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Preface

Radiation in the Atmosphere is the third volume in the series A Course in Theo-
retical Meteorology. The first two volumes entitled Dynamics of the Atmosphere
and Thermodynamics of the Atmosphere were first published in the years 2003 and
2004.

The present textbook is written for graduate students and researchers in the field
of meteorology and related sciences. Radiative transfer theory has reached a high
point of development and is still a vastly expanding subject. Kourganoff (1952)
in the postscript of his well-known book on radiative transfer speaks of the three
olympians named completeness, up-to-date-ness and clarity. We have not made
any attempt to be complete, but we have tried to be reasonably up-to-date, if this
is possible at all with the many articles on radiative transfer appearing in various
monthly journals. Moreover, we have tried very hard to present a coherent and
consistent development of radiative transfer theory as it applies to the atmosphere.
We have given principle allegiance to the olympian clarity and sincerely hope that
we have succeeded.

In the selection of topics we have resisted temptation to include various additional
themes which traditionally belong to the fields of physical meteorology and physical
climatology. Had we included these topics, our book, indeed, would be very bulky,
and furthermore, we would not have been able to cover these subjects in the required
depth. Neither have we made any attempt to include radiative transfer theory as it
pertains to the ocean, a subject well treated by Thomas and Stamnes (1999) in their
book Radiative Transfer in the Atmosphere and Ocean.

As in the previous books of the series, we were guided by the principle to
make the book as self-contained as possible. As far as space would permit, all but
the most trivial mathematical steps have been included in the presentation of the
theory to encourage students to follow the various developments. Nevertheless,
here and there students may find it difficult to follow our reasoning. In this case,
we encourage them not to get stuck with a particular detail but to continue with the

x
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subject. Additional details given later may clarify any questions. Moreover, on a
second reading everything will become much clearer.

We will now give a brief description of the various chapters and topics treated in
this book. Chapter 1 gives the general introduction to the book. Various important
definitions such as the radiance and the net flux density are given to describe the
radiation field. The interaction of radiation with matter is briefly discussed by
introducing the concepts of absorption and scattering. To get an overall view of the
mean global radiation budget of the system Earth–atmosphere, it is shown that the
incoming and outgoing energy at the top of the atmosphere are balanced.

In Chapter 2 the hydrodynamic derivation of the radiative transfer equation (RTE)
is worked out; this is in fact the budget equation for photons. The radiatively induced
temperature change is formulated with the help of the first law of thermodynamics.
Some basic formulas from spherical harmonics, which are needed to evaluate certain
transfer integrals, are presented. Various special cases are discussed.

Chapter 3 presents the principle of invariance which, loosely speaking, is a
collection of common sense statements about the exact mathematical structure of
the radiation field. At first glance the mathematical formalism looks much worse
than it really is. A systematic study of the mathematical and physical principles of
invariance it quite rewarding.

Quasi-exact solutions of the RTE, such as the matrix operator method together
with the doubling algorithm are presented in Chapter 4. Various other prominent
solutions such as the successive order of scattering and the Monte Carlo methods
are discussed in some detail.

Chapter 5 presents the radiative perturbation theory. The concept of the adjoint
formulation of the RTE is introduced, and it is shown that in the adjoint formulation
certain radiative effects can be evaluated with much higher numerical efficiency than
with the so-called forward mode methods.

For many practical purposes in connection with numerical weather prediction it
is sufficient to obtain fast approximate solutions of the RTE. These are known as
two-stream methods and are treated in Chapter 6. Partial cloudiness is introduced in
the solution scheme on the basis of two differing assumptions. The method allows
fairly general situations to be handled.

In Chapter 7, the theory of individual spectral lines and band models is treated in
some detail. In those cases in which scattering effects can be ignored, formulas are
worked out to describe the mean absorption of homogeneous atmospheric layers. A
technique is introduced which makes it possible to replace the transmission through
an inhomogeneous atmosphere by a nearly equivalent homogeneous layer.

The theory of gaseous absorption is formulated in Chapter 8. The analysis of
normal vibrations of linear and nonlinear molecules is introduced. The Schrödinger
equation is presented and the computation of transition probabilities is described,
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which finally leads to the mathematical formulation of spectral line intensities. Sim-
ple but instructive analytic solutions of Schrödinger’s equation are obtained lead-
ing, for example, to the description of the vibration–rotation spectrum of diatomic
molecules.

Not only atmospheric gaseous absorbers influence the radiation field but also
aerosol particles and cloud droplets. Chapter 9 gives a rigorous treatment of Mie
scattering which includes Rayleigh scattering as a special case. The important
efficiency factors for extinction, scattering and absorption are derived. The math-
ematical analysis requires the mathematical skill which the graduate student has
acquired in various mathematics and physics courses. The effects of nonspherical
particles are not treated in this book.

So far polarization has not been included in the RTE, which is usually satisfactory
for energy considerations but may not be sufficient for optical applications. To give
a complete description of the radiation field the polarization effects are introduced
in Chapter 10 with the help of the Stokes parameters. This finally leads to the most
general vector formulation of the RTE in terms of the phase matrix while the phase
function is sufficient if polarization may be ignored.

Chapter 11 introduces remote sensing applications of radiative transfer. After
the general description of some basic ideas, the RTE is presented in a form which
is suitable to recover the atmospheric temperature profile by special inversion tech-
niques. The chapter closes with a description of the way in which the atmospheric
ozone profile can be retrieved using radiative perturbation theory.

The book closes with Chapter 12 in which a simple and brief account of the
influence of clouds on climate is given. The student will be exposed to concepts
such as cloud forcing and cloud radiative feedback.

Problems of various degrees of difficulty are included at the end of each chapter.
Some of the included problems are almost trivial. They serve the purpose of making
students familiar with new concepts and terminologies. Other problems are more
demanding. Where necessary answers to problems are given at the end of the book.

One of the problems that any author of a physical science textbook is confronted
with, is the selection of proper symbols. Inspection of the book shows that many
times the same symbol is used to label several quite different physical entities.
It would be ideal to represent each physical quantity by a unique symbol which
is not used again in some other context. Consider, for example, the letter k. For
the Boltzmann constant we could have written kB, for Hooke’s constant kH, for
the wave number kw, and ks for the climate sensitivity constant. It would have
been possible, in addition to using the Greek alphabet, to also employ the letters
of another alphabet, e.g. Hebrew, to label physical quantities in order to obtain
uniqueness in notation. Since usually confusion is unlikely, we have tried to use
standard notation even if the same symbol is used more than once. For example, the
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climate sensitivity parameter k appears in Chapter 12, Hooke’s constant in Chapter
8 and Boltzmann’s constant in Chapter 1.

The book concludes with a list of frequently used symbols and a list of constants.
We would like to give recognition to the excellent textbooks Radiative Transfer

by the late S. Chandrasekhar (1960), to Atmospheric Radiation by R. M. Goody
(1964) and the updated version of this book by Goody and Yung (1989). These
books have been an invaluable guidance to us in research and teaching.

We would like to give special recognition to Dr W. G. Panhans for his splendid
cooperation in organizing and conducting our exercise classes. Recognition is due
to Dr Jochen Landgraf for discussions related to the perturbation theory and to
ozone retrieval. Moreover, we will be indebted to Sebastian Otto for carrying out
the transfer calculations presented in Section 7.5. We also wish to express our
gratitude to many colleagues and graduate students for helpful comments while
preparing the text. Last but not least we wish to thank our families for their patience
and encouragement during the preparation of this book.

It seems to be one of the unfortunate facts of life that no book as technical as this
one can be written free of error. However, each author takes comfort in the thought
that any errors appearing in this book are due to one of the other two. To remove
such errors, we will be grateful for anyone pointing these out to us.





1

Introduction

1.1 The atmospheric radiation field

The theory presented in this book applies to the lower 50 km of the Earth’s
atmosphere, that is to the troposphere and to the stratosphere. In this part of the
atmosphere the so-called local thermodynamic equilibrium is observed.

In general, the condition of thermodynamic equilibrium is described by the
state of matter and radiation inside a constant temperature enclosure. The radiation
inside the enclosure is known as black body radiation. The conditions describing
thermodynamic equilibrium were first formulated by Kirchhoff (1882). He stated
that within the enclosure the radiation field is:

(1) isotropic and unpolarized;
(2) independent of the nature and shape of the cavity walls;
(3) dependent only on the temperature.

The existence of local thermodynamic equilibrium in the atmosphere implies that
a local temperature can be assigned everywhere. In this case the thermal radiation
emitted by each atmospheric layer can be described by Planck’s radiation law.
This results in a relatively simple treatment of the thermal radiation transport in the
lower sections of the atmosphere.

Kirchhoff’s and Planck’s laws, fundamental in radiative transfer theory, will be
described in the following chapters. While the derivation of Planck’s law requires a
detailed microscopic picture, Kirchhoff’s law may be obtained by using purely ther-
modynamic arguments. The derivation of Kirchhoff’s law is presented in numerous
textbooks such as in Thermodynamics of the Atmosphere by Zdunkowski and Bott
(2004).1

1 Whenever we make reference to this book, henceforth we simply refer to THD (2004).

1



2 Introduction

The atmosphere, some sort of an open system, is not in thermodynamic equi-
librium since the temperature and the radiation field vary in space and in time.
Nevertheless, in the troposphere and within the stratosphere the emission of ther-
mal radiation is still governed by Kirchhoff’s law at the local temperature. The
reason for this is that in these atmospheric regions the density of the air is suffi-
ciently high so that the mean time between molecular collisions is much smaller than
the mean lifetime of an excited state of a radiating molecule. Hence, equilibrium
conditions exist between vibrational and rotational and the translational energy of
the molecule. At levels higher than 50 km, the two time scales become comparable
resulting in a sufficiently strong deviation from thermodynamic equilibrium so that
Kirchhoff’s law cannot be applied anymore.

The breakdown of thermodynamic equilibrium in higher regions of the atmo-
sphere also implies that Planck’s law no longer adequately describes the thermal
emission so that quantum theoretical arguments must be introduced to describe
radiative transfer. Quantum theoretical considerations of this type will not be treated
in this book. For a study of this situation we refer the reader to the textbook Atmo-
spheric Radiation by Goody and Yung (1989).

The units usually employed to measure the wavelength of radiation are the
micrometer (µm) with 1µm = 10−6 m or the nanometer (nm) with 1 nm = 10−9 m
and occasionally Ångströms (Å) where 1 Å =10−10 m. The thermal radiation spec-
trum of the Sun, also called the solar radiation spectrum, stretches from roughly
0.2–3.5 µm where practically all the thermal energy of the solar radiation is located.
It consists of ultraviolet radiation (<0.4 µm), visible radiation (0.4–0.76 µm), and
infrared radiation >0.76 µm. The thermal radiation spectrum of the Earth ranges
from about 3.5–100 µm so that for all practical purposes the solar and the terres-
trial radiation spectrum are separated. As will be seen later, this feature is of great
importance facilitating the calculation of atmospheric radiative transfer. Due to the
positions of the spectral regions of the solar and the terrestrial radiation we speak
of short-wave and long-wave radiation. The terrestrial radiation spectrum is also
called the infrared radiation spectrum.

Important applications of atmospheric radiative transfer are climate modeling
and weather prediction which require the evaluation of a prognostic temperature
equation. One important term in this equation, see e.g. Chapter 3 of THD (2004), is
the divergence of the net radiative flux density whose evaluation is fairly involved,
even for conditions of local thermodynamic equilibrium. Accurate numerical radia-
tive transfer algorithms exist that can be used to evaluate the radiation part of the
temperature prediction equation. In order to judiciously apply any such computer
model, some detailed knowledge of radiative transfer is required.

There are other areas of application of radiative transfer such as remote sensing.
In the concluding chapter of this textbook we will present various examples.
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Fig. 1.1 The Earth’s annual global mean energy budget, after Kiehl and
Trenberth (1997), see also Houghton et al. (1996). Units are (W m−2 ).

1.2 The mean global radiation budget of the Earth

Owing to the advanced satellite observational techniques now at our disposal, we are
able to study with some confidence the Earth’s annual mean global energy budget.
Early meteorologists and climatologists have already understood the importance
of this topic, but they did not have the observational basis to verify their results.
A summary of pre-satellite investigations is given by Hunt et al. (1986). In the
following we wish to briefly summarize the mean global radiation budget of the
Earth according to Kiehl and Trenberth (1997). Here we have an instructive exam-
ple showing in which way radiative transfer models can be applied to interpret
observations.

The evaluation of the radiation model requires vertical distributions of absorbing
gases, clouds, temperature, and pressure. For the major absorbing gases, namely
water vapor and ozone, numerous observational data must be handled and sup-
plemented with model atmospheres. In order to calculate the important influence
of CO2 on the infrared radiation budget, Kiehl and Trenberth specify a constant
volume mixing ratio of about 350 ppmv. Moreover, it is necessary to employ distri-
butions of the less important absorbing gases CH4, N2O, and of other trace gases.
Using the best data presently available, they have provided the radiation budget as
displayed in Figure 1.1.
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The analysis employs a solar constant S0 = 1368 W m−2. This is the solar radi-
ation, integrated over the entire solar spectral region which is received by the Earth
per unit surface perpendicular to the solar beam at the mean distance between the
Earth and the Sun. Since the circular cross-section of the Earth is exposed to the
parallel solar rays, each second our planet receives the energy amount π R2S0 where
R is the radius of the Earth. On the other hand, the Earth emits infrared radiation
from its entire surface 4π R2 which is four times as large as the cross-section. Thus
for energy budget considerations we must distribute the intercepted solar energy
over the entire surface so that, on the average, the Earth’s surface receives 1/4 of
the solar constant. This amounts to a solar input of 342 W m−2 as shown in the
figure.

The measured solar radiation reflected to space from the Earth’s surface–atmo-
sphere system amounts to about 107 W m−2. The ratio of the reflected to the
incoming solar radiation is known as the global albedo which is close to 31%.
Early pre-satellite estimates of the global albedo resulted in values ranging from
40–50%. With the help of radiation models and measurements it is found that
cloud reflection and scattering by atmospheric molecules and aerosol particles
contribute 77 W m−2 while ground reflection contributes 30 W m−2. In order to
have a balanced radiation budget at the top of the atmosphere, the net gain
342 − 107 = 235 W m−2 of the short-wave solar radiation must be balanced by
emission of long-wave radiation to space. Indeed, this is verified by satellite mea-
surements of the outgoing long-wave radiation.

Let us now briefly consider the radiation budget at the surface of the Earth,
which can be determined only with the help of radiation models since sufficiently
dense surface measurements are not available. Assuming that the ground emits
black body radiation at the temperature of 15◦C, an amount of 390 W m−2 is lost
by the ground. According to Figure 1.1 this energy loss is partly compensated by
a short-wave gain of 168 W m−2 and by a long-wave gain of 324 W m−2 because of
the thermal emission of the atmospheric greenhouse gases (H2O, CO2, O3, CH4,
etc.) and clouds. Thus the total energy gain 168 + 324 = 492 W m−2 exceeds the
long-wave loss of 390 W m−2 by 102 W m−2.

In order to have a balanced energy budget at the Earth’s surface, other phys-
ical processes must be active since a continuous energy gain would result in an
ever increasing temperature of the Earth’s surface. From observations, Kiehl and
Trenberth estimated a mean global precipitation rate of 2.69 mm day−1 enabling
them to compute a surface energy loss due to evapotranspiration. Multiplying
2.69 mm day−1 by the density of water and by the latent heat of vaporization amounts
to a latent heat flux density of 78 W m−2. Thus the surface budget is still unbalanced
by 24 W m−2. Assigning a surface energy loss of −24 W m−2 resulting from sens-
ible heat fluxes yields a balanced energy budget at the Earth’s surface. The individual
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losses due to turbulent surface fluxes are uncertain within several percent since it is
very difficult to accurately assess the global amount of precipitation which implies
that the estimated sensible heat flux density is also quite uncertain. Only the sum
of the turbulent surface flux densities is reasonably certain.

Finally, we must study the budget of the atmosphere itself. Figure 1.1 reveals
that the atmosphere gains 67 W m−2 by absorption of solar radiation, 102 W m−2 by
turbulent surface fluxes, and additionally 350 W m−2 resulting from long-wave radi-
ation emitted by the surface of the Earth and intercepted by atmospheric greenhouse
gases and clouds. The total of 519 W m−2 must be re-emitted by the atmosphere.
As shown in the figure, the atmospheric greenhouse gases and the clouds emit
165 + 30 = 195 W m−2 to space and 324 W m−2 as back-radiation to the surface
of the Earth just balancing the atmospheric energy gain.

We also see that from the 390 W m−2 emitted by the Earth’s surface only
350 W m−2 are intercepted by the atmosphere. To account for the remaining
40 W m−2 we recognize that these escape more or less unimpeded to space in the
so-called spectral window region as will be discussed later.

By considering the budget in Figure 1.1, we observe that only the reflected solar
radiation and the long-wave radiation emitted to space are actually verified by
measurements. However, the remaining budget components should also be taken
seriously since nowadays radiation models are quite accurate. Nevertheless, the
output of the models cannot be any more accurate than the input data. In future
days further refinements and improvements of the global energy budget can be
expected.

In order to calculate the global radiation budget, we must have some detailed
information on the absorption behavior of atmospheric trace gases and the physical
properties of aerosol and cloud particles. In a later chapter we will study the radi-
ative characteristics of spherical particles by means of the solution of Maxwell’s
equations of electromagnetic theory. Here we will only qualitatively present the
absorption spectrum of the most important greenhouse gases.

Figure 1.2 combines some important information regarding the solar spectrum.
The upper curve labeled TOA (top of the atmosphere) shows the extraterrestrial
incoming solar radiation after Coulson (1975). For wavelengths exceeding 1.4 µm
this curve coincides closely with a Planckian black body curve of 6000 K. The lower
curve depicts the total solar radiation reaching the Earth’s surface for a solar zenith
angle θ0 = 60◦. The calculations were carried out with sufficiently high spectral res-
olution using the so-called Moderate Resolution Atmospheric Radiance and Trans-
mittance Model (MODTRAN; version 3.5; Anderson, 1996; Kneizys et al., 1996)
program package. All relevant absorbing trace gases shown in the figure are included
in the calculations. Not shown are the positions of the CO and CH4 absorption bands
which are located in the solar spectrum and in the near infared spectral region of
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Fig. 1.2 Incoming solar flux density at the top of the atmosphere (TOA) and
at ground level. The solar zenith angle is θ0 = 60◦, ground albedo Ag = 0. The
spectral positions of major absorption bands of the trace gases are shown.

thermal radiation. A tabulation of bands of these two trace gases is given, for exam-
ple, in Goody (1964a). Since the radiation curve for ground level shows a high
spectral variability, it was artificially smoothed for better display to a somewhat
lower spectral resolution.

Figure 1.3 depicts the spectral distribution of the upwelling thermal radiance
as a function of the wave number (to be defined later) at a height of 60 km. For
comparison purposes the Planck black body radiance curves for several tempera-
tures are shown also. The maximum of the 300 K black body curve is located at
roughly 600 cm−1 . The calculations were carried out with the same program pack-
age (MODTRAN) using a spectral resolution of 1 cm−1 . All relevant absorbing and
emitting gases have been accounted for. The widths of the major infrared absorption
bands (H2O, CO2, O3) are also shown in the figure.

Kiehl and Trenberth (1997) produced similar curves for the solar and infrared
radiative fluxes per unit surface. However, in addition to the absorption by gases
shown in Figures 1.2 and 1.3, they also included the effects of clouds in their
calculations by assuming an effective droplet radius of 10 µm and suitable li-
quid water contents. Moreover, assumptions were made about the spatial distri-
butions of clouds. Their results indicate that water vapor is the most important



1.2 The mean global radiation budget of the Earth 7

Fig. 1.3 Upwelling infrared radiance at a height of 60 km for a clear sky mid-
latitude summer atmosphere.

gas absorbing 38 W m−2 of solar radiation which is followed by O3 (15 W m−2 )
and O2 (2 W m−2 ) while the effect of CO2 may be ignored. Thus the greenhouse
gases absorb 55 W m−2. Figure 1.1, however, requires 67 W m−2. The 12 W m−2 still
missing must be attributed to partial cloudiness and to spectral overlap effects, i.e.,
cloud droplets and gases absorb at the same wavelength. Handling clouds in the
radiative transfer problem is usually very difficult since in general water droplet
size distributions are unknown.

Finally, let us consider the gaseous absorption bands of the infrared spectrum.
In the calculations of Kiehl and Trenberth (1997) analogous to Figure 1.3, the
surface is assumed to emit black body radiation with a temperature of 15◦C. The
major absorbing gases are H2O, O3, and CO2. Of course, the same distribution of
absorbing gases and clouds as for solar radiation is assumed. Integration of the
infrared curve at the top of the atmosphere over the entire spectral region yields
235 W m−2 as required by Figure 1.1.

We conclude this section by considering a simple example to obtain the effec-
tive emission temperature of the system Earth’s surface–atmosphere. As we have
discussed above, the cross-section of the Earth intercepts the solar energy π R2S0.
Since the global albedo is 31%, the rate of absorption is 1368(1− 0.31) =
944 W m−2. Assuming that the Earth emits black body radiation, we must apply the
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Fig. 1.4 Simplified elliptical geometry of the Earth’s orbit.

well-known Stefan–Boltzmann law so that the Earth’s surface emits 4π R2σ T 4

where σ is the Stefan–Boltzmann constant. Assuming steady-state conditions,
we have π R2× 944 W m−2 = 4π R2σ T 4 from which we obtain the temperature
T = 254 K which resembles the effective emission temperature of our planet.

1.3 Solar–terrestrial relations

To a high degree of accuracy the Earth’s orbit around the Sun can be described by
an ellipse with eccentricity e = √

a2 − b2/a = 0.01673, where a and b are, respec-
tively, the semi-major and semi-minor axis of the ellipse, see Figure 1.4. The Sun’s
position is located in one of the two elliptical foci (F1, F2). For demonstration pur-
poses, the figure exaggerates the eccentricity of the elliptical orbit. The perihelion,
that is the shortest distance rmin between Sun and Earth, occurs around January
3rd, while the aphelion, that is the largest distance rmax between Sun and Earth, is
registered around July 4th. These times are not constant, but they vary from year to
year. Often the mean distance between the Earth and the Sun is approximated by

a = rmin + rmax

2
= 1.496 × 108 km (1.1)

The distances rmin and rmax are related to a and e via

rmin =a(1 − e) = 1.471 × 108 km

rmax =a(1 + e) = 1.521 × 108 km
(1.2)
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Beginning with January 1st, i.e. Julian day number 1 of the year, a normal year
counts 365 days (for simplicity we will not take the occurrence of leap years into
account). A particular day of the year is then labelled with its corresponding Julian
day number J .

We introduce the rotation angle � of the Earth beginning with the 1st of January
as

� = 2π

365
(J − 1) (1.3)

where � is expressed in radians.
During the course of the year the angular distance Sun–Earth, the solar declina-

tion δ, and the so-called equation of time ET change in a more or less harmonic
manner. In the following we will discuss simple expressions developed by Spencer
(1971) which are accurate enough to evaluate the quantities (a/r )2, δ, and ET ,
where r is the actual distance between Sun and Earth. The term (a/r )2 is given by(a

r

)2
= 1.000110 + 0.034221 cos � + 0.001280 sin �

+ 0.000719 cos 2� + 0.000077 sin 2� (1.4)

with a maximum error of approximately 10−4. If S0 = 1368 W m−2 is the solar
constant for the mean distance between Sun and Earth, the actual solar constant
varies as a function of J

S0(J ) = S0

(
a

r (J )

)2

(1.5)

According to (1.4) the maximum change of S0(J ) relative to S0 has an amplitude
of approximately 3.3%.

The solar declination δ is defined as the angle between the Earth’s equatorial
plane and the actual position of the Sun as seen from the center of the Earth. The
Earth’s rotational axis and the normal to the Earth’s plane of the ecliptic make on
average an angle of ε = 23◦27′, δ amounts to +23◦27′ and −23◦27′ at summer sol-
stice (around June 21st) and winter solstice (around December 22nd), respectively.
These relations are illustrated in Figure 1.5 and in the three-dimensional view of
the Sun–Earth geometry of Figure 1.6.

The equinox points are defined as the intersecting line (equinox line) between the
Earth’s plane of the ecliptic and the Sun’s equatorial plane. A second line which is
normal to the equinox line and which is located in the Earth’s plane of the ecliptic
intersects the Earth’s orbit in the points W S (winter solstice) and SS (summer
solstice). The perihelion P and the aphelion A, which both lie on the semi-major
axis of the Earth’s elliptical orbit, make an angle ψ = 11o08′ with the solstice line.
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Earth’s ecliptic plane
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ε

Fig. 1.5 Relation between the Earth’s orbit, the normal vector n to the plane of the
ecliptic, the Earth’s rotational vector N and the angle of the ecliptic ε.
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Fig. 1.6 Schematical view of the Sun–Earth geometry. P , perihelion; V E , vernal
equinox; SS, summer solstice; A, aphelion; AE , autumnal equinox; W S, winter
solstice; ε, angle of the ecliptic; ψ , angle between the distances (SS, W S) and
(A, P); N, vector along the rotational axis of the Earth; n, normal unit vector with
respect to the Earth’s plane of the ecliptic.

It should be observed that the vector N is fixed in direction pointing to the polar
star. At the solstices the vectors N, n and the line between the solstice points lie
in the same plane so that δ = ± 23o27′. At the equinox points (δ = 0o) the line
between the Earth and the Sun is at a right angle to the line (SS, W S).

The solar declination δ is a function of the Julian day number J . It can be
expressed as

δ = 0.006918 − 0.399912 cos � + 0.070257 sin �

− 0.006758 cos 2� + 0.000907 sin 2� (1.6)

with δ expressed in radians. Due to Spencer (1971) this approximate formula has
an error in δ less than 12′. Figure 1.7 depicts a plot of δ versus J .
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Fig. 1.7 Variation of the solar declination δ as a function of the Julian day J ,
see (1.6). V E , vernal equinox; SS, summer solstice; AE , autumnal equinox; W S,
winter solstice.

1.3.1 The equation of time

In the following we assume that the period of the rotation of the Earth around the
North Pole is constant. The time interval between two successive passages of a
fixed star as seen from the local meridian of an observer on the Earth’s surface is
called a sidereal day. Due to the fact that the Earth moves around the Sun in an
elliptical orbit, the time interval between two successive passages of the Sun in the
local meridian, i.e. the so-called solar day, is about 4 min longer than the length of
the sidereal day.

For a practical definition of time, one introduces the so-called mean solar day
which is exactly divided into 24-h periods. Thus the local noon with respect to
the local mean time (L MT ) is defined by the passage of a mean fictitious Sun
as registered from the Earth observer’s local meridian. Clearly, depending on the
Julian day J the real Sun appears somewhat earlier or later in the local meridian
than the fictitious Sun. The time difference between the noon of the true solar time
(T ST ) and the noon of the local mean time (L MT ) is the so-called equation of
time ET

ET = T ST − L MT (1.7)

Following the analysis of Spencer (1971), a functional fit expression can be derived
for ET in the form

ET = 1440

2π
(0.000075 + 0.001868 cos � − 0.032077 sin �

− 0.014615 cos 2� − 0.040849 sin 2�) (1.8)
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Fig. 1.8 Variation of the equation of time ET (in minutes) during the course of
the year as given by (1.8).

where ET is expressed in minutes and 1440 is the number of minutes per day. The
accuracy of this approximation is better than 35 s. The maximum time difference
between T ST and L MT amounts to less than about ±15 min. Figure 1.8 depicts
the variation of ET during the course of the year. Note that the irregularities of the
Earth’s orbit around the Sun lead to a complicated shape of the functional form of
ET versus J .

Universal time U T , or Greenwich mean time G MT , is defined as the L MT at
Greenwich’s (UK) meridian at 0◦ in longitude. Since 24 h cover an entire rotation
of the Earth, L MT increases by exactly 1 h per 15◦ in eastern longitude, i.e. 4 min
per degree of eastern longitude. Similarly, L MT decreases by 4 min if one moves
by one degree of longitude in the western direction. For the true solar time we thus
obtain the relation

T ST = U T + 4λ + ET (1.9)

where T ST , U T , and ET are given in minutes and the longitude λ is in units of
degree (−180◦ < λ ≤ 180◦).

The hour angle of the Sun H is defined as the angle between the local observer’s
meridian and the solar meridian, see Figure 1.9. If H is expressed in degrees
longitude one obtains

H = 15(12 − T ST ) (1.10)

where T ST has to be inserted in hours. Note that H > 0 in the morning and H < 0
in the afternoon.
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Fig. 1.9 Relation between hour angle H , solar declination δ, the solar and the local
meridian.

The local standard time L ST is defined as the local mean time for a given merid-
ian being a multiple of 15◦ away from the Greenwich meridian (0◦). Therefore, L ST
and U T differ by an integral number of hours. For particular countries, differences
of 30 and 45 min relative to the standard time meridians have been introduced for
convenience. Note also that for locations with daylight saving time, the local mean
time differs by 1 to 2 h relative to L ST .

1.3.2 Geographical coordinates and the solar position

A particular point P on the Earth’s surface is identified by the pair of geographi-
cal coordinates (λ, φ), where λ is the longitude and φ is the latitude. Note that φ

is counted positive in the northern hemisphere and negative in the southern hemi-
sphere. The coordinates of the Sun relative to P are defined by the solar zenith angle
ϑ0 and the solar azimuth angle ϕ0. If the Sun is at the zenith we have ϑ0 = 180◦,
and ϑ0 = 90◦ if it is at the horizon, see Figure 1.10. The solar height h is given by
h = ϑ0 − π/2. The solar azimuth ϕ0 is defined as the angle between the solar ver-
tical plane and a vertical plane of reference which is aligned with the north–south
direction. Here, ϕ0 = 0◦ if the Sun is exactly over the southern direction and ϕ0 is
counted positive in the eastward direction. Figure 1.11 depicts the apparent track
of the Sun during the day.

The position angles (ϑ0, ϕ0) of the Sun are usually not measured directly and must
be determined from other known angles. Utilizing the laws of spherical trigonom-
etry it can be shown that the following relations are valid

(a) cos(π − ϑ0) = sin ϕ sin δ + cos ϕ cos δ cos H

(b) cos ϕ0 = cos(π − ϑ0) sin ϕ − sin δ

sin(π − ϑ0) cos ϕ
(1.11)
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Fig. 1.10 Coordinates defining the position of the Sun.
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Fig. 1.11 Apparent solar track during the course of the day. The dotted curve marks
the projection of the solar path onto the horizontal plane.

At solar noon at any latitude we have H = 0. In this case we obtain from (1.11a)
(π − ϑ0) = ϕ − δ. At sunrise or sunset at any latitude ϑ0 = 90◦ and H = Dh. The
term Dh is also called the half-day length since it is half the time interval between
sunrise and sunset. Excepting the poles we find from (1.11a)

cos Dh = − tan ϕ tan δ (1.12)

At the equator on all days and at the equinoxes (δ = 0) at all latitudes (with
ϕ �= ±90◦) we find Dh = 90◦ or 6 h. The latitude of the polar night is found by
setting in (1.12) Dh = 0 so that tan ϕ = − cot δ (with δ �= 0) and ϕ(polar night) =
90◦ − |δ| in the winter hemisphere.

The daily total solar radiation Qs incident on a horizontal surface at the top of
the atmosphere is found by integrating the incoming solar radiation over the length
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Fig. 1.12 Precession and nutation of the Earth.

of the day. Thus from (1.5) we find

Qs = S0

(
a

r (J )

)2 ∫ Dh

−Dh

cos(π − ϑ0)dt (1.13)

Since the angular velocity of the Earth can be written as� = d H/dt = 2π day−1 we
obtain from (1.11a) after some simple integration

Qs = S0

(
a

r (J )

)2 86400

π
(Dh sin ϕ sin δ + cos ϕ cos δ sin Dh) J m−2day−1

(1.14)

In the first term Dh must be expressed in radians. The expression (a/r (J ))2 never
departs by more than about 3% from unity. Graphical representations of this formula
are given in various texts, for example in Sellers (1965) where additional details
may be found.

1.3.3 Long-term variations of the Earth’s orbital parameters

For completeness we briefly discuss the most important variations of the Earth’s
orbit around the Sun. The eccentricity e of the Earth’s elliptical orbit varies irregu-
larly between 0 and 0.05 with its current value e = 0.01673. The period of this
oscillation is approximately 100 000 years. The Earth’s rotational axis N precesses
around the normal of the ecliptic plane n with an angle of 23◦27′. The reason for
the precession of the Earth is that it is not an ideal sphere, but it has the shape
of a geoid, that is, the poles are flattened and an equatorial bulge of about 21 km
is observed, see Figure 1.12. First we investigate the influence of the Sun on the
geoidal form of the Earth. At the center of the Earth the gravitational attraction of
the Sun and the centrifugal force due to the revolving motion of the Earth around
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the Sun are equal but opposite in sign. At the center of gravity C1 (left half of the
geoid) the attractional force of the Sun is larger than the centrifugal force, which is
due to the smaller distance of C1 to the Sun. At the center of gravity C2 (right half
of the geoid) we observe the opposite situation, which is due to the larger distance
of C2 to the Sun as compared to the center of the Earth; here the centrifugal force
preponderates the attractional force of the Sun. Hence, at C1 the resultant force F1 is
directed toward the Sun whereas at C2 the resultant force F2 is directed away from
the Sun. Owing to the inclination of the ecliptic plane the forces F1 and F2 form
a couple attempting to place the Earth’s axis in the upright position. This results in
the precession of the Earth’s axis. The Moon, whose orbital plane nearly coincides
with the orbital plane of the Earth, acts in the same way but even more effectively.
Here, the small mass of the Moon in comparison with the mass of the Sun is over-
compensated by the small distance between Moon and Earth. As a result of these
forces, N revolves on the mantle of a cone as shown in Figure 1.12. The time for a
full rotation around the circle of precession amounts to about 25 780 years.

Apart from the Sun and the Moon the other planets of the solar system also
exert an influence on the inclination of the ecliptic leading to changes in ε between
21◦55′ and 24◦18′ having a period of about 40 000 years. Finally, in addition to the
precession, the Earth’s rotational axis exhibits also a nodding motion. This effect
is caused by the fact that the Moon’s gravitational influence varies in time. This
nutation leads to a small variation of the Earth’s axis inclination and has a period
of about 18.6 years.

1.4 Basic definitions of radiative quantities

In this section we will present some basic definitions and the terminologies used in
this book. The photon is considered to be an idealized infinitesimally small particle
with zero rest mass carrying the energy

e(ν) = hν (1.15)

where h = 6.626196 × 10−34 J s is Planck’s constant, and ν is the frequency of the
electromagnetic radiation. Frequency units are Hertz (Hz) where 1 Hz is 1 cycle
s−1. Considering a single photon one may attribute to it a momentum p(ν) with
magnitude

p(ν) = |p(ν)| = e(ν)

c
(1.16)

where c = 2.997925 × 108 m s−1 is the vacuum speed of light. Photons may travel
in an arbitrary direction specified by the unit vector Ω. Therefore, the vectorial
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direction Ω.

notation of the photon’s momentum can be expressed as

p(ν) = e(ν)

c
Ω = hν

c
Ω (1.17)

As soon as the photon interferes with matter, various types of interactions
between the atoms of the material and the photon may occur. A single interac-
tion may be an absorption or a scattering process. Between any two scattering
interactions the photon is assumed to travel in a straight line with the speed of light
c. We will also assume that during a scattering process the photon suffers no change
in frequency. In this case one speaks of elastic scattering.

In some situations inelastic scattering might be of importance where in addition
to the change of flight direction a shift in the photon’s frequency occurs. One
important example for atmospheric applications is Raman scattering. Rayleigh
scattering and Mie scattering to be discussed later are examples of elastic scattering
processes. Inelastic scattering processes will not be investigated in this book.

Six coordinates are required to unambiguously describe the photon at time t .
These are the three coordinates of the position vector r, the magnitude of momentum
p(ν) and two angles characterizing the direction of flight Ω. At a certain point in
space a local system of Cartesian coordinates (x̃, ỹ, z̃) is introduced. At the origin
of this system we define a spherical coordinate system r̃ , ϑ, ϕ, where r̃ is the radial
distance from the origin located at r and (ϑ, ϕ) are the zenith and azimuthal angle,
respectively, see Figure 1.13. In the latter system the direction Ω may be described
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Table 1.1 Definition of special radiance fields

Radiance field List of variables

Stationary Iν = Iν(r,Ω)
Isotropic Iν = Iν(r, t)
Homogeneous Iν = Iν(Ω, t)
Homogeneous and isotropic Iν = Iν(t)

by the triple set of coordinates (r̃ = 1, ϑ, ϕ). The differential solid angle element
d� is defined by

d� = d A

r̃2
(1.18)

Here, d A = r̃2 sin ϑ dϑ dϕ is the differential area element on a sphere with radius
r̃ , see Figure 1.13. Thus we obtain

d� = sin ϑ dϑ dϕ (1.19)

Integration over the unit sphere yields∫
4π

d� =
∫ 2π

0

∫ π

0
sin ϑ dϑ dϕ =

∫ 2π

0

∫ 1

−1
dµ dϕ = 4π (1.20)

where the abbreviation µ = cos ϑ has been introduced.
The distribution function of photons f (ν, r,Ω, t) = fν(r,Ω, t) is defined by2

Nν(r,Ω, t)dν = fν(r,Ω, t) dV d� dν (1.21)

where Nνdν represents the number of photons at time t contained within the vol-
ume element dV centered at r, within the solid angle element d� about the flight
direction Ω, and within the frequency interval (ν, ν + dν). Therefore, fν has units
of (m−3 sr−1 Hz−1). In place of the photon distribution function fν , in radiative
transfer theory it is customary to use the radiance Iν(r,Ω, t) as defined by

Iν(r,Ω, t) = chν fν(r,Ω, t) (1.22)

From this equation it is seen that the monochromatic radiance is expressed in units
of (W m−2 sr−1 Hz−1). In the most general case the radiance field is time dependent,
it varies in space, direction, and frequency. Table 1.1 briefly lists some special cases
of Iν .

2 The dependence of radiative quantities on frequency is commonly denoted by the subscript ν.
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Fig. 1.14 Radiative energy streaming through the infinitesimal surface element dσ
with surface normal n into the solid angle element d� around the flight direction
Ω of the photons.

The physical meaning of the radiance can be illustrated with the help of the
energy relation

uν(r,Ω, t)dν = Iν(r,Ω, t) cos θ d� dσ dt dν (1.23)

Thus uνdν is the radiative energy contained within the frequency interval (ν, ν +
dν) streaming during dt at r through the surface element dσ with unit surface
normal n into the solid angle element d� along Ω. The angle between Ω and the
surface normal of dσ is denoted by θ , see Figure 1.14. Therefore, Iνdν is expressed
in (W m−2 sr−1).

The energy density û(r, t) of the radiation field, expressed in units of (J m−3), is
obtained by integrating the term hν fν over all directions and frequencies

û(r, t) =
∫ ∞

0

∫
4π

hν fν(r,Ω, t) d� dν = 1

c

∫ ∞

0

∫
4π

Iν(r,Ω, t) d� dν (1.24)

Let us now consider the important case that the radiance is described by the
Planck function Bν (W m−2 sr−1 Hz−1), which is also known as the spectral black
body radiance. This special radiation field which is stationary, isotropic and homo-
geneous coexists with matter in perfect thermodynamic equilibrium at temperature
T . The expression

Bνdν = 2hν3

c2
(ehν/kT − 1)−1dν (1.25)



20 Introduction

0 10 20 30 40
Wavelength (µm)

0

5

10

15

20

25
R

ad
ia

nc
e 

(W
 m

−2
sr

−1
µm

−1
)

1

2

3

4

4:  350K
3:  300K
2:  250 K
1:  200 K

Fig. 1.15 Planckian black body curves for various temperatures.

represents the energy (unpolarized radiation) emitted by a black unit surface area
per unit time interval within a cone of solid angle �0 = 1 sr vertical to the emitting
surface in the frequency range between ν and ν + dν.

Figure 1.15 depicts four Planck curves as function of the wavelength for the tem-
peratures 200, 250, 300 and 350 K. It is clearly seen that with decreasing temperature
the maxima of the curves are shifted towards larger wavelengths. This phenomenon
is also known as Wien’s displacement law. The Planck curve of a black body with
temperature 6000 K (the Sun) has its maximum around 0.5 µm while for a black
body with T = 300 K (the Earth) the maximum is found at 10 µm. For a further
discussion of Wien’s displacement law see also Problem 1.1.

The constant k = 1.380662 × 10−23 J K−1 appearing in (1.25) is known as the
Boltzmann constant. The corresponding energy density follows from

û = 1

c

∫ ∞

0

∫
4π

Bνd� dν = 4π

c

∫ ∞

0

2hν3

c2
(ehν/kT − 1)−1dν (1.26)

The integral over frequency can be evaluated by substituting the new variable
x = hν/kT and developing the exponential term (ex − 1)−1 into a power series,
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Fig. 1.16 Radiative energy streaming through the infinitesimal surface element
dσ in x-direction.

yielding

û = 8πk4T 4

(hc)3

∫ ∞

0
x3(ex − 1)−1dx = 48π (kT )4

(hc)3

∞∑
n=1

1

n4
(1.27)

Since

∞∑
n=1

1

n4
= π4

90
(1.28)

the final result is

û = 4

c
σ T 4, σ = 2π5k4

15h3c2
= 5.67032 × 10−8 W m−2 K−4 (1.29)

where σ is the Stefan–Boltzmann constant. Equation (1.29) can also be derived
from purely thermodynamic arguments as shown, for example, in THD (2004).

1.5 The net radiative flux density vector

Consider the special case that Ω is located in the (x, z)-plane and that the normal
unit vector n of the surface element dσ points in the x-direction of a Cartesian
coordinate system, that is n = i. According to (1.23) for the spectral differential
radiative energy crossing dσ during dt we find the expression

Enet,x,ν(r,Ω, t)dν = uν(r,Ω, t)dν

dσ dt
= Iν(r,Ω, t) cos θ d� dν

= Iν(r,Ω, t)�x d� dν

(1.30)

where �x = Ω · i = cos θ = sin ϑ is the projection of Ω onto the x-axis, see
Figures 1.16 and 1.17. Integrating this relation over the solid angle and over all
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frequencies yields the radiative energy streaming within unit time through the
surface element in the x-direction

Enet,x (r, t) =
∫ ∞

0

∫
4π

�x Iν(r,Ω, t)d� dν =
∫ ∞

0

∫
4π

�x chν fν(r,Ω, t)d� dν

(1.31)
In the general case �x will be a more complicated expression. If (Enet,x , Enet,y ,

Enet,z) are the three components of the net radiative flux density vector, then Enet

is given by

Enet(r, t)=
∫ ∞

0

∫
4π

ΩIν(r,Ω, t)d� dν = iEnet,x (r, t) + jEnet,y(r, t) + kEnet,z(r, t)

(1.32)

where

Enet,y(r, t) =
∫ ∞

0

∫
4π

�y Iν(r,Ω, t)d� dν

Enet,z(r, t) =
∫ ∞

0

∫
4π

�z Iν(r,Ω, t)d� dν

(1.33)

We will now derive an explicit form of Enet in Cartesian coordinates. From (1.32)
follows the definition of the spectral net radiative flux density vector

Enet,ν(r, t) =
∫

4π

ΩIν(r,Ω, t)d� (1.34)
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Thus the component of Enet,ν(r, t) in the arbitrary direction n is given by

Enet,n,ν(r, t)=Enet,ν(r, t) · n=
∫

4π

Ω · nIν(r,Ω, t)d�=
∫

4π

cos(Ω, n)Iν(r,Ω, t)d�

(1.35)

To find the Cartesian components (�x , �y, �z), of the unit vector Ω = (1, ϑ, ϕ)
we perform the scalar multiplication with the Cartesian unit vectors i, j and k. From
Figure 1.17 we find immediately

Ω · i = �x = cos(Ω, i) = sin ϑ cos ϕ

Ω · j = �y = cos(Ω, j) = sin ϑ sin ϕ

Ω · k = �z = cos(Ω, k) = cos ϑ = µ

(1.36)

Thus, from (1.36) the Cartesian components of Enet,ν(r, t) are finally given as

(a) Enet,x,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t) cos ϕ(1 − µ2)1/2dµ dϕ

(b) Enet,y,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t) sin ϕ(1 − µ2)1/2dµ dϕ

(c) Enet,z,ν(r, t) =
∫ 2π

0

∫ 1

−1
Iν(r, µ, ϕ, t)µ dµ dϕ

(1.37)

with (1 − µ2)1/2 = sin ϑ and d� = −dµdϕ.
It is straightforward to show that for an isotropic radiation field Enet,ν = 0. For

example, evaluating in (1.37a) for Iν = const the integral of the x-component yields∫ 2π

0
cos ϕ

∫ 1

−1
(1 − µ2)1/2dµ dϕ =

∫
4π

�x d� = 0 (1.38)

Similarly we obtain for the integrals of the y- and z-component∫
4π

�yd� = 0,
∫

4π

�zd� = 0 (1.39)

1.6 The interaction of radiation with matter

1.6.1 Absorption

If a photon travels through space filled with matter, a certain absorption probability
can be defined. For the mathematical description of this process the absorption
coefficient kabs,ν(r, t) with units (m−1) is introduced. The dimensionless differential

dτabs(r, t) = kabs,ν(r, t) ds (1.40)
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is the so-called differential optical depth for absorption where ds is the geometrical
distance travelled by the photon. Thus the differential dτabs(r, t) is a measure for
the probability that the photon is absorbed along ds so that the photon disappears.
It is important to realize that (1.40) is valid only for isotropic media. In general,
for anisotropic media, the absorption coefficient not only depends on position,
frequency and time but also on the direction Ω. For all practical purposes, the
atmosphere can be considered an isotropic medium.

Sometimes it is preferable to use the mass absorption coefficient κabs,ν(r, t) which
is defined by the relation

kabs,ν(r, t) = ρabs(r, t)κabs,ν(r, t) (1.41)

where ρabs(r, t) is the density of the absorbing medium, and κabs(r, t) has units of
(m2 kg−1 ).

1.6.2 Scattering

In a similar manner the photon may suffer an elastic scattering process after having
travelled a certain distance ds. The occurrence of a scattering process does not
mean that the photon disappears at the location of scattering, instead of that it
changes its flight direction from Ω′ to Ω. Let us denote the differential scattering
coefficient by ksca,ν(r,Ω′ → Ω, t). In analogy to (1.40), the differential optical
depth for scattering is defined as

dτsca(r,Ω′ → Ω, t) = ksca,ν(r,Ω′ → Ω, t) d� ds (1.42)

This expression is a measure of the probability that a photon of frequency ν with
initial direction Ω′, in traveling the distance ds, is scattered into d� having the
new direction Ω. From (1.42) it is clear that ksca,ν(r,Ω′ → Ω, t) is expressed
in units of (m−1 sr−1). It is noteworthy that the differential scattering coefficient
agrees with the scattering function P̃(cos �) which will be introduced in a later
chapter. The notation Ω′ → Ω has been chosen since in general the differential
scattering probability depends explicitly on both directions Ω′ and Ω. However,
for applications involving homogeneous spherical particles (e.g. cloud droplets) it
is obvious that the scattering process depends only on the cosine of the scattering
angle

cos � = Ω′ · Ω (1.43)

This means that scattering is rotationally symmetric about the direction of incidence,
see Figure 1.18. In case of randomly oriented inhomogeneous or non-spherical
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Fig. 1.18 Illustration of the rotationally symmetric scattering phase function.
P(r,Ω′ → Ω) = const on the circle defined by all points with � = const .

particles (e.g. ice particles or aerosol particles) it is often assumed that the scattering
angle may be defined analogously.

If we integrate the differential scattering coefficient over all possible directions
Ω, we obtain the ordinary scattering coefficient ksca,ν(r, t)

ksca,ν(r, t) =
∫

4π

ksca,ν(r,Ω′ → Ω, t)d� (1.44)

This relation together with (1.42) can be used to define the scattering phase function
or simply phase function Pν(r,Ω′ → Ω, t)

ksca,ν(r,Ω′ → Ω, t) = 1

4π
ksca,ν(r, t)Pν(r,Ω′ → Ω, t) (1.45)

The scattering phase function is a measure of the probability density distribution
for a scattering process from the incident direction Ω′ into the direction Ω. The
normalization of P is guaranteed since integrating (1.45) over the unit sphere,
utilizing (1.44), yields

1

4π

∫
4π

Pν(r,Ω′ → Ω, t)d� = 1 (1.46)

It is instructive to discuss a particularly simple form of scattering, namely an
isotropic scattering process. In this case the phase function is simply given by

Pν(r,Ω′ → Ω, t) = 1 (1.47)

i.e. for each direction there is equal probability of scattering.
The sum of absorption and scattering is called extinction. The extinction coeffi-

cient is defined by

kext,ν(r, t) = kabs,ν(r, t) + ksca,ν(r, t) (1.48)
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Another important optical parameter is the single scattering albedo ω0,ν(r, t)
which is defined as the relative amount of scattering involved in the extinction
process

ω0,ν(r, t) = ksca,ν(r, t)

kext,ν(r, t)
= 1 − kabs,ν(r, t)

kext,ν(r, t)
(1.49)

Of particular importance is the case ω0,ν(r, t) = 1 for which the scattering process
is conservative. In a medium with conservative scattering no absorption of radi-
ation occurs. Later it will be shown that a conservative plane-parallel medium is
characterized by a vertically constant net radiative flux density.

1.6.3 Emission

Emission is a process that generates photons within the medium. In the long-wave
spectral region photons are emitted and absorbed by atmospheric trace gases such
as water vapor, carbon dioxide, ozone, by cloud and aerosol particles, and by the
Earth’s surface. As already mentioned previously, in case of local thermodynamic
equilibrium these emission processes can be described by the Planckian function.

For the mathematical formulation of emission processes we introduce the so-
called emission coefficient jν(r, t) for isotropic radiation sources. This coefficient
defines the number of photons emitted per unit time and unit volume within the
frequency interval (ν, ν + dν). The photons are contained in the solid angle element
dΩ = Ω d�

∂

∂t
Nν(r, t)

∣∣∣
em

= jν(r, t) dV d� dν (1.50)

The emission coefficient is expressed in units of (m−3 s−1 sr−1 Hz−1).

1.7 Problems

1.1: With increasing temperature the maximum of the Planckian black body curve
is shifted to shorter wavelengths. Observing that dν = −cdλ/λ2, express
(1.25) in terms of wavelength.

(a) Differentiate Planck’s law with respect to wavelength and estimate the wave-
length λmax of maximum emission for a fixed temperature T . The resulting
formula is known as Wien’s displacement law.

(b) Find λmax for the solar temperature T = 6000 K and for the terrestrial tempera-
ture T = 300 K.



1.7 Problems 27

1.2: Calculate for the two asymptotic situations

(a) ν 	 1: Rayleigh–Jeans distribution
(b) ν 
 1: Wien distribution

the resulting simplified radiation laws of Planck.
1.3: Integrate Planck’s formula (1.25) over all frequencies and directions to

find the hemispheric flux density Eb = σ T 4. This is known as the Stefan–
Boltzmann law.

1.4: A black horizontal receiving element (radiometer) of unit area is located
directly below the center of a circular cloud at height z having the temperature
Tc. The cloud radius is R. Find an expression for the flux density E incident
on the receiving element in terms of the Stefan–Boltzmann law, z and R.
Assume that the cloud is a black body radiator whose radiance is σ T 4/π .
Ignore any interactions of the radiation with the atmosphere.

(a) Start your analysis using Lambert’s law of photometry.
(b) Rework the problem using equation (1.37c).

1.5: An idealized valley may be considered as the interior part of a spherical
surface of radius a. The valley surface is assumed to radiate as a black body
of temperature T .

(a) Find an expression for the radiation received by a radiometer which is located
at a distance z > a above the lowest part of the valley. Ignore any interaction of
the radiation with the atmosphere.

(b) Repeat the calculation with the radiometer located below the center of curvature,
that is z < a.

Hint: Use Lambert’s law of photometry, see Problem 1.4.
1.6: A spherical emitter of radius a emits isotropically radiation into empty space.

(a) Find the flux density Er = Er (r)er at a distance r ≥ a from the center of the
sphere. er is a unit vector along the radius.

(b) From Er obtain the power φ emitted by the sphere.
(c) Find the energy density û(r).

1.7: For a monochromatic homogeneous plane parallel radiation field (solar radi-
ation S0,ν) find the energy density ûν and the net flux density Enet,ν . Ignore
any interaction of the radiation with the atmosphere.
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The radiative transfer equation

2.1 Eulerian derivation of the radiative transfer equation

In the following section we will derive a budget equation for photons in a medium in
which scattering, absorption and emission processes take place. The photon budget
equation finally results in the so-called radiative transfer equation (RTE) which is
a linear integro-differential equation for the radiance Iν(r,Ω, t). Let us consider a
six-dimensional (6-D) volume element in (x, y, z, ϑ, ϕ, ν)-space with side lengths
(�x, �y, �z, �ϑ, �ϕ, �ν). This volume element is assumed to be fixed in time
t . According to (1.21), at point r the total number of photons Nν is given by

Nν(r,Ω, t) = fν(r,Ω, t)�V ���ν (2.1)

where�V = �x�y�z is the ordinary volume element in space. In order to simplify
the notation, the dependence of different variables on (r,Ω, t) will henceforth be
omitted except where confusion is likely to occur.

The derivation of the photon budget equation requires the knowledge of the local
time rate of change of the number of photons leaving and entering the 6-D volume
element

∂ Nν

∂t
= ∂ fν

∂t
�V ���ν (2.2)

This change consists of the following processes.

∂ Nν

∂t

∣∣∣
exch

: Exchange of photons of the considered volume element with the
exterior surrounding.

∂ Nν

∂t

∣∣∣
abs

: Absorption of photons with frequency ν and direction Ω.

∂ Nν

∂t

∣∣∣
outsc

: Scattering of photons with frequency ν and direction Ω into all
other directions Ω′ (outscattering).

28
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ρv dx dz
ρv + ∂

∂y
(ρv)dy dx dz

dy
dx

d
z

( )

Fig. 2.1 Mass flux entering the left face and leaving the right face of a cube with
volume dx dy dz.

∂ Nν

∂t

∣∣∣
insc

: Scattering of photons with frequency ν and arbitrary direction Ω′

into the desired direction Ω (inscattering).
∂ Nν

∂t

∣∣∣
em

: Emission of photons with frequency ν in direction Ω.

The individual contributions of these processes to the photon budget equation will
now be discussed in detail.

2.1.1 The exchange of photons

The exchange of photons can be treated in analogy to the continuity equation for
the mass in fluid mechanics. We will consider a cube with side lengths (dx, dy, dz).
The velocity of a fluid particle is given by v = ui + vj + wk, and ρ is the mass
density of the medium. The volume dV is assumed to be fixed in space. The local
time rate of change of the mass d M = ρ dx dy dz of the cube is given by adding
all mass fluxes through its surface. Figure 2.1 depicts the mass fluxes entering and
leaving the infinitesimal volume element dx dy dz through the vertical sides with
area dx dz. Thus the net flux in y-direction is given by

Fρ,y = −
(

ρv + ∂

∂y
(ρv)dy

)
dx dz + ρv dx dz = − ∂

∂y
(ρv)dx dy dz (2.3)

In a similar manner we obtain the net fluxes Fρ,x and Fρ,z in the x- and z-direction.
Adding up all three contributions and dividing by dx dy dz yields the well-known
continuity equation

∂ρ

∂t
= −∇·(ρv) (2.4)
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The concept of obtaining the continuity equation for the mass M will now be
applied to the derivation of the photon budget equation. The velocity of a photon
is given by

v = cΩ = c(�x i + �yj + �zk) (2.5)

Analogously to (2.3) the net flux of photons in the y-direction through the 6-D
volume element �V ���ν can be expressed by means of

Fy,ν = − ∂

∂y

(
c�y fν

)
�V ���ν (2.6)

Note that Fy,ν is expressed in units of (s−1). Adding up the contributions of the
three directions yields the time rate of change for the number of photons due to the
exchange with the surroundings

∂ Nν

∂t

∣∣∣
exch

= −
(

∂

∂x
(�x fν) + ∂

∂y
(�y fν) + ∂

∂z
(�z fν)

)
c�V ���ν (2.7)

The exchange term has been derived under the assumption that the medium’s
index of refraction is constant in space and time. This assumption is sufficient
for most atmospheric applications. Otherwise, the photon path will be subject to
refraction leading to photon trajectories which are curved in space.

2.1.2 The absorption of photons

The absorption rate of photons within the 6-D volume element is given by the
product of the photon number Nν and the probability that a photon will be absorbed
during the time interval (t, t + dt). Dividing (1.40) by dt yields

dτabs

dt
= kabs,ν

ds

dt
= kabs,νc (2.8)

with c = ds/dt . Hence, for the total absorption rate of photons we obtain the
expression

∂ Nν

∂t

∣∣∣
abs

= Nν

dτabs

dt
= fνkabs,νc�V ���ν (2.9)

2.1.3 The scattering of photons

Figure 2.2 illustrates the inscattering and outscattering process of photons. For
inscattering the direction of the photons is indicated by solid arrows, outscattering
is denoted by dashed arrows. It will be noticed that for the direction Ω inscattering
represents a gain of photons whereas outscattering results in a reduction of the
number of photons in this particular direction.
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Fig. 2.2 Schematic view of the inscattering (solid arrows) and the outscattering
(dashed arrows) processes.

Analogously to (1.42) we may express the probability that at time t a photon is
scattered from Ω → Ω′ by means of

dτsca(Ω → Ω′) = ksca,ν(Ω → Ω′)d�′ds (2.10)

Dividing this equation by dt and multiplying by the number of photons Nν yields
the time rate of change of photons resulting from the outscattering process Ω → Ω′

Nν

d

dt

[
τsca(Ω → Ω′)

] = Nνksca,ν(Ω → Ω′)d�′c (2.11)

The total loss of photons due to outscattering is obtained by integrating (2.11) over
all directions Ω′

∂ Nν

∂t

∣∣∣
outsc

= Nνc
∫

4π

ksca,ν(Ω → Ω′)d�′

= fν�V ���ν
c

4π

∫
4π

ksca,νPν(Ω → Ω′)d�′
(2.12)

Here, use was made of (1.45) and (2.1). Utilizing the normalization condition for
the phase function

1

4π

∫
4π

Pν(Ω → Ω′)d�′ = 1 (2.13)
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finally gives

∂ Nν

∂t

∣∣∣
outsc

= fνksca,νc�V ���ν (2.14)

In a similar manner we may find the gain of photons for the direction Ω due to
inscattering from all directions Ω′. The number of photons moving in direction Ω′,
before inscattering takes place, is fν(r,Ω′, t) �V d�′�ν. In analogy to (2.11) we
have

Nν

d

dt

[
τsca(Ω′ → Ω)

] = fν(Ω′) �V d�′�νksca,ν(Ω′ → Ω)�� c (2.15)

Integrating over all directions Ω′, using equation (1.45), we find for the inscattering
rate

∂ Nν

∂t

∣∣∣
insc

= ksca,ν�V ���ν
c

4π

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ (2.16)

2.1.4 The emission rate

Finally, according to (1.50) the time rate of change of photons due to emission is
given by

∂ Nν

∂t

∣∣∣
em

= jν �V �� �ν (2.17)

Now we have derived mathematical expressions for the five contributions for the
photon budget equation as listed at the beginning of this section.

2.1.5 The budget equation of the photon distribution function

The budget equation for the photon distribution function fν is obtained by adding
up the individual contributions. Considering absorption and outscattering processes
as negative contributions, we may write

∂ Nν

∂t
= ∂ Nν

∂t

∣∣∣
exch

− ∂ Nν

∂t

∣∣∣
abs

− ∂ Nν

∂t

∣∣∣
outsc

+ ∂ Nν

∂t

∣∣∣
insc

+ ∂ Nν

∂t

∣∣∣
em

(2.18)

Combination of (2.7), (2.9), (2.14), (2.16), and (2.17) gives

∂ fν
∂t

= −c

(
∂

∂x
(�x fν) + ∂

∂y
(�y fν) + ∂

∂z
(�z fν)

)
− c fνkabs,ν − c fνksca,ν

+ c

4π
ksca,ν

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ + jν (2.19)

where the common factor �V �� �ν has been cancelled out.
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Obviously, the unit vector Ω is divergence-free, that is

∇ · Ω = ∂�x

∂x
+ ∂�y

∂y
+ ∂�z

∂z
= 0 (2.20)

Therefore, the streaming term on the right-hand side of (2.19) may further be
simplified yielding the final form of the photon budget equation for a nonstationary
situation

∂ fν
∂t

= −cΩ · ∇ fν − c fνkext,ν + c

4π
ksca,ν

∫
4π

Pν(Ω′ → Ω) fν(Ω′)d�′ + jν

(2.21)

Here, the extinction coefficient kext,ν as defined in (1.48) has been introduced.
Since we consider the spatial change of the photon distribution function along

ds in Ω-direction, ∇ fν may be expressed in terms of

∇ fν = Ω
d fν
ds

(2.22)

so that

Ω · ∇ fν = d fν
ds

= �x
∂ fν
∂x

+ �y
∂ fν
∂y

+ �z
∂ fν
∂z

(2.23)

According to (1.36) the Cartesian components of Ω are given by

�x = Ω · i = sin ϑ cos ϕ, �y= Ω · j = sin ϑ sin ϕ, �z = Ω · k = cos ϑ

(2.24)

By introducing into (2.21) the radiance Iν as defined in (1.22), one obtains the
general nonstationary form of the radiative transfer equation

1

c

∂ Iν
∂t

+ Ω · ∇ Iν = − kext,ν Iν+ksca,ν

4π

∫
4π

Pν(Ω′ → Ω)Iν(Ω′)d�′ + J e
ν (2.25)

Here, the source function for true emission

J e
ν (r, t) = hν jν(r, t) (2.26)

has been introduced. This function has units of (W m−3 sr−1 Hz−1). Its relation to
the Planck function will be described later.

For most atmospheric applications the term 1/c(∂ I/∂t) in the RTE can be
neglected in comparison to the remaining terms since the propagation speed c
is very high. Thus (2.25) simplifies to

Ω · ∇ Iν = −kext,ν Iν + ksca,ν

4π

∫
4π

Pν(Ω′ → Ω)Iν(Ω′)d�′ + J e
ν (2.27)
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In the following we will assume that scattering takes place on spherical particles.
Since according to (1.43) in this case the scattering process Ω′ → Ω depends on the
cosine of the scattering angle cos � = Ω′ · Ω only, henceforth the term Ω′ → Ω
will be replaced by Ω′ · Ω or by cos �. Utilizing in (2.27) the definition of the
single scattering albedo as given in (1.49), we obtain the standard form of the RTE
for a three-dimensional medium

− 1

kext,ν
Ω · ∇ Iν = Iν − ω0,ν

4π

∫
4π

Pν(Ω′ · Ω)Iν(Ω′)d�′ − 1

kext,ν
J e
ν (2.28)

The derivation of the RTE is based on arguments of radiation hydrodynamics as
presented by Pomraning (1973) where many additional and interesting details may
be found. The RTE can also be derived on the basis of geometric reasoning in the
manner described by Chandrasekhar (1960).

In passing we would like to remark that the RTE is part of the atmospheric
predictive system. With changing composition of the atmospheric constituents the
radiation parameters are also changing so that radiance continues to be a function
of time.

2.2 The direct–diffuse splitting of the radiance field

The total solar radiation field is defined as the sum of the direct solar beam and
the diffuse solar radiation. Usually one writes the RTE (2.28) in a different form
by splitting Iν(r,Ω) into the unscattered direct light Sν(r) and the diffuse light
Id,ν(r,Ω)

Iν = Id,ν + Sνδ(Ω − Ω0) (2.29)

where δ is the Dirac δ-function and Ω0 is the direction of the solar radiation. While
Id,ν is expressed in (W m−2 sr−1 Hz−1), the units of the parallel solar radiation
are (W m−2 Hz−1). In order to have a consistent set of units, the Dirac δ-function
δ(Ω − Ω0) must refer to the unit solid angle, i.e. (sr−1).

According to (2.23) we may write

Ω · ∇ Iν = d Iν
ds

= d Id,ν

ds
+ d Sν

ds
δ(Ω − Ω0) (2.30)

The attenuation of the direct Sun beam Sν along its way from the top of the atmo-
sphere (s = 0) to the location s at r follows from Beer’s law

d Sν

ds
= −kext,ν(s)Sν , Ω = Ω0 (2.31)


