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Preface

Bioinformatics, an integral part of post-genomic biology, creates principles and
ideas for computational analysis of biological sequences. These ideas facilitate
the conversion of the flood of sequence data unleashed by the recent information
explosion in biology into a continuous stream of discoveries. Not surprisingly, the
new biology of the twenty-first century has attracted the interest of many talented
university graduates with various backgrounds. Teaching bioinformatics to such
a diverse audience presents a well-known challenge. The approach requiring stu-
dents to advance their knowledge of computer programming and statistics prior to
taking a comprehensive core course in bioinformatics has been accepted by many
universities, including the Georgia Institute of Technology, Atlanta, USA.

In 1998, at the start of our graduate program, we selected the then recently pub-
lished book Biological Sequence Analysis (BSA) by Richard Durbin, Anders Krogh,
Sean R. Eddy, and Graeme Mitchison as a text for the core course in bioinformat-
ics. Through the years, BSA, which describes the ideas of the major bioinformatic
algorithms in a remarkably concise and consistent manner, has been widely adopted
as a required text for bioinformatics courses at leading universities around the globe.
Many problems included in BSA as exercises for its readers have been repeatedly
used for homeworks and tests. However, the detailed solutions to these problems
have not been available. The absence of such a resource was noticed by students and
teachers alike.

The goal of this book, Problems and Solutions in Biological Sequence Analysis
is to close this gap, extend the set of workable problems, and help its readers
develop problem-solving skills that are vitally important for conducting successful
research in the growing field of bioinformatics. We hope that this book will facilitate
understanding of the content of the BSA chapters and also will provide an additional
perspective for in-depth BSA reading by those who might not be able to take a formal
bioinformatics course. We have augmented the set of original BSA problems with
many new problems, primarily those that were offered to the Georgia Tech graduate
students.

xi



xii Preface

Probabilistic modeling and statistical analysis are frequently used in bioin-
formatics research. The mainstream bioinformatics algorithms, those for pair-
wise and multiple sequence alignment, gene finding, detecting orthologs, and
building phylogenetic trees, would not work without rational model selection,
parameter estimation, properly justified scoring systems, and assessment of stat-
istical significance. These and many other elements of efficient bioinformatic
tools require one to take into account the random nature of DNA and protein
sequences.

As it has been illustrated by the BSA authors, probabilistic modeling laid the
foundation for the development of powerful methods and algorithms for biolo-
gical sequence interpretation and the revelation of its functional meaning and
evolutionary connections. Notably, probabilistic modeling is a generalization of
strictly deterministic modeling, which has a remarkable tradition in natural science.
This tradition could be traced back to the explanation of astronomic observa-
tions on the motion of solar system planets by Isaac Newton, who suggested a
concise model combining the newly discovered law of gravity and the laws of
dynamics.

The maximum likelihood principle of statistics, notwithstanding the fashion of
its traditional application, also has its roots in “deterministic” science that suggests
that the chosen structure and parameters of a theoretical model should provide the
best match of predictions to experimental observations. For instance, one could
recognize the maximum likelihood approach in Francis Crick and James Watson’s
inference of the DNA double helix model, chosen from the combinatorial number
of biochemically viable alternatives as the best fit to the X-ray data on DNA three-
dimensional structure and other experimental data available.

In studying the processes of inheritance and molecular evolution, where random
factors play important roles, fully fledged probabilistic models enter the picture.
A classic cycle of experiments, data analysis, and modeling with search for a best
fit of the models to data was designed and implemented by Gregor Mendel. His
remarkable long term research endeavor provided proof of the existence of discrete
units of inheritance, the genes.

When we deal with data coming from a less controllable environment, such as
data on natural biological evolution spanning time periods on a scale of millions
of years, the problem is even more challenging. Still, the situation is hopeful. The
models of molecular evolution proposed by Dayhoff and co-authors, Jukes and
Cantor, and Kimura, are classical examples of fundamental advances in modeling
of the complex processes of DNA and protein evolution. Notably these models
focus on only a single site of a molecular sequence and require the further simpli-
fying assumption that evolution of sequence sites occurs independently from each
other. Nevertheless, such models are useful starting points for understanding the
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function and evolution of biological sequences as well as for designing algorithms
elucidating these functional and evolutionary connections.

For instance, amino acid substitution scores are critically important parameters
of the optimal global (Needleman and Wunsch) and local (Smith and Waterman)
sequence alignment algorithms. Biologically sensible derivation of the substitution
scores is impossible without models of protein evolution.

In the mid 1990s the notion of the hidden Markov model (HMM), having been
of great practical use in speech recognition, was introduced to bioinformatics and
quickly entered the mainstream of the modeling techniques in biological sequence
analysis.

Theoretical advances that have occurred since the mid 1990s have shown that
the sequence alignment problem has a natural probabilistic interpretation in terms
of hidden Markov models. In particular, the dynamic programming (DP) algorithm
for pairwise and multiple sequence alignment has the HMM-based algorithmic
equivalent, the Viterbi algorithm. If the type of probabilistic model for a biological
sequence has been chosen, parameters of the model could be inferred by statistical
(machine learning) methods. Two competitive models could be compared to identify
the one with the best fit.

The events and selective forces of the past, moving the evolution of biological
species, have to be reconstructed from the current biological sequence data con-
taining significant noise caused by all the changes that have occurred in the lifetime
of disappeared generations. This difficulty can be overcome to some extent by
the use of the general concept of self-consistent models with parameters adjusted
iteratively to fit the growing collection of sequence data. Subsequently, implement-
ation of this concept requires the expectation–maximization type algorithms able
to estimate the model parameters simultaneously with rearranging data to pro-
duce the data structure (such as a multiple alignment) that fits the model better.
BSA describes several algorithms of expectation–maximization type, including the
self-training algorithm for a profile HMM and the self-training algorithm for a
phylogenetic HMM. Given that the practice with many algorithms described in
BSA requires significant computer programming, one may expect that describing
the solutions would lead us into heavy computer codes, thus moving far away from
the initial concepts and ideas. However, the majority of the BSA exercises have
analytical solutions. On several occasions we have illustrated the implementations
of the algorithms by “toy” examples. The computer codes written in C++ and
Perl languages for such examples are available at opal.biology.gatech.edu/PSBSA.
Note, that in the “Further reading” sections we include mostly papers that were
published later than 1998, the year of BSA publication. Finally, we should men-
tion that the references in the text to the pages in the BSA book cite the 2006
edition.
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Introduction

The reader will quickly discover that the organization of this book was chosen to be
parallel to the organization of Biological Sequence Analysis by Durbin et al. (1998).
The first chapter of BSA contains an introduction to the fundamental notions of
biological sequence analysis: sequence similarity, homology, sequence alignment,
and the basic concepts of probabilistic modeling.

Finding these distinct concepts described back-to-back is surprising at first
glance. However, let us recall several important bioinformatics questions. How
could we construct a pairwise sequence alignment? How could we build an align-
ment of multiple sequences? How could we create a phylogenetic tree for several
biological sequences? How could we predict an RNA secondary structure? None of
these questions can be consistently addressed without use of probabilistic methods.
The mathematical complexity of these methods ranges from basic theorems and
formulas to sophisticated architectures of hidden Markov models and stochastic
grammars able to grasp fine compositional characteristics of empirical biological
sequences.

The explosive growth of biological sequence data created an excellent oppor-
tunity for the meaningful application of discrete probabilistic models. Perhaps,
without much exaggeration, the implications of this new development could
be compared with implications of the revolutionary use of calculus and dif-
ferential equations for solving problems of classic mechanics in the eighteenth
century.

The problems considered in this introductory chapter are concerned with the fun-
damental concepts that play an important role in biological sequence analysis: the
maximum likelihood and the maximum a posteriori (Bayesian) estimation of the
model parameters. These concepts are crucial for understanding statistical infer-
ence from experimental data and are impossible to introduce without notions of
conditional, joint, and marginal probabilities.

1



2 Introduction

The frequently arising problem of model parameterization is inherently difficult
if only a small training set is available. One may still attempt to use methods suitable
for large training sets. But this move may result in overfitting and the generation
of biased parameter estimates. Fortunately, this bias can be eliminated to some
degree; the model can be generalized as the training set is augmented by artificially
introduced observations, pseudocounts.

Problems included in this chapter are intended to provide practice with utilizing
the notions of marginal and conditional probabilities, Bayes’ theorem, maximum
likelihood, and Bayesian parameter estimation. Necessary definitions of these
notions and concepts frequently used in BSA can be found in undergraduate text-
books on probability and statistics (for example, Meyer (1970), Larson (1982),
Hogg and Craig (1994), Casella and Berger (2001), and Hogg and Tanis (2005)).

1.1 Original problems

Problem 1.1 Consider an occasionally dishonest casino that uses two kinds of
dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50% of
the time. We pick up a die from a table at random. What are P(six|Dloaded) and
P(six|Dfair)? What are P(six, Dloaded) and P(six, Dfair)? What is the probability
of rolling a six from the die we picked up?

Solution All possible outcomes of a fair die roll are equally likely, i.e.
P(six|Dfair) = 1/6. On the other hand, the probability of rolling a six from the
loaded die, P(six|Dloaded), is equal to 1/2. To compute the probability of the com-
bined event (six, Dloaded), rolling a six and picking up a loaded die, we use the
definition of conditional probability:

P(six, Dloaded) = P(Dloaded)P(six|Dloaded). (1.1)

As the probability of picking up a loaded die is 1/100, Equality (1.1) yields

P(six, Dloaded) = 1

100
× 1

2
= 1

200
.

By a similar argument,

P(six, Dfair) = P(six|Dfair)P(Dfair) = 1

6
× 99

100
= 33

200
.

The probability of rolling a six from the die picked up at random is computed as the
total probability of event “six” occurring in combination either with event Dloaded

or with event Dfair:

P(six) = P(six, Dloaded) + P(six, Dfair) = 34

200
= 17

100
.
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Problem 1.2 How many sixes in a row would we need to see in Problem 1.1
before it is more likely that we had picked a loaded die?

Solution Bayes’ theorem is all we need to determine the conditional probability
of picking up a loaded die, P(Dloaded|n sixes), given that n sixes in a row have been
rolled:

P(Dloaded|n sixes) = P(n sixes|Dloaded)P(Dloaded)

P(n sixes)

= P(n sixes|Dloaded)P(Dloaded)

P(n sixes|Dloaded)P(Dloaded) + P(n sixes|Dfair)P(Dfair)
.

Rolls of both fair or loaded dice are independent, therefore

P(Dloaded|n sixes)= (1/100) × (1/2)n

(99/100) × (1/6)n+(1/100) × (1/2)n
= 1

11 × (1/3)n−2+1
.

This result indicates that P(Dloaded|n sixes) approaches one as n, the length of the
observed run of sixes, increases. The inequality

P(Dloaded|n sixes) > 1/2

tells us that it is more likely that a loaded die was picked up. This inequality holds if(
1

3

)n−2

<
1

11
, n ≥ 5.

Therefore, seeing five or more sixes in a row indicates that it is more likely that the
loaded die was picked up.

Problem 1.3 Use the definition of conditional probability to prove Bayes’
theorem,

P(X|Y) = P(X)P(Y |X)

P(Y)
.

Solution For any two events X and Y such that P(Y) > 0 the conditional probability
of X given Y is defined as

P(X|Y) = P(X ∩ Y)

P(Y)
.

Applying this definition once again to substitute P(X ∩ Y) by P(X)P(Y |X), we
arrive at the equation which is equivalent to Bayes’ theorem:

P(X|Y) = P(X)P(Y |X)

P(Y)
.
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Problem 1.4 A rare genetic disease is discovered. Although only one in a
million people carry it, you consider getting screened. You are told that the
genetic test is extremely good; it is 100% sensitive (it is always correct if you
have the disease) and 99.99% specific (it gives a false positive result only 0.01%
of the time). Using Bayes’ theorem, explain why you might decide not to take
the test.

Solution Before taking the test, the probability P(D) that you have the genetic
disease is 10−6 and the probability P(H) that you do not is 1−10−6. By how much
will the test change this uncertainty? Let us consider two possible outcomes.

If the test is positive, then the Bayesian posterior probabilities of having and not
having the disease are as follows:

P(D|positive) = P(positive|D)P(D)

P(positive)

= P(positive|D)P(D)

P(positive|D)P(D) + P(positive|H)P(H)

= 10−6

10−6 + 0.999999 × 10−4
= 0.0099,

P(H|positive) = P(positive|H)P(H)

P(positive)
= 0.9901.

If the test is negative, the Bayesian posterior probabilities become

P(D|negative) = P(negative|D)P(D)

P(negative)

= P(negative|D)P(D)

P(negative|D)P(D) + P(negative|H)P(H)

= 0

0 + 0.9999 × (1 − 10−6)
= 0,

P(H|negative) = P(negative|H)P(H)

P(negative)
= 1.

Thus, the changes of prior probabilities P(D), P(H) are very small:

|P(D) − P(D|positive)| = 0.0099, |P(D) − P(D|negative)| = 10−6,

|P(H) − P(H|positive)| = 0.0099, |P(H) − P(H|negative)| = 10−6.

We see that even if the test is positive the probability of having the disease changes
from 10−6 to 10−2. Thus, taking the test is not worthwhile for practical reasons.
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Problem 1.5 We have to examine a die which is expected to be loaded in some
way. We roll a die ten times and observe outcomes of 1, 3, 4, 2, 4, 6, 2, 1, 2, and
2. What is our maximum likelihood estimate for p2, the probability of rolling a
two? What is the Bayesian estimate if we add one pseudocount per category?
What if we add five pseudocounts per category?

Solution The maximum likelihood estimate for p2 is the (relative) frequency of
outcome “two,” thus p̂2 = 4/10 = 2/5. If one pseudocount per category is added,
the Bayesian estimate is p̂2 = 5/16. If we add five pseudocounts per category, then
p̂2 = 9/40. In the last case the Bayesian estimate p̂2 is closer to the probability of
the event “two” upon rolling a fair die, p2 = 1/6.

In any case, it is difficult to assess the validity of these alternative approaches
without additional information. The best way to improve the estimate is to collect
more data.

1.2 Additional problems

The following problems motivated by questions arising in biological sequence
analysis require the ability to apply formulas from combinatorics (Problems 1.6,
1.7, 1.9, and 1.10), elementary calculation of probabilities (Problems 1.8 and 1.16),
as well as a knowledge of properties of random variables (Problems 1.13 and 1.18).
Our goal here is to help the reader recognize the probabilistic nature of these (and
similar) problems about biological sequences.

Basic probability distributions are used in this section to describe the properties
of DNA sequences: a geometric distribution to describe the length distribution of
restriction fragments (Problem 1.12) and open reading frames (Problem 1.14); a
Poisson distribution as a good approximation for the number of occurrences of
oligonucleotides in DNA sequences (Problems 1.11, 1.17, 1.19, and 1.22). We
will use the notion of an “independence model” for a sequence of independent
identically distributed (i.i.d.) random variables with values from a finite alphabet
A (i.e. the alphabet of nucleotides or amino acids) such that the probability of
occurrence of symbol a at any sequence site is equal to qa,

∑
a∈A qa = 1. Thus, a

DNA or protein sequence fragment x1, . . . , xn generated by the independence model
has probability

∏n
i=1 qxi . Note that the same model is called the random sequence

model in the BSA text (Durbin et al., 1998). The independence model is used to
describe DNA sequences in Problems 1.12, 1.14, 1.16, and 1.17.

The introductory level of Chapter 1 still allows us to deal with the notion of
hypotheses testing. In Problem 1.20 such a test helps to identify CpG-islands in
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a DNA sequence, while in Problem 1.21 we consider the test for discrimination
between DNA sequence regions with higher and lower G + C content.

Finally, issues of the probabilistic model comparison are considered in Problems
1.16, 1.18, and 1.19.

Problem 1.6 In the herpesvirus genome, nucleotides C, G, A, and T occur with
frequencies 35/100, 35/100, 15/100, and 15/100, respectively. Assuming the
independence model for the genome, what is the probability that a randomly
selected 15 nt long DNA fragment contains eight C’s or G’s and seven A’s or
T ’s?

Solution The probability of there being eight C’s or G’s and seven A’s or T ’s in a
15 nt fragment, given the frequencies 0.7 and 0.3 for each group C & G and A & T ,
respectively, is 0.78×0.37 = 0.0000126. This number must be multiplied by

(15
8

) =
15!/8!7!, the number of possible arrangements of representatives of these nucleotide
groups among fifteen nucleotide positions. Thus, we get the probability 0.08.

Problem 1.7 A DNA primer used in the polymerase chain reaction is a one-
strand DNA fragment designed to bind (to hybridize) to one of the strands of a
target DNA molecule. It was observed that primers can hybridize not only to their
perfect complements, but also to DNA fragments of the same length having one
or two mismatching nucleotides. If the genomic DNA is “sufficiently long,” how
many different DNA sequences may bind to an eight nucleotide long primer?
The notion of “sufficient length” implies that all possible oligonucleotides of
length 8 are present in the target genomic DNA.

Solution We consider a more general situation with the length of primer equal
to n. There are three possible cases of hybridization between the primer and the
DNA: with no mismatch, with one mismatch, and with two mismatches. The first
case obviously identifies only one DNA sequence exactly complementary to the
primer. The second case, one mismatch, with the freedom to choose one of three
mismatching types of nucleotides in one position of the complementary sequence,
gives 3n possible sequences. Finally, two positions carrying mismatching nucle-
otides can occur in n(n − 1)/2 ways. Each choice of these two positions generates
nine possibilities to choose two nucleotides different from the matching types. This
gives a total of 9n(n − 1)/2 possible sequences with two mismatches. Hence, for
n = 8, there are

1 + 3 × 8 + 9 × 8 × 7

2
= 277

different sequences able to hybridize to the given primer.
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Problem 1.8 A DNA sequencing reaction is performed with an error rate of
10%, thus a given nucleotide is wrongly identified with probability 0.1. To min-
imize the error rate, DNA is sequenced by n = 3 independent reactions, the
newly sequenced fragments are aligned, and the nucleotides are identified by
the following majority rule. The type of nucleotide at a particular position is
identified as α, α ∈ {T , C, A, G}, if more nucleotides of type α are aligned in
this position than all other types combined. If at an alignment position no nucle-
otide type appears more than n/2 times, the type of nucleotide is not identified
(type N).

What is the expected percentage of (a) correctly and (b) incorrectly identified
nucleotides? (c) What is the probability that at a particular site identification is
impossible? (d) How does the result of (a) change if n = 5; what about for n = 7?
Assume that there are only substitution type errors (no insertions or deletions)
with no bias to a particular nucleotide type.

Solution (a) In a given position, we consider the three sequencing reaction calls as
outcomes of the three Bernoulli trials with “success” taking place if the nucleotide
is identified correctly (with probability p = 0.9) and “failure” otherwise (with
probability q = 0.1). Then the probabilities of the following events are described
by the binomial distribution and can be determined immediately:

P3 = P(“success” is observed three times) = p3 = 0.93 = 0.729,

P2 = P(“success” is observed twice) =
(

3

2

)
p2q

= 3 × 0.92 × 0.1 = 0.243.

Under the majority rule, the expected percentage E of correctly identified
nucleotides is given by

Ec
n=3 = P(“success” is observed at least twice) × 100%

= (P3 + P2) × 100% = 97.2%.

(b) To determine the probability of identifying a nucleotide at a given site incor-
rectly, we have to be able to classify the “failure” outcomes; thus, we need to
generalize the binomial distribution to a multinomial one. Specifically, in each
independent trial (carried out at a given sequence site) we can have “success” (with
probability p = 0.9) and three other outcomes: “failure 1,” “failure 2,” and “fail-
ure 3” (with equal probabilities q1 = q2 = q3 = 1/30). To identify a nucleotide
incorrectly would mean to observe at least two “failure i’ outcomes, i = 1, 2, 3,
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among n = 3 trials. Therefore,

P′
3 = (“failure i’ is observed three times) = q3

i = (1/30)3 = 0.000037,

P′
2 = P(“failure i’ is observed twice) = 2

(
3

2

)
q2

i qj +
(

3

2

)
q2

i p

= 6 × (1/30)3 + 3 × (1/30)2 × 0.9 = 0.00356.

Finally, for the expected percentage of wrongly identified nucleotides we have

Ew
n=3 =


 ∑

i=1,2,3

(P′
3 + P′

2)


× 100%

= 3(P′
3 + P′

2) × 100% = 1.1%.

(c) At a particular site, the base calling results in three mutually exclusive events:
“correct identification,” “incorrect identification,” or “identification impossible.”
Then, the probability of the last outcome is given by

P(nucleotide cannot be identified) = 1 − (P3 + P2) − 3(P′
3 + P′

2) = 0.0172.

(d) To calculate the expected percentage Ec
n of correctly identified nucleotides

for n = 5 and n = 7, we apply the same arguments as in section (a), only instead
of three Bernoulli trials we consider five and seven, respectively. We find:

Ec
n=5 = P(at least three “successes” among five trials) × 100%

= p5 + 5 × 0.94 × 0.1 + 10 × 0.930.12 = 99.14%.

Similarly,

Ec
n=7 = P(at least four “successes” among seven trials) × 100% = 99.73%.

As expected, the increase in the number of independent reactions improves the
quality of sequencing.

Problem 1.9 Due to redundancy of genetic code, a sequence of amino acids
could be encoded by several DNA sequences. For a given ten amino acid long
protein fragment, what are the lower and upper bounds for the number of possible
DNA sequences that could carry code for this protein fragment?

Solution The lower bound of one would be reached if all ten amino acids are
methionine or tryptophan, the amino acids encoded by a single codon. In this case
the amino acid sequence uniquely defines the underlying nucleotide sequence. The
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Table 1.1. The maximum number Iα of
nucleotides C and G that appear in one of the
synonomous codons for given amino acid α

Iα Amino acid α

1 Asn, Ile, Lys, Met, Phe, Tyr
2 Asp, Cys, Gln, Glu, His, Leu, Ser, Thr, Trp, Val
3 Ala, Arg, Gly, Pro

upper bound would be reached if the amino acid sequence consists of leucine,
arginine, or serine, the amino acids encoded by six codons each. A ten amino acid
long sequence consisting of any arrangement of Leu, Ser, or Arg can be encoded
by as many as 610 = 60 466 176 different nucleotide sequences.

Problem 1.10 Life forms from planet XYZ were discovered to have a DNA and
protein basis with proteins consisting of twenty amino acids. By analysis of the
protein composition, it was determined that the average frequencies of all amino
acids excluding Met and Trp were equal to 1/19, while the frequencies of Met
and Trp were equal to 1/38. Given the high temperature on the XYZ surface,
it was speculated that the DNA has an extremely high G + C content. What
could be the highest average G + C content of protein-coding regions (given the
average amino acid composition as stated above) if the standard (the same as on
planet Earth) genetic code is used to encode XYZ proteins?

Solution To make the highest possible G + C content of protein-coding region
that would satisfy the restrictions on amino acid composition, synonymous codons
with highest G + C content should be used on all occasions. The distribution of
the high G + C content codons according to the standard genetic code is as shown
in Table 1.1 (where Iα designates the highest number of C and G nucleotides in a
codon encoding amino acid α).
Therefore, the average value of the G + C content of a protein-coding region is
given by

〈G + C〉 =
∑
α

Iα
3

fα

= 1

3

(
1

19
(5 × 1 + 9 × 2 + 4 × 3) + 1

38
(1 + 2)

)
= 0.64.

Here fα is the frequency of amino acid α.
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Remark Similar considerations can provide estimates of upper and lower bounds
of G + C content for prokaryotic genomes (planet Earth), where protein-coding
regions typically occupy about 90% of total DNA length.

Problem 1.11 A restriction enzyme is cutting DNA at a palindromic site 6 nt
long. Determine the probability that a circular chromosome, a double-stranded
DNA molecule of length L = 84 000 nt, will be cut by the restriction enzyme
into exactly twenty fragments. It is assumed that the DNA sequence is described
by the independence model with equal probabilities of nucleotides T , C, A, and
G. Hint: use the Poisson distribution.

Solution The probability that a restriction site starts in any given position of the
DNA sequence is p = (1/4)6 = 0.0002441. If we do not take into account the
mutual dependence of occurrences of restriction sites in positions i and j, |i−j| ≤ 6,
the number X of the restriction sites in the DNA sequence can be considered as
the number of successes (with probability p) in a sequence of L Bernoulli trials;
therefore, X has a binomial distribution with parameters p and L. Since L is large
and p is small, we can use the Poisson distribution with parameter λ = pL = 20.5
as an approximation of the binomial distribution. Then

P(X = 20) = e−λ λ20

20! = 0.088.

Notably, the probability of cutting this DNA sequence into any other particular num-
ber of fragments will be lower than P(X = 20). Indeed, the ratio Rk of probabilities
of two consecutive values of X,

Rk = P(X = k + 1)

P(X = k)
= λ

k + 1
,

shows that P(X = k) increases as k grows from 0 to λ, and decreases as k grows
from λ to L, thus attaining its maximum value at point k = λ. In other words, if λ is
not an integer, the most probable value of the Poisson distributed random variable
is equal to [λ], where [λ] stands for the largest integer not greater than λ. Otherwise,
the most probable values are both λ − 1 and λ.

Problem 1.12 Determine the average length of the restriction fragments
produced by the six-cutter restriction enzyme SmaI with the restriction site
CCCGGG. Consider (a) a genome with a G + C content of 70% and (b) a
genome with a G + C content of 30%. It is assumed that the genomic sequence
can be represented by the independence model with probabilities of nucleotides
such that qG = qC , qA = qT . Note that enzyme SmaI cuts the double strand of
DNA in the middle of site CCCGGG.
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Solution We denote the probability that the restriction site starts in a particular
sequence position as P and the length of a restriction fragment as L. We associate
the number 1 with a sequence position where the restriction site starts and the
number 0 otherwise. Then in the generated sequence of ones and zeros the lengths
of runs of zeros (equal to the lengths of restriction fragments) can be considered as
values of random variable L. If we do not take into account the mutual dependence
of occurrences of restriction sites at positions i and j, |i−j| ≤ 6, the random variable
L has the geometric distribution: P(L = n) = (1 − P)n−1P. The expected value of
L is defined by

EL =
+∞∑
n=1

n(1 − P)n−1P = P
+∞∑
n=1

−d(1 − P)n

dP

= −P
d
(∑+∞

n=1(1 − P)n
)

dP
= P

P2
= 1

P
.

For (a) we have

Pa = P(CCCGGG) = (0.35)6 = 1.8 × 10−3,

and the average length of restriction fragment is ELa = 1/Pa = 544 nt.
Similarly, for (b),

Pb = P(CCCGGG) = (0.15)6 = 1.14 × 10−5,

and the average length of the restriction fragment is ELb = 87 788 nt. The longer
average length of restriction fragments in (b) could be expected as the G + C-
rich restriction site CCCGGG would appear less frequently in the A + T -rich
genomic DNA.

Problem 1.13 Consider a DNA sequence of length n described by the inde-
pendence model with equal probabilities of nucleotides. Let X be the number of
occurrences of dinucleotide AA and Y be the number of occurrences of dinuc-
leotide AT in this sequence. What are the expected values and variances of
random variables X and Y? For simplicity consider a circular DNA of length n.

Solution Let us define random variables xi and yi, i = 1, . . . , n, as follows:

xi =
{

1, if dinucleotide AA starts in ith position in the sequence,

0, otherwise;

yi =
{

1, if dinucleotide AT starts in ith position in the sequence,

0, otherwise.
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Obviously, X = ∑n
i=1 xi, Y = ∑n

i=1 yi. The expected values of xi and yi, i =
1, . . . , n, under the uniform independence model are given by

Exi = Eyi = P(xi = 1) = P(yi = 1) =
(

1

4

)2

= 1

16
.

Thus, the mean value of X, Y is EX = EY = n/16. Similarly, we can state that the
expected number of occurrences of any other dinucleotide in the sequence is also
n/16.

We denote the shortest distance between positions i and j in the circular DNA as
r(i, j) and find the second moment of X:

EX2 = E

(
n∑

i=1

xi

)2

=
n∑

i=1

Ex2
i +

∑
i,j:r(i,j)≥2

Exixj +
∑

i,j:r(i,j)=1

Exixj. (1.2)

As x2
i = xi, the first sum in (1.2) is

∑n
i=1 Ex2

i = nExi = n/16.
If the distance r(i, j) ≥ 2, the random variables xi and xj are independent and∑

i,j:r(i,j)≥2

Exixj =
∑

i,j:r(i,j)≥2

ExiExj = n(n − 3)

256
.

If r(i, j) = 1, then positions i and j are adjacent and, for certainty, we assume that
position i precedes j. Then product xixj takes the following values:

xixj =
{

1, if triplet AAA starts in position i,

0, otherwise,

and Exixj = P(xixj = 1) = (1/4)3 = 1/64. Therefore, the second moment of X
becomes

EX2 = n

16
+ n(n − 3)

256
+ 2n

64
= n(n + 21)

256
,

and the variance of X is given by

VarX = EX2 − (EX)2 = n(n + 21)

256
− n2

256
= 21n

256
.

Similarly, for the second moment of Y we have:

EY2 = E

(
n∑

i=1

yi

)2

=
n∑

i=1

Ey2
i +

∑
i,j:r(i,j)≥2

Eyiyj +
∑

i,j:r(i,j)=1

Eyiyj. (1.3)

The first two sums in (1.3) are the same as in Equation (1.2). However, if r(i, j) = 1,
the product yiyj is always zero, because dinucleotide AT cannot start in two adjacent
positions i and j of the sequence. Therefore,

EY2 = n

16
+ n(n − 3)

256
= n(n + 13)

256
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and

VarY = EY2 − (EY)2 = n(n + 13)

256
− n2

256
= 13n

256
.

We see that the variance of the number of occurrences of a dinucleotide depends on
its structure: if it consists of different letters (thus, the dinucleotide cannot overlap
with the neighbor of the same type), the variance is 13n/256; if dinucleotide consists
of the same letter repeated twice (and can overlap with the neighbor of the same
type), the variance increases to 21n/256.

Remark For an extended discussion of the first and second moments of frequencies
of words in biological sequences, see Pevzner, Borodovsky, and Mironov (1989).

Problem 1.14 A prokaryotic protein-coding gene normally consists of an unin-
terrupted sequence of nucleotide triplets, codons. This sequence starts with a
specific start codon (ATG is most frequent) and ends with one of the three stop
codons: TAA, TAG, TGA. A sequence with such a structure is called an “open read-
ing frame’ (ORF). However, not every ORF found in prokaryotic genomic DNA
is a functional gene. Assuming that ATG is the only possible start codon, what is
the length distribution of ORFs that occur by chance? Consider an independence
model with equal probabilities of four nucleotide types.

Solution There are 43 = 64 triplets (codons) that will appear in the sequence
with equal probabilities. Three out of the sixty four are stop codons. Therefore,
the probability of encountering a stop codon upon scanning a sequence, triplet by
triplet, is 3/64 = 0.047. For the probability of occurrence of ORF of length L (in
codons) we have

P(ORF of length L starts in a given position)

= P(ATG) × P(non-stop codon)L−2 × P(stop codon)

= 1

64
×
(

1 − 3

64

)L−2

× 3

64
= 3

4096

(
61

64

)L−2

.

To derive the ORF length distribution, we use the definition of conditional
probability:

P(length of ORF is equal to L)

= P(ORF of length L starts in a given position)

P(any ORF starts in a given position)
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= P(ORF of length L starts in a given position)∑+∞
L=2 P(ORF of length L starts in a given position)

= (3/4096)(61/64)L−2

1/64
= 3

64

(
61

64

)L−2

.

Thus, we have derived the geometric distribution of the lengths of random ORFs
along with the parameters of the distribution.

Problem 1.15 Assuming that non-coding DNA is described by the independ-
ence model with probabilities of nucleotides equal to 1/4, show that a gene start
(under the assumption that the only start codon is the ATG codon) in 75% of
cases is expected to coincide with the “longest ORF’ start.

Solution Let us assume that a particular ATG codon is a real start of a gene, not
overlapped by an adjacent gene. Then the DNA sequence located upstream to the
ATG is non-coding DNA described by the independence model. Each possible
triplet appears in sequence described by this model with probability 1/64. To find
the probability that a given ATG situated at the real gene start is the 5′-most ATG
in the ORF, we consider the complementary event that there is yet another ATG
upstream to real start that would make an even longer ORF. By examining non-
overlapping triplets upstream to the given ATG one at a time, starting with the one
immediately adjacent to ATG, we observe one of the following possible outcomes.
(i) The picked up triplet is one of sixty that are not ATG, TAA, TGA, TAG. In this
case, we continue the process of triplet examining. (ii) This triplet is one of the
three stop codons (TAA, TGA, TAG). We stop and infer that the initially considered
ATG is the leftmost ATG in the ORF. (iii) The triplet under examination is ATG. We
stop and infer that the initially considered real gene start is not the leftmost ATG
in the ORF. Obviously, the termination of the scanning procedure by reaching one
of the stop codons will occur three times more frequently than the termination by
reaching the ATG codon. Therefore, the ATG start of a real gene in 75% of cases
coincides with the leftmost ATG of the ORF, which defines the longest ORF for the
fixed stop codon on the 3′ end.

Problem 1.16 Suppose we consider two independence models of nucleotide
sequence. The first model, M1, has the same probabilities of nucleotides as
defined in Problem 1.6. The second model, M2, assigns to each nucleotide type
the probability 1/4 to appear in any given position. Given the observed sequence
x = ACTGACGACTGAC, compare the likelihoods of these models.
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Solution The likelihood of a model is defined as the conditional probability of
data (sequence x) given the model (Durbin et al. (1998), p. 6). Thus, we have to
compare the probabilities of sequence x under each model. The likelihood of model
M1 is given by

P(x|M1) =
(

3

20

)6 ( 7

20

)7

.

Similarly, for the likelihood of model M2 we have P(x|M2) = (1/4)13. The
likelihood ratio is given by

P(x|M2)

P(x|M1)
= 2013

413 × 36 × 77
= 2.0333 > 1.

Therefore, for the observed sequence x model M2 has a greater likelihood than
model M1.

Problem 1.17 A circular double-stranded DNA of L = 3 400 nt long was cut
by a restriction enzyme. A subsequent gel electrophoresis separation indicated
the presence of five DNA pieces. It turned out that the absent-minded researcher
could not recall the exact type of restriction enzyme that was used. Still, he knew
that the chemical was picked up from a box containing equal number of 4-base
cutters and 6-base cutters (restriction enzymes that cut specific 4 nt long sites
and specific 6 nt long sites, respectively). What is the posterior probability that
the 4-nucleotide cutter was used if the DNA sequence can be represented by the
independence model with equal probabilities of nucleotides T , C, A, G.

Solution The probability of appearance of a restriction site in a particular position
of DNA sequence is p1 = (1/4)4 = 0.003906 for the 4-base cutter and p2 =
(1/4)6 = 0.000244 for the 6-base cutter.

We assume that in both cases the number X of restriction sites in the sequence
can be approximated by the Poisson distribution with parameter λ1 = p1L = 13.28
for the 4-base cutter and λ2 = p2L = 0.83 for the 6-base cutter (see solution to
Problem 1.11). Then we obtain

P(X = 5|4-cutters) = e−λ1
(λ1)

5

5! = 0.00588,

P(X = 5|6-cutters) = e−λ2
(λ2)

5

5! = 0.00143.
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N1 (0) = N2 (0) = 0

N1 (t)

t t

N2 (t)

Figure 1.1. The simplest hylogenetic tree T with a pair of the homologous genes
x1 and x2 being its leaves (see Problem 1.18).

We use Bayes’ theorem to calculate the posterior probability that the 4-base cutter
produced the restriction fragments:

P(4-cutters|X = 5)

= P(X = 5|4-cutters)P(4-cutters)

P(X = 5|4-cutters)P(4-cutters) + P(X = 5|6-cutters)P(6-cutters)

= 0.00588 × 0.5

0.00588 × 0.5 + 0.00143 × 0.5
= 0.804.

With 80.4% chance that the 4-base cutter was used, the initial uncertainty seems to
be resolved.

Problem 1.18 One theory states that the latest common ancestor of birds and
crocodiles lived 120 million years ago (MYA), while another theory suggests that
this time is twice as long. Comparison of homologous genes x1 and x2 of two
species, the Nile crocodile and the Mediterranean seagull, revealed on average
365 differences in 1000 nt long fragments. It is assumed that mutations at different
DNA sites occur independently, and at each site the number of mutations fixed in
evolution is approximated by the Poisson process. The rate of mutation fixation,
p, per nucleotide site per year, is equal to 10−9. Given the observed number of
differences, (a) compare the likelihoods of the two theories, and (b) determine
the maximum likelihood estimate of the divergence time. For simplicity, assume
that no more than one mutation could occur at any given nucleotide site of the
whole lineage.

Solution (a) Assuming that the divergence of the two species occurred t years ago,
we consider the simplest phylogenetic tree T with leaves x1 and x2. The occurrence
of substitutions along branches of the tree can be described by two independent Pois-
son processes N1(τ ) and N2(τ ) both with parameter p. The moment of divergence
corresponds to τ = 0 and the present time to τ = t (see Figure 1.1).
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We will compare the likelihoods of tree T for two values of the elapsed time,
t = t1 = 120 MYA and t = t2 = 240 MYA, associated with the competing theories.
The likelihood of a two-leaves tree with a molecular clock property depends on t
only. Then the (conditional) likelihood at site u carrying matching nucleotides in
DNA sequences is given by

Lu(t) = P(x1
u = x2

u|t, no more than one mutation at site i)

= P(N1(t) = 0, N2(t) = 0|N1(t) + N2(t) ≤ 1)

= P(N1(t) = 0, N2(t) = 0, N1(t) + N2(t) ≤ 1)

P(N1(t) + N2(t) ≤ 1)

= P(N1(t) = 0, N2(t) = 0)

P(N1(t) + N2(t) ≤ 1)
. (1.4)

The numerator of the last expression in Equation (1.4) is equal to

P(N1(t) = 0)P(N2(t) = 0) = e−2pt

due to the independence of processes N1(τ ) and N2(τ ), while N1(t) + N2(t) is
again the Poisson random variable (say N3(t)) with parameter 2p due to the known
property of the Poisson distribution. Thus, we have

P(N1(t) + N2(t) ≤ 1) = P(N3(t) ≤ 1) = P(N3(t) = 0) + P(N3(t) = 1)

= e−2pt + 2pte−2pt ,

and the likelihood Lu(t) from Equation (1.4) becomes

Lu(t) = e−2pt

e−2pt + 2pte−2pt
= (1 + 2pt)−1. (1.5)

Similarly, at site u with mismatching nucleotides the likelihood is given by

Lu(t) = P(x1
u 	= x2

u|t, no more than one mutation at site i)

= P(N1(t) = 0, N2(t) = 1|N1(t) + N2(t) ≤ 1)

+ P(N1(t) = 1, N2(t) = 0|N1(t) + N2(t) ≤ 1)

= 2P(N1(t) = 0)P(N2(t) = 1)

P(N1(t) + N2(t) ≤ 1)
= 2e−ptpte−pt

e−2pt + 2pte−2pt
= 2pt(1 + 2pt)−1.

(1.6)

From Equations (1.5) and (1.6) we derive the likelihood of tree T with two leaves
which are genomic sequences of length N aligned with M mismatches:

L(t) =
N∏

u=1

Lu(t) = (1 + 2pt)−N (2pt)M . (1.7)
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To test the two theories, we calculate the log-odds ratio for t1 = 120 MYA and
t2 = 240 MYA:

ln
L(t1)

L(t2)
= N ln(1 + 2pt2) − N ln(1 + 2pt1) + M ln(2pt1) − M ln(2pt2)

= −252.99 < 0.

Therefore, the available data support the theory that birds and crocodiles diverged
240 MYA, since this theory has a greater (conditional) likelihood than the competing
one.

(b) We determine the maximum likelihood estimate t∗ of the time of diver-
gence of the two species as a maximum point of the logarithm of likelihood L(t),
formula (1.7):

d ln L(t)

dt
= − 2Np

1 + 2pt∗
+ 2pM

2pt∗
= 0,

t∗ = M

2p(N − M)
= 2.874 × 108.

Thus, t∗ = 287.4 MYA is the maximum likelihood divergence time, while the
maximum likelihood value per se is given by

Lmax = L(t∗) = (1 + 2pt∗)−N (2pt∗)M = 10−285.

Problem 1.19 It is known that CpG-islands in high eukaryotes are relatively
rich with CpG dinucleotides, while these dinucleotides are discriminated in the
rest of a chromosome. It is assumed that the frequency of occurrences of CpG
dinucleotides in a CpG-island can be approximated by the Poisson distribution
with twenty-five CpG dinucleotides per 250 nt long fragment on average, while in
the rest of the DNA this average is ten CpG per 250 nt. Suggest the Bayesian type
algorithm for CpG-island identification. How will this algorithm characterize a
250 nt long DNA fragment containing nineteen CpG dinucleotides?

Solution We assume that that the numbers of occurrences of CpG dinucleotides in
CpG-islands and non-CpG-islands are both described by the Poisson distribution
with parameter λ1 = 25 and λ2 = 10, respectively.

If a given 250 nt long DNA fragment contains n dinucleotides CpG, how likely
is it that the DNA fragment belongs to a CpG-island? We have to compare two a
posterior probabilities: P1 = P(being a CpG-island given n observed CpG dinuc-
leotides) and P2 = P(being a non-CpG-island given n observed CpG dinucleotides).
Assuming that both alternatives, being a CpG-island and being a non-CpG-island,
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are a priori equally likely, we use Bayes’ theorem to calculate P1 and P2:

P1 = P(DNA fragment with n CpC has Poisson distribution with λ1 = 25)

= P(n CpG|λ1 = 25)1
2

P(n CpG|λ1 = 25)1
2 + P(n CpG|λ2 = 10)1

2

= 25ne−25

10ne−10 + 25ne−25
.

In the above we applied the formula for Poisson distribution and canceled the
common factor n!. Similarly,

P2 = P(DNA fragment with n CpC has Poisson distribution with λ2 = 10)

= P(n CpG|λ2 = 10)1
2

P(n CpG|λ1 = 25)1
2 + P(n CpG|λ2 = 10)1

2

= 10ne−10

10ne−10 + 25ne−25
,

or P2 = 1 − P1. The simple identification algorithm for a CpG-island works as
follows. For a given 250 nt long DNA fragment with n observed CpG dinucleotides
value P1 is computed. If P1 > 0.5 (P1 > P2), the DNA fragment is identified
as a part of a CpG-island. Otherwise, the fragment is identified as a part of a
non-CpG-island.

For n = 19 we have

P1 = (25)19e−25

(25)19e−25 + (10)19e−10
= 0.92,

P2 = 1 − P1 = 0.08,

and we conclude that the DNA fragment belongs to a CpG-island.

Problem 1.20 Given the conditions stated in Problem 1.19, the following
decision-making rule is accepted: if more than eighteen CpG dinucleotides
are observed in a 250 nt long DNA fragment, it is identified as a CpG-island.
Determine false positive and false negative rates of this method.

Solution The false positive rate (FPR) is defined as the probability that the rule
would identify a non-CpG-island as a CpG-island. Since the number X of CpG
dinucleotides in a non-CpG-island is described by the Poisson distribution with
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parameter λ = 10, we have

FPR = P(more than eighteen CpG out of 250|non-CpG-island)

= P(X > 18|λ = 10) =
+∞∑
n=19

P(X = n) = 1 −
18∑

n=0

P(X = n)

= 1 −
18∑

n=0

e−10 10n

n! ≈ 0.007.

The false negative rate (FNR) is defined as the probability that a CpG-island is
identified as a non-CpG-island. Since the number Y of CpG dinucleotides in a
CpG-island region has the Poisson distribution with parameter λ = 25, the false
negative rate is given by

FNR = P(less or equal to eighteen CpG out of 250|CpG-island)

= P(Y ≤ 18|λ = 25) =
18∑

n=0

P(Y = n)

=
18∑

n=0

e−25 25n

n! ≈ 0.09.

Note that FPR < FNR. This means that the classification rule is more likely to
decide that CpG-island DNA is non-CpG-island DNA than vice versa.

Problem 1.21 An inhomogeneous DNA sequence is known to contain both
C +G-rich composition regions and regions with unbiased (uniform) nucleotide
composition. We assume that the independence model (P model) with parameters
pT = 1/8, pC = 3/8, pA = 1/8, pG = 3/8, describes the regions with high
C + G content. Regions with uniform nucleotide composition are described by
the independence model (Q model) with parameters qT = 1/4, qC = 1/4,
qA = 1/4, qG = 1/4. For a given DNA fragment X, the log-odds ratio, L =
log2[P(X|P)/P(X|Q)] is determined, and, if L ≥ 0, X is classified as a high C+G
composition fragment; if L < 0, X is classified as compositionally unbiased.
Determine the probabilities of type-one error (false negative rate) and type-two
error (false positive rate) of the classification of a DNA fragment of length n.
Consider n = 10, 20 and 100.

Solution For a DNA sequence X of length n we test the null hypothesis,

H0 = {X belongs to a C + G-rich region} = {X ∈ P},
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versus the alternative hypothesis,

Ha = {X belongs to a region with uniform composition} = {X ∈ Q}.
The log-odds ratio is given by

L = log2[P(X|P)/P(X|Q)] = log2

((
pA

qA

)n1
(

pC

qC

)n2
(

pT

qT

)n3
(

pG

qG

)n4
)

= n1 log2
1

2
+ n2 log2

3

2
+ n3 log2

1

2
+ n4 log2

3

2
≈ 0.585(n2 + n4) − (n1 + n3),

where n1, n2, n3, and n4 are numbers of nucleotides A, C, T , and G, respectively,
observed in fragment X. We accept hypothesis H0 (and reject Ha) if L ≥ 0, i.e. if
P(X|P) ≥ P(X|Q); and we reject H0 (and accept Ha) otherwise. For the type-one
error α (significance level of the test) we have

α = P(type-one error) = P(H0 is rejected|H0 is true) = P(L < 0|X ∈ P)

= P(0.585(n2 + n4) − (n1 + n3) < 0|X ∈ P).

Next, we define the Bernoulli trial outcomes by interpreting an occurrence of A or
T at a given site of sequence X as a “success” and an occurrence of C or G as a
“failure.” If p is the probability of “success,” then the number of “successes” in n
Bernoulli trials, S = n1 + n3, has a binomial distribution with parameters n and p.
The type-one error, α, becomes

α = P(0.585(n2 + n4) − (n1 + n3) < 0|X ∈ P)

= P(0.585(n − S) − S < 0|S ∈ B(n, p = 1/4))

= P(S > 0.369n|S ∈ B(n, p = 1/4))

=
∑

k:0.369n<k≤n

(
n

k

)(
1

4

)k (3

4

)n−k

=
(

1

4

)n ∑
k:0.369n<k≤n

(
n

k

)
3n−k .

It follows from the central limit theorem that as n → ∞ the sequence of random
variables (S − ES)/

√
VarS weakly converges to the standard normal distribution.

Therefore, for large n,

α = P(S > 0.369n|S ∈ B(n, p = 1/4)) = P

(
S − ES√

VarS
>

0.369n − ES√
VarS

)

= P

(
S − 0.25n

0.25
√

3n
> 0.2748

√
n

)
≈ 1 − �(0.2748

√
n).

Here

�(x) = 1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt


