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Preface to the series

The past two decades have seen econometrics grow into a vast discipline. Many different
branches of the subject now happily coexist with one another. These branches interweave
econometric theory and empirical applications and bring econometric method to bear on
a myriad of economic issues. Against this background, a guided treatment of the modern
subject of econometrics in volumes of worked econometric exercises seemed a natural and
rather challenging idea.

The present series, Econometric Exercises, was conceived in 1995 with this challenge
in mind. Now, almost a decade later it has become an exciting reality with the publication
of the first installment of a series of volumes of worked econometric exercises. How can
these volumes work as a tool of learning that adds value to the many existing textbooks of
econometrics? What readers do we have in mind as benefiting from this series? What format
best suits the objective of helping these readers learn, practice, and teach econometrics?
These questions we now address, starting with our overall goals for the series.

Econometric Exercises is published as an organized set of volumes. Each volume in the
series provides a coherent sequence of exercises in a specific field or subfield of economet-
rics. Solved exercises are assembled together in a structured and logical pedagogical frame-
work that seeks to develop the subject matter of the field from its foundations through to its
empirical applications and advanced reaches. As the Schaum series has done so success-
fully for mathematics, the overall goal of Econometric Exercises is to develop the subject
matter of econometrics through solved exercises, providing a coverage of the subject that
begins at an introductory level and moves through to more advanced undergraduate- and
graduate-level material.

Problem solving and worked exercises play a major role in every scientific subject.
They are particularly important in a subject like econometrics in which there is a rapidly
growing literature of statistical and mathematical technique and an ever-expanding core to
the discipline. As students, instructors, and researchers, we all benefit by seeing carefully

xv



xvi Preface to the series

worked-out solutions to problems that develop the subject and illustrate its methods and
workings. Regular exercises and problem sets consolidate learning and reveal applications
of textbook material. Clearly laid out solutions, paradigm answers, and alternate routes
to solution all develop problem-solving skills. Exercises train students in clear analytical
thinking and help them in preparing for tests and exams. Teachers, as well as students,
find solved exercises useful in their classroom preparation and in designing problem sets,
tests, and examinations. Worked problems and illustrative empirical applications appeal to
researchers and professional economists wanting to learn about specific econometric tech-
niques. Our intention for the Econometric Exercises series is to appeal to this wide range
of potential users.

Each volume of the series follows the same general template. Chapters begin with a
short outline that emphasizes the main ideas and overviews the most relevant theorems
and results. The introductions are followed by a sequential development of the material
by solved examples and applications, and by computer exercises when appropriate. All
problems are solved and they are graduated in difficulty with solution techniques evolving
in a logical, sequential fashion. Problems are asterisked when they require more creative
solutions or reach higher levels of technical difficulty. Each volume is self-contained. There
is some commonality in material across volumes to reinforce learning and to make each
volume accessible to students and others who are working largely, or even completely, on
their own.

Content is structured so that solutions follow immediately after the exercise is posed.
This makes the text more readable and avoids repetition of the statement of the exercise
when it is being solved. More importantly, posing the right question at the right moment
in the development of a subject helps to anticipate and address future learning issues that
students face. Furthermore, the methods developed in a solution and the precision and in-
sights of the answers are often more important than the questions being posed. In effect,
the inner workings of a good solution frequently provide benefit beyond what is relevant to
the specific exercise.

Exercise titles are listed at the start of each volume, following the table of contents, so
that readers may see the overall structure of the book and its more detailed contents. This
organization reveals the exercise progression, how the exercises relate to one another, and
where the material is heading. It should also tantalize readers with the exciting prospect of
advanced material and intriguing applications.

The series is intended for a readership that includes undergraduate students of economet-
rics with an introductory knowledge of statistics, first- and second-year graduate students
of econometrics, as well as students and instructors from neighboring disciplines (such
as statistics, psychology, or political science) with interests in econometric methods. The
volumes generally increase in difficulty as the topics become more specialized.

The early volumes in the series (particularly those covering matrix algebra, statistics,
econometric models, and empirical applications) provide a foundation to the study of econo-
metrics. These volumes will be especially useful to students who are following the first-year
econometrics course sequence in North American graduate schools and need to prepare for
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graduate comprehensive examinations in econometrics and to write an applied economet-
rics paper. The early volumes will equally be of value to advanced undergraduates study-
ing econometrics in Europe, to advanced undergraduates and honors students in the Aus-
tralasian system, and to masters and doctoral students in general. Subsequent volumes will
be of interest to professional economists, applied workers, and econometricians who are
working with techniques in those areas, as well as students who are taking an advanced
course sequence in econometrics and statisticians with interests in those topics.

The Econometric Exercises series is intended to offer an independent learning-by-doing
program in econometrics and it provides a useful reference source for anyone wanting to
learn more about econometric methods and applications. The individual volumes can be
used in classroom teaching and examining in a variety of ways. For instance, instructors
can work through some of the problems in class to demonstrate methods as they are in-
troduced; they can illustrate theoretical material with some of the solved examples; and
they can show real data applications of the methods by drawing on some of the empirical
examples. For examining purposes, instructors may draw freely from the solved exercises
in test preparation. The systematic development of the subject in individual volumes will
make the material easily accessible both for students in revision and for instructors in test
preparation.

In using the volumes, students and instructors may work through the material sequen-
tially as part of a complete learning program, or they may dip directly into material in
which they are experiencing difficulty to learn from solved exercises and illustrations. To
promote intensive study, an instructor might announce to a class in advance of a test that
some questions in the test will be selected from a certain chapter of one of the volumes.
This approach encourages students to work through most of the exercises in a particular
chapter by way of test preparation, thereby reinforcing classroom instruction.

Further details and updated information about individual volumes can be obtained from
the Econometric Exercises Web site:

http://us.cambridge.org/economics/ee/econometricexercises.htm

The Web site also contains the basic notation for the series, which can be downloaded along
with the LATEX style files.

As series editors, we welcome comments, criticisms, suggestions, and, of course, cor-
rections from all our readers on each of the volumes in the series as well as on the series
itself. We bid you as much happy reading and problem solving as we have had in writing
and preparing this series.

York, Tilburg, New Haven Karim M. Abadir
June 2005 Jan R. Magnus

Peter C. B. Phillips





Preface

Bayesian econometrics has enjoyed an increasing popularity in many fields. This popularity
has been evidenced through the recent publication of several textbooks at the advanced
undergraduate and graduate levels, including those by Poirier (1995), Bauwens, Lubrano,
and Richard (1999), Koop (2003), Lancaster (2004), and Geweke (2005). The purpose of
the present volume is to provide a wide range of exercises and solutions suitable for students
interested in Bayesian econometrics at the level of these textbooks.

The Bayesian researcher should know the basic ideas underlying Bayesian methodol-
ogy (i.e., Bayesian theory) and the computational tools used in modern Bayesian econo-
metrics (i.e., Bayesian computation). The Bayesian should also be able to put the the-
ory and computational tools together in the context of substantive empirical problems.
We have written this book with these three activities – theory, computation, and empir-
ical modeling – in mind. We have tried to construct a wide range of exercises on all of
these aspects. Loosely speaking, Chapters 1 through 9 focus on Bayesian theory, whereas
Chapter 11 focuses primarily on recent developments in Bayesian computation. The re-
maining chapters focus on particular models (usually regression based). Inevitably, these
chapters combine theory and computation in the context of particular models. Although
we have tried to be reasonably complete in terms of covering the basic ideas of Bayesian
theory and the computational tools most commonly used by the Bayesian, there is no
way we can cover all the classes of models used in econometrics. Accordingly, we have
selected a few popular classes of models (e.g., regression models with extensions and
panel data models) to illustrate how the Bayesian paradigm works in practice. Particu-
larly in Chapters 12 through 18 we have included substantive empirical exercises – some
of them based closely on journal articles. We hope that the student who works through
these chapters will have a good feeling for how serious Bayesian empirical work is done
and will be well placed to write a Ph.D. dissertation or a journal article using Bayesian
methods.

xix
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For the student with limited time, we highlight that a division in this book occurs between
the largely theoretical material of Chapters 1 through 9 and the largely regression-based
material in Chapters 10 through 18. A student taking a course on Bayesian statistical theory
could focus on Chapters 1 through 9, whereas a student taking a Bayesian econometrics
course (or interested solely in empirical work) could focus more on Chapters 10 through
18 (skimming through the more methodologically oriented material in the early chapters).

Although there have been some attempts to create specifically Bayesian software (e.g.,
BUGS, which is available at http://www.mrc-bsu.cam.ac.uk/bugs, or BACC, which is avail-
able at http://www2.cirano.qc.ca/∼bacc), in our estimation, most Bayesians still prefer to
create their own programs using software such as Matlab, OX, or GAUSS. We have used
Matlab to create answers to the empirical problems in this book. Our Matlab code is pro-
vided on the Web site associated with this book:

http://www.econ.iastate.edu/faculty/tobias/Bayesian exercises.html

A few notational conventions are applied throughout the book, and it is worthwhile to
review some of these prior to diving into the exercises. In regression-based problems, which
constitute a majority of the exercises in the later chapters, lowercase letters such as y and xi

are reserved to denote scalar or vector quantities whereas capitals such as X or Xj are used
to denote matrices. In cases in which the distinction between vectors and scalars is critical,
this will be made clear within the exercise. In the regression-based problems, y is assumed
to denote the n×1 vector of stacked responses for the dependent variable, yi the ith element
of that vector, xi a k vector of covariate data, and X the n×k matrix obtained from stacking
the xi over i. Latent variables, which are often utilized in the computational chapters of the
book, are typically designated with a “*” superscript, such as y∗i . In Chapters 1 through
9, many exercises are presented that are not directly related to linear regression models
or models that can be viewed as linear on suitably defined latent data. In these exercises,
the distinction between random variables and realizations of those variables is sometimes
important. In such cases, we strive to use capital letters to denote random variables, which
are unknown ex ante, and lowercase letters to denote their realizations, which are known ex
post. So, in the context of discussing a posterior distribution (which conditions on the data),
we will use y, but if we are interested in discussing the sampling properties of the sample
mean, Y would be the appropriate notation. Finally, “×” is used to denote multiplication
in multiline derivations, and specific parameterizations of various densities are provided in
the Appendix associated with this book.

On the issue of parameterization, the reader who is somewhat familiar with the Bayesian
literature may realize that researchers often employ different parameterizations for the same
model, with no particular choice being “correct” or “ideal.” A leading example is the linear
regression model, in which the researcher can choose to parameterize this model in terms of
the error variance or the error precision (the reciprocal of the variance). In this book, we try
and remain consistent in terms of parameterization within individual chapters, though some
departures from this trend do exist, particularly in Chapters 11 and 16. These differences
arise from our own individual tastes and styles toward approaching these models, and they
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are superficial rather than substantive. In our view it is quite valuable to expose the student
to the use of different parameterizations, since this is the reality that he or she will face
when exploring the Bayesian literature in more detail. In all cases, the parameterization
employed is clearly delineated within each exercise.

We would like to thank the editors of the Econometrics Exercises series – Karim Abadir,
Jan Magnus, and Peter Phillips – for their helpful comments and support during the plan-
ning and writing of this book. Hoa Jia, Babatunde Abidoye, and Jingtao Wu deserve special
recognition for reviewing numerous exercises and helping to reduce the number of typo-
graphical errors. The list of other colleagues and students who have helped us – through
designing, solving, and pointing out errors in our problems or solutions – is too long
to enumerate here. We would, however, like to thank our students at the University of
California, Irvine; Leicester University; University of Toronto; and the Institute for Ad-
vanced Studies and CIDE (Italy) for their participation, wise insights, and enthusiasm.





1

The subjective interpretation of probability

Reverend Thomas Bayes (born circa 1702; died 1761) was the oldest son of Reverend
Joshua Bayes, who was one of the first ordained nonconformist ministers in England. Rel-
atively little is known about the personal life of Thomas Bayes. Although he was elected a
Fellow of the Royal Society in 1742, his only known mathematical works are two articles
published posthumously by his friend Richard Price in 1763. The first dealt with the diver-
gence of the Stirling series, and the second, “An Essay Toward Solving a Problem in the
Doctrine of Chances,” is the basis of the paradigm of statistics named for him. His ideas
appear to have been independently developed by James Bernoulli in 1713, also published
posthumously, and later popularized independently by Pierre Laplace in 1774. In their com-
prehensive treatise, Bernardo and Smith (1994, p. 4) offer the following summarization of
Bayesian statistics:

Bayesian Statistics offers a rationalist theory of personalistic beliefs in contexts
of uncertainty, with the central aim of characterizing how an individual should act
in order to avoid certain kinds of undesirable behavioral inconsistencies. The the-
ory establishes that expected utility maximization provides the basis for rational
decision making and that Bayes’ Theorem provides the key to the ways in which
beliefs should fit together in the light of changing evidence. The goal, in effect, is
to establish rules and procedures for individuals concerned with disciplined uncer-
tainty accounting. The theory is not descriptive, in the sense of claiming to model
actual behavior. Rather, it is prescriptive, in the sense of saying “if you wish to
avoid the possibility of these undesirable consequences you must act in the follow-
ing way.”

Bayesian econometrics consists of the tools of Bayesian statistics applicable to the mod-
els and phenomena of interest to economists. There have been numerous axiomatic for-
mulations leading to the central unifying Bayesian prescription of maximizing subjective
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utility as the guiding principle of Bayesian statistical analysis. Bernardo and Smith (1994,
Chapter 2) is a valuable segue into this vast literature. Deep issues are involved regarding
meaningful separation of probability and utility assessments, and we do not address these
here.

Non-Bayesians, who we hereafter refer to as frequentists, argue that situations not admit-
ting repetition under essentially identical conditions are not within the realm of statistical
enquiry, and hence “probability” should not be used in such situations. Frequentists define
the probability of an event as its long-run relative frequency. This frequentist interpretation
cannot be applied to (i) unique, once-and-for-all type of phenomenon, (ii) hypotheses, or
(iii) uncertain past events. Furthermore, this definition is nonoperational since only a finite
number of trials can ever be conducted. In contrast, the desire to expand the set of relevant
events over which the concept of probability can be applied, and the willingness to entertain
formal introduction of “nonobjective” information into the analysis, led to the subjective
interpretation of probability.

Definition 1.1 (Subjective interpretation of probability) Let κ denote the body of
knowledge, experience, or information that an individual has accumulated about the sit-
uation of concern, and let A denote an uncertain event (not necessarily repetitive). The
probability of A afforded by κ is the “degree of belief” in A held by an individual in the
face of κ.

Since at least the time of Ramsey (1926), such degrees of belief have been operational-
ized in terms of agreed upon reference lotteries. Suppose you seek your degree of belief,
denoted p = P (A), that an event A occurs. Consider the following two options.

1. Receiving a small reward $r if A occurs, and receiving $0 if A does not occur.
2. Engaging in a lottery in which you win $r with probability p, and receiving $0 with

probability 1 − p.

If you are indifferent between these two choices, then your degree of belief in A occur-
ring is p. Requiring the reward to be “small” is to avoid the problem of introducing utility
into the analysis; that is, implicitly assuming utility is linear in money for small gambles.

Bruno de Finetti considered the interesting situation in which an individual is asked to
quote betting odds (ratios of probabilities) on a set of uncertain events and accept any wa-
gers others may decide to make about these events. According to de Finetti’s coherence
principle the individual should never assign “probabilities” so that someone else can select
stakes that guarantee a sure loss (Dutch book) for the individual whatever the eventual out-
come. A sure loss amounts to the “undesirable consequences” contained in the earlier quote
of Bernardo and Smith. This simple principle implies the axioms of probability discussed
in Abadir, Heijmans, and Magnus (2006, Chapter 1) except that the additivity of prob-
ability of intersections for disjoint events is required to hold only for finite intersections.
Nonetheless, for purposes of convenience, we consider only countably additive probability
in this volume.
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De Finetti’s Dutch book arguments also lead to the standard rule for conditional probabil-
ity. Consider two events A and B. By using the factorization rule for conditional probability
[Abadir et al. (2006, p. 5)],

P (A and B) = P (A)P (B|A) = P (B)P (A|B),

the simplest form of Bayes’ theorem follows immediately:

P (B|A) =
P (B)P (A|B)

P (A)
.

In words, we are interested in the event B to which we assign the prior probability P (B) for
its occurrence. We observe the occurrence of the event A. The probability of B occurring
given that A has occurred is the posterior probability P (B|A). More generally, we have
the following result.

Theorem 1.1 (Bayes’ theorem for events) Consider a probability space [S, Ã, P (·)] and
a collection Bn ∈ Ã (n = 1, 2, . . . N) of mutually disjoint events such that P (Bn) >

0 (n = 1, 2, . . . , N) and B1 ∪ B2 ∪ · · · ∪ BN = S. Then

P (Bn|A) =
P (A|Bn)P (Bn)∑N
j=1 P (A|Bj)P (Bj)

(n = 1, 2, . . . , N) (1.1)

for every A ∈ Ã such that P (A) > 0.

Proof: The proof follows directly upon noting that the denominator in (1.1) is P (A).

An important philosophical topic is whether the conditionalization in Bayes theorem
warrants an unquestioned position as the model of learning in the face of knowledge of the
event A. Conditional probability P (B|A) refers to ex ante beliefs on events not yet decided.
Ex post experience of an event can sometimes have a striking influence on the probability
assessor (e.g., experiencing unemployment, stock market crashes, etc.), and the experience
can bring with it more information than originally anticipated in the event. Nonetheless, we
adopt such conditionalization as a basic principle.

The subjective interpretation reflects an individual’s personal assessment of the situation.
According to the subjective interpretation, probability is a property of an individual’s per-
ception of reality, whereas according to classical and frequency interpretations, probability
is a property of reality itself. For the subjectivist there are no “true unknown probabilities”
in the world out there to be discovered. Instead, “probability” is in the eye of the beholder.

Bruno de Finetti assigned a fundamental role in Bayesian analysis to the concept of
exchangeability, defined as follows.

Definition 1.2 A finite sequence Yt (t = 1, 2, . . . , T ) of events (or random variables)
is exchangeable iff the joint probability of the sequence, or any subsequence, is invariant
under permutations of the subscripts, that is,

P (y1, y2, . . . , yT ) = P (yπ(1), yπ(2), . . . , yπ(T )), (1.2)
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where π(t)(t = 1, 2, . . . , T ) is a permutation of the elements in {1, 2, . . . , T}. An infinite
sequence is exchangeable iff any finite subsequence is exchangeable.

Exchangeability provides an operational meaning to the weakest possible notion of a
sequence of “similar” random quantities. It is “operational” because it only requires proba-
bility assignments of observable quantities, although admittedly this becomes problematic
in the case of infinite exchangeability. For example, a sequence of Bernoulli trials is ex-
changeable iff the probability assigned to particular sequences does not depend on the or-
der of “successes” (S) and “failures” (F ). If the trials are exchangeable, then the sequences
FSS, SFS, and SSF are assigned the same probability.

Exchangeability involves recognizing symmetry in beliefs concerning only observables,
and presumably this is something about which a researcher may have intuition. Ironically,
subjectivists emphasize observables (data) and objectivists focus on unobservables (param-
eters). Fortunately, Bruno de Finetti provided a subjectivist solution to this perplexing state
of affairs. De Finetti’s representation theorem and its generalizations are interesting because
they provide conditions under which exchangeability gives rise to an isomorphic world in
which we have iid observations conditional on a mathematical construct, namely, a param-
eter. These theorems provide an interpretation of parameters that differs substantively from
the interpretation of an objectivist.

As in the case of iid sequences, the individual elements in an exchangeable sequence
are identically distributed, but they are not necessarily independent, and this has important
predictive implications for learning from experience. The importance of the concept of
exchangeability is illustrated in the following theorem.

Theorem 1.2 (de Finetti’s representation theorem) Let Yt (t = 1, 2, . . .) be an infinite
sequence of Bernoulli random variables indicating the occurrence (1) or nonoccurrence (0)
of some event of interest. For any finite sequence Yt (t = 1, 2, . . . , T ), define the average
number of occurrences

Y T =
1
T

T∑
t=1

Yt. (1.3)

Let h(y1, y2, . . . , yT ) = Pr(Y1 = y1, Y2 = y2, . . . , YT = yT ) denote a probability mass
function (p.m.f.) reflecting exchangeable beliefs for an arbitrarily long finite sequence
Yt (t = 1, 2, . . . , T ), and let H(y) = Pr(Y ≤ y) denote its associated cumulative dis-
tribution function (c.d.f.). Then h(·) has the representation

h(y1, y2, . . . , yT ) =
∫ 1

0
L(θ)dF (θ), (1.4)

where

L(θ) =
T∏

t=1

θyt(1 − θ)(1−yt), (1.5)

F (θ) = lim
T→∞

PH(Y T ≤ θ), (1.6)

and PH(·) denotes probability with respect to the c.d.f. H(·) corresponding to p.m.f. (1.4).
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Proof: See de Finetti (1937) or the simpler exposition of Heath and Sudderth (1976).

Theorem 1.1 implies that it is as if, given θ, Yt (t = 1, 2, . . . , T ) are iid Bernoulli trials
where the probability of a success is θ, and the “parameter” θ is assigned a probability
distribution with c.d.f. F (·) that can be interpreted as belief about the long-run relative
frequency of Y T ≤ θ as T → ∞. From de Finetti’s standpoint, both the quantity θ and
the notion of independence are “mathematical fictions” implicit in the researcher’s sub-
jective assessment of arbitrarily long observable sequences of successes and failures. The
parameter θ is of interest primarily because it constitutes a limiting form of predictive infer-
ence about the observable Y T via (1.6). The mathematical construct θ may nonetheless be
useful. However, Theorem 1.2 implies that the subjective probability distribution need not
apply to the “fictitious θ” but only to the observable exchangeable sequence of successes
and failures. When the c.d.f. is absolutely continuous, so that f(θ) = ∂F (θ)/∂θ exists,
then (1.4) becomes

h(y1, y2, . . . , yT ) =
∫ 1

0

T∏
t=1

θ(yt)(1 − θ)(1−yt)f(θ)dθ. (1.7)

It is clear from (1.4) and (1.7) that exchangeable beliefs assign probabilities acting as if the
Yt’s are iid Bernoulli random variables given θ, and then average over values of θ using the
weight f(θ) to obtain a marginal density for the Yt’s. Let ST = TY T be the number of

successes in T trials. Since there are
(

T
r

)
ways in which to obtain ST = r successes in T

trials, it follows immediately from (1.4) and (1.5) that

Pr(ST = r) =
(

T

r

) ∫ 1

0
θr(1 − θ)T−rdF (θ) (r = 0, 1, . . . , T ), (1.8)

where

F (θ) = lim
T→∞

Pr(T−1ST ≤ θ). (1.9)

Thus, given θ, it follows from (1.8) that exchangeable beliefs assign probabilities acting
as if ST has a binomial distribution given θ, and then average over values of θ using the
weight f(θ) = ∂F (θ)/∂θ. Bayes and Laplace suggest choosing the “mixing” distribution
F (θ) for θ to be uniform over [0, 1], in which case (1.8) reduces to

Pr(ST = r) = (T + 1)−1, r = 0, 1, . . . , T. (1.10)

In words, (1.10) describes beliefs that in T trials, any number r of successes are equally
likely. In the degenerate case in which the distribution of θ assigns probability one to
some value θ0, then de Finetti’s theorem implies that ST follows the standard binomial
distribution

Pr(ST = r) =
(

T

r

)
θr
0(1 − θ0)T−r, (1.11)

and (1.9) implies

lim
T→∞

Y T = θ0 (1.12)
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with “probability one.” This last result, as a special case of de Finetti’s Theorem, is equiv-
alent to the strong law of large numbers.

De Finetti’s representation theorem has been generalized by seeking more stringent
forms of “symmetry” than simple exchangeability, in the process rationalizing sampling
models other than the binomial [see Bernardo and Smith (1994, Chapter 4)]. Although
these theorems do not hold exactly for infinite sequences, they hold approximately for suf-
ficiently large finite sequences.

The pragmatic value of de Finetti’s theorem depends on whether it is easier to assess the
left-hand side of (1.8), which involves only observable quantities, or instead, the integrand
on the right-hand side of (1.8), which involves two distributions and the mathematical fic-
tion θ. Most statisticians think in terms of the right-hand side. Frequentists implicitly do
so with a degenerate distribution for θ that in effect treats θ as a constant, and Bayesians
do so with a nondegenerate “prior” distribution for θ. What is important to note here, how-
ever, is the isomorphism de Finetti’s theorem suggests between two worlds, one involving
only observables and the other involving the parameter θ. De Finetti put parameters in their
proper perspective: (i) They are mathematical constructs that provide a convenient index
for a probability distribution, and (ii) they induce conditional independence for a sequence
of observables.

Exercise 1.1 (Let’s make a deal) Consider the television game show “Let’s Make a Deal”
in which host Monty Hall asks contestants to choose the prize behind one of three curtains.
Behind one curtain lies the grand prize; the other two curtains conceal only relatively small
gifts. Assume Monty knows what is behind every curtain. Once the contestant has made a
choice, Monty Hall reveals what is behind one of the two curtains that were not chosen.
Having been shown one of the lesser prizes, the contestant is offered a chance to switch
curtains. Should the contestant switch?

Solution
Let C denote which curtain hides the grand prize. Let Ĉ denote the curtain the contes-
tant chooses first, and let M denote the curtain Monty shows the contestant. Assume
Pr(C = i) = 1/3, i = 1, 2, 3, Pr(Ĉ = k|C) = 1/3, k = 1, 2, 3, and that C and Ĉ

are independent. Without loss of generality, suppose C = 1 and M = 2. Then use Bayes’
theorem for events to compute the numerator and denominator of the following ratio:

Pr(C = 3|M = 2, Ĉ = 1)
Pr(C = 1|M = 2, Ĉ = 1)

=

Pr(M=2,Ĉ=1|C=3)Pr(C=3)

Pr(M=2,Ĉ=1)

Pr(M=2,Ĉ=1|C=1)Pr(C=1)

Pr(M=2,Ĉ=1)

(1.13)

=
Pr(M = 2, Ĉ = 1|C = 3)
Pr(M = 2, Ĉ = 1|C = 1)

=
Pr(M = 2|Ĉ = 1, C = 3)Pr(Ĉ = 1|C = 3)
Pr(M = 2|Ĉ = 1, C = 1)Pr(Ĉ = 1|C = 1)

=
Pr(M = 2|Ĉ = 1, C = 3)
Pr(M = 2|Ĉ = 1, C = 1)

.
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The numerator of the last line of (1.13) is one because Monty has no choice but to choose
M = 2 when Ĉ = 1 and C = 3. The denominator of (1.13), however, is ambiguous be-
cause when Ĉ = 1 and C = 1, Monty can choose either M = 2 or M = 3. The problem
formulation does not contain information on Monty’s choice procedure in this case. But
since this probability must be less than or equal to one, ratio (1.13) can never be less than
one. Unless Pr(M = 2|Ĉ = 1, C = 1) = 1, the contestant is better off switching curtains.
If Pr(M = 2|Ĉ = 1, C = 1) = Pr(M = 3|Ĉ = 1, C = 1) = 1/2, then the contestant
doubles the probability of winning the grand prize by switching.

Exercise 1.2 (Making Dutch book) Consider a horse race involving N horses. Sup-
pose a bettor’s beliefs are such that he believes the probability of horse n winning is pn,
where p1 + p2 + · · · + pN < 1. Show how to make Dutch book with such an individual.

Solution
Consider a bet with this person of pn dollars that pays one dollar if horse n wins, and place
such a bet on each of the N horses. Then you are guaranteed winning one dollar (since one
of the horses has to win) and earning a profit of 1 − (p1 + p2 + · · · + pN ) > 0.

Exercise 1.3 (Independence and exchangeability) Suppose Y = [Y1 Y2 · · · YT ]′ ∼
N(0T , Σ), where Σ = (1 − α)IT + αιT ι′T is positive definite for some scalar α and ι is a
T × 1 vector with each element equal to unity. Let π(t) (t = 1, 2, . . . , T ) be a permutation
of {1, 2, . . . , T} and suppose [Yπ(1), Yπ(2), . . . , Yπ(T )] = AY, where A is a T ×T selection
matrix such that, for t = 1, 2, . . . , T, row t in A consists of all zeros except column π(t),
which is unity. Show that these beliefs are exchangeable.

Solution
Note that AA′ = IT and AιT = ιT . Then, AY ∼ N(0T , Ω), where

Ω = AΣA′

= A[(1 − α)It + αιT ι′T ]A′

= (1 − α)AA′ + αAιT ι′T A′

= (1 − α)IT + αιT ι′T
= Σ.

Hence, beliefs regarding Yt(t = 1, 2, . . . , T ) are exchangeable. Despite this exchangeabil-
ity, it is interesting to note that if α �= 0, Yt (t = 1, 2, . . . , T ) are not independent.

Exercise 1.4 (Predicted probability of success of a Bernoulli random variable) Supp-
ose a researcher makes a coherent probability assignment to an infinite sequence
Yt(t = 1, 2, 3, . . .) of exchangeable Bernoulli random variables. Given an observed se-
quence of T trials with r successes, find the probability that the next outcome, YT+1, is
yT+1.
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Solution
Applying the definition of conditional probability and then Theorem 1.2 to both the numer-
ator and denominator yields

Pr(YT+1 = yT+1|TY T = r) =
Pr(TY T = r, YT+1 = yT+1)

Pr(TY T = r)
(1.14)

=

∫ 1
0 θ(r+yT +1)(1 − θ)(T+1−r−yT +1)p(θ)dθ∫ 1

0 θr(1 − θ)(T−r)p(θ)dθ

=

∫ 1
0 θ(yT +1)(1 − θ)(1−YT +1)p(θ)L(θ)dθ∫ 1

0 L(θ)p(θ)dθ

=
∫ 1

0
θ(yT +1)(1 − θ)(1−yT +1)p(θ|y)dθ,

where

p(θ|y) =
p(θ)L(θ)

p(y)
. (1.15)

Therefore Pr(YT+1 = yT+1|TY T = r) is simply

E(θ|y) if yT+1 = 1,

or

1 − E(θ|y) if yT+1 = 0.

The simplicity of this exercise hides its importance because it demonstrates most of the es-
sential operations that characterize the Bayesian approach to statistics. First, the existence
of the density p(θ) is a result of Theorem 1.2, not an assumption. Second, the updating of
prior beliefs captured in (1.15) amounts to nothing more than Bayes’ theorem. Third, al-
though Yt (t = 1, 2, . . . , T ) are independent conditional on θ, unconditional on θ they are
dependent. Finally, the parameter θ is merely a mathematical entity indexing the integration
in (1.14). Its “real-world existence” is a question only of metaphysical importance.

Exercise 1.5 (Independence and conditional independence) Consider three events Ai (i =
1, 2, 3), where Pr(Ai) = pi, i = 1, 2, 3. Show that the following statements are totally un-
related: (a) A1 and A2 are independent and (b) A1 and A2 are conditionally independent
given A3.

Solution
There are 23 = 8 possible three-element strings that can occur when considering Ai (i =
1, 2, 3) and their complements Ac

i (i = 1, 2, 3). This leaves assessment of 7 = 8 − 1
probabilities since the eighth is determined by the adding-up condition. These can be as-
sessed in terms of the following probabilities: Pr(A1 ∩ A2) = q12, Pr(A1 ∩ A3) = q13,
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Pr(A2∩A3) = q23, and Pr(A1∩A2∩A3) = s. Independence of A1 and A2 places a restric-
tion on Pr(A1∩A2), namely q12 = p1p2. Conditional independence places a restriction on
the remaining probabilities q13, q23, p3, and s. To see this note Pr(A1 ∩ A2|A3) = s/p3

by simply expressing the conditional as the joint divided by the marginal, and conditional
independence implies Pr(A1 ∩ A2|A3) = Pr(A1|A3)Pr(A2|A3) = (q13/p3)(q23/p3).
Putting these equalities together implies s = q13q23/p3. Note that the restrictions implied
by independence and conditional independence share no common probabilities.





2

Bayesian inference

In this chapter we extend Chapter 1 to cover the case of random variables. By Bayesian
inference we mean the updating of prior beliefs into posterior beliefs conditional on ob-
served data. This chapter covers a variety of standard sampling situations in which prior
beliefs are sufficiently regular that the updating can proceed in a fairly mechanical fashion.
Details of point estimation, interval estimation, hypothesis testing, and prediction are cov-
ered in subsequent chapters. We remind the reader that the definitions of many common
distributions are provided in the Appendix to this book. Further details on the underlying
probability theory are available in Chapters 1 and 2 of Poirier (1995).

One of the appealing things about Bayesian analysis is that it requires only a few gen-
eral principles that are applied over and over again in different settings. Bayesians begin
by writing down a joint distribution of all quantities under consideration (except known
constants). Quantities to become known under sampling are denoted by the T -dimensional
vector y, and remaining unknown quantities by the K-dimensional vector θ ∈ Θ ⊆ RK .
Unless noted otherwise, we treat θ as a continuous random variable. Working in terms of
densities, consider

p(y, θ) = p(θ)p(y|θ) = p(y)p(θ|y), (2.1)

where p(θ) is the prior density and p(θ|y) is the posterior density. Viewing p(y|θ) as a
function of θ for known y, any function proportional to it is referred to as a likelihood
function. We will denote the likelihood function as L(θ). Unless noted otherwise, we will
work with L(θ) = p(y|θ) and thus include the integrating constant for y|θ in our description
of the likelihood. We also note that

p(y) =
∫

Θ
p(θ)L(θ)dθ (2.2)

is the marginal density of the observed data (also known as the marginal likelihood).

11
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From (2.1) Bayes’ theorem for densities follows immediately:

p(θ|y) =
p(θ)L(θ)

p(y)
∝ p(θ)L(θ). (2.3)

The shape of the posterior can be learned by plotting the right-hand side of (2.3) when
k = 1 or 2. Obtaining moments or quantiles, however, requires the integrating constant
(2.2). Fortunately, in some situations the integration in (2.2) can be performed analytically,
in which case the updating of prior beliefs p(θ) in light of the data y to obtain the posterior
beliefs p(θ|y) is straightforward. These situations correspond to cases where p(θ) and L(θ)
belong to the exponential family of densities (see Exercise 2.13). In this case the prior
density can be chosen so that the posterior density falls within the same elementary family
of distributions as the prior. These families are called conjugate families.

The denominator in (2.3) serves as a factor of proportionality (not involving θ) that en-
sures that the posterior density integrates to unity. To simplify much of the analysis that
follows, we calculate a posterior density by dropping all factors of proportionality from
the prior density and the likelihood function, concentrating attention on the resulting pos-
terior kernel, and then compute the required posterior integrating constant at the end. This
works particularly well when using easily recognized conjugate families. Note also that this
implies that when considering experiments employing the same prior, and that yield pro-
portional likelihoods for the observed data, identical posteriors will emerge. This reflects
the important fact that Bayesian inference is consistent with the likelihood principle [see
Berger and Wolpert (1988)].

In most practical situations not all elements of θ are of direct interest. Let θ1 ∈ Θ1, θ2 ∈
Θ2, and θ = [θ1, θ2] ∈ Θ1 ×Θ2 be partitioned into parameters of interest θ1 and nuisance
parameters θ2 not of direct interest. For example, θ1 may be the mean and θ2 the variance of
some sampling distribution. Nuisance parameters are well named for frequentists, because
dealing with them in a general setting is one of the major problems frequentist researchers
face. In contrast, Bayesians have a universal approach to eliminating nuisance parameters
from the problem: They are integrated out of the posterior density, yielding the marginal
posterior density for the parameters of interest, that is,

p(θ1|y) =
∫

Θ2

p(θ1, θ2|y) dθ2, θ1 ∈ Θ1. (2.4)

Many of the following exercises involve particular distributions. The Appendix of this book
contains definitions and properties of many common distributions. It is worth noting that
there are two common parameterizations of the gamma distribution and we use both in this
chapter (see Appendix Definition 2).

Exercise 2.1 (Conjugate Bernoulli analysis) Given the parameter θ, where 0 < θ < 1,

consider T iid Bernoulli random variables Yt (t = 1, 2, . . . , T ), each with p.m.f.

p(yt|θ) =
{

θ if yt = 1,

1 − θ if yt = 0.
(2.5)
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The likelihood function is

L(θ) = θm(1 − θ)T−m, (2.6)

where m = Ty is the number of successes (i.e., yt = 1) in T trials. Suppose prior beliefs
concerning θ are represented by a beta distribution with p.d.f.

pB(θ|α, δ) = [B(α, δ)]−1θα−1(1 − θ)δ−1, 0 < θ < 1, (2.7)

where α > 0 and δ > 0 are known, and B(α, δ) = Γ(α)Γ(δ)/Γ(α+ δ) is the beta function
defined in terms of the gamma function Γ(α) =

∫ ∞
0 tα−1 exp(−t)dt. This class of priors

can represent a wide range of prior opinions. Find the posterior density of θ.

Solution
The denominator (2.2) of posterior (2.3) density is easy to compute. Define

α = α + m, (2.8)

δ = δ + T − m, (2.9)

and consider

p(y) =
∫ 1

0
[B(α, δ)]−1θα−1(1 − θ)δ−1θm(1 − θ)T−mdθ (2.10)

=
[B(α, δ)
B(α, δ)

] ∫ 1

0
[B(α, δ)]−1θα−1(1 − θ)δ−1dθ

=
[B(α, δ)
B(α, δ)

]
,

where the integral in (2.10) equals unity because the integrand is a beta p.d.f. for θ. From
(2.3) and (2.8)–(2.10) it follows that the posterior density of θ is

p(θ|y) =
[B(α, δ)]−1θα−1(1 − θ)δ−1θm(1 − θ)T−m

B(α, δ)/B(α, δ)
(2.11)

= [B(α, δ)]−1θα−1(1 − θ)δ−1, 0 < θ < 1.

Therefore, because posterior density (2.11) is itself a beta p.d.f. with parameters α and δ

given by (2.8) and (2.9), it follows that the conjugate family of prior distributions for a
Bernoulli likelihood is the beta family of p.d.f.s

Exercise 2.2 (Application of Bayes’ theorem) A laboratory blood test is 95 percent
effective in detecting a certain disease when it is, in fact, present. However, the test also
yields a “false positive” result for one percent of the healthy people tested. If 0.1 percent of
the population actually has the disease, what is the probability that a person has the disease
given that her test result is positive?



14 2 Bayesian inference

Solution
Let D denote the presence of the disease, Dc denote its absence, and + denote a positive
test result. Then Pr(+|D) = .95, Pr(+|Dc) = .01, and P (D) = .001. Then according to
Bayes’ theorem

P (D|+) =
P (D)P (+|D)

P (+)
=

.001(.95)
.001(.95) + .999(.01)

= .0868.

Exercise 2.3 (Conjugate normal analysis with unknown mean and known variance)
Given θ = [θ1 θ2]′ ∈ R × R+, consider a random sample Yt (t = 1, 2, . . . , T ) from a
N(θ1, θ

−1
2 ) population. For reasons that will become clear as we proceed, it is convenient

to work in terms of θ2, the reciprocal of the variance (called the precision). (In later exer-
cises, however, particularly those in the computational chapters, we will work directly with
the error variance. Both approaches are commonly employed in the literature).

Assume θ2 is known. Suppose prior beliefs for θ1 are represented by the normal distri-
bution

θ1 ∼ N(µ, h−1), (2.12)

where µ and h > 0 are given. Find the posterior density of θ1 and marginal likelihood p(y).

Solution

For later notational convenience, let

h = [θ−1
2 /T ]−1 = Tθ2, (2.13)

h = h + h, (2.14)

and

µ = h
−1(hµ + hy). (2.15)

It is useful to employ two identities. The first identity is

T∑
t=1

(yt − θ1)2 =
T∑

t=1

(yt − y)2 + T (y − θ1)2 = νs2 + T (y − θ1)2, (2.16)

for all θ1, where

ν = T − 1 (2.17)

and

s2 = ν−1
T∑

t=1

(yt − y)2. (2.18)

The second identity is

h(θ1 − µ)2 + h(y − θ1)2 = h(θ1 − µ)2 + (h−1 + h−1)−1(y − µ)2, (2.19)

for all θ1, h, and h.
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Now we apply Bayes’ theorem to find the posterior density of θ1. Using identities (2.13)
and (2.16), we write the likelihood function as

L(θ1) =
T∏

t=1

φ(yt|θ1, θ
−1
2 ) (2.20)

= (2πθ−1
2 )−T/2 exp

(
−θ2

2

T∑
t=1

(yt − θ1)2
)

= (2πθ−1
2 )−T/2 exp

(
− h

2T
[νs2 + T (y − θ1)2]

)

= c1φ(y|θ1, h
−1),

where

c1 = (2π)−ν/2T (−1/2)θ
ν/2
2 exp

(
−1

2
θ2νs2

)
(2.21)

does not depend on θ1. Note that the factorization in (2.20) demonstrates that y is a suf-
ficient statistic for θ1. Also note that density φ(y|θ1, h

−1) corresponds to the sampling
density of the sample mean, given θ1.

Using identity (2.19) and factorization (2.20), the numerator of (2.3) is

p(θ1)L(θ1) = φ(θ1|µ, h−1)c1φ(y|θ1, h
−1) (2.22)

= c1(2πh−1)−1/2 exp
(
−1

2
[
h(θ1 − µ)2 + h(y − θ1)2

])

= c1(2πh−1)−1/2 exp
(
−1

2
[
h(θ1 − µ)2 + (h−1 + h−1)−1(y − µ)2

])

= c1(2π)(1/2)[hh
−1(h−1 + h−1)]1/2φ

(
y|µ, h−1 + h−1

)
φ(θ1|µ, h

−1).

Bayes’ theorem tells us that the posterior distribution of θ1 is proportional to (2.22). Thus,
all terms not involving θ1 that enter (2.22) multiplicatively are absorbed in the normalizing
constant, allowing us to focus on the posterior kernel. When looking at the final line of
(2.22), we immediately see that

p(θ1|y) = φ
(
θ1|µ, h

−1
)

. (2.23)

The interpretations of quantities (2.14) and (2.15) are now clear from (2.23): They are
the posterior precision and posterior mean, respectively. Note that it is the additivity of
precisions in (2.14) that motivates working with precisions rather than variances. Because
posterior density (2.23) and prior density (2.12) are both members of the normal family, it
follows that the conjugate prior for the case of random sampling from a normal population
with known variance is itself a normal density.


