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Preface

This book is based on a course which I have taught over many years to gradu-

ate students in several physics departments. Students have been mainly candidates

for physics degrees but have included a scattering of people from other depart-

ments including chemical engineering, materials science and chemistry. I take a

“reductionist” view, that implicitly assumes that the basic program of physics of

complex systems is to connect observed phenomena to fundamental physical laws as

represented at the molecular level by Newtonian mechanics or quantum mechanics.

While this program has historically motivated workers in statistical physics for more

than a century, it is no longer universally regarded as central by all distinguished

users of statistical mechanics1,2 some of whom emphasize the phenomenological

role of statistical methods in organizing data at macroscopic length and time scales

with only qualitative, and often only passing, reference to the underlying micro-

scopic physics. While some very useful methods and insights have resulted from

such approaches, they generally tend to have little quantitative predictive power.

Further, the recent advances in first principles quantum mechanical methods have

put the program of predictive quantitative methods based on first principles within

reach for a broader range of systems. Thus a text which emphasizes connections to

these first principles can be useful.

The level here is similar to that of popular books such as those by Landau and

Lifshitz,3 Huang4 and Reichl.5 The aim is to provide a basic understanding of

the fundamentals and some pivotal applications in the brief space of a year. With

regard to fundamentals, I have sought to present a clear, coherent point of view

which is correct without oversimplifying or avoiding mention of aspects which are

incompletely understood. This differs from many other books, which often either

give the fundamentals extremely short shrift, on the one hand, or, on the other,

expend more mathematical and scholarly attention on them than is appropriate in a

one year graduate course. The chapters on fundamentals begin with a description

of equilibrium for classical systems followed by a similar description for quantum

ix



x Preface

mechanical systems. The derivation of the equilibrium aspects of thermodynamics

is then presented followed by a discussion of the semiclassical limit.

In the second part, I progress through equilibrium applications to successively

more dense states of matter: ideal classical gases, ideal quantum gases, imperfect

classical gases (cluster expansions), classical liquids (including molecular dynam-

ics) and some aspects of solids. A detailed discussion of solids is avoided because,

at many institutions, solid state physics is a separate graduate course. However,

because magnetic models have played such a central role in statistical mechanics,

they are not neglected here. Finally, in this second part, having touched on the

main states of matter, I devote a chapter to phase transitions: thermodynamics,

classification and the renormalization group.

The third part is devoted to dynamics. This consists first of a long chapter on

the derivation of the equations of hydrodynamics. In this chapter, the fluctuation–

dissipation theorem then appears in the form of relations of transport coefficients to

dynamic correlation functions. The second chapter of the last part treats stochastic

models of dynamics and dynamical aspects of critical phenomena.

There are problems in each chapter. Solutions are provided for many of them in

an appendix. Many of the problems require some numerical work. Sample codes

are provided in some of the solutions (in Fortran) but, in most cases, it is advisable

for students to work out their own solutions which means writing their own codes.

Unfortunately, the students I have encountered recently are still often surprised to

be asked to do this but there is really no substitute for it if one wants a thorough

mastery of simulation aspects of the subject.

I have interacted with a great many people and sources during the evolution of this

work. For this reason acknowledging them all is difficult and I apologise in advance

if I overlook someone. My tutelage in statistical mechanics began with a course

by Allan Kaufman in Berkeley in the 1960s. With regard to statistical mechanics I

have profited especially from interactions with Michael Gillan, Gregory Wannier

(some personally but mainly from his book), Mike Thorpe, Aneesur Rahman, Bert

Halperin, Gene Mazenko, Hisao Nakanishi, Nigel Goldenfeld and David Chandler.

Obviously none of these people are responsible for any mistakes you may find, but

they may be given some credit for some of the good stuff. I am also grateful to

the many classes that were subjected to these materials, in rather unpolished form

in the early days, and who taught me a lot. Finally I thank all my Ph.D. students

and postdocs (more than 30 in all) through the years for being good company and

colleagues and for stimulating me in many ways.

J. Woods Halley

Minneapolis

July 2005
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Introduction

The problems of statistical mechanics are those which involve systems with a
larger number of degrees of freedom than we can conveniently follow explicitly
in experiment, theory or simulation. The number of degrees of freedom which can
be followed explicitly in simulations has been changing very rapidly as computers
and algorithms improve. However, it is important to note that, even if computers
continue to improve at their present rate, characterized by Moore’s “law,” scientists
will not be able to use them for a very long time to predict many properties of nature
by direct simulation of the fundamental microscopic laws of physics. This point is
important enough to emphasize.

Suppose that, T years from the present, a calculation requiring computation time
t0 at present will require computation time t(T ) = t02−T/2 (Moore’s “law,”1 see
Figure 1). Currently, state of the art numerical solutions of the Schrödinger equation
for a few hundred atoms can be carried out fast enough so that the motion of these
atoms can be followed long enough to obtain thermodynamic properties. This is
adequate if one wishes to predict properties of simple homogeneous gases, liquids
or solids from first principles (as we will be discussing later). However, for many
problems of current interest, one is interested in entities in which many more atoms
need to be studied in order to obtain predictions of properties at the macroscopic
level of a centimeter or more. These include polymers, biomolecules and nanocrys-
talline materials for example. In such problems, one easily finds situations in which
a first principles prediction requires following 106 atoms dynamically. The first
principles methods for calculating the properties increase in computational cost as
the number of atoms to a power between 2 and 3. Suppose they scale as the second
power so the computational time must be reduced by a factor 108 in order to handle
106 atoms. Using Moore’s law we then predict that the calculation will be possible
T years from the present where T = 16/log102 = 53 years. In fact, this may be
optimistic because Moore’s “law” may not continue to be valid for that long and
also because 106 atoms will not be enough in many cases. What this means is that,

1



2 Introduction

Figure 1 One version of Moore’s “law.”

for a long time, we will need means beyond brute force computation for relating
the properties of macroscopic matter to the fundamental microscopic laws of
physics.

Statistical mechanics provides the essential organizing principles needed for
connecting the description of matter at large scales to the fundamental underlying
physical laws (Figure 2). Whether we are dealing with an experimental system
with intractably huge numbers of degrees of freedom or with a mass of data from
a simulation, the essential goal is to describe the behavior of the many degrees of
freedom in terms of a few “macroscopic” degrees of freedom. This turns out to
be possible in a number of cases, though not always. Here, we will first describe
how this connection is made in the case of equilibrium systems, whose average
properties do not change in time. Having established (Part I) some principles of
equilibrium statistical mechanics, we then provide (Part II) a discussion of how
they are applied in the three most common phases of matter (gases, liquids and
solids) and the treatment of phase transitions. Part III concerns dynamical and
nonequilibrium methods.
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Figure 2 Computational length and time scales. QC stands for quantum chemistry
methods in which the Schrödinger equation is solved. MD stands for molecular
dynamics in which classical equations of motion for atomic motion are solved.
Continuum includes thermodynamics, hydrodynamics, continuum mechanics, mi-
cromagnetism in which macroscopic variables describe the system. Statistical me-
chanics supplies the principles by which computations at these different scales are
connected.

Reference

1. C. E. Moore, Electronics, April 19 (1965).





Part I

Foundations of equilibrium statistical mechanics





1

The classical distribution function

Historically, the first and most successful case in which statistical mechanics has

made the connection between microscopic and macroscopic description is that

in which the system can be said to be in equilibrium. We define this carefully

later but, to proceed, may think of the equilibrium state as the one in which the

values of the macroscopic variables do not drift in time. The macroscopic vari-

ables may have an obvious relation to the underlying microscopic description

(as for example in the case of the volume of the system) or a more subtle rela-

tionship (as for temperature and entropy). The macroscopic variables of a system

in equilibrium are found experimentally (and in simulations) to obey historically

empirical laws of thermodynamics and equations of state which relate them to

one another. For systems at or near equilibrium, statistical mechanics provides

the means of relating these relationships to the underlying microscopic physical

description.

We begin by discussing the details of this relation between the microscopic and

macroscopic physical description in the case in which the system may be described

classically. Later we run over the same ground in the quantum mechanical case.

Finally we discuss how thermodynamics emerges from the description and how the

classical description emerges from the quantum mechanical one in the appropriate

limit.

Foundations of equilibrium statistical mechanics

Here we will suppose that the systems with which we deal are nonrelativistic and can

be described fundamentally by 3N time dependent coordinates labelled qi (t) and

their time derivatives q̇i (t) (i = 1, . . . , 3N ). A model for the dynamics of the system

is specified through a Lagrangian L({qi }, {q̇i }) (not explicitly time dependent) from

which the dynamical behavior of the system is given by the principle of least

7



8 1 The classical distribution function

action

δ

∫
L dt = 0 (1.1)

or equivalently by the Lagrangian equations of motion

∂L

∂qi
− d

dt

(
∂L

∂ q̇i

)
= 0 (1.2)

Alternatively one may define momenta

pi = ∂L

∂ q̇i
(1.3)

and a Hamiltonian

H =
N∑

i=1

pi q̇i − L (1.4)

Expressing H as a function of the momenta pi and the coordinates qi one then has

the equations of motion in the form

∂ H

∂pi
= q̇i (1.5)

−∂ H

∂qi
= ṗi (1.6)

In examples, we will often be concerned with a system of identical particles with

conservative pair interactions. Then it is convenient to use the various components

of the positions of the particles �r1, �r2, . . . as the quantities qi , and the Hamiltonian

takes the form

H =
∑

k

�p2
k/2m + (1/2)

∑
k �=l

V (�rk, �rl) (1.7)

where the sums run over particle labels and �pk = ∇�̇rk
H . Then the Hamiltonian

equations reduce to simple forms of Newton’s equation of motion. It turns out,

however, that the more general formulation is quite useful at the fundamental level,

particularly in understanding Liouville’s theorem, which we will discuss later.

In keeping with the discussion in the Introduction, we wish to relate this mi-

croscopic description to quantities which are measured in experiment or which are

conveniently used to analyze the results of simulations in a very similar way. Gener-

ically we denote these observable quantities as φ(qi (t), pi (t)). It is also possible to

consider properties which depend on the microscopic coordinates at more than one

time. We will defer discussion of these until Part III. Generally, these quantities, for

example the pressure on the wall of a vessel containing the system, are not constant
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in time and what is measured is a time average:

φ̄t = 1

τ

∫ t+τ/2

t−τ/2

φ(qi (t
′), pi (t

′)) dt ′ (1.8)

τ is an averaging time determined by the apparatus and the measurement made

(or chosen for analysis by the simulator). Experience has shown that for many

systems, an experimental situation can be achieved in which measurements of φ̄t

are independent of τ for all τ > τ0 for some finite τ0. It is easy to show that, in

such a case, φ̄t is also independent of t. If this is observed to be the case for the

macroscopic observables of interest, then the system is said to be in equilibrium. A

similar operational definition of equilibrium is applied to simulations. In practice

it is never possible to test this equilibrium condition for arbitrarily long times, in

either experiment or simulation. Thus except in the rare cases in which mathematical

proofs exist for relatively simple models, the existence and nature of equilibrium

states are hypothesized on the basis of partial empirical evidence. Furthermore, in

experimental situations, we do not expect any system to satisfy the equilibrium

condition for arbitrarily long times, because interactions with the surroundings

will inevitably change the values of macroscopic variables eventually. Making the

system considered ever larger and the time scales longer and longer does not help

here, because there is no empirical evidence that the universe itself is in equilibrium

in this sense. Nevertheless, the concept of equilibrium turns out to be an extremely

useful idealization because of the strong evidence that many systems do satisfy

the relevant conditions over a very wide range of averaging times τ and that,

under sufficiently isolated conditions, many systems spontaneously evolve rapidly

toward an approximately equilibrium state whose characteristics are not sensitive

to the details of the initial microscopic conditions. These empirical statements

lack mathematical proofs for most systems of experimental or engineering interest,

though mathematicians have made progress in proving them for simple models.

For systems in equilibrium defined in this way we are concerned with the calcu-

lation of averages of the type

φ̄t = lim
τ→∞

1

τ

∫ τ

0

φ({qi (t
′)}, {pi (t

′)}) dt ′ (1.9)

We will show that it is always possible in principle to write this average in the form

φ̄t =
∫

ρ({qi }, {pi })φ({qi }, {pi }) d3N q d3N p (1.10)

in whichρ({qi }, {pi }) is called the classical distribution function. The demonstration

provides useful insight into the meaning of ρ({qi }, {pi }). We consider the 6N dimen-

sional space of the variables {qi }, {pi }, called phase space. In this space the time
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evolution of the system is described by the motion of a point. Take a small re-

gion of this space whose volume is denoted �3N p�3N q centered at the point

(p, q). (Henceforth we denote (p, q) ≡ ({qi }, {pi }) and similarly (�p, �q) ≡
({�qi }, {�pi }).) Consider the interval of time �t defined as

�t(q0, p0, t0; q, p, t ; �p, �q) (1.11)

equivalent to the time which the point describing the system spends in the region

�3N p�3N q around (q, p) between t0 and t if it started at the point (q0, p0) at time

t0.

Now consider the fraction of time that the system point spends in �3N p�3N q,

denoted �w:

�w(q0, p0; q, p; �p, �q) = lim
t→∞

(
�t

t − t0

)
(1.12)

which is the fraction of the total time between t0 and t → ∞ which the system

spends in the region �3N p�3N q around (q, p).

Now we express the time average φ̄t of equation (1.9) in terms of �w by dividing

the entire phase space into small regions labelled by an index k and each of volume

�3N p�3N q:

φ̄t =
∑

k

φ(q0, p0; qk, pk)�w(q0, p0; qk, pk ; �p, �q) (1.13)

We then suppose that �w(q0, p0; q, p; �p, �q) is a well behaved function of the

arguments (�p, �q) and write

�w =
[

∂6N�w

∂3N�q∂3N�p

]
�p=�q=0

�3N q�3N p + · · · (1.14)

Defining

ρ(q0, p0; q, p) =
[

∂6N�w

∂3N�q∂3N�p

]
�p=�q=0

(1.15)

we then have in the limit �p�q → 0 that

φ̄t =
∫

ρ(q0, p0; q, p)φ(q, p) d3N q d3N p (1.16)

which is of the form (1.10). Several of the smoothness assumptions made in this

discussion are open to question as we will discuss in more detail later.

Equation (1.16) is most useful if φ̄t depends only on a few of the 6N initial

conditions q0, p0. Experimentally (and in simulations) it is found that the time

averages of many macroscopic quantities measured in equilibrium systems are very

insensitive to the way the system is prepared. We will demonstrate that under certain
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conditions, the only way in which these averages can depend on the initial conditions

is through the values of the energy, linear momentum and angular momentum of the

entire system. The general study of the dependence of averages of the form (1.16)

on the initial conditions is part of ergodic theory. An ergodic system is (loosely

from a mathematical point of view) defined as an energetically isolated system for

which the phase point eventually passes through every point on the surface in phase

space consistent with its energy. It is not hard to prove that the averages φ̄t in such

an ergodic system depend only on the energy of the system. It is worth pointing out

that the existence of ergodic systems in phase space of more than two dimensions

is quite surprising. The trajectory of the system in phase space is a topologically

one dimensional object (a path, parametrized by one variable, the time) yet we

want this trajectory to fill the 6N − 1 dimensional surface defined by the energy.

The possibility of space filling curves is known mathematically (for a semipopular

account see reference 1). However, for a large system, the requirement is extreme:

the trajectory must fill an enormously open space of the order of 1023 dimensions! By

contrast the path of a random walk has dimension 2 (in any embedding dimension)!

(Very briefly, the (fractal or Hausdorff–Besicovitch) dimension of a random walk

can be understood to be 2 as follows. The dimension of an object in this sense

is determined as DH defined so that when one covers the object in question with

spheres of radius η a minimum of N (η) spheres is required and

LH = lim
η→0

N (η)ηDH

is finite and nonzero. For a random walk of mean square radius 〈R2〉, N (η) =
〈R2〉/η2 and DH = 2. See reference 1 for details.) Nevertheless something like

ergodicity is required for statistical mechanics to work, and so the paths in phase

space of large systems must in fact achieve this enormous convolution in order to

account for the known facts from experiment and simulation. It is not true that every

system consisting of small numbers of particles is ergodic. Some of the problems at

the end of this section illustrate this point. For example, a one dimensional harmonic

oscillator is ergodic, but a billiard ball on a two dimensional table is not (Figure 1.1).

On the other hand, in the latter case, the set of initial conditions for which it is not

ergodic is in some sense “small.” Another instructive example is a two dimensional

harmonic oscillator (Problem 1.1).

There are several rationally equivalent ways of talking about equation (1.10).

These occur in textbooks and other discussions and reflect the history of the subject

as well as useful approaches to its extension to nonequilibrium systems. What we

have discussed so far may be termed the Boltzmann interpretation of ρ (in which ρ

is related to the time which the system phase point spends in each region of phase

space). This is closely related to the probability interpretation of ρ because the
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x

p

Figure 1.1 Phase space trajectory of a one dimensional oscillator fills the energy
surface. For some initial conditions, a ball on a billiard table with elastic specularly
reflecting walls is not ergodic.

probability that the system is found in d3N qd3N p is just ρd3N qd3N p according to the

standard observation frequency definition of probability. In such an interpretation,

one takes no interest in the question of how the system got into each phase space

region and could as well imagine that it hopped discontinuously from one to another

for some purposes. Indeed such discontinuous hops (which we do not believe occur

in real experimental systems obeying classical mechanics to a good approximation)

do occur in certain numerical methods of computing the integrals (1.10) once the

form of ρ is known. Regarding ρd3N qd3N p as a probability opens the way to the

use of information theoretic methods for approximating its form under all sorts

of conditions in which various constraints are applied. For mechanical systems in

equilibrium this approach leads to the same forms which we will obtain and use

here. The reader is referred to the book by Katz2 and to many papers by Jaynes
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for accounts of the information theoretic approach.3,4 A third interpretation regards

the integral (1.10) as describing an average over a large number (an ensemble) of

different systems, all specified macroscopically in the same way. Specifically we

may suppose that there are N systems with Nρd3N qd3N p in each small region.

Then the right hand side of (1.10) may be regarded as averaging φ over all N
systems and the equality in (1.10) as stating the equality of time averages and

ensemble averages. This was the approach taken by Gibbs in the first development

of the foundations of the subject.5 Gibbs regarded the equivalence of temporal

and ensemble averages as a postulate and did not attempt a proof. The ensemble

interpretation is of mainly historical interest but we will find its language useful

in discussing Liouville’s theorem below and the language of statistical mechanics

contains many vestiges of it.

In statistical physics, we are mainly interested in large systems and will usu-

ally make assumptions appropriate for them. The path we will follow in order to

obtain the standard forms (microcanonical, canonical and grand canonical) for the

distribution function ρ which successfully describe experimental and simulated

equilibrium systems is as follows. (These materials come from a variety of sources

but follow mainly the lines in Landau and Lifshitz’ book.6)

(1) We prove (in a physicist’s manner, but following lines which can be made rigorous) the

Liouville theorem, which shows that ρ must be invariant in time, that is it is a constant

of the motion.

(2) For large enough systems with finite range interactions, we then establish that ρ can

depend only on additive constants of the motion.

(3) Accepting that the additive constants are energy, linear and angular momentum (only)

we obtain the canonical distribution. This leads to an apparent contradiction for an

isolated system.

(4) We resolve this by demonstrating that the fluctuations in the energy in the canonical

distribution become arbitrarily small in large enough systems.

Before proceeding let me explain why I think it worthwhile to spend time on

these aspects of fundamentals. Most books of this sort simply write down the canon-

ical distribution function and start calculating. Firstly, simulation usually uses an

approach related to the microcanonical distribution, not the canonical one, whereas

analytical theories almost always work with the canonical or grand canonical dis-

tribution function. Thus a firm grasp of why and when these are equivalent is of

daily use in theoretical work which combines theory and simulation. Second, the

proofs (inasfar as they exist) of the legitimacy of the standard distribution functions

depend at several points on the largeness of the system involved, whereas simu-

lations are necessarily constricted to quite finite systems and experiments too are

increasingly interested in small systems for technical reasons. Finally, research on
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C(t)

C(t+dt)

Figure 1.2 Schematic sketch of the evolution of the boundary C(t) in phase space.

nonequilibrium systems will be informed by an understanding of the conditions

under which an equilibrium description is expected to work.

Liouville’s theorem

The theorem states that the function ρ(q0, p0; q, p) does not change if the phase

point q, p evolves in time as it does when the coordinates and momenta obey

the Hamiltonian equations of motion in time. (When we actually use (1.10) to

calculate an average, we do not regard the arguments q, p as functions of time, but

just integrate over them.) To demonstrate this, we use the ensemble interpretation.

Consider a cloud of N phase points distributed over the phase space with density

ρ. Consider a small but finite region in the phase space surrounded by a 6N − 1

dimensional surface C(t) around the point p(t), q(t). The volume of the small region

is

�p�q(t) =
∫

inside C(t)
d3N q(t) d3N q(t) (1.17)

The surface C(t) may be regarded as defined by the system points on it, which

we regard as moving along trajectories according to Hamilton’s equations as well.

Thus the surface will move in time and so will the points inside it. At time t, the

number of system points inside C(t) is

�N (t) = Nρ(q(t), p(t))�q(t)�p(t) (1.18)

if the region is small.

Now let time evolve to t + dt (Figure 1.2).

The points in the boundary C(t) move to form a new boundary C(t + dt) . The

points inside C(t) also move along their trajectories. But, because the solutions to the

Hamiltonian equations are unique, no trajectories cross. Therefore the same points
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that lay inside C(t) now lie inside C(t + dt) and the number of points �N (t + dt)
lying inside C(t + dt) is the same as the number �N (t). But by the same argument

used at time t,

�N (t + dt) = Nρ(q(t + dt), p(t + dt))�q(t + dt)�p(t + dt) (1.19)

where

�q(t + dt)�p(t + dt) =
∫

inside C(t+dt)
d3N q(t + dt) d3N q(t + dt) (1.20)

Combining (1.17), (1.18), (1.19), and (1.20) with the condition �N (t + dt) =
�N (t) gives

ρ(q(t), p(t))
∫

inside C(t)
d3N q(t) d3N q(t)

= ρ(q(t + dt), p(t + dt))
∫

inside C(t+dt)
d3N q(t + dt) d3N q(t + dt) (1.21)

Thus to show that ρ is constant we need to show that the integrals on the two sides

of (1.21) are equal. To do that we transform the variables of integration on the right

hand side to those on the left by use of the Jacobian:

∂(q(t + dt), p(t + dt))

∂(q(t), p(t))
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + ∂q̇1(t)
∂q1(t) dt ∂q̇1(t)

∂q2(t) dt . . . . . .

∂ q̇1(t)
∂q2(t) dt 1 + ∂q̇2(t)

∂q2(t) dt . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . . . . . same for p

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
3∏

i=q

N

(
1 + ∂q̇i (t)

∂qi (t)
dt

) (
1 + ∂ ṗi (t)

∂pi (t)
dt

)
+ O((dt)2)

= 1 +
3N∑
i

(
∂q̇i (t)

∂qi (t)
+ ∂ ṗi (t)

∂pi (t)

)
dt + O((dt)2) (1.22)

From the Hamiltonian equations of motion

∂q̇i (t)

∂qi (t)
= ∂2 H

∂qi∂pi
(1.23)

∂ ṗi (t)

∂pi (t)
= − ∂2 H

∂pi∂qi
(1.24)
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Thus if the Hamiltonian is analytic

∂(q(t + dt), p(t + dt))

∂(q(t), p(t))
= 1 + O((dt)2) (1.25)

Thus from (1.21)

dρ(q(t), p(t))

dt
= lim

dt→0

ρ(q(t + dt), p(t + dt)) − ρ(q(t), p(t))

dt
= lim

dt→0
O(dt2/dt) = 0 (1.26)

With suitable mathematical tightening of the various steps, this line of reasoning

rigorously proves the Liouville theorem (see for example Kurth7). The proof de-

pends essentially on the choice of the variables qi and pi as the coordinates of phase

space. For example, if one were to work in the space {qi }, {q̇i }, the corresponding

density would not be constant for every Lagrangian system.

The distribution function depends only on additive constants of the motion

The preceding section sketches the proof that the density distribution function ρ is

a constant of the motion defined by Hamilton’s equations of motion. That theorem

is quite robust and in particular does not require that the system be large for its

validity. To go further we need to suppose that the system has a large number of

degrees of freedom. Furthermore we will assume that the interactions between the

entities, usually atoms or molecules, in the system are short range in the following

sense. We imagine dividing the system when it is in equilibrium into two parts both

containing a large number of entities, say by designating a smooth two dimensional

surface which divides the region of accessible values of each of the (qi , pi ) in

two and assigning all the variables on one side of the surface at some time to one

subsystem and all those on the other side to the other. If the interactions are of

short range then the effects of the partition are only felt over a finite distance from

the partition (which is actually somewhat larger than the range of the interaction,

but which can be made much smaller than the dimension of each part). Let this

distance be d and the size of each partition be of order L. Then the magnitude of the

effects of inserting the partition to the magnitude of effects from the bulk of each

subsystem is roughly L2d/L3 → 0 as L → ∞. Thus, effectively, we can calculate

average properties as well from the partitioned system as from the original system,

as long as the properties φ which we are averaging treat every allowed region of

phase space with equal weight. (The last condition means, for example, that φ could

be the total energy or the average density, but not the density near the partition.)

Let the distribution function for the entities on one side of the partition be ρ1

and let it depend on coordinates and momenta q1, p1 and similarly for the other


