
http://www.cambridge.org/9780521869362


This page intentionally left blank



ASTROPHYSICAL FLOWS

Almost all conventional matter in the Universe is fluid, and fluid dynamics
plays a crucial role in astrophysics. This new graduate textbook provides a
basic understanding of the fluid dynamical processes relevant to astrophysics.
The mathematics used to describe these processes is simplified to bring out the
underlying physics. The authors cover many topics, including wave propagation,
shocks, spherical flows, stellar oscillations and the instabilities caused by effects
such as magnetic fields, thermal driving, gravity and shear flows. They also discuss
the basic concepts of compressible fluid dynamics and magnetohydrodynamics.

The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the
University of Leicester, and Editors of the Cambridge Astrophysics Series. This
book has been developed from a course in astrophysical fluid dynamics taught at
the University of Cambridge. It is suitable for graduate students in astrophysics,
physics and applied mathematics, and requires only a basic familiarity with fluid
dynamics.

JIM PRINGLE is Professor of Theoretical Astronomy and a Fellow of Emmanuel
College at the University of Cambridge, and Senior Visitor at the Space Telescope
Science Institute, Baltimore.

ANDREW KING is Professor of Astrophysics at the University of Leicester and a
Royal Society Wolfson Research Merit Award holder. He is co-author of Accretion
Power in Astrophysics (Cambridge University Press, third edition, 2002).





ASTROPHYSICAL FLOWS

J. E. PRINGLE
University of Cambridge

A. R. KING
University of Leicester



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-86936-2

ISBN-13 978-0-511-28533-2

© J. Pringle and A. King 2007

2007

Information on this title: www.cambridge.org/9780521869362

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

ISBN-10    0-511-28293-1

ISBN-10    0-521-86936-6

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (Adobe Reader)

eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521869362


Contents

Preface page ix

1 The basic fluid equations 1
1.1 Conservation of mass and momentum 2
1.2 The Lagrangian derivative 4
1.3 Conservation of energy 5
1.4 The equation of state and useful approximations 6
1.5 The MHD approximation 8
1.6 Some basic implications 11
1.7 Conservation of energy 12
1.8 Further reading 14
1.9 Problems 15

2 Compressible media 17
2.1 Wave propagation in uniform media 18
2.2 Non-linear flow in one dimension 26
2.3 Further reading 38
2.4 Problems 38

3 Spherically symmetric flows 44
3.1 Steady inflow/outflow 44
3.2 Explosion in a uniform medium 50
3.3 Further reading 58
3.4 Problems 58

4 Stellar models and stellar oscillations 60
4.1 Models of stars 60
4.2 Perturbing the models 62
4.3 Eulerian and Lagrangian perturbations 63
4.4 Adiabatic perturbations – a variational principle 66
4.5 The Schwarzschild stability criterion 73

v



vi Contents

4.6 Further reading 74
4.7 Problems 75

5 Stellar oscillations – waves in stratified media 78
5.1 Waves in a plane-parallel atmosphere 79
5.2 Vertical waves in a polytropic atmosphere 84
5.3 Further reading 87
5.4 Problems 87

6 Damping and excitation of stellar oscillations 90
6.1 A simple set of oscillations 91
6.2 Damping by conductivity 92
6.3 The effect of heating and cooling – the ε-mechanism 95
6.4 The effect of opacity – the κ-mechanism 97
6.5 Further reading 101

7 Magnetic instability in a static atmosphere 102
7.1 Magnetic buoyancy 102
7.2 The Parker instability 106
7.3 Further reading 111
7.4 Problems 111

8 Thermal instabilities 113
8.1 Linear perturbations and the Field criterion 114
8.2 Heating and cooling fronts 118
8.3 Further reading 120
8.4 Problems 120

9 Gravitational instability 123
9.1 The Jeans instability 123
9.2 Isothermal, self-gravitating plane layer 125
9.3 Stability of a thin slab 128
9.4 Further reading 130
9.5 Problems 131

10 Linear shear flows 134
10.1 Perturbation of a linear shear flow 135
10.2 Squire’s theorem 136
10.3 Rayleigh’s inflexion point theorem 136
10.4 Fjørtoft’s theorem 138



Contents vii

10.5 Physical interpretation 139
10.6 Co-moving phase 141
10.7 Stratified shear flow 142
10.8 The Richardson criterion 144
10.9 Further reading 145
10.10 Problems 145

11 Rotating flows 150
11.1 Rotating fluid equilibria 150
11.2 Making rotating stellar models 151
11.3 Meridional circulation 154
11.4 Rotation and magnetism 156
11.5 Further reading 157
11.6 Problems 157

12 Circular shear flow 158
12.1 Incompressible shear flow in a rigid cylinder 158
12.2 Axisymmetric stability of a compressible rotating flow 162
12.3 Circular shear flow with a magnetic field 167
12.4 Circular shear flow with self-gravity 172
12.5 Further reading 176
12.6 Problems 176

13 Modes in rotating stars 178
13.1 The non-rotating ‘star’ 178
13.2 Uniform rotation 181
13.3 Further reading 187
13.4 Problems 187

14 Cylindrical shear flow–non-axisymmetric instability 191
14.1 Equilibrium configuration 191
14.2 The perturbation equations 193
14.3 The Papaloizou–Pringle instability 195
14.4 Further reading 197
14.5 Problems 197

References 199

Index 203





Preface

Almost all of the baryonic Universe is fluid, and the study of how these fluids
move is central to astrophysics. This book originated in a 24-lecture course entitled
‘Astrophysical Fluids’ given by one of us (JEP) in Part III of the Mathematical
Tripos at the University of Cambridge, comparable in level to a graduate course
in the USA. The course was intended as a preparation for research, and the book
reflects this. Preparing the lecture course and especially its booklist made it plain
that there was a need to bring these ideas together in one place.

The book provides a brief coverage of basic concepts, but does assume some
familiarity with undergraduate-level fluid dynamics, electromagnetic theory and
thermodynamics. Our aim is to give a flavour of the fundamental fluid dynamical
processes and concepts which an astrophysical theorist ought to know. To keep the
book to a manageable size, we have had to be selective. In particular, we omit all
discussion of dissipative fluid processes such as viscosity and magnetic diffusivity.

As well as covering a range of fluid dynamical concepts, we introduce
some mathematical ideas and techniques. None of these is particularly deep or
abstract, but some of the implementations do require some moderately heavy
but straightforward algebra. Thus the reader will benefit from some familiarity
with undergraduate-level mathematical methods, as well as some facility in
mathematical manipulation. This takes practice and care, but more than anything
it requires the ability to spot a mistake before proceeding too far.

Ideally, of course, one does not make mistakes, and some lecturers like to give
their students the misleading impression that this is how research is done. In practice,
errors occur all too frequently, and unfortunately some of these make their way
into the research literature. The best method for finding errors is to understand the
physical processes involved and how these processes are expressed in mathematical
formulae. For this reason, this book emphasizes physical understanding and the
extraction of relevant physical ideas from a mass of equations. To achieve this we
often drastically simplify problems and keep only the physical processes of interest.
For example, in the chapters on stellar oscillations we eliminate much of the heavy
algebra which appears because real stars are spherical, and instead assume that stars
are square (plane-parallel) or at worst (for rotating stars) cylindrical. This lets us
get at the underlying physical processes without obscuring them with mathematics.

ix



x Preface

The problems at the ends of the chapters come both from the problem sheets
associated with the course and from the examination questions set for it. They are
intended to illustrate the course material further and also to introduce additional
ideas. Thus they are an integral part of the book, and the determined reader will
benefit from working through them.
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The basic fluid equations

The subject of this book is how the matter of the visible Universe moves. Almost
all of this matter is in gaseous form, and each gram contains of order 1024

particles (atoms, ions, protons, electrons, etc.), all moving independently except
for interactions such as collisions. At first sight it might seem an impossible task
to describe the evolution of such a complicated system. However, in many cases
we can avoid most of this inherent complexity by approximating the matter as a
fluid.Afluid is an idealized continuous medium with certain macroscopic properties
such as density, pressure and velocity . This concept applies equally to gases and
liquids, and we shall take the term fluid to refer to both in this book. The structure of
matter at the atomic or molecular level is important only in fixing relations between
macroscopic fluid properties such as density and pressure, and in specifying others
such as viscosity and conductivity.

Describing a medium as a fluid is possible if we can define physical quantities
such as density ρ(r, t) or velocity u(r, t) at a particular place with position vector
r at time t. For a meaningful definition of a ‘fluid velocity’ we must average
over a large number of such particles. In other words, fluid dynamical quantities
are well defined only on a scale l such that l is not only much greater than a
typical interparticle distance, but also, more restrictively, much greater than a typical
particle mean free path, λmfp.† Further, the concept of local fluid quantities is only
useful if the scale l on which they are defined is much smaller than the typical
macroscopic lengthscales L on which fluid properties vary. Thus to use the equations
of fluid dynamics we require L � l � λmfp.

If this condition fails one should, strictly, not apply the fluid dynamical equations,
but instead use concepts from plasma physics such as particle distribution func-
tions. However, the huge additional complications and large physical uncertainties

† Roughly speaking, the mean free path is the average distance travelled by a typical particle before its
trajectory is significantly deflected by another particle.
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2 The basic fluid equations

involved here mean that astrophysicists often apply fluid dynamical equations in
situations where they are not strictly valid. The mean free path in astrophysical fluids
is typically λmfp�106(T 2/n) cm, where T is the temperature (in K) and n is the num-
ber density (in cm−3). In the centre of the Sun we have T � 107 K, n � 1026 cm−3,
so λmfp ∼ 10−6 cm. This is far smaller than the solar radius R� = 7×1010 cm, so the
fluid approximation is very good. In the solar wind, however, we have T ∼ 105 K,
n ∼ 10 cm−3 near the Earth’s orbit, so that λmfp ∼ 1015 cm. This is far greater than
the Sun–Earth distance, which is 1.5 × 1013 cm. Thus the fluid approximation does
not apply well here, and the treatment of the interaction of the solar wind with the
Earth’s magnetosphere requires plasma physics. As a final example, the diffuse gas
in a cluster of galaxies typically has T � 3 × 107 K, n � 10−3 cm−3, and hence
λmfp ∼ 1024 cm. This is of the same order as the physical size ∼ 1 Mpc of a rich
cluster. The fluid approximation is at best marginal for the diffuse regions of the
cluster gas, but is nevertheless often used to gain a crude insight into its dynamics,
heating and cooling. The dimensionless ratio λmfp/L of mean free path to typical
flow lengthscale is called the Knudsen number Kn; Kn � 1 is a necessary condition
for the validity of the fluid approximation. The results above show that Kn � 1 in
the interior of the Sun, Kn � 1 in the solar wind, and Kn ∼ 1 in cluster gas.

In this book we assume that the reader already has some familiarity with fluid
dynamics, though not necessarily in an astrophysical context. For this reason the
following derivation and discussion of the equations of fluid dynamics is brief.
It is aimed mainly at establishing notation, as well as stressing those properties of
fluids relevant to astrophysics which may be less familiar to fluid dynamicists from
other fields.

1.1 Conservation of mass and momentum

The equations of fluid dynamics express conservation laws, and indeed one can use
this basic property advantageously in devising numerical methods to solve them.

1.1.1 Mass conservation

Consider a fixed finite volume V within the fluid, bounded by the surface S. Then
the mass of fluid contained within the volume is given by∫

V
ρ dV . (1.1)

The mass contained in V can change only through a flux of fluid through the
surface S. Thus conservation of mass implies the following:

d

dt

∫
V

ρ dV = −
∫

S
ρu · dS, (1.2)
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where dS is the (vector) element of area on the surface S. The volume is fixed, so
we can take the derivative inside the term on the left-hand side (l.h.s.) and apply
the divergence theorem to the term on the right-hand side (r.h.s.) to obtain∫

V

{
∂ρ

∂t
+ div(ρu)

}
dV = 0. (1.3)

Since the volume V is arbitrary, we conclude that the integrand must itself vanish,
that is

∂ρ

∂t
+ div(ρu) = 0, (1.4)

and, equivalently, in suffix notation

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0. (1.5)

1.1.2 Momentum conservation

The momentum equation is obtained in exactly the same way by considering the
rate of change of the total momentum in the volume V , given by

d

dt

∫
V

ρ u dV . (1.6)

The additional complication here is that as well as considering the flux of
momentum across the surface S, we must take account of both the body force
per unit volume fi acting on the fluid and the surface stress given by an appropriate
stress tensor Tij. The momentum equation is then given by

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = fi + ∂

∂xj
[Tij]. (1.7)

In this book we consider two main contributors to the body force. First we write
the gravitational force as follows:

fi = −ρ
∂�

∂xi
, (1.8)

where the gravitational potential � is related to the density through Poisson’s
equation:

∇2� = 4πGρ, (1.9)

where G is the gravitational constant. Second we take the magnetic force in the
following form:

fi = (j ∧ B)i, (1.10)

where j is the current and B is the magnetic field.
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We shall also briefly consider the electric force,

fi = ρQ Ei, (1.11)

where ρQ is the electric charge density and E is the electric field.
We define the stress tensor as follows. Consider an infinitesimal vector surface

element dS within the fluid, where by convention the magnitude of the vector is the
area of the surface element and the direction of the vector is normal to the surface
element. Then the surface element is subject to a surface force F given by

Fi = Tij dSj. (1.12)

We note that since both dS and F are vectors, then by the quotient rule Tij is a
second-order tensor.

In this book the main contributor to the stress tensor that we consider is the
pressure p in the form

Tij = −pδij, (1.13)

where we make use of the Kronecker delta. In Section 1.5 we shall also write the
magnetic force as a stress tensor as follows:

mij = BiBj − 1

2
δijBkBk . (1.14)

Although we do not consider viscous effects in this book, we note here that
the viscous stress terms come from relating the viscous contribution to the stress
tensor to the second-order tensor ∂ui/∂xj. This contains information about the
relative flow of neighbouring fluid elements and is called the (rate of) strain tensor.
Physically this expresses the fact that microscopic (especially thermal) motions
within the ensemble of gas particles can transport momentum over distances of
order the mean free path.

Finally, using the mass conservation equation, eq. (1.4), to replace the term ∂ρ/∂t,
we obtain the momentum equation (or the equation of motion of the fluid) in the
following form:

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p

∂xi
− ∂�

∂xi
+ ∂mij

∂xj
. (1.15)

1.2 The Lagrangian derivative

We can consider the evolution of a fluid quantity like the density ρ(r, t) in two
ways. The partial derivative ∂ρ/∂t used above measures the way ρ changes with
time t at a fixed position r. But it is often more useful to consider the rate of change
of the density of a particular fluid element as it moves with the fluid. This rate is
called the Lagrangian derivative and is denoted by Dρ/Dt. We need to establish
the relationship between these two concepts.
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Suppose that a particular fluid element is at position r0 at time t = 0, and at a
later time t is at a new position r(r0, t). Then the velocity of the fluid element is
given by

u = ∂

∂t
r(r0, t), (1.16)

where the partial derivative is taken at fixed r0. The Lagrangian derivative of (for
example) the density of that particular fluid element is then simply given by

Dρ

Dt
= ∂

∂t
ρ(r(r0, t), t), (1.17)

with the partial derivative taken at fixed r0. Since t appears in two places on the r.h.s.
we may expect two terms in the derivative. Using the chain rule and the definition
of u above we obtain

Dρ

Dt
= ∂ρ

∂t
+ u · ∇ρ. (1.18)

Thus, more generally the operator denoting the rate of change of a quantity
following the fluid motion (the Lagrangian derivative) is given by

D

Dt
= ∂

∂t
+ u · ∇. (1.19)

1.3 Conservation of energy

We consider the heat content of a unit mass of fluid. In terms of thermodynamic
quantities, a small change in the internal heat content of this unit mass is given by

T dS = de + p dV , (1.20)

where T is the temperature, S is the entropy per unit mass, e is the internal energy
per unit mass and V is the volume per unit mass. In terms of the density it is evident
that V = 1/ρ, and thus

TdS = de − p
dρ

ρ2
. (1.21)

Hence in a fluid flow, the rate of change of the heat content of a particular fluid
element of unit mass is given by

T
DS

Dt
= De

Dt
− p

ρ2

Dρ

Dt
. (1.22)

The heat content of a fluid element can change through effects of two types.
First, there may be heat flow into or out of the element. We shall refer to this

generically as ‘conduction’. However, in the astrophysical context heat can be
conducted both by gas particles (typically electrons, since they move faster than
the ions) as in standard thermal conduction and also by photons (known as radiative



6 The basic fluid equations

transfer). In both cases, the heat flux h in units of energy per unit area per unit
time can often be written in the following form:

h = −λ∇T, (1.23)

which implies physically that the heat flux occurs down the temperature gradient
at a rate proportional to some ‘thermal conductivity’ λ. We expect λ to be a
function of thermodynamic variables such as T and ρ. This form of the heat flux
is appropriate provided that the particles carrying the heat have mean free paths
much smaller than the typical lengthscale L over which macroscopic fluid quantities
change. For electrons or molecules this is equivalent to the requirements of the fluid
approximation, whereas for photons it requires in addition that the fluid should
be opaque (‘optically thick’) so that there are very large numbers of interactions
between photons and the fluid over lengthscales L.

Second, there may be internal generation of heat. This can result from dissipation
of kinetic energy by viscosity or dissipation of magnetic energy through resistivity
(or electrical conductivity). We do not consider these processes in this book. In the
astrophysical context internal energy can be generated by nuclear processes (such
as nuclear energy generation in stars) and by a change in ionization of the fluid. It
can also be caused by heat exchange with particles which have a low collision cross
section, for example heating by cosmic rays in the interstellar medium and radiative
heating and/or cooling in an optically thin gas. We shall denote the generation of
internal energy by ε in units of energy per unit volume per unit time.

To convert from the rate of change of a unit mass of fluid (given by eq. (1.22))
to the rate of change per unit volume, we multiply by the mass per unit volume, i.e.
the density. Thus the heat equation becomes

ρT
DS

Dt
= −div h + ε. (1.24)

1.4 The equation of state and useful approximations

To complete the set of equations obtained so far we need a relationship of the form
p = p(ρ, T ), which is the equation of state for the fluid. In this book we shall
assume the simplest form of the relationship, namely the equation of state of a
perfect gas,

p = R
µ

ρT , (1.25)

where R is the gas constant and µ is the mean particle mass, assumed to be constant.
We also note that

R
µ

= cp − cV , (1.26)
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where cp = T (∂S/∂T )p is the specific heat at constant pressure and cV =
T (∂S/∂T )V is the specific heat at constant volume. Alternatively this may be
written as follows:

p = (γ − 1)ρe, (1.27)

where γ = cp/cV is the ratio of specific heats, and we note for a perfect gas that

e = cV T . (1.28)

To understand the physics of a particular fluid dynamical situation it is often not
necessary to include the full thermodynamic complexity of the fluid. In these cases
we can simplify and/or circumvent the heat equation.

1.4.1 Incompressible approximation

The major difference between astrophysical fluids and those encountered in
many terrestrial situations (including those encountered in many courses on fluid
dynamics) is that astrophysical ones are highly compressible. However, in situations
where fluid motions are slow compared with the sound speed, density gradients
are quickly smoothed out and it is a useful approximation to treat the fluid as if it
were incompressible. In physical terms this means that any particular element of
the fluid does not change its density, which implies that

Dρ

Dt
= 0. (1.29)

It is important to realise that this does not imply that the fluid itself has constant
density, so we may not write ρ = constant, unless the original fluid state has
uniform density.

1.4.2 Adiabatic flow

If the flow occurs fast enough that no fluid element has time to exchange heat with
its surroundings, and if energy generation within the fluid is negligible, the heat
equation simplifies to

DS

Dt
= 0. (1.30)

In other words, each fluid element evolves at constant entropy – it remains on the
same adiabat.

At constant entropy we note that

Dp

Dt
=
(

∂p

∂ρ

)
S

Dρ

Dt
, (1.31)
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and that (
∂p

∂ρ

)
S

= cp

cV

(
∂p

∂ρ

)
T

. (1.32)

Since for a perfect gas (
∂p

∂ρ

)
T

= p

ρ
, (1.33)

on using γ = cp/cV we obtain

D

Dt
ln p = γ

D

Dt
ln ρ. (1.34)

Thus for adiabatic flow we may assume that

D

Dt
( p/ργ ) = 0. (1.35)

We note again that this does not imply that the entropy of the fluid is constant
everywhere. But in this case if the fluid is initially isentropic (has uniform entropy)
then it remains so.

1.4.3 Barotropic flow

We can avoid using the heat equation, and therefore simplify the analysis, by
assuming that pressure is solely a function of density, i.e. p = p(ρ). This is
a useful approximation when the detailed thermal properties of the fluid are not
directly relevant to the dynamics under consideration. Barotropic flow is more
general than isentropic flow, and includes isothermal flow (for which p ∝ ρ) as
well as the polytropic approximation to the equation of state (relevant to fully
degenerate matter),

p = Aρ1+1/n, (1.36)

where A and n are constants and n is called the polytropic index.

1.5 The MHD approximation

Astrophysical fluids are usually highly ionized (and so highly conducting) and
permeated by magnetic fields. Understanding the interaction between the fluid and
the magnetic fields it contains is therefore often important. The usual treatment of
this interaction uses the magnetohydrodynamics (MHD) approximation. We stress
that this is an approximation and that, in common with the fluid approximation, it
is often tempting to use it in contexts where its validity is stretched.

We start by considering a fluid flow with a typical flow lengthscale L and typical
flow timescale T . The usual MHD approximation depends on the assumption that
the resulting typical flow velocity U is much less than the speed of light, i.e.
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U ∼ L/T � c. The approximation stems from the use of Ohm’s law applied
locally in the frame of the fluid. Thus we need to be able to transform between
the fields (E, B) in the inertial frame and the fields (E′, B′) in the frame of the
fluid, which is moving with velocity u. These are related by the usual Lorentz
transformation:

E′ = (1 − γ )

(
u · E
u2

)
u + γ (E + u ∧ B), (1.37)

and

B′ = (1 − γ )

(
u · B
u2

)
u + γ

(
B − 1

c2
u ∧ E

)
, (1.38)

where

γ =
(

1 − u2

c2

)−1/2

. (1.39)

Taking the low-velocity approximation u2 � c2 and neglecting terms of order
(u2/c2), these relations become

E′ = E + u ∧ B (1.40)

and
B′ = B. (1.41)

The time evolution of the magnetic field is determined from the Maxwell
equation,

∂B
∂t

= −curl E. (1.42)

By comparing dimensional quantities on each side of the equation we see that to
order of magnitude B/T ∼ E/L, or equivalently E ∼ (L/T )B ∼ UB.

The second relevant Maxwell equation is as follows:

µ−1
0 curl B = j + ε0

∂E
∂t

. (1.43)

The second term on the r.h.s. is the displacement current, which permits the
propagation of electromagnetic waves in vacuum with speed c, where c2 = 1/ε0µ0.
However, in the MHD approximation we neglect the displacement current. This
is because the ratio between the displacement current and the term on the l.h.s. is
given to order of magnitude as (ε0E/T )/(B/µ0L) ∼ (E/B)(U/c2) ∼ U 2/c2 � 1.
Thus in the MHD approximation, electromagnetic waves are excluded and the
current is given by

j = µ−1
0 curl B. (1.44)

Since B′ = B, it follows that the current in the frame of the fluid is given by

j′ = j. (1.45)
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In the frame of the fluid Ohm’s law becomes j′ = σE′, where σ is the conductivity.
In this book we make the additional assumption that the conductivity is infinite,
which then implies that E′ = 0, i.e. that

E = −u ∧ B. (1.46)

Substituting this into eq. (1.42) we obtain the induction equation,

∂B
∂t

= curl(u ∧ B), (1.47)

which describes the time evolution of the magnetic field in the ideal MHD
approximation.

We also need to consider the electromagnetic force acting on the fluid. The
Lorentz force is given by

f = ρQ E + j ∧ B. (1.48)

The charge density ρQ is related to the electric field E through the following
Maxwell equation:

div E = ρQ/ε0. (1.49)

Thus the ratio between the electric and magnetic contributions to the Lorentz force
on the fluid is (using eq. (1.44)) to order of magnitude (ε0E2/L)/(B2/Lµ0) ∼
U 2/c2. Further, the current ρQu supplied by the moving charge density is also
∼U 2/c2 times the current j. Thus in the MHD approximation we can neglect both
the electric charge and the electric field, and the electromagnetic force on the fluid
is (using eq. (1.44)) simply given by

f = µ−1
0 (curl B ∧ B). (1.50)

We can write this as

fi = ∂mik

∂xk
, (1.51)

where

mik = µ−1
0

(
BiBk − 1

2
B2δik

)
, (1.52)

and we have used the final Maxwell equation,

div B = 0. (1.53)

1.5.1 Notation and units

We can now see that in the MHD approximation the electric field does not appear in
any of the equations. The magnetic field appears only in the induction equation and
in the Lorentz force. The induction equation is already dimensionally consistent
and so does not change if different units are used for B. In the Lorentz force the


