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Chaotic Dynamics
An Introduction Based on Classical Mechanics

Since Newton, a basic principle of natural philosophy has been determin-

ism, the possibility of predicting evolution over time into the far future,

given the governing equations and starting conditions. Our everyday

experience often strongly contradicts this expectation. In the past few

decades we have come to understand that even motion in simple systems

can have complex and surprising properties.

Chaotic Dynamics provides a clear introduction to chaotic phenom-

ena, based on geometrical interpretations and simple arguments, without

in-depth scientific and mathematical knowledge. Examples are taken

from classical mechanics whose elementary laws are familiar to the

reader. In order to emphasise the general features of chaos, the most

important relations are also given in simple mathematical forms, inde-

pendent of any mechanical interpretation. A broad range of potential

applications are presented, ranging from everyday phenomena through

engineering and environmental problems to astronomical aspects. It is

richly illustrated throughout, and includes striking colour plates of the

probability distribution of chaotic attractors.

Chaos occurs in a variety of scientific disciplines, and proves to be the

rule, not the exception. The book is primarily intended for undergraduate

students in science, engineering and mathematics.

T A M Á S T É L is Professor of Physics at Eötvös University, Budapest,
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of interest are non-linear dynamics, statistical mechanics, fluid dynamics

and environmental flows.
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non-linear oscillator; Sections 1.2.1 and 5.6.2 and equation (5.85)) on
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probabilities. The colour change from red to yellow denotes less than
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II. Chaotic attractor of a driven pendulum (Sections 1.2.1 and 5.6.3 and
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VII. Basins of attraction of two stationary periodic motions (limit cycle
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Preface

We have just seen that the complexities of things can so easily
and dramatically escape the simplicity of the equations which
describe them. Unaware of the scope of simple equations, man
has often concluded that nothing short of God, not mere equa-
tions, is required to explain the complexities of the world.

. . . The next great era of awakening of human intellect may
well produce a method of understanding the qualitative content
of equations.

Richard Feynman in 1963, the year of publication of the
Lorenz model 1

The world around us is full of phenomena that seem irregular and random

in both space and time. Exploring the origin of these phenomena is

usually a hopeless task due to the large number of elements involved;

therefore one settles for the consideration of the process as noise. A

significant scientific discovery made over the past few decades has been

that phenomena complicated in time can occur in simple systems, and

are in fact quite common. In such chaotic cases the origin of the random-

like behaviour is shown to be the strong and non-linear interaction of the

few components. This is particularly surprising since these are systems

whose future can be deduced from the knowledge of physical laws and the

current state, in principle, with arbitrary accuracy. Our contemplation of

nature should be reconsidered in view of the fact that such deterministic

systems can exhibit random-like behaviour.

Chaos is the complicated temporal behaviour of simple systems.

According to this definition, and contrary to everyday usage, chaos is not

spatial and not a static disorder. Chaos is a type of motion, or more gener-

ally a type of temporal evolution, dynamics. Besides numerous everyday

processes (the motion of a pinball or of a snooker ball, the auto-excitation

of electric circuits, the mixing of dyes), chaos occurs in technical,

chemical and biological phenomena, in the dynamics of illnesses, in

1 R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics,

Vol. II. New York: Addison-Wesley, 1963, Chap. 40, pp. 11, 12.
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xiv Preface

elementary economical processes, and on much larger scales, for exam-

ple in the alternation of the Earth’s magnetic axis or in the motion of the

components of the Solar System.

There is an active scientific and social interest in this phenomenon

and its unusual properties. The motion of chaotic systems is complex but

understandable: it provides surprises and presents those who investigate

it with the delight of discovery.

Although numerous books are available on this topic, most of them

follow an interdisciplinary presentation. The aim of our book is to provide

an introduction to the realm of chaos related phenomena within the scope

of a single discipline: classical mechanics. This field has been chosen

because the inevitable need for a probabilistic view is most surprising

within the framework of Newtonian mechanics, whose determinism and

basic laws are well known.

The material in the book has been compiled so as to be accessible to

readers with only an elementary knowledge of physics and mathematics.

It has been our priority to choose the simplest examples within each

topic; some could even be presented at secondary school level. These

examples clearly show that almost all the mechanical processes treated in

basic physics become chaotic when slightly generalised, i.e. when freed

of some of the original constraints: chaos is not an exceptional, rather it

is a typical behaviour.

The book is primarily intended for undergraduate students of science,

engineering, and computational mathematics, and we hope that it might

also contribute to clarifying some misconceptions arising from everyday

usage of the term ‘chaos’.

The book is based on the material that one of us (T. T.) has been teach-

ing for fifteen years to students of physics and meteorology at Eötvös

University, Budapest, and that we have been lecturing together in the last

few years.
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How to read the book

The first part of the book presents the basic phenomena of chaotic dynam-

ics and fractals at an elementary level. Chapter 1 provides, at the same

time, a preview of the five main topics to be treated in Part III.

Part II is devoted to the analysis of simple motion. The geometric

representation of dynamics in phase space, as well as basic concepts

related to instability (hyperbolic points and stable and unstable mani-

folds), are introduced here. Two-dimensional maps are deduced from

the equations of motion for driven systems. Elementary knowledge of

ordinary differential equations, of linear algebra, of the Newtonian equa-

tion of a single point mass and of related concepts (energy, friction and

potential) is assumed.

Part III provides a detailed investigation of chaos. The dynamics

occurring on chaotic attractors characteristic of frictional, dissipative

systems is presented first (Chapter 5). No preliminary knowledge is

required upon accepting that two-dimensional maps can also act as the

law of motion. Next, the finite time appearance of chaos, so-called tran-

sient chaotic behaviour, is investigated (Chapter 6). Subsequently, chaos

in frictionless, conservative systems is considered in Chapter 7, along

with its transient variant in the form of chaotic scattering in Chapter 8.

Chapter 9 covers different applications of chaos, ranging from engineer-

ing to environmental aspects.

Problems constructed from the material of each chapter (many also

require computer-based experimentation) motivate the reader to carry

out individual work. Some of the solutions are given at the end of the

book; the remainder appear (in a password-protected format) on the

following website: www.cambridge.org/9780521839129.

Topics only loosely related to the main train of ideas, but of his-

torical or conceptual interest, are presented in Boxes. Some important

technical matter (for example numerical algorithms, writing equations

in dimensionless forms) are relegated to an Appendix. A bibliography is

given at the end of the book, and it is broken down according to topics,

chapters and Boxes.

In order to emphasize the general aspects of chaos, the most impor-

tant relations are also given in a formulation independent of mechanics

xvi



How to read the book xvii

(see Sections 3.5, 4.7, 5.4, 6.3, 7.5 and 8.4). The description of motion

occurs primarily in terms of ordinary differential equations, and we

concentrate on chaos from such a mathematical background. Irregu-

lar dynamics generated by other mathematical structures, which do not

represent real phenomena, are thus beyond the scope of the book. The

case of one-dimensional maps is mentioned therefore as a special limit

only. This approach might provide a useful introduction to chaos for

all disciplines whose dynamical phenomena are described by ordinary

differential equations.

The book is richly illustrated with computer-generated pictures

(24 of which are in colour), not only to provide a better understand-

ing, but also to exemplify the novel and aesthetically appealing world of

the geometry of dynamics.





Part I

The phenomenon: complex motion,
unusual geometry





Chapter 1

Chaotic motion

1.1 What is chaos?
Certain long-lasting, sustained motion repeats itself exactly, periodically.

Examples from everyday life are the swinging of a pendulum clock or

the Earth orbiting the Sun. According to the view suggested by conven-

tional education, sustained motion is always regular, i.e. periodic (or at

most superposition of periodic motion with different periods). Important

characteristics of a periodic motion are: (1) it repeats itself; (2) its later

state is accurately predictable (this is precisely why a pendulum clock

is suitable for measuring time); (3) it always returns to a specific posi-

tion with exactly the same velocity, i.e. a single point characterises the

dynamics when the return velocity is plotted against the position.

Regular motion, however, forms only a small part of all possible

sustained motion. It has become widely recognised that long-lasting

motion, even of simple systems, is often irregular and does not repeat

itself. The motion of a body fastened to the end of a rubber thread is a

good example: for large amplitudes it is much more complex than the

simple superposition of swinging and oscillation. No regularity of any

sort can be recognised in the dynamics.

The irregular motion of simple systems, i.e. systems containing only

a few components, is called chaotic. As will be seen later, the exis-

tence of such motion is due to the fact that even simple equations can

have very complicated solutions. Contrary to the previously generally

accepted view, the simplicity of the equations of motion does not deter-

mine whether or not the motion will be regular.

Understanding chaotic motion requires a non-traditional approach

and specific tools. Traditional methods are unsuitable for the description

3



4 The phenomenon: complex motion, unusual geometry

Table 1.1. Comparison of regular and chaotic motion.

Regular motion Chaotic motion

self-repeating irregular

predictable unpredictable

of simple geometry of complicated geometry

of such motion, and the discovery of the ubiquity of chaotic dynamics

has become possible through computer-based experimentation. Detailed

observations have led to the result that chaotic motion is characterised

by the opposite of the three properties mentioned above: (1) it does

not repeat itself, (2) it is unpredictable because of its sensitivity to the

initial conditions that are never exactly known, (3) the return rule is

complicated: a complex but regular structure appears in the position

vs. velocity representation. The differences between the two types of

dynamics are summarised in Table 1.1.

The properties of chaotic systems are unusual, either taken indi-

vidually or together; the most efficient way to understand them is by

considering particular cases. In the following, we present the chaotic

motion of very simple systems on the basis of numerical simulations,

which are unavoidable when studying chaos. It should be emphasised

that all of our examples are discussed for a unique set of parameters, and

that slightly different choices of the parameters could result in substan-

tially different behaviour. These examples also serve to classify different

types of chaos and help in developing the new concepts necessary for a

detailed understanding of chaotic dynamics.

Fig. 1.1. Model of driven
oscillations: a body of finite
mass is fixed to one end of a
weightless spring and the
other end of the spring is
moved sinusoidally with time.

1.2 Examples of chaotic motion
1.2.1 Irregular oscillations, driven pendulum – the
chaotic attractor

Objects mounted on spring suspensions (for example car wheels and

spin-dryers) oscillate. Because of the losses that are always present due

to friction or air drag, these oscillations, when left alone, are damped

and ultimately vanish. Sustained motion can only develop if energy is

supplied from an external source. The supplied energy can be a more or

less periodic shaking, i.e. the application of a driving force (caused by

interactions with pot-holes in the case of the car wheel and by the uneven

distribution of clothes in the spin-dryer), as indicated schematically in

Fig. 1.1.

As long as the displacement is small, the spring obeys a linear force

law to a good approximation: the magnitude of the restoring force is
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Fig. 1.2. Irregular sustained oscillations of a point mass fixed to the end of a
stiffening spring (a driven non-linear oscillator), driven sinusoidally in the
presence of friction.

proportional to the elongation. In this case the sustained motion is reg-

ular: it adopts the period of the driving force. If the natural period of

the spring is close to that of the driving force, then the amplitude may

become very large and the well known phenomenon of resonance devel-

ops. For large amplitudes, however, the force of the spring is usually no

longer proportional to the elongation; i.e., the force law is non-linear.

Resonance is therefore a characteristic example for the appearance of

non-linearity.

For non-linear force laws, the restoring force increases more rapidly

or more slowly than it would in linear proportion to the elongation: we can

speak of stiffening or softening springs, respectively. Whichever type of

non-linearity is involved, the sustained state of the driven oscillation may

be chaotic. A qualitative explanation is that the spring is not able to adopt

exactly the sinusoidal, harmonic motion of the forcing apparatus, since

its own periodic behaviour is no longer harmonic. Thus, the sustained

dynamics follows the driving force in an averaged sense only, but always

differs from it in detail (instead of the uniform hum of the car or the

spin-dryer, an irregular sound can be heard in such situations). Neither

the amplitude nor the frequency is uniform: the sustained motion does

not repeat itself regularly; it is chaotic.

Figure 1.2 shows the motion of a body fixed to the end of a stiffening

spring and driven sinusoidally.1 It can clearly be seen that there is no

repetition in the displacement vs. time curve; i.e., the motion is irregular.

Slightly different initial conditions result in significant differences

in the displacement after only a short time (Fig. 1.3): the dynamics is

unpredictable. This figure also shows that the long-term behaviour is

of a similar nature in both cases: the two motions are equivalent in a

statistical sense.

1 The precise equations of motion of the examples in this section can be found in

Sections 5.6.2 and 5.6.3.
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Fig. 1.3. Two sets of motion
which started from nearly
identical positions. The small
initial difference increases
rapidly: the motion is sensitive
to the initial conditions and
therefore it is unpredictable.
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Fig. 1.4. Pattern resulting
from a sustained non-linear
oscillation in the velocity vs.
position representation, using
samples taken at time intervals
corresponding to the period
of the driving force. The
position and velocity
co-ordinates of the nth sample
are xn and vn, respectively.

An interesting structure reveals itself when we do not follow the mo-

tion continuously, but only ‘take samples’ of it at equal time intervals.

Figure 1.4 and Plate I have been generated by plotting the position and

velocity co-ordinates (xn, vn) of the sustained motion at integer multi-

ples, n, of the period of the driving force, through several thousands of

periods.

It is surprising that there are numerous values of xn to which many

(according to detailed examinations, an infinite number of) different

velocity values belong. Furthermore, the possible velocity values corre-

sponding to a single position co-ordinate xn do not form a continuous

interval anywhere. The whole picture has a thready, filamentary pattern,

indicating that chaos is associated with a definite structure. This pattern

is much more complicated than those of traditional plane-geometrical

objects: it is a structure called a fractal (a detailed definition of fractals

will be given in Chapter 2). Remember that a single point would cor-

respond to a periodic motion in this representation. Chaotic motion is

therefore infinitely more complicated than periodic motion.
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(a) (b)

Fig. 1.6. Motion of a driven pendulum. (a) The pendulum a few moments after
starting from a hanging state (over the first half period). (b) The path of the
end-point of the pendulum for a longer time: the pendulum swings irregularly
and often turns over. The horizontal bar indicates the interval over which the
suspension point moves.

Another example is the behaviour of a driven pendulum (Fig. 1.5).

The large-amplitude swinging of a traditional simple pendulum is non-

linear, since the restoring force is not proportional to the deflection angle

but to the sine of this angle. Without any driving force, the swinging

ceases because of friction or air drag: sustained motion is impossible.

The pendulum can be driven in different ways. We examine the case when

the point of suspension is moved horizontally, sinusoidally in time. In

order to avoid the problem of the folding of the thread, the point mass is

considered to be fixed to a very light, thin rod. With a sufficiently strong

driving force, the motion may become chaotic. Figure 1.6 shows the path

of the pendulum in the vertical plane.

Fig. 1.5. Driven pendulum:
the pendulum is driven by the
periodic movement of its
point of suspension in the
horizontal plane.

Note that the pendulum turns over several times in the course of its

motion. The ‘upside down’ state is especially unstable, just like that of

a pencil standing on its point. Two paths of the pendulum starting from

nearby initial positions remain close to each other only until an unstable

state, an ‘upside down’ state, separates them. Then one of them turns

over, while the other one falls back to the side it came from (Fig. 1.7).

The reason for the unpredictability is that the motion passes through a

series of unstable states.

The structure underlying the irregular motion can again be demon-

strated by following the motion initiated in Fig. 1.6 for a long time and

taking samples from it by plotting the position (angular deflection) and

velocity (angular velocity) co-ordinates (xn, vn) at intervals correspond-

ing to the period of the driving force (Fig. 1.8 and Plate II).

In a frictional (dissipative) system, sustained motion can only de-

velop if some external energy supply (driving) is present. Regardless of

the initial state, the dynamics converges to some sustained behaviour

that will therefore be called an attracting object, or an attractor (for the
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Fig. 1.7. Separation of the
paths of two identical driven
pendulums starting from
nearby points while passing an
unstable state. The notation is
the same as in Fig. 1.6. The
arrows show the direction in
which the end-points of the
pendulums move.
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21

–π
–21

Fig. 1.8. Pattern resulting
from a chaotic driven
pendulum (chaotic attractor)
obtained by plotting the state
of the pendulum in the
position–velocity co-ordinates
at integer multiples of the
driving period.

exact definition, see Section 3.1.2). Simple attractors correspond either

Fig. 1.9. The magnetic
pendulum: magnets are fixed
to the table and a point mass
attracted by the magnets is
fixed to the end of the thread.
The pendulum ultimately
settles in an equilibrium state
pointing towards one of the
magnets, but only after some
irregular, chaotic motion.

to regular or to ceasing motion. A sufficiently large supply of energy

inevitably brings about the non-linearity of the system; the sustained dy-

namics is then usually irregular, i.e. chaotic. This is accompanied by the

presence of a chaotic attractor, also called a strange attractor because

of its peculiar structure. Figures 1.4 and 1.8 display examples of chaotic

attractors.

1.2.2 Magnetic and driven pendulums, fractal basin
boundary – transient chaos

Consider a pendulum, the end-point of which is a small magnetic

body, moving above three identical magnets placed at the vertices of a

horizontal equilateral triangle (Fig. 1.9). When the force between the
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Fig. 1.10. Basin of
attraction of the three
equilibrium states of the
magnetic pendulum (one
white and two black dots).
Each point on the
horizontal plane is shaded
according to the magnet in
whose neighbourhood the
pendulum comes to a rest
when starting above that
point with zero initial
velocity.

end of the pendulum and the magnets is attracting, the pendulum can

come to a halt, pointing towards any of the magnets. Thus there are

three simple attractors in the system. Starting above any point of the

plane, we can use a computer to calculate which magnet the pendulum

will be closest to after coming to rest.2 By assigning three different

colours to the three attractors, and to the corresponding initial posi-

tions that converge towards them, the whole plane can be coloured.

Each identically coloured area is a basin of attraction. Surprisingly,

the basin boundaries are interwoven and entangled in a complicated

manner (see Fig. 1.10 and Plates III–VI); these simple attractors have

fractal basin boundaries. (Naturally, the close vicinity of each attractor

appears in one colour only: the boundaries do not come close to the

attractors.)

Motion starting near the fractal boundary remains irregular for a

while, exhibiting transient chaos, i.e. chaos lasting for a finite period of

time (Fig. 1.11), but ultimately it ends up on one of the attractors.

A driven pendulum (Fig. 1.5) may also exhibit transient chaos. When

the friction is sufficiently large, the pendulum can exhibit regular sus-

tained motion only. There are two options for the given parameters (see

Fig. 1.12, which depicts the paths corresponding to these two simple at-

tractors in the vertical plane). An overall view of the basins of attraction

can again be obtained by representing the starting point in the position

2 The equations of motion of the magnetic pendulum can be found in Section 6.8.3.
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Fig. 1.11. Path of the
end-point of the magnetic
pendulum viewed from
above. The motion is irregular
before reaching one of the
rest positions: it is transiently
chaotic. (The fixed magnets
are represented by solid black
dots.)

(a) (b)

Fig. 1.12. Simple periodic attractors of the driven pendulum: for sufficiently
strong friction only these two types of sustained motion exist. All the different
initial conditions lead to one of these motions, corresponding to a simple
attractor each.

(angular deflection) – velocity (angular velocity) plane in the colour of

the attractor which the motion ultimately converges to (Fig. 1.13 and

Plate VII).

Motion starting close to the boundary is similar initially to that seen

in the case of the chaotic attractor, but it ultimately converges to one

of the simple attractors. Irregular dynamics has a finite duration; it is

transient. There exist, however, very exceptional initial conditions from

which the dynamics never reaches any of the attractors, and is chaotic for

any length of time. There exists an infinity of such motion (Fig. 1.14),

but the initial conditions that describe these state do not form a compact

domain in the plane, but rather a fractal cloud of isolated points called a

chaotic saddle.
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Fig. 1.13. Basins of
attraction in the driven
pendulum on the plane of
initial conditions. The two
simple attractors in Fig.
1.12 appear here as points
(white and black dots),
and the initial states
converging towards them
are marked in black and
white, respectively.
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Fig. 1.14. Initial states of
the driven pendulum of
Fig. 1.13 that never reach
either simple attractor: all
points shown here are on
the basin boundary and, if
followed in time, they keep
moving between
themselves after every
period of the driving force.
This chaotic saddle is
responsible for chaotic
dynamics of transient type.

Thus, chaotic dynamics can also occur if the sustained forms of

motion are regular, but there are many possible transient routes (chaotic

transients) leading to them. In such cases several simple attractors co-

exist, each with its own basin of attraction defined by the set of initial

conditions which converges to the given attractor. The basins of attraction

often penetrate each other, and their boundaries can also be filamentary

fractal curves. The motion starting from the vicinity of these fractal basin
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boundaries behaves randomly along the boundary for a long time, as if

it is difficult to decide which attractor to choose. During this period of

uncertainty the motion is irregular and is bound to fractal structures.
l

Fig. 1.15. Body swinging on
a pulley: two point masses are
joined by a thread wound
around a pulley of negligible
radius, one of them swinging
freely in a vertical plane, the
other moving vertically only.

1.2.3 Body swinging on a pulley, ball bouncing
on slopes – chaotic bands

Let us examine what happens in frictionless (conservative) systems. Con-

sider two point masses joined by a thread wound about a small pulley

(see Fig. 1.15). The case when both points can only move vertically is a

well known secondary school problem. Here, however, we let one of the

point masses swing in a vertical plane (with the thread always stretched

for the sake of simplicity). It will be shown that new types of chaotic

motion develop under such conditions.3

The instantaneous length, l, of the thread of the point mass that can

swing is one of the position co-ordinates; the other is the angle of deflec-

tion. In the traditional arrangement, where only vertical displacement is

allowed, the heavier mass always pulls the other one up, but the situation

is much more interesting now. If the swinging body is thrust horizontally

with sufficient momentum while the other body moves downwards, then

the swinging body turns over several times, the thread shortens, the body

spins faster, and thus becomes able to pull the other body upward, even

if the latter is the heavier. (It is assumed that the swinging body does not

collide with anything and that the thread does not become unattached

from the pulley when turning over.) Thus, a long-lasting, complicated,

chaotic motion may develop. The path of the swinging body and the

length of the thread vs. time are shown in Figs. 1.16(a) and (b), re-

spectively. Again, the paths of the motion starting from nearby initial

conditions soon branch off; the motion is unpredictable.

An overview of the motion corresponding to a given total energy

can be presented with the help of some sampling technique. The system

is not driven in this case, and therefore sampling will not take place

at identical time intervals, rather at identical configurations: whenever

the swinging body passes through the vertically hanging configuration,

the instantaneous length, ln ≡ xn , of the swinging thread and the rate of

change of this length, vn , will be plotted as one point in the plane. Thus,

chaotic motion is represented by a sequence of points jumping around

in a disordered manner and dotting a finite region of the plane; This is

called the chaotic band (Fig. 1.17). Other initial conditions outside of the

3 The equations of motion of the examples in this section can be found in Sections 7.4.1

and 7.4.3.
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Fig. 1.16. Frictionless motion of a body swinging on a pulley. (a) The spatial
path of the swinging body (the initial position is marked by a black dot, the
pulley by the centre of an open circle); (b) the dependence of the length of the
swinging thread on time within the same time interval.
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Fig. 1.17. Overview of
the motion of a body
swinging on a pulley
without air drag and at a
given total energy, on the
basis of samples of length
and velocity (xn, νn) taken
when passing through the
vertical position, from the
left. The dotted region is a
chaotic band, which can
be traced out by motion
starting from a single initial
condition. The sets of
closed curves form regular
islands.

band may result in a single point, a few points or a continuous line, all of

which correspond to regular motion. These objects together usually form

closed domains that can be called regular islands. A frictionless chaotic

system is characterised by a hierarchically nested pattern of chaotic bands

and islands. Together they form a complicated structure of interesting

texture, different from the fractals presented so far (see Fig. 1.17 and

Plate VIII).

Our second example illustrates the fact that elastic collisions with flat

surfaces can also lead to chaotic motion. Maybe the simplest situation
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is the case of an elastic ball bouncing on two slopes that face each other

(Fig. 1.18). (A motion very similar to this can be realised in experiments

with atoms.) Chaotic behaviour arises because after bouncing back from

the opposite slope the ball does not necessarily hit its original position.

Non-linearity and inherent instability are caused by the break-point be-

tween the slopes. The chaotic motion of two balls dropped from identical

heights but slightly different positions soon branches off (Fig. 1.19), just

as in the previous examples.

A sampling technique providing a good overview of the dynamics

Fig. 1.18. Ball bouncing on
two slopes of identical
inclination that face each
other in a gravitational field.

is in this case to plot the two velocity components as points of a plane,

at the instant of each bounce (Fig. 1.20).

There is no need to apply driving forces in order to sustain a motion in

frictionless systems, since there is no dissipation and energy is conserved.

On the other hand, this motion cannot converge to a well defined sus-

tained motion because there are no attractors in frictionless, conservative

Fig. 1.19. Paths of two balls
starting from nearly identical
initial positions above the
double slope (the continuous
line is identical to that drawn
in Fig. 1.18). The motion is
sensitive to the initial
conditions.

1

1
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un
–1

0

0

Fig. 1.20. Pattern generated
by the possible motions of a
ball bouncing on a double
slope with given total energy
in a representation where the
abscissa is the velocity
component parallel to the
slope (un) and the ordinate is
the square of the component
perpendicular to the slope (zn)
taken at the instance of the
nth bounce. The dotted
region is a chaotic band. The
angle of inclination of the
slope is 50◦.
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Fig. 1.21. The three-disc
problem: particles
bouncing perfectly
elastically between
identical discs fixed at the
vertices of a regular
triangle. Paths starting
from nearby initial points
soon diverge.

systems. As a result, the nature of all motion strongly depends on the

initial conditions and the total energy. Regular motion corresponds to cer-

tain sets of initial conditions, while chaotic motion corresponds to other

sets. The initial conditions that lead to chaotic motion form chaotic

bands that, contrary to chaotic attractors, are plane-filling objects.

1.2.4 Ball bouncing between discs, mirroring
Christmas-tree ornaments – chaotic scattering

Three identical discs are placed at the vertices of a regular triangle in

the horizontal plane and a ball is bouncing among them – like in a pin-

ball machine (see Fig. 1.21). The motion is considered to be frictionless;

therefore the velocity of the particle is constant during the entire process.

Starting from a given point, the motion depends on the initial direction of

the velocity vector. Some initial conditions cause the particle to bounce

for a very long time between the discs; during this time the dynamics

of the particle is complicated and aperiodic.4 Two slightly different ini-

tial conditions cause the paths to diverge rapidly (Fig. 1.21); therefore,

this motion is also chaotic. The deviation of paths with nearby initial

conditions is easy to explain, since the discs act as dispersing mirrors

and the angle between the straight sections of the paths increases with

each collision. The complicated structure related to the motion mani-

fests itself in several ways. The number of bounces experienced by the

particles that start along a segment in a given direction towards the discs

strongly depends on the initial position. Some initial conditions lead to

many collisions (Fig. 1.22). Moreover, there is an infinity of initial points

4 A detailed investigation of this problem can be found in Section 8.2.3.
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Fig. 1.22. Number of collisions of 20000 particles starting with unit velocity at
right angles to the line segment drawn in Fig. 1.21, as a function of the y
co-ordinate. (The centres of the discs are at unit distance from each other.)

from which an arbitrary number of bounces can, in principle, occur (the

particles then become trapped among the discs), but these do not form

an interval: they form a scattered fractal cloud along the line segment.

Three or four Christmas-tree ornaments in contact with each other

reflect light several times before light reaches our eyes. The interesting

fractal images resulting from these reflective spheres (Plates IX and X)

are examples of everyday consequences of chaotic motion.

The process whereby a significant force is only present in a finite

region of a frictionless system is usually called scattering. Such a force

can be tested via the motion of particles approaching from large dis-

tances. This motion is initially rectilinear, but the force causes the path

to curve; then the particle leaves the scattering process and resumes its

rectilinear motion, most probably in a new direction. The chaotic nature

of the process arises because the motion may become long-lasting and

irregular in the region where finite forces are in action. In these cases we

speak of chaotic scattering. The average lifetime of chaos, similar to the

dynamics around fractal basin boundaries, is finite. Even though there

are no attractors in this case, the different outgoing states play a role

similar to that of simple attractors. Chaotic scattering always involves

transient chaos.

1.2.5 Spreading of pollutants – an application of chaos

Chaotic motion occurs in numerous phenomena related to practical

applications. One of these is discussed here: the spreading of pollutants
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(a) (b)

Fig. 1.23. Tank with two outlets. The outlets, when opened alternately,
generate chaotic advection in a flat container. (a) and (b) illustrate the flow in
the first and second half period, respectively. The flow itself is very simple; the
advection of the particles is nevertheless chaotic.

in a flowing medium (air or water). The environmental significance of

this matter is obvious.

Consider a large and flat container with two point-like outlets. Water

whirls while flowing out. The two outlets are alternately open, each for

half a period (Fig. 1.23), yielding a flow periodic in time. We want to

know how a dye particle moves in this flow. For the sake of simplicity,

it is assumed that the material properties of the dye are identical to that

of the liquid; the only difference is the colour. In this case, the motion

is determined by the condition that the instantaneous velocity of the

particle is identical to that of the liquid. The path of the particle is then

easy to follow.5 Chaos arises because a particle moving towards the open

outlet may not reach it within half a period; therefore it starts moving

towards the other outlet, but again it may be too late to be drained, and

so on. It may thus take a very long time before the particle flows out of

the container. Figure 1.24 illustrates two complicated paths starting very

close to each other, but leaving the tank via different outlets.

In the context of the spreading of pollution, it is especially important

to follow the motion of a dye droplet. This corresponds to the exami-

nation of the dynamics of an ensemble of particles, each starting from

a certain initial region, the initial shape of the droplet. A surprising

discovery is that, despite the chaotic motion of each individual parti-

cle, the drop traces out a well defined thready fractal structure (after

losing its original compact shape) within a short time (Fig. 1.25 and

Plate XI).

The spreading of impurities in the form of filamentary patterns can

be observed in numerous phenomena, ranging from oil stains on road

surfaces through the mixing of cream in coffee to the propagation of

5 The equation of motion for this example can be found in Section 9.4.1.
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Fig. 1.24. Paths of two dye
particles (continuous and
broken lines) starting near
each other in a tank with two
outlets (situated at (−1, 0)
and (1, 0)). The consecutive
black dots (squares) indicate
the instants when the left
(right) outlet is opened. In the
initial instant the left outlet is
opened. The time spent in the
tank is very different for the
two particles.

Fig. 1.25. Shape of a dye
drop initially and after five
periods in the tank with two
outlets.

chemical pollution in the atmosphere. This thready structure unmistak-

ably signals the chaotic motion of the individual pollutant particles.

The type of chaos found in the advection problem may depend on

the parameters of the system. The problem of the tank with two outlets

in the above arrangement is analogous to the problem of the fractal basin

boundaries. If the outlets are closed but the alternating whirling motion

is sustained by mixers, the so-called blinking vortex model is obtained.

In this case there is no outflow that could be the analogue of the simple
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Table 1.2. Comparison of the traditional and phase space
representations of dynamics.

Traditional representation Phase space representation

instantaneous co-ordinates point in the phase space

time-dependence (x(t), v(t)) trajectory (v(x))

structure in time structure in phase space

individual global

attractors for the advected particle; the chaotic behavior of the dye or

impurity particles is therefore the same as that of conservative systems.

It may be important to take into account that the density of the known

pollutant may not be identical to that of the fluid and/or that the particle

is of finite size (for example in the case of aerosols). Consequently, the

velocity of the particles usually differs from that of the liquid. It can

be shown that advection then corresponds to dissipative systems. The

advection dynamics can then have attractors, often even chaotic ones.

This implies that pollutant particles accumulate along a fractal pattern

on the surface of the fluid. This phenomenon can indeed be observed in

lakes, bays and harbours as a direct consequence of chaos!

1.3 Phase space
Our examples have shown that the traditional representation via the

displacement or velocity vs. time graphs does not provide a suitable

overview of the motion, since, however long the observation time may

be, one can always expect some further novel behaviour. The order ap-

pearing in chaos does not manifest itself in the position vs. time repre-

sentation, but rather in the position vs. velocity representation.

The instantaneous state of a mechanical system is given by its po-

sition and velocity co-ordinates, since the motion can be continued

uniquely if one knows these co-ordinates and the dynamical equation.

The position and velocity variables define the phase space of a system

(for more details, see Section 3.5). For motion occurring along a straight

line with position x and velocity v, the phase space is the (x, v) plane.

The state of the system is represented by a single point in the phase space,

and this point wanders, indicating the change of the state, as time passes.

The path of the motion in phase space is called the trajectory (Fig. 1.26).

The trajectory itself does not indicate directly how fast this change is

in time. The arrow only shows the direction of the motion. A set of

several trajectories, however, provides a global overview of the different

possible types of motion of the system (see Table 1.2).
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Fig. 1.26. Trajectory in phase
space (thick line). The path
described by the motion of a
particle in phase space can be
constructed from the
respective projections of the
x(t) and υ(t) graphs. The
direction of time is
represented by the arrow on
the trajectory.
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Fig. 1.27. Monitoring trajectories using maps. In higher-dimensional phase
spaces, samples are taken on certain sections. The rule relating the co-ordinates
of two consecutive intersects of a trajectory with this surface (or equivalent ones)
is a map.

Two data points are often insufficient to define the state of a sys-

tem uniquely; i.e., the phase space is three- or more dimensional (this

is always the case with chaos). In such a situation it is useful to take

samples from the higher dimensional phase space according to some

rule. This is usually done by taking a ‘section’ of the phase space and

recording the points of a trajectory on this section only, as illustrated by

the schematic Fig. 1.27. In driven cases it is advisable to ‘look at’ the

system at time instants corresponding to integer multiples of the driving
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period. This representation is called a stroboscopic map. Thus, Figs. 1.4

and 1.8 exhibit the results of stroboscopic mappings. In non-driven cases

a section can be defined by the fulfilment of conditions corresponding

to certain configurations. This defines a Poincaré map, like the one seen

in Fig. 1.17.

Our examples have demonstrated that it is in such maps that the

fractal structure of chaotic dynamics becomes plausible. Only in special

cases (like those of the magnetic pendulum, the mirroring spheres and

advection) can fractal structures be observed in real space. Therefore

the use of phase space is inevitable as a means of understanding the

structure accompanying chaos. (However, phase space is very useful in

investigating regular motions also.)

1.4 Definition of chaos; summary
Chaos is a motion, a temporal dynamics of simple systems that can be

described in terms of a few variables. Such motion is:

� irregular in time (it is not even the superposition of periodic motions,

it is really aperiodic);
� unpredictable in the long term and sensitive to initial conditions;
� complex, but ordered, in the phase space: it is associated with a fractal

structure.

These properties are so strongly and uniquely bound to chaotic dy-

namics that they may be used to define ‘chaos’. We shall apply this

definition throughout the book.

The listed characteristics are present simultaneously: when a simple

system is aperiodic over a long time, its evolution must be unpredictable

and representable by a fractal structure in suitable co-ordinates. From

a traditional view, all three characteristics are novel and surprising. A

single common feature underlying them is that the long-term behaviour

is random-looking, irregular and therefore it can properly be described

by using probabilistic concepts only.

On the other hand, not all complicated temporal behaviour can be

considered to be chaotic, only those that derive from simple laws. Noisy
motion is the random behaviour of some component of a system with

a great number of constituents (for example the Brownian motion of a

particle), which is the consequence of the complicated interaction with

the environment (i.e. the other constituents). Chaos is a bridge between

regular and noisy motion. It differs from regular motion in that it is prob-

abilistic and differs from noise in that its randomness is due to the strong

interaction (following from simple laws) of the few constituents, i.e. to

the inherent dynamics. Noisy motion fills the phase space uniformly,

thus fractal structures cannot develop.
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Table 1.3. Basic types of chaos and related phenomena and sets.

Permanent chaos Transient chaos

Dissipative motion on chaotic chaotic transients towards

attractors attractors, fractal basin

boundaries (chaotic saddles)

Conservative motion in chaotic chaotic scattering (chaotic saddles)

bands

The traditional investigation of motion concentrates on regular, pe-

riodic behaviour, since the applied classical mathematical tools are not

suitable for describing chaos. These tools can only indicate chaos in as

much they break down and yield meaningless results. The modern ap-

proach, supported by numerical investigations, makes it clear that it is

regular motion that is exceptional.

Two important classes of chaotic dynamics (so far simply called

chaos) are permanent and transient chaos. In the latter case, only ex-

ceptional initial conditions lead to steady chaotic motion; typical initial

conditions result in finite time chaotic behaviour (which can last for an

arbitrary long time, however). Both classes can occur in frictional (dis-

sipative) systems as well as in frictionless (conservative) systems. The

phase space sets underlying different kinds of chaos (chaotic attractors,

bands and saddles) are collectively called chaotic sets. The main types

of chaotic dynamics are summarised in Table 1.3, and will be studied in

detail in Chapters 5–8.

It is also worth discussing the types of chaos from the point of view

of the energy input. In non-driven frictional systems, motion ceases and

chaos can only be present as a transient (often accompanied by a fractal

basin boundary). Driven frictional motions may be related to chaotic

attractors. In frictionless cases chaos (both in a chaotic band and in the

form of chaotic scattering) might occur without forcing.

1.5 How should chaotic motion be examined?
Before turning to a detailed analysis of motion, we list some instructions

worth keeping in mind in what follows, based on the lessons drawn from

the examples of this chapter.

� You should understand unstable behaviour (considered to be uninter-

esting in traditional approaches), even in non-chaotic systems.
� Become acquainted with the phase space representation of and the

geometric approach to dynamics and the use of the stroboscopic and

Poincaré maps.
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� It is pointless to hope that the long-term dynamics can be given ana-

lytically in terms of known functions (the infinite series constructed

to describe the dynamics do not even converge).
� Solve the equations of motion numerically.
� Proper understanding requires the introduction of new concepts and

the search for new theoretical relations.
� Do not forget about the measurement errors that inevitably accompany

observation and simulation, and follow their temporal evolution.
� Accept the necessity of using particle ensembles and of describing

them by means of probabilistic concepts (distribution, typical be-

haviour, average).
� Become acquainted with the geometry of fractals.

Box 1.1 Brief history of chaos

The possibility of chaotic motion was first formulated by the French mathematician Henri Poincaré in the

1890s (obviously in a terminology largely different from that used nowadays) in his paper on the stability of

the Solar System. Some time later, the Russian mathematician, Sonia Kovalevskaia, proved that the motion

of a heavy, asymmetric spinning top is usually chaotic (it is only regular at special values of the moment of

inertia). These results were mostly forgotten and only lived on in the first half of the twentieth century due

to the work of the American scientist George Birkhoff and his German colleague, Eberhard Hopf, on

statistical mechanics and ergodic theory. Independently of these developments, chaotic behaviour was found

in certain non-linear electrical circuits during World War II, but the results could not be properly

interpreted. As a continuation of the Birkhoff–Hopf line, in the mid 1960s the Russians Andrey

Kolmogorov and Vladimir Arnold and the German Jürgen Moser worked out the statement that has since

been named after their initials, the KAM theorem, formulating the condition of weak chaotic motion in

conservative systems. The investigation of strong chaos became possible due to the appearance of

computers. The behaviour related to chaotic attractors occurring in dissipative systems was first described

by the American meteorologist Edward Lorenz in 1963. He recognised the unpredictability of chaotic

behaviour in connection with the numerical solution of a model named after him. The term ‘chaos’ itself

was introduced by the American mathematician James Yorke for the random-looking dynamics of simple

deterministic systems in a paper in 1975. The work of the American physicist Mitchell Feigenbaum helped

the term become widespread. In 1978 he proved the system-independence, i.e. the so-called universality, of

one of the possible routes towards chaos. In the investigation of the statistical properties of chaos, a major

role was played by, among others, B. Chirikov, M. Berry, L. Bunimovich, J. P. Eckmann, H. Fujisaka, P.

Grassberger, C. Grebogi, M. Hénon, P. Holmes, L. Kadanoff, E. Ott, O. Rössler, D. Ruelle, Y. Sinai, and

S. Smale. The possibility of the occurrence of chaos has established a new way of thinking in widely

different disciplines (see Box 9.3); this has been pioneered by H. Aref, P. Cvitanović, J. Gollub, A.

Libchaber, R. May, C. Nicolis, H. Swinney, Y. Ueda, J. Wisdom, and others.


