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FUNCTIONAL INTEGRATION

Functional integration successfully entered physics as path integrals in the 1942
Ph.D. dissertation of Richard P. Feynman, but it made no sense at all as a math-
ematical definition. Cartier and DeWitt-Morette have created, in this book, a
new approach to functional integration. The close collaboration between a math-
ematician and a physicist brings a unique perspective to this topic. The book is
self-contained: mathematical ideas are introduced, developed, generalized, and
applied. In the authors’ hands, functional integration is shown to be a robust,
user-friendly, and multi-purpose tool that can be applied to a great variety of
situations, for example systems of indistinguishable particles, caustics-analysis,
superanalysis, and non-gaussian integrals. Problems in quantum field theory are
also considered. In the final part the authors outline topics that can profitably
be pursued using material already presented.

P i erre Cart i er is a mathematician with an extraordinarily wide range
of interests and expertise. He has been called “un homme de la Renaissance.”
He is Emeritus Director of Research at the Centre National de la Recherche
Scientifique, France, and a long-term visitor of the Institut des Hautes Etudes
Scientifiques. From 1981 to 1989, he was a senior researcher at the Ecole Poly-
technique de Paris, and, between 1988 and 1997, held a professorship at the Ecole
Normale Supérieure. He is a member of the Société Mathématique de France,
the American Mathematical Society, and the Vietnamese Mathematical Society.

C éc i l e DeWitt -Morette is the Jane and Roland Blumberg Centen-
nial Professor in Physics, Emerita, at the University of Texas at Austin. She
is a member of the American and European Physical Societies, and a Mem-
bre d’Honneur de la Société Française de Physique. DeWitt-Morette’s interest in
functional integration began in 1948. In F. J. Dyson’s words, “she was the first of
the younger generation to grasp the full scope and power of the Feynman path
integral approach in physics.” She is co-author with Yvonne Choquet-Bruhat
of the two-volume book Analysis, Manifolds and Physics, a standard text first
published in 1977, which is now in its seventh edition. She is the author of 100
publications in various areas of theoretical physics and has edited 28 books.
She has lectured, worldwide, in many institutions and summer schools on topics
related to functional integration.
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A := B A is defined by B
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∫
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been integrated
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∂×/∂l = l∂/∂l multiplicative derivative
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U2D(S), U2D space of critical points of the action
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µ initial conditions and ν final conditions
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∩ Pµ,ν(MD)
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τ = it (1.100)

Superanalysis
(Chapter 9)
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i

+ 1
2!cijξ

iξj + · · ·
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Conventions
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pµp
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pµx
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E = �ω = hν, �p = ��k, plane wave ω =�v · �k

Positive-energy plane wave exp(−ipµxµ/�)
Clifford algebra

γµγν + γνγµ = 2ηµν
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Quantum operators

[pµ, xν ] = −i�δνµ ⇒ pµ = −i�∂µ
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τ = it (see (1.100))

Physical dimension

[�] = ML2T−1
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(Ff)(x′) :=
∫

RD

dDx exp(−2πi〈x′, x〉)f(x) x ∈ RD, x′ ∈ RD
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E
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exp

(
−

∫ τb

τa
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)]

(1.1)
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1
The physical and mathematical

environment

A physicist needs that his equations should be mathematically sound1

Dirac [1]

A: An inheritance from physics

1.1 The beginning

In 1933, Dirac [2] laid the foundation stone for what was destined to
become in the hands of Feynman a new formulation of quantum mechan-
ics. Dirac introduced the action principle in quantum physics [3], and
Feynman, in his doctoral thesis [4] “The principle of least action in quan-
tum physics,” introduced path integrals driven by the classical action
functional, the integral of the lagrangian. The power of this formalism
was vindicated [5] when Feynman developed techniques for computing
functional integrals and applied them to the relativistic computation of
the Lamb shift.

In 1923, after some preliminary work by Paul Lévy [6], Norbert Wiener
published “Differential space” [7], a landmark article in the development
of functional integration. Wiener uses the term “differential space” to
emphasize the advantage of working not with the values of a function but
with the difference of two consecutive values. He constructed a measure
in “differential space.” Mark Kac remarked that the Wiener integral

E

[
exp

(
−

∫ τb

τa

dτ V (q(τ))
)]

, (1.1)

1 Because, says N.G. Van Kampen, “When dealing with less simple and concrete equa-
tions, physical intuition is less reliable and often borders on wishful thinking.”

3
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where E denotes the expectation value relative to the Wiener measure,
becomes the Feynman integral∫

Dq · exp(iS(q)) for S(q) =
∫ tb

ta

dt
(

1
2
q̇(t)2 − V (q(t))

)
(1.2)

if one sets τ = it. Kac concluded that, because of i in the exponent,
Feynman’s theory is not easily made rigorous. Indeed, one needs an inte-
gration theory more general than Lebesgue theory for making sense of
Kac’s integral for τ = it, and such a theory has been proposed in [8, 9].
The usefulness of this theory and its further developments can be seen in
this book. For a thorough discussion of the relation τ = it, see Sections
1.9–1.11. Feynman, however, objected to a Kac-type integral because “it
spoils the physical unification of kinetic and potential parts of the action”
[10]. The kinetic contribution is hidden from sight.

The arguments of the functionals considered above are functions on
a line. The line need not be a time line; it can be a scale line, a one-
parameter subgroup, etc. In all cases, the line can be used to “time” order
products of values of the function at different times.2 Given a product of
factors U1, . . ., UN , each attached to a point ti on an oriented line, one
denotes by T (U1 . . . UN ) the product UiN . . . Ui1 , where the permutation
i1 . . . iN of 1 . . . N is such that ti1 < . . . < tiN . Hence in the rearranged
product the times attached to the factors increase from right to left.

The evolution of a system is dictated by the “time” line. Thus Dirac
and Feynman expressed the time evolution of a system by the following
N -tuple integral over the variables of integration {q′i}, where q′i is the
“position” of the system at “time” ti; in Feynman’s notation the proba-
bility amplitude (q′t|q′0) for finding at time t in position q′t a system known
to be in position q′0 at time t0 is given by

(q′t|q′0) =
∫ ∫

. . .

∫
(q′t|q′N )dq′N (q′N |q′N−1)dq

′
N−1 . . . (q

′
2|q′1)dq′1(q′1|q′0). (1.3)

The continuum limit, if it exists, is a “path integral” with its domain
of integration consisting of functions on [t0, t]. Dirac showed that (q′t|q′0)
defines the exponential of a function S,

exp
(
iS(q′t, q

′
0, t)/�

)
:= (q′t|q′0). (1.4)

The function S is called by Dirac [3] the “quantum analogue of the classi-
cal action function (a.k.a. Hamilton’s principal function)” because its real

2 There are many presentations of time-ordering. A convenient one for our purpose
can be found in “Mathemagics” [11]. In early publications, there are sometimes two
different time-ordering symbols: T ∗, which commutes with both differentiation and
integration, and T , which does not. T ∗ is the good time-ordering and simply called

T nowadays. The reverse time-ordering defined by (1.3) is sometimes labeled
←
T .
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part3 is equal to the classical action function S and its imaginary part is
of order �. Feynman remarked that (q′t+δt|q′t) is “often equal to

exp
i
�
L

(
q′t+δt − q′t

δt
, q′t+δt

)
δt (1.5)

within a normalization constant in the limit as δt approaches zero”[4].
Feynman expressed the finite probability amplitude (q′t|q′0) as a path
integral

(q′t|q′0) =
∫
Dq · exp

(
i
�
S(q)

)
, (1.6)

where the action functional S(q) is

S(q) =
∫ t

to

dsL(q̇(s), q(s)). (1.7)

The path integral (1.6) constructed from the infinitesimals (1.5) is a prod-
uct integral (see Appendix B for the definition and properties of, and ref-
erences on, product integrals). The action functional, broken up into time
steps, is a key building block of the path integral.

Notation. The Dirac quantum analog of the classical action, labeled
S, will not be used. The action function, namely the solution of the
Hamilton–Jacobi equation, is labeled S, and the action functional, namely
the integral of the lagrangian, is labeled S. The letters S and S are
not strikingly different but are clearly identified by the context. See
Appendix E.

Two phrases give a foretaste of the rich and complex issue of path
integrals: “the imaginary part [of S] is of order �,” says Dirac; “within
a normalization constant,”4 says Feynman, who summarizes the issue in
the symbol Dq.

Feynman rules for computing asymptotic expansions of path integrals,
order by order in perturbation theory, are stated in terms of graphs, which
are also called diagrams [12]. The Feynman-diagram technique is widely
used because the diagrams are not only a powerful mathematical aid to
the calculation but also provide easy bookkeeping for the physical process
of interest. Moreover, the diagram expansion of functional integrals in
quantum field theory proceeds like the diagram expansion of path integrals
in quantum mechanics. The time-ordering (1.3) becomes a chronological

3 More precisely, the real part is the classical action, up to order �.
4 See the remark at the end of Section 2.2 for a brief comment on the early calculations

of the normalization constant.
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ordering, dictated by lightcones: if the point xj is in the future lightcone
of xi, one writes j−> i, and defines the chronological ordering T by the
symmetric function

T (Uj Ui) = T (Ui Uj) := Uj Ui, (1.8)

where Ui := U(xi), Uj := U(xj), and j−> i.
The Feynman diagrams are a graphic expression of gaussian integrals

of polynomials. The first step for computing the diagram expansion of a
given functional integral is the expansion into polynomials of the expo-
nential in the integrand. We shall give an explicit diagram expansion as
an application of gaussian path integrals in Section 2.4.

1.2 Integrals over function spaces

Wiener and Feynman introduced path integrals as the limit for N =∞
of an N -tuple integral. Feynman noted that the limit of N -tuple integrals
is at best a crude way of defining path integrals. Indeed, the drawbacks
are several.
� How does one choose the short-time probability amplitude (q′t+δt|q′t) and
the undefined normalization constant?

� How does one compute the N -tuple integral?
� How does one know whether the N -tuple integral has a unique limit for
N =∞?

The answer is to do away with N -tuple integrals and to identify the
function spaces which serve as domains of integration for functional inte-
grals. The theory of promeasures [13] (projective systems of measures on
topological vector spaces, which are locally convex, but not necessarily
locally compact), combined with Schwartz distributions, yields a practi-
cal method for integrating on function spaces. The step from promeasures
to prodistributions (which were first introduced as pseudomeasures [8]) is
straightforward [14]. It is presented in Section 1.7. Already in their original
form, prodistributions have been used for computing nontrivial examples,
e.g. the explicit cross section for glory scattering of waves by Schwarzschild
black holes [15]. A useful byproduct of prodistributions is the definition
of complex gaussians in Banach spaces presented in Section 2.3.

1.3 The operator formalism

A functional integral is a mathematical object, but historically its use in
physics is intimately connected with quantum physics. Matrix elements
of an operator on Hilbert spaces or on Fock spaces have been used for
defining their functional integral representation.
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Bryce DeWitt [16] constructs the operator formalism of quantum phys-
ics from the Peierls bracket. This formalism leads to the Schwinger vari-
ational principle and to functional integral representations.

The bracket invented by Peierls [17] in 1952 is a beautiful, but often
neglected, covariant replacement for the canonical Poisson bracket, or its
generalizations, used in canonical quantization. Let A and B be any two
physical observables. Their Peierls bracket (A,B) is by definition

(A,B) := D−
AB − (−1)ÃB̃D−

BA, (1.9)

where the symbol Ã ∈ {0, 1} is the Grassmann parity of A and
D−

AB (D+
AB) is known as the retarded (advanced) effect of A on B. The

precise definition follows from the theory of measurement, and can be
found in [16].

The operator quantization rule associates an operator A with an observ-
able A; the supercommutator [A,B] is given by the Peierls bracket:

[A,B] = −i�(A,B) + O(�2). (1.10)

Let |A〉 be an eigenvector of the operator A for the eigenvalue A. The
Schwinger variational principle states that the variation of the transition
amplitude 〈A|B〉 generated by the variation δS of an action S, which is
a functional of field operators, acting on a space of state vectors is

δ〈A|B〉 = i〈A|δS/�|B〉. (1.11)

The variations of matrix elements have led to their functional integral
representation. The solution of this equation, obtained by Bryce DeWitt,
is the Feynman functional integral representation of 〈A|B〉. It brings out
explicitly the exponential of the classical action functional in the inte-
grand, and the “measure” on the space of paths, or the space of histo-
ries, as the case may be. The domain of validity of this solution encom-
passes many different functional integrals needed in quantum field theory
and quantum mechanics. The measure, called µ(φ), is an important con-
tribution in the applications of functional integrals over fields φ. (See
Chapter 18.)

1.4 A few titles

By now functional integration has proved itself useful. It is no longer a
“secret weapon used by a small group of mathematical physicists”5 but

5 Namely “an extremely powerful tool used as a kind of secret weapon by a small group
of mathematical physicists,” B. Simon (1979).
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is still not infrequently a “sacramental formula.”6 Compiling a bibliogra-
phy of functional integration in physics, other than a computer-generated
list of references, would be an enormous task, best undertaken by a his-
torian of science. We shall mention only a few books, which together give
an idea of the scope of the subject. In chronological order:

� R. P. Feynman and A. R. Hibbs (1965). Quantum Mechanics and Path
Integrals (New York, McGraw-Hill);

� S. A. Albeverio and R. J. Høegh-Krohn (1976). Mathematical Theory of
Feynman Path Integrals (Berlin, Springer);

� B. Simon (1979). Functional Integration and Quantum Physics (New
York, Academic Press);

� J. Glimm and A. Jaffe (1981). Quantum Physics, 2nd edn. (New York,
Springer);

� L. S. Schulman (1981). Techniques and Applications of Path Integration
(New York, John Wiley);

� K. D. Elworthy (1982). Stochastic Differential Equations on Manifolds
(Cambridge, Cambridge University Press);

� A. Das (1993). Field Theory, A Path Integral Approach (Singapore,
World Scientific);

� G. Roepstorff (1994). Path Integral Approach to Quantum Physics: An
Introduction (Berlin, Springer); (original German edition: Pfadintegrale
in der Quantenphysik, Braunschweig, Friedrich Vieweg & Sohn, 1991);

� C. Grosche and F. Steiner (1998). Handbook of Feynman Path Integrals
(Berlin, Springer);

� A Festschrift dedicated to Hagen Kleinert (2001): Fluctuating Paths and
Fields, eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(Singapore, World Scientific);

� M. Chaichian and A. Demichev (2001). Path Integrals in Physics, Vols. I
and II (Bristol, Institute of Physics);

� G. W. Johnson and M. L. Lapidus (2000). The Feynman Integral and
Feynman’s Operational Calculus (Oxford, Oxford University Press;
paperback 2002);

� B. DeWitt (2003). The Global Approach to Quantum Field Theory
(Oxford, Oxford University Press; with corrections, 2004).

� J. Zinn-Justin (2003). Intégrale de chemin en mécanique quantique:
introduction (Les Ulis, EDP Sciences and Paris, CNRS);

6 “A starting point of many modern works in various areas of theoretical physics is the
path integral

∫ Dq exp iS(q)/�. What is the meaning of this sacramental formula?”
M. Marinov [18].
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� J. Zinn-Justin (2004). Path Integrals in Quantum Mechanics (Oxford,
Oxford University Press); and

� H. Kleinert (2004). Path Integrals in Quantum Mechanics, Statistics,
and Polymer Physics, 3rd edn. (Singapore, World Scientific).

Many books on quantum field theory include several chapters on func-
tional integration. See also [19].

These few books, together with their bibliographies, give a good pic-
ture of functional integration in physics at the beginning of the twenty-
first century. We apologize for having given an incomplete list of our
inheritance.

B: A toolkit from analysis

1.5 A tutorial in Lebesgue integration

It is now fully understood that Feynman’s path integrals are not integrals
in the sense of Lebesgue. Nevertheless, Lebesgue integration is a useful
device, and the Kac variant of Feynman’s path integrals is a genuine
Lebesgue integral (see Part C). Lebesgue integration introduces concepts
useful in the study of stochastic processes presented in Section 1.6.

Polish spaces

This class of spaces is named after Bourbaki [13]. A Polish space is a metric
space, hence a set X endowed with a distance d(x, y) defined for the pairs
of points in X, satisfying the following axioms (d(x, y) is a real number):

� d(x, y) > 0 for x �= y and d(x, y) = 0 for x = y;
� symmetry d(x, y) = d(y, x); and
� triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

Furthermore, a Polish space should be complete: if x1, x2, . . . is a sequence
of points in X such that limm=∞,n=∞ d(xm, xn) = 0, then there exists a
(unique) point x in X such that limn=∞ d(xn, x) = 0. Finally, we assume
that separability holds: there exists a countable subset D in X such that
any point in X is a limit of a sequence of points of D.

Note. Any separable Banach space is a Polish space.

We give the basic examples:

� a countable set D, with d(x, y) = 1 for x �= y;
� the real line R, with d(x, y) = |x− y|;
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� the euclidean n-space Rn with

d(x, y) =

(
n∑

i=1

(xi − yi)2
)1/2

(1.12)

for x = (x1, . . ., xn) and y = (y1, . . ., yn);
� the Hilbert space �2 of infinite sequences x = (x1, x2, . . .) of real numbers
such that

∑∞
n=1 x

2
n < +∞, with

d(x, y) =

( ∞∑
n=1

(xn − yn)2
)1/2

; (1.13)

� the space R∞ of all unrestricted sequences x = (x1, x2, . . .) of real num-
bers with

d(x, y) =
∞∑
n=1

min(2−n, |xn − yn|); (1.14)

� let T = [ta, tb] be a real interval. The space P(T) (also denoted by
C0(T; R)) of paths consists of the continuous functions f : T→ R; the
distance is defined by

d(f, g) = supt∈T|f(t)− g(t)|. (1.15)

In a Polish space X, a subset U is open7 if, for every x0 in U , there exists
an ε > 0 such that U contains the ε-neighborhood of x0, namely the set of
points x with d(x0, x) < ε. The complement F = X \ U of an open set is
closed. A set A ⊂ X is called a Gδ if it is of the form ∩n≥1Un, where U1 ⊃
U2 ⊃ . . . ⊃ Un ⊃ . . . are open. Dually, we define an Fσ set A = ∪n≥1Fn

with F1 ⊂ F2 ⊂ . . . closed. Any open set is an Fσ; any closed set is a Gδ.
Next we define the Baire hierarchy of subsets of X:

� class 1: all open or closed sets;
� class 2: all limits of an increasing or decreasing sequence of sets of class 1
(in particular the Fσ sets and the Gδ sets).

In general, if α is any ordinal with predecessor β, the class α consists of
the limits of monotonic sequences of sets of class β; if α is a limit ordinal,
a set of class α is any set belonging to a class β with β < α.

We stop at the first uncountable ordinal ε0. The corresponding class ε0
consists of the Borel subsets of X. Hence, if B1, B2, . . ., Bn, . . . are Borel
subsets, so are ∩n≥1Bn and ∪n≥1Bn as well as the differences X \Bn. Any
open (or closed) set is a Borel set.

7 A closed (or open) set is itself a Polish space.
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Measures in a Polish space

A measure in a Polish space X associates a real number µ(B) with any
Borel subset B of X in such a way that
� 0 ≤ µ(B) ≤ +∞;
� if B is a disjoint union of Borel sets B1, B2, . . ., Bn, . . . then µ(B) =∑∞

n=1 µ(Bn); and
� the space X can be covered8 by a family of open sets Un (for n = 1, 2, . . .)
such that µ(Un) < +∞ for all n.

The measure µ is finite (or bounded) if µ(X) is finite. The previous defini-
tion defines the so-called positive measures. A complex measure µ assigns
to any Borel set B a complex number, such that µ(B) =

∑∞
n=1 µ(Bn) for

a disjoint union B of B1, B2, . . . (the series is then absolutely convergent).
Such a complex measure is of the form µ(B) = c1µ1(B) + · · ·+ cpµp(B)
where c1, . . ., cp are complex constants, and µ1, . . ., µp are bounded (posi-
tive) measures. The variation of µ is the bounded (positive) measure |µ|
defined by

|µ|(B) = l.u.b.

{
q∑

i=1

|µ(Bi)| : B = B1 ∪ . . . ∪Bq disjoint union

}
.

(1.16)

The number |µ|(X) is called the total variation of µ, and l.u.b stands for
least upper bound.

A measure µ on a Polish space is regular. That is,

(a) if K is a compact9 set in X, then µ(K) is finite; and
(b) if B is a Borel set with µ(B) finite, and ε > 0 is arbitrary, then there

exist two sets K and U , with K compact, U open, K ⊂ B ⊂ U and
µ(U \K) < ε.

As a consequence, if B is a Borel set with µ(B) = +∞, there exists,10 for
each n ≥ 1, a compact subset Kn of B such that µ(Kn) > n. Since the
measure µ is regular, the knowledge of the numbers µ(K) for K compact
enables us to reconstruct the measure µ(B) of the Borel sets. It is possible

8 This condition can be expressed by saying that the measures are “locally bounded.”
9 A subset K in X is compact if it is closed and if, from any sequence of points in K,

we can extract a convergent subsequence.
10 From the regularity of the measures, we can deduce the following statement: the

Polish space X can be decomposed as a disjoint union

X = N ∪K1 ∪K2 ∪ . . .,

where each Kn is compact, and µ(N) = 0. After discarding the null set N , the space
X is replaced by a locally compact space.
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to characterize the functionals µ(K) of compact subsets giving rise to a
measure [13].

Construction of measures

To construct a measure, we can use Caratheodory’s extension theorem,
whose statement follows:

let C be a class of Borel subsets, stable under finite union, finite inter-
section and set difference;

assume that all Borel sets can be obtained via a Baire hierarchy, starting
with the sets in C as class 1; and

let I : C → R be a functional with (finite) positive values, which is
additive,

I(C ∪ C ′) = I(C) + I(C ′) if C ∩ C ′ = ∅, (1.17)

and continuous at ∅,
lim
n=∞

I(Cn) = 0 for C1 ⊃ C2 ⊃ . . . and ∩nCn = ∅. (1.18)

We can then extend uniquely the functional I(C) to a functional
µ(B) of Borel subsets such that µ(B) =

∑
n≥1 µ(Bn) when B is the

disjoint union of B1, B2, . . ., Bn, . . .

As an application, consider the case in which X = R and C consists of
the sets of the form

C = ]a1, b1] ∪ · · · ∪ ]an, bn].

Let F : R→ R be a function that is increasing11 and right-continuous.12

Then there exists a unique measure µ on R such that µ(]a, b]) = F (b)−
F (a). The special case F (x) = x leads to the so-called Lebesgue measure
λ on R satisfying λ(]a, b]) = b− a.

Product measures

Another corollary of Caratheodory’s result is about the construction of a
product measure. Suppose that X is the cartesian product X1 × X2 of two
Polish spaces; we can define on X the distance

d(x, y) = d(x1, y1) + d(x2, y2) (1.19)

for x = (x1, x2) and y = (y1, y2) and X becomes a Polish space. Let µi be

11 That is F (a) ≤ F (b) for a ≤ b.
12 That is F (a) = limn=∞ F(a + 1/n) for every a.
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a measure on Xi for i = 1, 2. Then there exists a unique measure µ on X
such that

µ(B1 ×B2) = µ1(B1) · µ2(B2), (1.20)

where B1 ⊂ X1, B2 ⊂ X2 are Borel subsets. This measure is usually
denoted µ1 ⊗ µ2. This construction can be easily generalized to µ1 ⊗ · · · ⊗
µp, where µi is a measure on Xi for i = 1, . . ., p. The same construction
applies to complex measures.

For probabilistic applications, it is useful to consider infinite products⊗∞
i=1 µi of measures. For simplicity, we consider only the case of R∞ =

R× R× · · · . Suppose given a sequence of measures µ1, µ2, µ3, . . . on R;
assume that each µi is positive and normalized µi(R) = 1, or else that
each µi is a complex measure and that the infinite product

∏∞
i=1 |µi|(R)

is convergent. Then there exists a unique measure µ =
⊗∞

i=1 µi on R∞

such that

µ(B1 × · · · ×Bp × R× R× · · · ) = µ1(B1) · · ·µp(Bp) (1.21)

for p ≥ 1 arbitrary and Borel sets B1, . . ., Bp in R.

Integration in a Polish space

We fix a Polish space X and a positive measure µ, possibly unbounded.
A function f : X→ R = [−∞,+∞] is called Borel if the set

{a < f < b} = {x ∈ X : a < f(x) < b} (1.22)

is a Borel set in X for arbitrary numbers a, b with a < b. The standard
operations (sum, product, pointwise limit, series, . . .) applied to Borel
functions yield Borel functions. Note also that continuous functions are
Borel. We denote by F+(X) the set of Borel functions on X with values
in R+ = [0,+∞].

An integral on X is a functional I : F+(X)→ R+ with the property

I(f) =
∞∑
n=1

I(fn)

if

f(x) =
∞∑
n=1

fn(x) for all x in X.

The integral is locally bounded if there exists an increasing sequence of
continuous functions fn such that
� 0 ≤ fn(x), limn=∞ fn(x) = 1 for all x in X; and
� I(fn) < +∞ for every n ≥ 1.
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Given a locally bounded integral on X, we define as follows a measure µ
on X: if B is any Borel set in X, let χB be the corresponding characteristic
function13 and let µ(B) = I(χB). It is trivial that µ is a measure, but the
converse is also true – and a little more difficult to prove – that is, given
any measure µ on X, there exists a unique locally bounded integral I such
that I(χB) = µ(B) for every Borel set B in X. In this case, we use the
notation14

∫
f dµ instead of I(f) for f in F+(X).

We denote by L1 = L1(X, µ) the class of Borel functions f on X such
that

∫
|f |dµ < +∞. The integral

∫
f dµ for the nonnegative elements f of

L1 extends to a linear form on the vector space L1. Then L1 is a separable
Banach space15 for the norm

‖f‖1 :=
∫
|f |dµ. (1.23)

The familiar convergence theorems are valid. We quote only the “domi-
nated convergence theorem.”

Theorem. If f1, f2, . . ., fn, . . . are functions in L1, and if there exists a
Borel function φ ≥ 0 with

∫
φdµ <∞ and |fn(x)| ≤ φ(x) for all x and all

n, then the pointwise convergence

lim
n=∞

fn(x) = f(x) (1.24)

for all x entails that f is in L1 and that

lim
n=∞

‖fn − f‖1 = 0 , lim
n=∞

∫
fn dµ =

∫
f dµ. (1.25)

For p ≥ 1, the space Lp consists of the Borel functions f such that∫
|f |p dµ <∞, and the norm ‖f‖p is then defined as

‖f‖p :=
(∫
|f |p dµ

)1/p

. (1.26)

Then Lp is a separable Banach space. The two more important cases are
p = 1 and p = 2. The space L2 is a (real) Hilbert space with scalar product
(f |g) =

∫
fg dµ. We leave to the reader the extension to complex-valued

functions.
Assume that X is a compact metric space. Then it is complete and

separable, and hence a Polish space. Denote by C0(X) the Banach space

13 That is χB(x) = 1 for x in B and χB(x) = 0 for x in X \B.
14 Or any of the standard aliases

∫
X
f dµ,

∫
X
f(x)dµ(x), . . .

15 This norm ‖f‖1 is zero iff the set {f �= 0} is of measure 0. We therefore have to
identify, as usual, two functions f and g such that the set {f �= g} be of measure 0.
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of continuous functions f : X→ R with the norm

‖f‖∞ = l.u.b.{|f(x)| : x ∈ X}. (1.27)

If µ is a (positive) measure on X, then it is bounded, and one defines a
linear form I on C0(X) by the formula16

I(f) =
∫

X

f dµ. (1.28)

Then I is positive, that is f(x) ≥ 0 for all x in X entails I(f) ≥ 0.
Conversely, any positive linear form on C0(X) comes from a unique17

positive18 measure µ on X (the “Riesz–Markoff theorem”).
A variation on the previous theme: X is a locally compact Polish space

(that is, every point has a compact neighborhood), C0
c (X) is the space of

continuous functions f : X→ R vanishing off a compact subset K of X.
Then the measures on X can be identified with the positive linear forms
on the vector space C0

c (X). Again C0
c (X) is dense in the Banach space

L1(X, µ) for every measure µ on X.

1.6 Stochastic processes and promeasures

The language of probability

Suppose that we are measuring the blood parameters of a sample: num-
bers of leukocytes, platelets. . . The record is a sequence of numbers (after
choosing proper units) subject eventually to certain restrictions. The
record of a sample is then a point in a certain region Ω of a numerical
space RD (D is the number of parameters measured). We could imag-
ine an infinite sequence of measurements, and we should replace Ω by a
suitable subset of R∞.

In such situations, the record of a sample is a point in a certain space,
the sample space Ω. We make the mathematical assumption that Ω is a
Polish space, for instance the space C0(T; R) of continuous paths (q(t))t∈T,
for the observation of a sample path of the brownian motion during the
time interval T = [ta, tb]. The outcome is subject to random fluctuations,
which are modeled by specifying a measure P on Ω, normalized by P[Ω] =
1 (a so-called probability measure, or probability law). Any Borel subset B
of Ω corresponds to a (random) event, whose probability is the measure

16 Notice the inclusion C0(X) ⊂ L1(X, µ).
17 The uniqueness comes from the fact that C0(X) is dense in L1(X, µ) for every positive

measure µ on X.
18 More generally, the elements of the dual space C0(X)′ of the Banach space C0(X)

can be identified with the (real) measures on X.
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P[B]; hence 0 ≤ P[B] ≤ 1. Any numerical quantity that can be measured
on the sample corresponds to a Borel function F : Ω→ R, called a random
variable. The mean value of F is by definition

E[F ] :=
∫

Ω
F dP.

A basic notion is that of (stochastic) independence. Suppose that we
perform independently the selection of samples ω1 in Ω1 and ω2 in Ω2. The
joint outcome is a point ω = (ω1, ω2) in the Polish space Ω = Ω1 × Ω2.
Let P1 (P2) be the probability law of Ω1 (Ω2). Then P = P1 ⊗ P2 is a
probability law on Ω characterized by the rule

P[A1 ×A2] = P1[A1] · P2[A2]. (1.29)

Stated otherwise, the probability of finding jointly ω1 in A1 and ω2 in A2

is the product of the probabilities of these two events E1 and E2,

P[E1 ∩ E2] = P[E1] · P[E2]. (1.30)

This is the definition of the stochastic independence of the events E1 and
E2.

A general measurement on the sample modeled by (Ω,P) is a func-
tion F : Ω→ X, where X is a Polish space, such that the inverse image
F−1(B) of a Borel set B in X is a Borel set in Ω. Two measurements are
stochastically independent if the corresponding maps Fi : Ω→ Xi satisfy

P[E1 ∩ E2] = P[E1] · P[E2], (1.31a)

where Ei is the event that Fi(ω) belongs to Bi, that is Ei = F−1
i (Bi),

where Bi is a Borel set in Xi for i = 1, 2. In terms of mean values, we
obtain the equivalent condition

E[ξ1 · ξ2] = E[ξ1] · E[ξ2], (1.31b)

where ξi is of the form ui ◦ Fi for i = 1, 2, and ui is a (bounded) Borel
function on Xi.

Marginals

To be specific, let the sample space Ω be C0(T; R); that is we record
continuous curves depicting the evolution of a particle on a line during
an interval of time T = [ta, tb] (figure 1.1).

In general, we don’t record the whole curve, but we make measurements
at certain selected times t1, . . ., tn such that

ta ≤ t1 < · · · < tn ≤ tb. (1.32)
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We can approximate the probability law P on Ω as follows. Given t1, . . ., tn
as above,19 consider the map

Πt1,...,tn : Ω→ Rn

associating with a path x = (x(t))ta≤t≤tb the collection (x(t1), . . ., x(tn)).
Then there exists a measure µt1,...,tn on Rn given by

µt1,...,tn([a1, b1]× · · · × [an, bn]) = P[a1 ≤ x(t1) ≤ b1, . . ., an ≤ x(tn) ≤ bn].

(1.33)
In most cases, µt1,...,tn is given by a probability density
p(t1, . . ., tn;x1, . . ., xn) that is

µt1,...,tn(A) =
∫
A

dnx p(t1, . . ., tn;x1, . . ., xn) (1.34)

for any Borel subset A in Rn. The measures µt1,...,tn or the corresponding
probability densities are called the marginals of the process (x(t))ta≤t≤tb

modeled by the probability law P on Ω = C0(T; R).
The marginals satisfy certain coherence rules. We state them in terms

of probability density:20

� probability density :

p(t1, . . ., tn;x1, . . ., xn) ≥ 0, (1.35)∫
Rn

dnx p(t1, . . ., tn;x1, . . ., xn) = 1; (1.36)

19 The restriction t1 < · · · < tn is irrelevant, since any system of distinct epochs
t1, . . ., tn can always be rearranged.

20 The general case is formally the same if we interpret the probability density in terms
of generalized functions, such as Dirac δ-functions.
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� symmetry : any permutation of the spacetime points (t1, x1), . . ., (tn, xn)
leaves p(t1, . . ., tn;x1, . . ., xn) invariant; and

� compatibility :

p(t1, . . ., tn;x1, . . ., xn) =
∫

R

dxn+1p(t1, . . ., tn, tn+1;x1, . . ., xn, xn+1).

(1.37)

The information carried by the marginals is exhaustive, in the sense
that the probability law P on Ω can be uniquely reconstructed from the
marginals.

Promeasures

The converse of the previous construction is fundamental. Assume given
for each sequence t1, . . ., tn of distinct epochs in the time interval T a prob-
ability measure µt1,...,tn on Rn satisfying the previous rules of symmetry
and compatibility. Such a system is called (by Bourbaki) a promeasure,
or (by other authors) a cylindrical measure. Such a promeasure enables
us to define the mean value E[F ] for a certain class of functionals of the
process. Namely, if F is given by

F (x) = f(x(t1), . . ., x(tn)) (1.38)

for a suitable Borel function f in Rn (let it be bounded in order to get a
finite result), then E[F ] is unambiguously defined by

E[F ] =
∫

Rn

dnx f(x1, . . ., xn) p(t1, . . ., tn;x1, . . ., xn). (1.39)

The problem is that of how to construct a probability measure P on Ω
such that E[F ] =

∫
Ω F dP for F as above. We already know that P is

unique; the question is that of whether it exists.
For the existence, the best result is given by the following criterion, due

to Prokhorov [13]:

Criterion. In order that there exists a probability measure P on Ω with
marginals µt1,...,tn , it is necessary and sufficient that, for any given ε > 0,
there exists a compact set K in the Polish space Ω such that, for all
sequences t1, . . ., tn in T, the measure under µt1,...,tn of the projected set
Πt1,...,tn(K) in Rn be at least 1− ε.

Notice that, by regularity of the measures, given t1, . . ., tn there exists
a compact set Kt1,...,tn in Rn such that

µt1,...,tn(Kt1,...,tn) ≥ 1− ε. (1.40)
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The important point is the uniformity, that is the various sets Kt1,...,tn

are obtained as the projection of a unique compact set K in Ω.
Prokhorov’s criterion was distilled from the many known particular

cases. The most conspicuous one is the brownian motion. The main
assumptions about this process can be formulated as follows:

� the successive differences x(t1)−x(ta), x(t2)−x(t1), . . ., x(tn)−x(tn−1)
(for ta ≤ t1 < · · · < tn ≤ tb) are stochastically independent; and

� a given difference x(t2)− x(t1) obeys a gaussian law with variance
D · (t2 − t1), where D > 0 is a given constant. This gives immediately

p(t1, . . ., tn;x1, . . ., xn) = (2πD)−n/2
n∏

i=1

(ti − ti−1)−1/2

× exp

(
−

n∑
i=1

(xi − xi−1)2

2D · (ti − ti−1)

)
(1.41)

(where t0 = ta and x0 = xa, the initial position at time ta).

The coherence rules are easily checked. To use Prokhorov’s criterion,
we need Arzela’s theorem, which implies that, for given constants C > 0
and α > 0, the set KC,α of functions satisfying a Lipschitz condition

|x(t2)− x(t1)| ≤ C|t2 − t1|α for t1 < t2 (1.42)

is compact in the Banach space C0(T; R). Then we need to estimate
µt1,...,tn(Πt1,...,tn(KC,α)), a problem in the geometry of the euclidean space
Rn, but with constants independent of n (and of t1, . . ., tn). The unifor-
mity is crucial, and typical of such problems of integration in infinite-
dimensional spaces!

1.7 Fourier transformation and prodistributions21

Characteristic functions

Let Ω be a Polish space, endowed with a probability measure P. If X is a
random variable, that is a Borel function X : Ω→ R, the probability law
of X is the measure µX on R such that

µX([a, b]) = P[a ≤ X ≤ b] (1.43)

for real numbers a, b such that a ≤ b, where the right-hand side denotes
the probability of the event that a ≤ X ≤ b. Very often, there exists a

21 An informal presentation of prodistributions (which were originally introduced as
pseudomeasures [8]) accessible to nonspecialists can be found in [14].
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probability density pX such that

P[a ≤ X ≤ b] =
∫ b

a
dx pX(x). (1.44)

Then, for any function f(x) of a real variable, we have

E[f(X)] =
∫

R

dx pX(x)f(x). (1.45)

In particular, for f(x) = eipx we get

E[eipX ] =
∫

R

dx eipxpX(x). (1.46)

This is the so-called characteristic function of X, or else the Fourier trans-
form of the probability law µX (or the probability density pX).

Given a collection (X1, . . ., Xn) of random variables, or, better said,
a random vector �X, we define the probability law µ �X as a probability
measure in Rn, such that

P[ �X ∈ A] = µ �X(A) (1.47)

for every Borel subset A of Rn, or equivalently

E[f( �X)] =
∫

Rn

dµ �X(�x)f(�x) (1.48)

for every (bounded) Borel function f(�x) on Rn. In particular, the Fourier
transform of µ �X is given by

χ �X(�p) :=
∫

Rn

dµ �X(�x)ei�p·�x (1.49)

for �p = (p1, . . ., pn), �x = (x1, . . ., xn), and �p · �x =
∑n

j=1 pjx
j . In probabilis-

tic terms, we obtain

χ �X(�p ) = E[exp(i�p · �X)], (1.50)

where, as expected, we define �p · �X as the random variable
∑n

j=1 pjX
j .

Hence the conclusion that knowing the characteristic function of
all linear combinations p1X

1 + · · ·+ pnX
n with nonrandom coefficients

p1, . . ., pn is equivalent to knowledge of the probability law µ �X of the ran-
dom vector �X.

The characteristic functional

The idea of the characteristic functional was introduced by Bochner [20]
in 1955. As in Section 1.6, we consider a stochastic process (X(t))ta≤t≤tb .
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Assuming that the trajectories are continuous (at least with probabil-
ity unity!), our process is modeled by a probability measure P on the
Banach space22 C0(T; R), or equivalently by the marginals µt1,...,tn for
ta ≤ t1 < · · · < tn ≤ tb. These marginals are just the probability laws of
the random vectors (X(t1), . . ., X(tn)) obtained by sampling the path at
the given times. It is therefore advisable to consider their characteristic
functions

χt1,...,tn(p1, . . ., pn) =
∫

Rn

dµt1,...,tn(x
1, . . ., xn)ei�p·�x. (1.51)

Knowledge of the marginals, that is of the promeasure corresponding to
the process, is therefore equivalent to knowledge of the characteristic func-
tions χt1,...,tn(p1, . . ., pn). But we have the obvious relations

χt1,...,tn(p1, . . ., pn) = E

exp

i
n∑

j=1

pjX(tj)

, (1.52)

n∑
j=1

pjX(tj) =
∫

T

dλ(t)X(t), (1.53)

where λ is the measure
∑n

j=1 pjδ(t− tj) on T. We are led to introduce
the characteristic functional

Φ(λ) = E

[
exp

(
i
∫

T

dλ(t)X(t)
)]

, (1.54)

where λ runs over the (real) measures on the compact space T, that is
(by the Riesz–Markoff theorem) over the continuous linear forms over
the Banach space C0(T; R). On going backwards from equation (1.54)
to equation (1.51), we see how to define the marginals µt1,...,tn starting
from the characteristic functional Φ(λ) over the dual space C0(T; R)′ of
C0(T; R). But then the coherence rules (see equations (1.35)–(1.37)) are
tautologically satisfied. Hence the probability law P of the process is com-
pletely characterized by the characteristic functional. Notice that we have
a kind of infinite-dimensional Fourier transform,23 namely

Φ(λ) =
∫
C0(T;R)

dP(X)ei〈λ,X〉 (1.55)

where 〈λ,X〉 =
∫

T
dλ X defines the duality on the Banach space C0(T; R).

22 Of course T is the interval [ta, tb].
23 Later in this book, we shall modify the normalization of the Fourier transform, by

putting 2πi instead of i in the exponential.
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As an example, the characteristic functional of the brownian motion is
given by24

Φ(λ) = exp
(
−D

2

∫
T

∫
T

dλ(t)dλ(t′)inf(t, t′)
)
. (1.56)

Prodistributions

As we shall explain in Part C, going from Kac’s formula to Feynman’s
formula requires analytic continuation. One way to do it is for instance
to replace D by iD in the last formula.

1

Fig. 1.2

Changing D into iD in the definition (1.41) of the marginals for the
brownian motion causes no difficulty, but now p(t1, . . ., tn;x1, . . ., xn) is
of constant modulus (for fixed t1, . . ., tn) and hence cannot be integrated
over the whole space. In order to define the Fourier transformation, we
need to resort to the theory of tempered distributions. So we come to
the definition of a prodistribution25 (see [8] and [14]) as a collection of
marginals µt1,...,tn(x1, . . ., xn) that are now (tempered) distributions on
the spaces Rn. In order to formulate the compatibility condition (1.37),
we restrict our distributions to those whose Fourier transform is a con-
tinuous function (necessarily of polynomial growth at infinity). As in the
case of promeasures, it is convenient to summarize the marginals into
the characteristic functional Φ(λ). The correct analytic assumption is an
estimate

|Φ(λ)| ≤ C(‖λ‖+ 1)N (1.57)

with constants C > 0 and N ≥ 0, and the continuity of the functional Φ
in the dual of the Banach space C0(T; R). These restrictions are fulfilled

24 See Section 3.1.
25 Called “pseudomeasures” in [8], where they were originally introduced.
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if we make D purely imaginary in (1.56). This is one way to make sense of
the analytic continuation from Wiener–Kac to Feynman. We shall develop
it in Part C.

C: Feynman’s integral versus Kac’s integral

Kac’s integral is an application of brownian motion, and is nowadays used
in problems of statistical mechanics, especially in euclidean quantum field
theories, and in the study of bound states. Feynman’s integral is mostly
used to study the dynamics of quantum systems. Formally, one goes from
Kac’s integral to Feynman’s integral by using analytic continuation with
respect to suitable parameters. We would like to argue in favor of the
“equation”

inverse temperature ∼ imaginary time.

1.8 Planck’s blackbody radiation law

The methods of thermodynamics were used in the derivation of the (pre-
quantum) laws for the blackbody radiation.

Stefan’s law : in a given volume V , the total energy E carried by the
blackbody radiation is proportional to the fourth power of the abso-
lute temperature T . (The homogeneity of radiation assumes also that
E is proportional to V .)

Wien’s displacement law : by reference to the spectral structure of the
radiation, it states that the frequency νm of maximum energy density
is proportional to T .

To put these two laws into proper perspective, we need some dimen-
sional analysis. Ever since the pioneering work of Gabor in the 1940s, it
has been customary to analyze oscillations in a time–frequency diagram26

(figure 1.3).
Here t is the time variable, and ω = 2πν is the pulsation (ν being the

frequency). The product ωt is a phase, hence it is a pure number using the
radian as the natural phase unit. Hence the area element dt · dω is without
physical dimensions, and it makes sense to speak of the energy in a given
cell with ∆t ·∆ω = 1. Similarly, for a moving wave with wave-vector �k,
the dot product �k · �x, where �x is the position vector, is a phase; hence
there is a dimensionless volume element d3�x · d3�k in the phase diagram
with coordinates x1, x2, x3, k1, k2, k3. This is plainly visible in the Fourier

26 Compare this with the standard representation of musical scores, as well as the
modern wavelet analysis.
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Fig. 1.3

inversion formula, which reads

f(0) = (2π)−3

∫ ∫
d3�x · d3�k e−i�k·�xf(�x). (1.58)

Hence, in the spectral analysis of the blackbody radiation, one can speak
of the energy per unit cell ∆3�x ·∆3�k = 1 around the point �x, �k in the
phase diagram. Since it depends also on the temperature T , we write it
as E(�x,�k, T ). It obeys the following laws:

homogeneity : the spectral energy density E(�x,�k, T ) is independent of
the space position �x; and

isotropy : the spectral energy density E(�x,�k, T ) depends only on the
length |�k| of the wave-vector, or rather on the pulsation ω = c · |�k|
(where c is the speed of light).

Hence the spectral energy density is of the form

E(�x,�k, T ) = E(ω, T ).

Stefan’s and Wien’s law can be reformulated as scaling:

E(�x, λ�k, λT ) = λE(�x,�k, T ) (1.59)

for an arbitrary scalar λ > 0 (or E(λω, λT ) = λE(ω, T )).
To conclude, the spectral energy density is given by

E(�x,�k, T ) = ωf(ω/T ), (1.60)

where f is a universal function. What one measures in the observations
is the energy per unit volume in the small pulsation interval [ω, ω + ∆ω]
of the form

∆E = E(ω, T )
4πω2

c3
∆ω. (1.61)

For a given temperature, we get a unimodal curve (figure 1.4).
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Hence, the coordinates of the maximum define a pulsation ωm = ωm(T )
and an energy

Em(T ) =
c3

4πω2
m

(
∆E
∆ω

)
m

.

The scaling law is rewritten as27

ωm(λT ) = λωm(T ), Em(λT ) = λEm(T )

and amounts to an identification of the three scales temperature, pulsa-
tion, and energy.

This identification is made explicit in Planck’s Ansatz

∆E =
Aν3

eBν/T − 1
·∆ν (1.62)

using the frequency ν = ω/(2π) and two universal constants A and B.
With a little algebra, we rewrite this in the standard form (using A =
8πh/c3 and B = h/kB)

∆E =
8πh
c3

ν3

ehν/(kBT ) − 1
·∆ν. (1.63)

We have now two Planck constants,28 h and kB, and two laws

E = hν, E = kBT, (1.64)

identifying energies E, frequencies ν, and temperatures T .

27 The first formula is Wien’s law, the second Stefan’s law.
28 The constant kB was first considered by Planck and called “Boltzmann’s constant”

by him in his reformulation of the Boltzmann–Gibbs laws of statistical mechanics.
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Here is a better formulation of Planck’s law: in the phase diagram, the
elementary spectral energy of the blackbody radiation is given by29

〈E〉 × (2π)−3d3�x · d3�k × 2, (1.65a)

where the last factor of 2 corresponds to the two states of polarization of
light and

〈E〉 =
hν

ehν/(kBT ) − 1
(1.65b)

is the average thermal energy.

1.9 Imaginary time and inverse temperature

As usual, we associate with a temperature the inverse β = 1/(kBT ).
According to (1.64), βE is dimensionless, and the laws of statistical
mechanics are summarized as follows.

In a mechanical system with energy levels E0, E1, . . ., the thermal equi-
librium distribution at temperature T is given by weights proportional to
e−βE0 , e−βE1 , . . . and hence the average thermal energy is given by

〈E〉β =
∑

nEne−βEn∑
n e−βEn

, (1.66)

or by the equivalent form

〈E〉β = − d
dβ

lnZ(β), (1.67)

with the partition function

Z(β) =
∑
n

e−βEn . (1.68)

The thermodynamical explanation of Planck’s law (1.65) is then that 〈E〉
is the average thermal energy of an oscillator of frequency ν, the energy
being quantized as

En = nhν, where n = 0, 1, . . . (1.69)

Let’s go back to the two fundamental laws E = hν = kBT . We have
now a physical picture: in a thermal bath at temperature T , an oscillator
of frequency ν corresponds to a Boltzmann weight e−hν/(kBT ) and hence
to a phase factor e−2πiνtB upon introducing an imaginary Boltzmann time

tB = −i�β = −i�/(kBT ) (1.70)

29 It follows from formula (1.58) that the natural volume element in the phase diagram

is (2π)−3d3�x · d3�k =
∏3

i=1
dxidki/(2π), not d3�x · d3�k. We refer the reader to the

conventions given earlier for normalization constants in the Fourier transformation.


