2), and (yz/r2).
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?

6

(a) (b) (c)

B – ion

A – ion

O – ion

2p (3)

d (5)

s (1) s (1)

eg (2)

t2g (3)

p⊥ (2)

p‖ (1)

Eg

Figure 1.2. Effect of the electrostatic potentials on the ion states: (a) free ions,
(b) Madelung potential, and (c) electrostatic splittings.

The oxygen 2p states are split by the axial electrostatic field into a doubly
degenerate level denoted by p⊥ and a non-degenerate p‖ state. The notation p⊥
and p‖ refer to 2p orbitals oriented perpendicular and parallel to a B–O axis,
respectively.

The lowest unoccupied state of the A ion is an s state. Its energy is shifted by
the monopole (Madelung potential) but unaffected by the other multipole terms
because it is a spatially non-degenerate function with spherical symmetry at a site
of cubic symmetry.

The particular level ordering shown in Fig. 1.2 may be understood by consid-
ering the orientation of orbitals relative to the charge distributions on neighboring
ions. The eg orbitals have lobes directed along the B–O axis and directly into the
negative charge clouds of oxygen ions. The t2g orbitals have lobes pointed perpen-
dicular to the B–O axis between the negative oxygen ions. As a result the eg states
experience a greater repulsion than the t2g states and consequently lie at a higher
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energy. Similar reasoning suggests that the p‖ states lie below the p⊥ states when
it is noted that B ion cores appear as positively charged centers.

In insulating perovskites such as SrTiO3 the p states are completely filled while
the d states are completely empty. The energy difference, Eg, between the t2g and
p⊥ states is approximately equal to the energy gap. Metallic and semiconducting
materials have the d states partially filled. NaWO3 or ReO3 have a single electron
in a t2g state.

In most but not all cases the energy bands involving the s state of the A ion
are at energies much higher than the primary valence and conduction bands of a
perovskite and therefore these bands are unoccupied. As a result the s state of
the A ion usually does not play any significant role in determining the electronic
properties. This is not to say that the A ion is not important. The electrostatic
potentials of the A ions have a strong influence on the energy of the p–d valence
and conduction bands. Furthermore, the size of the A ion is a significant factor in
determining whether the crystal structure is distorted from the ideal cubic form.
Nevertheless, given a particular perovskite structure and the effective electrostatic
potentials acting on the B and O sites, the orbitals of the A ion may usually be
omitted from electronic structure calculations. This leads to a major conceptual
simplification because the electronic properties of the perovskites may be regarded
as arising solely from the BO3 part of the ABO3 structure. This implies, for exam-
ple, that the electronic structure of BaTiO3 and SrTiO3 should be essentially the
same. According to the same reasoning the electronic structure of NaxWO3 should
be independent of x. This does not mean that the properties are the same, but only
that the available electronic states are the same. Obviously, the properties of WO3

are completely different from those of NaWO3; the former is an insulator and the
latter is a metal. However, as a first approximation the only effect of the sodium is
to donate electrons which occupy the t2g states of the tungsten ion.

1.5 Covalent mixing

In addition to electrostatic interactions, the ions can interact because of the overlap
of the electron wavefunctions. This leads to hybridization between the p and d

orbitals and the formation of covalent bonds between the transition metal ions and
the oxygen ions. It is frequently assumed that the covalent mixing in insulating
materials such as SrTiO3 is negligible. This is not correct. Nearly all of the physical
and chemical properties of the perovskites are significantly affected by covalency.

To understand covalent mixing we consider a cluster of atoms consisting of a
transition metal ion and its octahedron of oxygen ions. The wavefunctions of the
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cluster can be written in the form:

ψ(n)(~r) =
∑
α

a(n)
α ϕdα(~r) +

∑

~Ri

∑

β

b
(n)
iβ ϕpβ(~r − ~Ri), (1.3)

where ψ(n)(~r) is the cluster wavefunction for the nth eigenstate. ϕdα(~r) is a d orbital
on the B ion of α-type (α = xy, xz, . . ., etc.) and ϕpβ(~r − ~Ri) is a p orbital centered
at an oxygen ion located at ~Ri of the βth-type (β = x, y, or z). The coefficients
a
(n)
α and b

(n)
iβ are constants which specify the amplitudes of the different orbitals

which compose the nth eigenstate.
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Figure 1.3. Overlap between cation d orbitals and anion p orbitals. (a) Sigma overlap
and (b) pi overlap.

For the ionic model the wavefunctions are either pure d orbital (b(n)
iβ = 0) or

pure p orbital (a(n)
α = 0). For the cluster the wavefunctions are still predominantly

d or p orbital in character but there is a significant covalent mixing between the two
(both b

(n)
iβ and a

(n)
α 6= 0). The mixing comes about because of the overlap between

d orbitals centered on the cation and the p orbitals on neighboring oxygen ions.
There are two types of p–d overlap. The first is overlap between the d orbitals of
the eg type with p orbitals of the p‖ type. This overlap is called “sigma” overlap.
The second type, “pi” overlap occurs between t2g-type d orbitals and p⊥ orbitals.
These two types of overlap are illustrated in Fig. 1.3. The overlap between t2g and
p‖ orbitals or between eg and p⊥ orbitals vanishes by symmetry. If only the p and
d orbitals are considered then there are 23 cluster states for a transition metal ion
and the octahedron of oxygen ions. These 23 cluster states arise from admixtures
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Figure 1.4. (a) BO6 cluster and (b) the cluster levels. The dashed levels are for the
electrostatic model. ∆es is the electrostatic splitting.

of the 23 basis states; 5 d orbitals and 18 p orbitals, three on each of the six oxygen
ions.

The cluster energy levels [10] are illustrated in Fig. 1.4. The labels given to
the cluster energy levels indicate the group theoretical irreducible representations
to which the wavefunctions belong. The prefix numbers are used to distinguish
different levels which have the same symmetry properties. The degeneracies of the
levels are indicated by the numbers in parentheses.

It is noted that the cation d orbitals are still split into the eg and t2g groups.
These, so-called “ligand-field states” differ from those of the electrostatic model
(Fig. 1.2) in two significant ways. First, the wavefunctions are no longer just d

orbitals. They are admixtures of p and d orbitals. A second difference is that the
splitting between the eg and t2g groups is much larger than for the electrostatic
model. The cluster ligand-field splitting denoted by 10Dq is due to both electrostatic
and covalent effects. The covalent contribution to 10Dq is usually much larger than
the electrostatic contribution, ∆es. Typically 10Dq is 2–3 eV in magnitude.

The ligand-field states, 3eg and 2t2g, have wavefunctions in which the d orbitals
combine out-of-phase with the p orbitals. The interference between the orbitals leads
to a depletion of charge between the B and O ions. For this reason these states are
called antibonding states. Bonding states are formed from in-phase combinations
of the d and p orbitals. These states have wavefunctions that correspond to an
accumulation of charge between the B and O ions. The bonding states are the 2eg
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and 1t2g levels (shown in Fig. 1.4). These states have hybridized wavefunctions,
typically 70% p orbital and 30% d orbital. The percentage d-orbital admixture is a
measure of the covalent bonding.

The remaining cluster levels have wavefunctions that are combinations of p

orbitals located on the six oxygen ions. They do not hybridize with the d orbitals
and therefore they do not contribute to the metal–oxygen bonding. Such states are
called non-bonding states. Wavefunctions of the three types of cluster states are
illustrated in Fig. 1.5.

y

x x x

yy

(b) 1t2g (c) 1t1g(a) 2t2g

Figure 1.5. Cluster states: (a) antibonding, (b) bonding, and (c) non-bonding.

It is important to note that electrons occupy d orbitals on the cation even when
the 3eg and 2t2g levels are unoccupied. This is because of the covalent mixing of the
d orbitals into the filled valence states below the 2t2g level. This covalency effect
is significant even for “ionic” insulators such as SrTiO3. The ionic model implies
that the titanium ion is Ti4+ with a d0 configuration. Cluster models would give
an effective valence such as Ti3+(d1).

1.6 Energy bands

In the preceding section we considered a cluster model for the perovskites in which
the transition metal ion interacts with the nearest-neighbor oxygen ions. The co-
valent mixing between the cation and anion wavefunctions leads to a partial oc-
cupation of d orbitals which, in the ionic model, were empty. A mechanistic in-
terpretation of the covalent mixing is that the overlap between cation and anion
wavefunctions provides a means of transferring electrons back and forth between
the ions. Clearly, for an extended crystal structure the same mechanism will al-
low electrons to be shared between cations in adjacent clusters. Each oxygen of a
given cluster is shared by adjacent cations. Cations can interact with each other
through the intervening oxygen ion. An electron on a cation may be transferred
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to the oxygen ion and then from the oxygen ion to the second cation. When such
processes occur the electrons become delocalized and electron energy bands are
formed. It is important to note that the formation of d-electron bands requires two
independent electron transfer processes. The delocalization of d electrons therefore
is second order in the p–d overlap (or the probability of p to d electron transfer).
This is quite different from a typical monatomic metal where delocalization is first
order in the atomic overlap. For cubic perovskites the cation–cation separation is
nearly 4 Å. This is too large for a significant direct overlap between cation orbitals
and therefore band formation occurs by transfer of electrons between cations and
anions whose separation is only about 2 Å.

In considering the energy bands of a perovskite it is appropriate to divide the
crystal into unit cells each with the formula unit ABO3. (The unit cell is shown
in Fig. 1.1.) As discussed previously, the s states of the A ion can be neglected.
Therefore, there will be 14 energy bands corresponding to the five d orbitals
and nine p orbitals of each unit cell. The wavefunctions of the band states are
characterized by a wavevector ~k and are of the form

Ψ~k(~r) =
∑

~Rd

∑
α

aα(~k) ei~k·~Rd ϕdα(~r − ~Rd)+
∑

~Rp

∑

β

bβ(~k) ei~k·~Rp ϕpβ(~r − ~Rp). (1.4)

In (1.4), aα(~k) ei~k·~Rd and bβ(~k) ei~k·~Rp are respectively the amplitudes of the d and
p orbitals of symmetries α and β located at the lattice sites ~Rd and ~Rp.

An energy band diagram for a typical perovskite is shown in Fig. 1.6 for a
model which includes only the interactions between nearest-neighbor ions [11]. For
this simple model the energy bands divide into a set of sigma bands and a set of pi
bands. The sigma bands involve only the eg d orbitals and the p‖ oxygen orbitals.
The pi bands involve only the t2g d orbitals and the p⊥ oxygen orbitals.

The sigma bands have five branches: two distinct σ-type valence (bonding)
bands, two distinct σ∗-type conduction (antibonding) bands and a single σ0-type
non-bonding band. The pi bands have nine branches: three equivalent π-type va-
lence (bonding) bands, three equivalent π∗-type conduction (antibonding) bands,
and three equivalent π0-type non-bonding bands.

The bonding and antibonding (σ, σ∗, π, π∗) bands have wavefunctions whose
p–d admixture varies as a function of the wavevector ~k. At Γ(~k =0) in the first
Brillouin zone (see the inset in Fig. 1.6) the wavefunctions are pure p or pure d

orbital in composition. The states at Γ have no covalent character and therefore
correspond to the levels derived from the ionic model including the electrostatic
potentials (Fig. 1.2(c)). As ~k varies along Γ → X→ M→ R the covalent mixture
of the p and d orbitals increases. It is maximum at the point R, at the corner of
the Brillouin zone. The states at R are very similar to the “g” states of the cluster
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Figure 1.6. Energy bands for a typical perovskite showing the dispersion for ~k-vectors
along various lines in the Brillouin zone (inset) according to the LCAO model with nearest-
neighbor interactions. The lighter curves are the pi bands and the darker curves are the
sigma bands. The energies, Eg, 10Dq, ∆d, and ∆p are the band gap, total (cluster)
ligand-field splitting, d-orbital ligand-field splitting, and the p-orbital ligand-field split-
ting, respectively.

model (i.e., 2t2g, 3eg, etc.). Thus the ionic model underestimates the covalency and
the cluster model overestimates the covalency of the perovskites. The separation
between the σ∗ and π∗ bands at Γ, ∆es(d), corresponds to the electrostatic con-
tribution to the ligand-field splitting. The separation at R is the total ligand-field
band splitting and is approximately equal to 10Dq.
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The non-bonding band states for σ0 and π0 involve only oxygen 2p orbitals
and therefore do not involve metal–oxygen covalent mixing. The band and cluster
models produce similar non-bonding states.

The energy separation between the π∗ and π0 bands at Γ is the fundamental
band gap, Eg. It varies between 1 and 4 eV and is largest for the insulating per-
ovskites. Covalent mixing decreases with increasing band gap. The magnitude of
the band gap is a measure of the ionicity of a perovskite. For example, the band
gap of SrTiO3 is 3.25 eV and that of ReO3 is about l eV. This means that SrTiO3

is much more ionic than ReO3.

Insulating perovskites (e.g., SrTiO3, BaTiO3, or WO3) have filled valence
bands; that is, the σ, π, σ0, and π0 bands are completely occupied with electrons.
The conduction bands (σ∗ and π∗) are empty. Metallic perovskites such as NaWO3

or ReO3 have one electron per unit cell in the π∗ conduction band. Examples of
metallic compounds with two electrons in the π∗ band are CaMoO3, BaMoO3, and
SrMoO3. Perovskites with more than two d electrons tend to form localized-states
similar to those of the cluster model rather than delocalized band states.

Insulating perovskites can be rendered semiconducting or metallic by several
means. Reduction in a hydrogen atmosphere produces oxygen vacancies. The vacan-
cies act as donor centers; two electrons being donated by each vacancy (hydrogen
itself may also remain in the lattice and act as a donor). Electron concentrations
in the range of 1016–1020 electrons/cm3 can be produced in this way. Reduced in-
sulating perovskites are n-type semiconductors with the Fermi level very near to
the bottom of the π∗ conduction band. n-type SrTiO3 has been found to be a
superconductor at temperatures below 0.3 K [12].

Insulating perovskites can also be doped by substituting appropriate ions into
either the B or A sites. The tungsten bronzes NaxWO3, KxWO3, LixWO3, and
HxWO3 are special cases in which donor ions are substituted into the empty A

sites of insulating WO3. Electron concentrations of the order of 1022 electrons/cm3

are obtained in this case. Many of the bronze compositions are superconductors.

One of the reasons perovskites are particularly valuable for research is that
the electronic properties can be varied in a controlled fashion to produce almost
any desired feature. The Fermi level in SrTiO3 can be varied over a 3 eV range by
going from cation- to anion-deficient compositions. The basic band structure does
not change appreciably so the properties of such compositions are easily understood
and interpreted in terms of a fixed band structure; that is the “rigid-band” approx-
imation is valid. The rigid-band model is also applicable to the tungsten bronzes,
and mixed compounds of the A

(1)
x A

(2)
1−xBO3 type where A(1) and A(2) are different

cations.
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1.7 Localized d electrons

In the preceding section we indicated how the localized cluster states are delocal-
ized because of the overlap of wavefunctions between adjacent clusters. The d-band
formation is due to the transfer of electrons between cations via intervening oxygen
ions. These electrons become delocalized and have an equal probability (propor-
tional to |ei~k·~R|2=1) of being found at any cation site. The band model neglects
any possible spatial correlation between d electrons. The potential experienced by
a given electron is assumed to be the same at every lattice site and equal to the av-
erage potential of the ion core and all other electrons. The usual one-electron band
model explicitly ignores the fact that at any given instant of time a non-average
number of electrons may be occupying the orbital of an ion. However, during the
lifetime of the “non-average” ionic state the electrons on the site will experience
a non-average potential. In particular, the intra-atomic Coulomb repulsion of an
electron on a non-average site will be different from that at an average site.

Consider the situation in which we start with two metal ions each having n

electrons. The electron–electron repulsion energy among the n electrons at each
site is 1

2Un(n− 1) where U is the Coulomb integral. If we transfer an electron from
one site to the other there will be n− 1 electrons on one site and n + 1 on the
other. The electron–electron repulsion energy will be 1

2Un(n + 1) on the site with
the extra electron and 1

2U(n− 2)(n− 1) on the other site. There is a change in
the repulsion energy at one site of 1

2U [n(n + 1)− n(n− 1)] = nU . At the other site
the change in energy is 1

2U [(n− 2)(n− 1)− n(n− 1)] = −Un + U . Therefore, the
net change is an additional repulsive energy equal to U . Thus, there is a Coulomb
energy barrier to the creation of non-average ionic states.

Band formation is favorable because the delocalization of an electron reduces
its kinetic energy (provided that the electron can occupy a state near the bottom
of the band). For such a case the reduction in kinetic energy increases as the band
width increases.

It is clear from what has been said that energy band formation will only be
favorable if the reduction in kinetic energy is larger than the increase in the Coulomb
energy. A variety of models which include a form of the Coulomb correlation energy
have been used to find a criterion for the validity of the band model [13]. In general
it is found that band theory applies when W & U where W is the band width. For
W less than U , localized d-electron states are energetically favored. The precise
criterion is model-dependent.

The localized electron criterion leads to interesting possibilities for the per-
ovskites. The band width of the σ∗ band is substantially larger than that of the
π∗ band and consequently, for a number of perovskites, the t2g states are localized
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while the eg states form σ and σ∗ energy bands; LaNiO3 with filled t2g states and
a single electron in the σ∗ band is an example [14].

1.8 Magnetism in the perovskites

The occurrence of magnetism in the perovskites is closely connected to the exis-
tence of localized d electrons. In almost all cases where magnetism exists the d

electrons are localized and possess localized spins. In such cases the local electronic
configuration becomes an important consideration. One must be concerned with
the multiplet structure. The tendency toward the formation of a multiplet configu-
ration with a net spin arises from intra-atomic exchange and correlation. In atomic
theory, Hund’s rule states that the lowest-energy configuration corresponds to the
state of maximum multiplicity or maximum spin and orbital angular momentum.
Hund’s rule is qualitatively applicable to the perovskites with localized d electrons.
There are, however, some significant differences between atomic theory and the
theory applicable to ions of the solid. The major differences between free ions and
the cations in a solid perovskite are:

(1) the fivefold degenerate d states are split into the eg and t2g groups with a splitting of

10Dq;

(2) the energy differences between different electronic configurations are not as widely

separated as for the free ions;

(3) there is significant covalent mixing between the d-ion orbitals and the neighboring

oxygen ion p orbitals.

As a consequence of (1) and (3) the electronic configuration of the cation
should be specified in terms of the one-electron cluster states 3eg and 2t2g. For
simplicity the numerical descriptors of these states may be omitted. The d-electron
configuration may then be specified by (tn2ge

m
g ), where n and m are the occupations

of the 2t2g and 3eg levels, respectively.

The effect of (2) is that different valence states and different electronic con-
figurations of the cation are closer in energy to each other than for the free ion.
This is a result of polarization and electron screening of the Coulomb interactions.
On applying Hund’s rule to a perovskite cation the ligand-field splitting must be
taken into account. When the number of d electrons, m+n, is between 4 and 7,
Hund’s rule can be violated if the ligand-field splitting is greater than the intra-
atomic exchange energy. Consider, for example, LaMnO3 which has Mn3+ ions
with four d electrons. The intra-atomic exchange favors the “high-spin” configura-
tion 5Eg = (t2g ↑3 eg ↑). However, occupying the eg state involves a loss of binding
energy equal to the ligand-field splitting. Therefore, the “low-spin” configuration
3T2g = (t2g ↑3 t2g ↓) is competitive. Assuming a constant exchange, J , between par-
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allel spin electrons, the intra-atomic exchange involves

Eex = −J
∑

i>j

~si · ~sj ,

where ~si and ~sj are the spins of the occupied states. The 5Eg has an exchange
energy − 3

2J while for the 3T2g, Eex = − 3
4J . However, the 3T2g has a ligand-field

energy of 10Dq. Therefore, the difference in the energies of the two configurations
is

E(5Eg)− E(3T2g) = −3
4
J + 10Dq ≡ ∆E.

When ∆E < 0 the high spin state 5Eg (spin= 2) is lower in energy than the low spin
state 3T2g (spin= 1). If ∆E > 0 then the low spin state is favored. Experiments on
d4 ions in perovskites show that the low spin state is usually favored. This indicates
that the ligand-field splitting is larger than the intra-atomic exchange and Hund’s
rule does not apply.

When the cations possess localized spins, then long-range magnetic ordering
can occur. The principal mechanism of spin–spin interactions is superexchange.
Superexchange involves the antiferromagnetic coupling between nearest-neighbor
cations by exchange of electrons with the intervening oxygen ion.

Examples of magnetically ordered perovskites are LaCrO3, PbCrO3, CaMnO3,
LaFeO3, and many others. Those named above form the simple G-type magnetic
cell in which the spins of nearest-neighbor cations are antiparallel. Many other types
of magnetic ordering also occur among the magnetic perovskites.

As a final comment on localized d electrons we mention the importance of the
Jahn–Teller effect. This effect is the spontaneous distortion of a cubic structure
such as that of perovskites. When the cation electronic configuration is orbitally
degenerate, the ground state will in some cases, be unstable to small distortional
displacements. This Jahn–Teller distortion occurs because the electronic energy
decreases linearly with displacement while the elastic energy increases as the square
of the displacement. A minimum in the total energy always occurs for a small but
finite distortional displacement.

1.9 Superconductivity

Superconductivity has been observed for n-type SrTiO3 and for many of the com-
positions of the tungsten bronzes: LixWO3, NaxWO3, KxWO3, RbxWO3, and
CsxWO3. The occurrence of superconductivity in compounds whose elements are
not superconducting and for which more than three-fifths of the atoms are oxygen
is truly remarkable.
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WO3 is an insulator with a tetragonally distorted perovskite structure. With
the addition of alkali ions to the empty A site a variety of metallic bronzes can
be formed. The tungsten bronzes occur with cubic, hexagonal, and two different
tetragonal perovskite-like structures [15]. For NaxWO3 the tetragonal I phase occurs
in the range 0.2 < x < 0.5. For values of x < 0.2 the tetragonal II phase exists. For
values of x > 0.5 the cubic perovskite structure is stable. Tetragonal I, NaxWO3

and KxWO3 are superconducting with transition temperatures of 0.57 K [16] and
1.98K [17], respectively. The cubic and tetragonal II phases are apparently not
superconducting. Except for NaxWO3 and KxWO3, superconductivity occurs for
the other bronzes when they are in the hexagonal phase [17–19]. The transition
temperatures of the hexagonal bronzes are close to 2K.

It has been found that the transition temperature of the hexagonal bronzes
can be raised by a factor of 2 or 3 by etching in various acids [18]. The reasons for
this enhancement are not yet clear. The transition temperature of the tetragonal
I sodium tungsten bronze, NaxWO3, increases rapidly as x approaches 0.2 [19].
This enhancement occurs as the composition approaches the tetragonal II phase
boundary, and is presumed to be associated with a lattice instability.

More recently various alloys of barium bismuthates have been studied exten-
sively. The highest recorded Tc for a non-layered metal oxide is about 30K for the
alloy Ba1−xKxBiO3 for x = 0.38. This superconducting material displays a tran-
sition to an insulating state at x < 0.38, but is a cubic, superconducting metal
for 0.38 < x < 0.6. The related compound BaPb1−xBixO3 is also a superconduc-
tor with a maximum Tc of about 13K. BaBiO3 itself is an insulator even though
according to conventional band theory it possesses a half-filled conduction band
(antibonding Bi 6s–O 2p sigma band).

In 1986 Bednorz and Müller [20] discovered a new class superconducting metal
oxides (La2CuO4 doped with Ba2+, Sr2+, or Ca2+) one of which possessed a criti-
cal temperature, Tc, in excess of 30K. Their discovery was followed by a worldwide
research effort that turned up many other cuprate superconducting materials with
even higher critical temperatures, the record high being around 166 K, a temper-
ature that is above the boiling point of liquid nitrogen. These “high-Tc cuprate
superconductors” are characterized by sets (one or more layers) of “immediately
adjacent” planes of copper ions surrounded by four oxygen ions. Each set of “im-
mediately adjacent” layers is separated from the next set by “isolation layers”
(La–O planes in the case of La2CuO4) that are poorly conducting. Despite inten-
sive experimental and theoretical research efforts, the mechanisms underlying the
high-temperature superconductivity as well as the properties of the “normal” state
above Tc are not well understood. However, there seems to be agreement that the
two-dimensional character of the Cu–O bonding and the resulting large density of
states are important. The question of whether the mechanism of electron pairing


