The Mathematics
of Logic B

A guide 1o completeness
thesangrms and thesir
applications

| A 0NN ARD | ool
III iII II|I III |II IR i|Ii I|I ||I NN
[{ [} ] H [V IV L]

[ 1] [ |1
I||I|||!I|I||i|=||i|:='|II||||||II||i|=ii
I I II !.I I TER T |_! 1, !.I I! I.I | | I

e e p—



http://www.cambridge.org/9780521708777

This page intentionally left blank



The Mathematics of Logic

A guide to completeness theorems and their applications

This textbook covers the key material for a typical first course in logic for
undergraduates or first year graduate students, in particular, presenting a
full mathematical account of the most important result in logic: the
Completeness Theorem for first-order logic.

Looking at a series of interesting systems increasing in complexity, then
proving and discussing the Completeness Theorem for each, the author
ensures that the number of new concepts to be absorbed at each stage is
manageable, whilst providing lively mathematical applications throughout.
Unfamiliar terminology is kept to a minimum; no background in formal
set-theory is required; and the book contains proofs of all the required set
theoretical results.

The reader is taken on a journey starting with Kénig’s Lemma, and
progressing via order relations, Zorn’s Lemma, Boolean algebras, and
propositional logic, to Completeness and Compactness of first-order logic.
As applications of the work on first-order logic, two final chapters provide
introductions to model theory and non-standard analysis.

DR RICHARD KAYE is Senior Lecturer in Pure Mathematics at the University
of Birmingham.
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Preface

Mathematical logic has been in existence as a recognised branch of mathe-
matics for over a hundred years. Its methods and theorems have shown their
applicability not just to philosophical studies in the foundations of mathemat-
ics (perhaps their original raison d’étre) but also to ‘mainstream mathematics’
itself, such as the infinitesimal analysis of Abraham Robinson, or the more
recent applications of model theory to algebra and algebraic geometry.

Nevertheless, these logical techniques are still regarded as somewhat ‘diffi-
cult’ to teach, and possibly rather unrewarding to the serious mathematician. In
part, this is because of the notation and terminology that still survives as a relic
of the original reason for the subject, and also because of the off-putting and
didactically unnecessary logical precision insisted on by some of the authors
of the standard undergraduate textbooks. This is coupled by the professional
mathematician’s very reasonable distrust of so much emphasis on ‘inessen-
tial’ non-mathematical details when he or she only requires an insight into the
mathematics behind it and straightforward statements of the main mathemati-
cal results.

This book presents the material usually treated in a first course in logic, but
in a way that should appeal to a suspicious mathematician wanting to see some
genuine mathematical applications. It is written at a level suitable for an un-
dergraduate, but with additional optional sections at the end of each chapter
that contain further material for more advanced or adventurous readers. The
core material in this book assumes as prerequisites only: basic knowledge of
pure mathematics such as undergraduate algebra and real analysis; an interest
in mathematics; and a willingness to discover and learn new mathematical ma-
terial. The main goal is an understanding of the mathematical content of the
Completeness Theorem for first-order logic, including some of its mathemat-
ically more interesting applications. The optional sections often require addi-
tional background material and more ‘mathematical maturity’ and go beyond a

vii



viii Preface

typical first undergraduate course. They may be of interest to beginning post-
graduates and others.

The intended readership of this book is mathematicians of all ages and per-
suasions, starting at third year undergraduate level. Indeed, the ‘unstarred’
sections of this book form the basis of a course I have given at Birmingham
University for third and fourth year students. Such a reader will want a good
grounding in the subject, and a good idea of its scope and applications, but in
general does not require a highly detailed and technical treatment.

On the other hand, for a full mathematical appreciation of what the Com-
pleteness Theorem has to offer, a detailed discussion of some naive set theory,
especially Zorn’s Lemma and cardinal arithmetic, is essential, and I make no
apology for including these in some detail in this book.

This book is unusual, however, since I do not present the main concepts and
goals of first-order logic straight away. Instead, I start by showing what the
main mathematical idea of ‘a completeness theorem’ is, with some illustra-
tions that have real mathematical content. The emphasis is on the content and
possible applications of such completeness theorems, and tries to draw on the
reader’s mathematical knowledge and experience rather than any conception
(or misconception) of what ‘logic’ is.

It seems that ‘logic’ means many things to different people, from puzzles
that can be bought at a newsagent’s shop, to syllogisms, arguments using Venn
diagrams, all the way to quite sophisticated set theory. To prepare the reader
and summarise the idea of a completeness theorem here, I should say a little
about how I regard ‘logic’.

The principal feature of logic is that it should be about reasoning or deduc-
tion, and should attempt to provide rules for valid inferences. If these rules
are sufficiently precisely defined (and they should be), they become rules for
manipulating strings of symbols on a page. The next stage is to attach mean-
ing to these strings of symbols and try to present mathematical justification for
the inference rules. Typically, two separate theorems are presented: the first
is a ‘Soundness Theorem’ that says that no incorrect deductions can be made
from the inference rules (where ‘correct’ means in terms of the meanings we
are considering); the second is a ‘Completeness Theorem’ which says that all
correct deductions that can be expressed in the system can actually be made
using a combination of the inference rules provided. Both of these are precise
mathematical theorems. Soundness is typically the more straightforward of the
two to prove; the proof of completeness is usually much more sophisticated.
Typically, it requires mathematical techniques that enable one to create a new
mathematical ‘structure’ which shows that a particular supposed deduction that
is not derivable in the system is not in fact correct.
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Thus logic is not only about such connectives as ‘and’ and ‘or’, though the
main systems, including propositional and first-order logic, do have symbols
for these connectives. The power of the logical technique for the mathemati-
cian arises from the way the formal system of deduction can help organise
a complex set of conditions that might be required in a mathematical con-
struction or proof. The Completeness Theorem becomes a very general and
powerful way of building interesting mathematical structures. A typical ex-
ample is the application of first-order logic to construct number systems with
infinitesimals that can used rigorously to present real calculus. This is the so-
called nonstandard analysis of Abraham Robinson, and is presented in the last
chapter of this book.

The mathematical content of completeness and soundness is well illustrated
by Ko6nig’s Lemma on infinite finitely branching trees, and in the first chapter I
discuss this. This is intended as a warm-up for the more difficult mathematics
to come, and is a key example that I refer back to throughout the book.

Zorn’s Lemma is essential for all the work in this book. I believe that by final
year level, students should be starting to master straightforward applications of
Zorn’s Lemma. This is the main topic in Chapter 2. I do not shy away from
the details, in particular giving a careful proof of Zorn’s Lemma for countable
posets, though the details of how Zorn’s Lemma turns out to be equivalent to
the Axiom of Choice is left for an optional section.

The idea of a formal system and derivations is introduced in Chapter 3, with
a system based on strings of Os and 1s that turns out to be closely related to
Konig’s Lemma. In the lecture theatre or classroom, I find this chapter to be
particularly important and useful material, as it provides essential motivation
for the Soundness Theorem. Given a comparatively simple system such as this,
and asked whether a particular string ¢ can be derived from a set of assump-
tions X, students are all too ready to answer ‘no’ without justification. Where
justification is offered, it is often of the kind, ‘I tried to find a formal proof and
this was my attempt, but it does not work.” So the idea of a careful proof by in-
duction on the length of a formal derivation (and a carefully selected induction
hypothesis) can be introduced and discussed without the additional compli-
cation of a long list of deduction rules to consider. The idea of semantics,
and the Soundness and Completeness Theorems, arises from an investigation
of general methods to show that certain derivations are not possible, and, to
illustrate their power, Konig’s Lemma is re-derived from the Soundness and
Completeness Theorems for this system.

The reader will find systems with mathematically familiar derivations for
the first time in Chapter 4. Building on previous material on posets, I develop
a system for derivations about a poset, including rules such as ‘if a < b and
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b < c then a < ¢’. The system also has a way of expressing statements of the
form ‘a is not less than b’, and this is handled using a Reductio Ad Absurdum
Rule, a rule that is used throughout the rest of the book. By this stage, it
should be clear what the right questions to ask about the system are, and the
mathematical significance of the Completeness Theorem (the construction of
a suitable partial order on a set) is clear. As a bonus, two pretty applications
are provided: that any partial order can be ‘linearised’; and that from a set of
‘positive’ assumptions a ‘negative’ conclusion can always be strengthened to
a ‘positive’ one.

The material normally found in a more traditional course on mathemati-
cal logic starts with Chapter 5. Chapters 5 to 8 discuss boolean algebras and
propositional logic. My proof system for propositional logic is chosen to be a
form of natural deduction, but set out in a linear form on the page with clearly
delineated ‘subproofs’ rather than a tree structure. This seems to be closest to
a student’s conception of a proof, and also provides clear proof strategies so
that exercises in writing proofs can be given in a helpful and relatively painless
way. (I emphasise the word ‘relatively’. For most students, this aspect of logic
is never painless, but at least the system clearly relates to informal proofs they
might have written in other areas of mathematics.) I do not avoid explaining the
precise connections between propositional logic and boolean algebra; these are
important and elegant ideas, and are accessible to undergraduates who should
be able to appreciate the analogies with algebra, especially rings and fields.
More advanced students will also appreciate the fact that deep results such as
Tychonov’s Theorem and Stone Duality are only a few pages extra in an op-
tional section. However, if time is short, the chapter on filters and ideals can
be omitted entirely.

Chapters 9 and 10 are the central ones that cover first-order logic and the
main Completeness Theorem. Apart from the choice of formal system (a
development of the natural deduction system already used for propositional
logic) they follow the usual pattern. These chapters are the longest in the book
and will be found to be the most challenging so I have deliberately avoided
many of the technically tricky issues such as: unique readability; the formal
definition of the scope of a quantifier; or when a variable may be substituted
by a term. An intelligent reader at this level using his or her basic mathemat-
ical training and intuition and following the examples is sure to do the ‘right
thing’ and does not want to be bogged down in formal syntactic details. These
technical details are of course important later on if one becomes involved in
formalising logic in a first-order system such as set theory or arithmetic. But
the place for that sort of work is certainly not a first course in logic. For those
readers that need it, further details are available on the companion web-pages.
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The method of proof of the Completeness Theorem is by ‘Henkinising’ the
language and then using Zorn’s Lemma to find a maximal consistent set of
sentences. This is easier to describe to first-timers than tree-constructions of
sets of consistent sentences with their required inductive properties, but is just
as general and applicable. Two bonus optional sections for adventurous stu-
dents with background in point-set topology include a topological view of the
Compactness Theorem, and a proof of the full statement of the Omitting Types
Theorem via Baire’s Theorem, which is proved where needed.

Chapters 11 and 12 (which are independent of each other) provide appli-
cations of first-order logic. Chapter 11 presents an introduction to model the-
ory, including the Lowenheim—Skolem Theorems, and (to put these in context)
a short survey of categoricity, including a description of Morley’s Theorem.
This chapter is where infinite cardinals and cardinal arithmetic are used for the
first time, and I carefully state all the required ideas and results before using
them. Full proofs of these results are given in an optional section, using Zorn’s
Lemma only. The traditional options of using ordinals or the well-ordering
principle are avoided as being likely to beg more questions than they an-
swer to students without any prior knowledge in formal set theory. Chap-
ter 12 presents an introduction to nonstandard analysis, including a proof of the
Peano Existence Theorem on first-order differential equations. My presenta-
tion of nonstandard analysis is chosen to illustrate the main results of first-order
logic and the interplay between the standard and nonstandard worlds, rather
than to be optimal for fast proofs of classical results by nonstandard methods.

I have enjoyed writing this book and teaching from it. The material here
is, to my mind, much more exciting and varied than the standard texts I learnt
from as an undergraduate, and responses from the students who were given
preliminary versions of these notes were good too. I can only hope that you,
the reader, will derive a similar amount of pleasure from this book.



How to read this book

Chapters are deliberately kept as short as possible and discuss a single math-
ematical point. The chapters are divided into sections. The first section of
each chapter is essential reading for all. The second section generally contains
further applications, examples and exercises to test and expand on material pre-
sented in the previous section, and is again essential to read and explore. One
or more extra ‘starred’ sections are then added to provide further commentary
on the key material of the chapter and develop the material. These other sec-
tions are not essential reading and are intended for more inquisitive, ambitious
or advanced readers with the background knowledge required. Chapter 8§ may
be omitted if time is short, and Chapters 11 and 12 are independent of each
other.

Mathematical terminology is standard or explained in the text. Bold face
entries in the index refer to definitions in the text; other entries provide further
information on the term in question.

Additional material, including some technical definitions that I have chosen
to omit in the printed text for the sake of clarity, further exercises, discussion,
and some hints or answers to the exercises here, will be found on the compan-
ion web-site at http://web.mat.bham.ac.uk/R.W.Kaye/logic.

Xii



1

Konig’s Lemma

1.1 Two ways of looking at mathematics

It seems that in mathematics there are sometimes two or more ways of proving
the same result. This is often mysterious, and seems to go against the grain,
for we often have a deep-down feeling that if we choose the ‘right’ ideas or
definitions, there must be only one ‘correct’ proof. This feeling that there
should be just one way of looking at something is rather similar to Paul Erd6s’s
idea of ‘The Book’ [1], a vast tome held by God, the SF, in which all the best,
most revealing and perfect proofs are written.

Sometimes this mystery can be resolved by analysing the apparently differ-
ent proofs into their fundamental ideas. It often turns out that, ‘underneath the
bonnet’, there is actually just one key mathematical concept, and two seem-
ingly different arguments are in some sense ‘the same’. But sometimes there
really are two different approaches to a problem. This should not be disturbing,
but should instead be seen as a great opportunity. After all, two approaches to
the same idea indicates that there are some new mathematics to be investigated
and some new connections to be found and exploited, which hopefully will
uncover a wealth of new results.

I shall give a rather simple example of just the sort of situation I have in
mind that will be familiar to many readers — one which will be typical of the
kind of theorem we will be considering throughout this book.

Consider a binary tree. A tree is a diagram (often called a graph) with
a special point or node called the root, and lines or edges leaving this node
downwards to other nodes. These again may have edges leading to further
nodes. The thing that makes this a tree (rather than a more general kind of
graph) is that the edges all go downwards from the root, and that means the
tree cannot have any loops or cycles. The tree is a binary tree if every node is
connected to at most two lower nodes. If every node is connected to exactly
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Figure 1.1 The full binary tree.

Figure 1.2 A binary tree.

two lower nodes, the tree is called the full binary tree. Note that in general,
a node in a binary tree may be connected to 0, 1 or 2 lower nodes. We will
label the nodes in our trees with sequences of integers. It is convenient to make
labels for the nodes below the node that has label x by adding either the digit O
or 1 to the end of x, giving x0 and x1. Figure 1.1 illustrates the full binary tree,
whereas Figure 1.2 gives a typical (non-full) binary tree.
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Trees are very important in mathematics, because many constructions follow
trees in some way or other. Binary trees are especially interesting since a
walk along a tree, following a path that starts at the root, has at most two
choices of direction at every node. Binary trees arise quite naturally in many
mathematical ideas and proofs and general theorems about them can be quite
powerful and useful. One of the better known and more useful of these results
is called Konig’s Lemma.

To explain Konig’s Lemma, consider what it means for a tree T to be infinite.
There are two viewpoints, and two possible definitions.

Firstly, suppose you have somehow drawn the whole of the tree 7' on paper
or on the blackboard and are inspecting it. You are in a fortunate position to be
able to take in every one of its features, and to examine every one of its nodes
and edges. You will quite naturally say that the tree is infinite if it has infinitely
many nodes, or — amounting to the same thing — infinitely many edges. This is
a sort of ‘definition from perfect information’ and is similar to what logicians
call semantics, though we will not see the connection with semantics and the
theory of ‘meaning’ for a while.

Now consider you are an ant walking on the binary tree 7, which is again
drawn in its entirety on paper. You start at the root node, and you follow the
edges, like ant tracks, which you hope will take you to something interesting.
Unlike the mathematician viewing the tree in its entirety, you can only see the
node you are at and the edges leaving it. If you take a walk down the tree,
you may have choices of turning left or right at any given node and continuing
your path. But it is possible that you have no choice at all, because either
there is only one edge out of the node other than the one you entered it by,
or possibly there is no such edge at all, in which case your walk has come
to an end. To the ant, which cannot perceive the whole of the tree, but just
follows paths, there is a quite different idea of what it means for the tree to be
infinite: the ant would say that 7 is infinite if it can find somehow (by guessing
the right combination of ‘left’ and ‘right’ choices) an infinite path through the
tree. The ant’s definition of ‘infinite’ might be thought of as a ‘definition from
imperfect information’ and is similar to the logician’s idea of proof. If you
like, you can think of an infinite path chosen by the ant as a proof that the tree
is infinite. Like all proofs, it supports the claim made, without giving much
extra information — such as what the tree looks like off this path.

Konig’s Lemma is the statement that, for binary trees, these two ideas of
a tree being infinite are the same. It is in fact a rather useful statement with
many interesting applications. The key feature of this statement is that it re-
lates two definitions, one mathematical definition working from perfect or total
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information, and one working from the point of view of much more limited in-
formation, and shows that they actually say the same thing.

As with all ‘if and only if” theorems, there are two directions that must be
proved. The first, that if there is an infinite path through the tree then the tree
is infinite, is immediate. This easier direction is called a Soundness Theorem
since it says the ant’s perception based on partial information is sound, or in
other words will not result in erroneous conclusions. The other direction is
the non-trivial one, and its mathematical strength lies in the way it states that
a rather general mathematical situation (that the tree is infinite) can always be
detected in a special way from partial information. The reason why it is called
Completeness will be discussed later in relation to some other examples.

This has been a long preliminary discussion, but I hope it has proved illumi-
nating. We shall now turn to the more formal mathematical details and define
tree, path, etc., and then state and prove Konig’s Lemma properly.

Definition 1.1 The set of natural numbers, N, will be taken in this book to be
{0,1,2,...}.

For those readers who expect the natural numbers to start with 1, I can only
say that I appreciate that there are occasions when it is convenient to forget
about zero, but for me zero is very natural, probably the most logically natural
number of all, so is included here in the set of natural numbers.

Definition 1.2 A sequence is a function s whose domain is either the set N
of all natural numbers or a subset of it of the form {x € N:x < n} for some
n € N. Normally the values of the sequence will be numbers, 0 or 1 say, but the
definition above (with n = 0) allows the empty sequence with no values at all.
We write a sequence by listing its values in order, for example as 00110101001
or 0101010101. The length of a sequence is the number of elements in the
domain of the function. This will always be a natural number or infinity.

Definition 1.3 If s is a sequence of length / and n € N is at most /, then s | n
denotes the initial part of s of length n.

For example, if s = 00100011 then s [ 4 = 0010.

Definition 1.4 If s is a sequence of length / and x is O or 1 then sx is the
sequence of length / + 1 whose last element is x and all other elements agree
with those of s.

Our definition of a tree is of a set of sequences that is closed under the
restriction operation |.
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Definition 1.5 A tree is a set of sequences T such that for any s € T of length
nand forany / <nthens|[/eT.

Think of a sequence s € T as a finite path starting from the root and arriving
at some node. The individual digits in the sequence determine which choice of
edge is made at each node. The set of nodes of the whole tree is then the set of
sequences in the set 7 and two nodes s, ¢t € T are connected by a single edge
if one can be got from the other by adding a single number to the sequence. In
other words, s and ¢ are connected if s | (n— 1) =t when s is the longer of the
two and has length n, or the other way round if ¢ is longer. Then the condition
in the definition says, not unreasonably, that each node that this path passes
through must also be in the tree. The root of the tree is the empty sequence of
length 0.

Definition 1.6 A subtree of a tree T is a subset S of T that is a tree in its own
right.

A subtree of a tree T might contain fewer nodes, and therefore fewer choices
at certain nodes.

Definition 1.7 A binary tree is a tree T where all the sequences in it are
functions from some {n € N:n < k} to {0, 1}.

In other words, at any node, a path from the root of a binary tree has at most
two options: to go left (0) or right (1). However, it may turn out that only one,
or possibly neither, of these options is available at a particular node.

Definition 1.8 A tree T is infinite if it contains infinitely many sequences, or
(equivalently) has infinitely many nodes.

A path is a subtree with no branching allowed. That means for any two
nodes in the tree, one is a ‘predecessor’ of the other. More formally, we have
the following definition.

Definition 1.9 A path, p,in atree T is a subtree of T such that for any s, 7 € p
with lengths n, k respectively and n < k, we have s =1 [ n.

A tree T containing an infinite path p is obviously infinite. Konig’s Lemma
states that the converse is also true for binary trees.

Theorem 1.10 (Konig’s Lemma) Let T be an infinite binary tree. Then T
contains an infinite path p.
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Proof Suppose T is an infinite binary tree. For a sequence s of length n let
Tybe {reT:rin=s}U{s| k:k <n}, which we will call the subtree of T
below s. You will be able to check easily that 7} is a tree. In general it may or
may not be infinite.

We are going to find a sequence s(n) of elements of T such that

e s(n) has length n,
e s(n)=s(n+1)n,
o the tree 7, below s(n) is infinite.

This construction is by induction, using the third property above as our in-
duction hypothesis. When we have completed the proof the set {s(n):n € N}
will be our infinite path pin 7.

So suppose inductively that we have chosen s = s(n) of length n and T is
infinite. Then since the tree is binary, made from sequences of Os and 1s, we
have

Ti={reT:rl(n+1)=s0}U{reT:r{ (n+1)=s1}U{s| k:k<n}.

This is, by the induction hypothesis, infinite. Hence (as the third of these three
sets is obviously finite) at least one of the first two sets, corresponding to ‘0’ or
‘1’ respectively, is infinite. If the first of these is infinite we set s(n+ 1) = s0
and in this case we have

Ty ={r€T:r| (n+1)=s0} U{s0}U{s | k:k <n}

which is infinite. If not we set s(n+ 1) = s1 which would then be infinite as be-
fore. Either way we have defined s(n+ 1) and proved the induction hypothesis
forn+1. U

1.2 Examples and exercises

The central theorem of this book, the Completeness Theorem for first-order
logic, is not only of the same flavour as Konig’s Lemma, but is in fact a pow-
erful generalisation of it. To give you an idea of the power that this sort of
theorem has, it is useful to see a selection of applications of Konig’s Lemma
here.

We start by exploring the limits of Konig’s Lemma a little: it turns out that
the important thing is not that there are at most two choices at each node but
that the number of ways in which the branches divide is always finite.

Definition 1.11 If 7 is a tree and s € T is a node of T then the valency or
degree of s is the number of nodes of T’ connected to s. Thus this is the number
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of x such that sx € T plus one (to cater for the edge back towards the root), or
just the number of such x if s is the root node.

Exercise 1.12 Prove the following generalisation of Konig’s Lemma: an infi-
nite tree in which every vertex has finite valency has an infinite path. Assume
that the tree has vertices or nodes which are sequences of natural numbers of
finite length and that for each s € T there is a bound B; € N on the possible
values x such that sx € T'.

There are two ways that you might have done the last exercise. You might
have modified the proof given above, or you may have tried to reduce the
case of arbitrary finite valency trees to the case of binary trees by somehow
‘encoding’ arbitrary finite branching by a series of binary branches.

Exercise 1.13 Whichever method you used, have a go at proving the extension
of Konig’s Lemma by the other method.

Exercise 1.14 By giving an appropriate example of an infinite tree, show that
Konig’s Lemma is false for graphs with vertices of infinite valency.

Konig’s Lemma is an elegant but nevertheless not very surprising or difficult
result to see. Its truth, it seems, is reasonably clear, though a completely rigor-
ous proof takes a moment or two to come up with. It is all the more surprising,
therefore that there should be non-trivial applications. We will look at a few of
these now, though nothing later in this book will depend on them.

Example 1.15 The set X = [0, 1] has the property (called sequential compact-
ness, equivalent to compactness for metric spaces) that every sequence (a;,) of
elements of X has a subsequence converging to some element in X.

Proof Starting with [0, 1] we continually divide intervals into equal halves,
but at stage k of the construction we throw away any such interval that con-
tains none of the a, with n > k. More precisely, the nodes of the tree at
depth k are identified with intervals I = [(r — 1)27, 727] for which r € N
and {a,:n > k and a, € I} is non-empty, and two nodes are connected if one
is a subset of the other.

This defines a binary tree. It is infinite because there are infinitely many
a, and each lies in an interval. By Konig’s Lemma there is an infinite path
through this tree, and by the construction of the tree we may take an infinite
subsequence of a, in this path, one at each level of the tree. This is the required
convergent subsequence. |



8 Konig’s Lemma

Now consider infinite sequences ugujus. .. of the digits 0, 1,2, ..., k— 1. We
will call such sequences k-sequences. Say a k-sequence s is x"-free if there is
no finite sequence, x, of digits 0, 1, 2, ..., k — 1, such that the finite sequence

x" (defined to be the result of repeating and concatenating x as xxxx. ..x, where
there are n copies of the string x) does not appear as a contiguous block of the
sequence s.

Exercise 1.16 (a) Show that there is no x>-free 2-sequence.

(b) Use Konig’s Lemma to show that there is an x’-free 2-sequence if and
only if there are arbitrarily long finite x>-free 2-sequences. State and prove a
similar result for x>-free 3-sequences.

(c) Define an operation on finite 2-sequences ¢ such that 6(0) =01, o(1) =
10, and o (ugut; .. .uy) = o(ug)o(uy)...0(uy), where this is concatenation of
sequences. Let 6" (s) = o(o(...(o(s))...)), i.e. o iterated n times. Show that
each of the finite sequences 6" (0) is x*-free, and hence there is an infinite
x>-free 2-sequence.

(d) Show there is an x*>-free 3-sequence.

Another example of the use of Konig’s Lemma is for graphs in the plane. A
graph is a set'V of vertices and a set E of edges, which are unordered subsets of
V with exactly two vertices in each edge. In a planar graph the set of vertices
V is a set of points of R?, and the edges joining vertices are lines which are
‘smooth’ (formed from finitely many straight-line segments) and may not cross
except at a vertex.

A graph with set of vertices V can be k-coloured if there is a map f:V —
{0,1,...,k—1} such that f(u) # f(v) for all vertices u, v that are joined by
an edge. You should think of the values 0,1, ...,k — 1 as ‘colours’ of the
vertices; the condition says two adjacent vertices must be coloured differently.
Graph colourings, and especially colourings of planar graphs, are particularly
interesting and have a long history [12]. A deep and difficult result by Appel
and Haken shows that every finite planar graph is 4-colourable [10].

Exercise 1.17 Use Konig’s Lemma to show that an infinite graph can be k-
coloured if and only if every finite subgraph of it can be so coloured. (Make the
simplification that the vertices of our infinite graph can be ordered as v, vy, ...
with indices from N. Construct a tree where the nodes at level n are all &-
colourings of the subgraph with vertices v, vy, ..., v,—1, and edges join nodes
if one colouring extends another.) Deduce from Appel and Haken’s result that
every infinite planar graph can be 4-coloured.

Tiling problems provide another nice application of Kénig’s Lemma. Con-



