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An Introduction to Parallel and Vector
Scientific Computing

In this text, students of applied mathematics, science, and engineering are intro-
duced to fundamental ways of thinking about the broad context of parallelism.
The authors begin by giving the reader a deeper understanding of the issues
through a general examination of timing, data dependencies, and communi-
cation. These ideas are implemented with respect to shared memory, parallel
and vector processing, and distributed memory cluster computing. Threads,
OpenMP, and MPI are covered, along with code examples in Fortran, C, and
Java.

The principles of parallel computation are applied throughout as the authors
cover traditional topics in a first course in scientific computing. Building on
the fundamentals of floating point representation and numerical error, a thor-
ough treatment of numerical linear algebra and eigenvector/eigenvalue prob-
lems is provided. By studying how these algorithms parallelize, the reader is
able to explore parallelism inherent in other computations, such as Monte Carlo
methods.
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papers in areas of functional analysis, mathematical biology, image processing
algorithms, fractal geometry, neural networks, and Monte Carlo optimization
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Analysis and Applications.
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ber in the Department of Mathematics at the University of New Orleans. He
has authored or coauthored more than a dozen research papers in the areas
of nonlinear differential equations and numerical analysis. His academic in-
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Preface

Numerical computations are a fundamental tool for engineers and scientists. The
current practice of science and engineering demands that nontrivial computa-
tions be performed with both great speed and great accuracy. More and more,
one finds that scientific insight and technologial breakthroughs are preceded
by intense computational efforts such as modeling and simulation. It is clear
that computing is, and will continue to be, central to the further development
of science and technology.

As market forces and technological breakthroughs lowered the cost of com-
putational power by several orders of magintude, there was a natural migration
from large-scale mainframes to powerful desktop workstations. Vector pro-
cessing and parallelism became possible, and this parallelism gave rise to a
new collection of algorithms. Parallel architectures matured, in part driven by
the demand created by the algorithms. Large computational codes were mod-
ified to take advantage of these parallel supercomputers. Of course, the term
supercomputer has referred, at various times, to radically different parallel
architectures. This includes vector processors, various shared memory archi-
tectures, distributed memory clusters, and even computational grids. Although
the landscape of scientific computing changes frequently, there is one constant;
namely, that there will always be a demand in the research community for
high-performance computing.

When computations are first introduced in beginning courses, they are often
straightforward “vanilla” computations, which are well understood and easily
done using standard techniques and/or commercial software packages on desk-
top computers. However, sooner or later, a working scientist or engineer will
be faced with a problem that requires advanced techniques, more specialized
software (perhaps coded from scratch), and/or more powerful hardware. This
book is aimed at those individuals who are taking that step, from a novice to
intermediate or even from intermediate to advanced user of tools that fall under

xi
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the broad heading of scientific computation. The text and exercises have been
shown, over many years of classroom testing, to provide students with a solid
foundation, which can be used to work on modern scientific computing prob-
lems. This book can be used as a guide for training the next generation of
computational scientists.

This manuscript grew from a collection of lecture notes and exercises for a
senior-level course entitled “Vector and Parallel Scientific Computing.” This
course runs yearly at the Georgia Institute of Technology, and it is listed in
both mathematics and computer science curricula. The students are a mix of
math majors, computer scientists, all kinds of engineers (aerospace, mechanical,
electrical, etc.), and all kinds of scientists (chemists, physicists, computational
biologists, etc.). The students who used these notes came from widely varying
backgrounds and varying levels of expertise with regard to mathematics and
computer science.

Formally, the prerequisite for using this text is knowledge of basic linear
algebra. We integrate many advanced matrix and linear algebra concepts into
the text as the topics arise rather than offering them as a separate chapter. The
material in Part II, Monte Carlo Methods, also assumes some familiarity with
basic probability and statistics (e.g., mean, variance, t test, Markov chains).

The students should have some experience with computer programming.
We do not teach nor emphasize a specific programming language. Instead, we
illustrate algorithms through a pseudocode, which is very close to mathematics
itself. For example, the mathematical expression y = ∑n

i=1 xi becomes

y=0;
loop i = 1 upto n

y = y + xi;
end loop

We provide many example programs in Fortran, C, and Java. We also have
examples of code that uses MPI libraries. When this course was originally
taught, it took several weeks for the students to get accounts and access to the
Cray system available at that time. As a result, the material in the first two chap-
ters provides no programming exercises. If one wishes to start programming
right away, then he or she should begin with Chapter 3.

The purpose of the course is to provide an introduction to important topics
of scientific computing including the central algorithms for numerical linear
algebra such as linear system solving and eigenvalue calculation. Moreover, we
introduce this material from the very beginning in the context of vector and par-
allel computation. We emphasize a recognition of the sources and propagation
of numerical error and techniques for its control. Numerical error starts with
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the limitations inherent in the floating point representation of numbers leading
to round-off error and continues with algorithmic sources of error.

The material has evolved over time along with the machines called super-
computers. At present, shared memory parallel computation has standardized
on the threads model, and vector computation has moved from the machine
level to the chip level. Of course, vendors provide parallelizing compilers that
primarily automatically parallelize loops that the programmer has requested,
sometimes referred to as the DOACROSS model. This is a convenient model for
engineers and scientists as it allows them to take advantage of parallel and vector
machines while making minimal demands on their programming time. For the
purpose of familiarily, we include a section on the basic concepts of distributed
memory computation, including topological connectivity and communication
issues.

In teaching the course, we employ a hands-on approach, requiring the students
to write and execute programs on a regular basis. Over the years, our students
have had time on a wide variety of supercomputers, first at National Centers, and
more recently at campus centers or even on departmental machines. Of course,
even personal computers today can be multiprocessor with a vector processing
chipset, and many compiled codes implement threads at the operating system
level.

We base our approach to parallel computation on its representation by means
of a directed acyclic graph. This cuts to the essence of the computation and
clearly shows its parallel structure. From the graph it is easy to explain and
calculate the complexity, speedup, efficiency, communication requirements,
and scheduling of the computation. And, of course, the graph shows how the
computation can be coded in parallel.

The text begins with an introduction and some basic terminology in Chap-
ter 1. Chapter 2 gives a high-level view of the theoretical underpinnings of
parallelism. Here we discuss data dependencies and complexity, using directed
acyclic graphs to more carefully demonstate a general way of thinking about
parallelism. In Chapter 3, we have included a variety of machine implementa-
tions of parallelism. Although some of these architectures are not in widespread
use any more (e.g., vector processors like the early Cray computers), there are
still interesting and important ideas here. In fact, the Japanese Earth Simulator
(the former world record holder for “fastest computer”) makes heavy use of vec-
tor processing and pipelining. Chapter 3 includes an introduction to low-level
implementations of parallelism by including material on barriers, mutexes, and
threads. Of course, not every scientific computing application will require thread
programming, but as mentioned earlier, these objects provide many useful ideas
about parallelization that can be generalized to many different parallel codes.
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We have even included a short introduction to quantum computing because this
technology may one day be the future of parallel scientific computation.

In the second half of the book, we start with basic mathematical and compu-
tational background, presented as building blocks in Chapter 4. This includes
material on floating point numbers, round-off error, and basic matrix arithmetic.
We proceed to cover mathematical algorithms, which we have found are most
frequently used in scientific computing. Naturally, this includes a large mea-
sure of numerical linear algebra. Chapters 5, 6, and 7 discuss direct methods for
solving linear systems. We begin with classical Gaussian elimination and then
move on to matrices with special structure and more advanced topics such as
Cholesky decomposition and Givens’ rotation. Iterative methods are covered
in Chapter 8. We study Jacobi and Gauss-Seidel as well as relaxtion tech-
niques. This chapter also includes a section on conjugate gradient methods. In
Chapter 9, we examine eigenvalues and eigenvectors. This includes the power
method and QR decomposition. We also cover the topics of Householder trans-
formations and Hessenberg forms, since these can improve QR computations
in practice.

Throughout all of Part II, our development of linear algebraic results relies
heavily on the technique of partitioning matrices. This is introduced in Chapter 4
and continues through our presentation of Jordan form in Chapter 9.

The final section of the book is focused on Monte Carlo methods. We first
develop classical quadrature techniques such as the Buffon Needle Problem
in Chapter 10. We then advance in Chapter 11 to a presentation of Monte
Carlo optimization, which touches on the ideas of simulated annealing, genetic
algorithms, and iterated improvement with random restart.

Exercises are included at the end of every section. Some of these are meant to
be done by hand, and some will require access to a computing environment that
supports the necessary parallel architecture. This could be a vector machine,
an SMP system supporting POSIX threads, a distributed memory cluster with
MPI libraries and compilers, etc. We have attempted to isolate those exercises
that require programming in a subsection of each exercise set. Exercises are
followed by a number in parentheses, which is meant to be an indication of the
level of difficulty.

Because scientific computing is often the result of significant research efforts
by large distributed teams, it can be difficult to isolate meaningful self-contained
exercises for a textbook such as this. We have found it very useful for students
to work on and present a project as a substantial part of their course grade. A
10-minute oral presentation along with a written report (and/or a poster) is an
excellent exercise for students at this level. One can ask them to submit a short
project proposal in which they briefly describe the problem background, the
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mathematical problem that requires computation, and how this computation
may parallelize. Students do well when given the opportunity to perform a
deeper study of a problem of interest to them.
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PART I

Machines and Computation
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1
Introduction – The Nature of

High-Performance Computation

The need for speed. Since the beginning of the era of the modern digital com-

puter in the early 1940s, computing power has increased at an exponential

rate (see Fig. 1). Such an exponential growth is predicted by the well-known

“Moore’s Law,” first advanced in 1965 by Gordon Moore of Intel, asserting

that the number of transistors per inch on integrated circuits will double every

18 months. Clearly there has been a great need for ever more computation. This

need continues today unabated. The calculations performed by those original

computers were in the fields of ballistics, nuclear fission, and cryptography.

And, today these fields, in the form of computational fluid dynamics, advanced

simulation for nuclear testing, and cryptography, are among computing’s Grand

Challenges.

In 1991, the U.S. Congress passed the High Performance Computing Act,

which authorized The Federal High Performance Computing and Communi-

cations (HPCC) Program. A class of problems developed in conjunction with

the HPCC Program was designated “Grand Challenge Problems” by Dr. Ken

Wilson of Cornell University. These problems were characterized as “funda-

mental problems in science and engineering that have broad economic or scien-

tific impact and whose solution can be advanced by applying high performance

computing techniques and resources.” Since then various scientific and engi-

neering committees and governmental agencies have added problems to the

original list. As a result, today there are many Grand Challenge problems in en-

gineering, mathematics, and all the fundamental sciences. The ambitious goals

of recent Grand Challenge efforts strive to

� build more energy-efficient cars and airplanes,
� design better drugs,
� forecast weather and predict global climate change,
� improve environmental modeling,

3
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Fig. 1. Computational speed in MFLOPS vs. year.

� improve military systems,
� understand how galaxies are formed,
� understand the nature of new materials, and
� understand the structure of biological molecules.

The advent of high-speed computation has even given rise to computational

subfields in some areas of science and engineering. Examples are computa-

tional biology, bioinfomatics, and robotics, just to name a few. Computational

chemistry can boast that in 1998 the Noble Prize in chemistry was awarded to

John Pope and shared with Walter Kohn for the development of computational

methods in quantum chemistry.

And so it seems that the more computational power we have, the more use we

make of it and the more we glimpse the possibilities of even greater computing

power. The situation is like a Moore’s Law for visionary computation.

1.1 Computing Hardware Has Undergone Vast Improvement

A major factor in the exponential improvement in computational power over

the past several decades has been through advances in solid-state physics: faster

switching circuits, better heat control, faster clock rates, faster memory. Along

with advances in solid-state physics, there has also been an evolution in the

architecture of the computer itself. Much of this revolution was spearheaded by

Seymour Cray.
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1.1 Computing Hardware Has Undergone Vast Improvement 5

Fig. 2. Central processing unit.

Many ideas for parallel architectures have been tried, tested, and mostly dis-

carded or rethought. However, something is learned with each new attempt, and

the successes are incorporated into the next generation of designs. Ideas such as

interleaved memory, cache memory, instruction look ahead, segmentation and

multiple functional units, instruction piplining, data pipelining, multiprocess-

ing, shared memory, distributed memory have found their way into the various

catagories of parallel computers available today. Some of these can be incorpo-

rated into all computers, such as instruction look ahead. Others define the type

of computer; thus, vector computers are data pipelined machines.

The von Neumann Computer

For our purposes here, a computer consists of a central processing unit or CPU,

memory for information storage, a path or bus over which data flow and a

synchronization mechanism in the form of a clock. The CPU itself consists of

several internal registers – a kind of high-speed memory, a program counter

(PC), a stack pointer (SP), a decode unit (DU), and an arithmetic and logic unit

(ALU) (see Fig. 2). A program consists of one or more contiguous memory

locations, that is, chunks of memory, containing a code segment including

subroutines, a data segment for the variables and parameters of the problem, a

stack segment, and possibly additional memory allocated to the program at run

time (see Fig. 3).

The various hardware elements are synchronized by the clock whose fre-

quency f characterizes the speed at which instructions are executed. The
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Fig. 3. Organization of main memory.

frequency is the number of cycles of the clock per second measured in

megaHertz (mHz), 1 mHz = 106 Hz or gigaHertz, (gHz), 1 gHz = 109 Hz. The

time t for one clock cycle is the reciprocal of the frequency

t = 1

f
.

Thus a 2-ns clock cycle corresponds to a frequency of 500 mHz since 1 ns =
10−9 s and

f = 1

2 × 10−9
= 0.5 × 109 = 500 × 106.

If one instruction is completed per clock cycle, then the instruction rate, IPS,

is the same as the frequency. The instruction rate is often given in millions of
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instructions per second or MIPS; hence, MIPS equals megaHertz for such a

computer.

The original computer architecture, named after John von Neumann, who

was the first to envision “stored programming” whereby the computer could

change its own course of action, reads instructions one at a time sequentially and

acts upon data items in the same way. To gain some idea of how a von Neumann

computer works, we examine a step-by-step walk-through of the computation

c = a + b.

Operation of a von Neumann Computer: c = a + b Walk-Through

On successive clock cycles:

Step 1. Get next instruction

Step 2. Decode: fetch a
Step 3. Fetch a to internal register

Step 4. Get next instruction

Step 5. Decode: fetch b
Step 6. Fetch b to internal register

Step 7. Get next instruction

Step 8. Decode: add a and b (result c to internal register)

Step 9. Do the addition in the ALU (see below)

Step 10. Get next instruction

Step 11. Decode: store c (in main memory)

Step 12. Move c from internal register to main memory

In this example two floating point numbers are added. A floating point num-

ber is a number that is stored in the computer in mantissa and exponent form

(see Section 4.1); integer numbers are stored directly, that is, with all mantissa

and no exponent. Often in scientific computation the results materialize after

a certain number of floating point operations occur, that is, additions, subtrac-

tions, multiplications, or divisions. Hence computers can be rated according to

how many floating point operations per second, or FLOPS, they can perform.

Usually it is a very large number and hence measured in mega-FLOPS, writ-

ten MFLOPS, or giga-FLOPS written GFLOPS, or tera-FLOPS (TFLOPS). Of

course, 1 MFLOPS = 106 FLOPS, 1 GFLOPS = 103 MFLOPS = 109 FLOPS,

and 1 TFLOPS = 1012 FLOPS.

The addition done at step 9 in the above walk-through consists of several steps

itself. For this illustration, assume 0.9817 × 103 is to be added to 0.4151 × 102.

Step 1. Unpack operands: 9817 | 3 4151 | 2

Step 2. Exponent compare: 3 vs. 2
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8 1 Introduction – The Nature of High-Performance Computation

Step 3. Mantissa align: 9817 | 3 0415 | 3

Step 4. Mantissa addition: 10232 | 3

Step 5. Normalization (carry) check: 1 0232 | 3

Step 6. Mantissa shift: 1023 | 3

Step 7. Exponent adjust: 1023 | 4

Step 8. Repack result: 0.1023 × 104

So if the clock speed is doubled, then each computer instruction takes place

in one half the time and execution speed is doubled. But physical laws limit the

improvement that will be possible this way. Furthermore, as the physical limits

are approached, improvements will become very costly. Fortunately there is

another possibility for speeding up computations, parallelizing them.

Parallel Computing Hardware – Flynn’s Classification

An early attempt to classify parallel computation made by Flynn is somewhat

imprecise today but is nevertheless widely used.

Single-data Multiple-data
stream streams

Single
instruction von Neumann SIMD

Multiple
instructions MIMD

As we saw above, the original computer architecture, the von Neumann

computer, reads instructions one at a time sequentially and acts upon data in

the same way; thus, they are single instruction, single data, or SISD machines.

An early idea for parallelization, especially for scientific and engineering

programming, has been the vector computer. Here it is often the case that the

same instruction is performed on many data items as if these data were a single

unit, a mathematical vector. For example, the scalar multiplication of a vector

multiplies each component by the same number. Thus a single instruction is

carried out on multiple data so these are SIMD machines. In these machines

the parallelism is very structured and fine-grained (see Section 1.3).

Another term for this kind of computation is data parallelism. The parallelism

stems from the data while the program itself is entirely serial. Mapping each

instruction of the program to its target data is done by the compiler. Vector

compilers automatically parallelize vector operations, provided the calculation

is vectorizable, that is, can be correctly done in parallel (see Section 3.6).
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Modern languages incorporate special instructions to help the compiler with the

data partitioning. For example, the following statements in High Performance

Fortran (HPF)

real x(1000)

!HPF$ PROCESSORS p(10)

!HPF$ DISTRIBUTE x(BLOCK) ONTO p

invokes 10 processors and instructs the 1,000 elements of x to be distributed

with 1,000/10 = 100 contiguous elements going to each.

Another approach to SIMD/data partitioned computing, massively parallel

SIMD, is exemplified by the now extinct Connection Machine. Here instruc-

tions are broadcast (electronically) to thousands of processors each of which is

working on its own data.

True, flexible, parallel computation comes about with multiple independent

processors executing, possibly different, instructions at the same time on differ-

ent data, that is, multiple instruction multiple data or MIMD computers. This

class is further categorized according to how the memory is configured with

respect to the processors, centralized, and shared or distributed according to

some topology.

We consider each of these in more detail below.

1.2 SIMD–Vector Computers

In the von Neumann model, much of the computer hardware is idle while other

parts of the machine are working. Thus the Decode Unit is idle while the ALU

is calculating an addition for example. The idea here is to keep all the hard-

ware of the computer working all the time. This is parallelism at the hardware

level.

Operation of a Vector Computer – Assembly-Line Processing

First the computer’s hardware is modularized or segmented into functional

units that perform well-defined specialized tasks (see, for example, the Cray

architecture diagram Fig. 16). The vector pipes are likewise segmented. Figure 4

shows the segments for the Cray add pipe.

It is desirable that the individual units be as independent as possible. This

idea is similar to the modularization of an assembly plant into stations each of

which performs a very specific single task. Like a factory, the various detailed

steps of processing done to the code and data of a program are formalized, and

specialized hardware is designed to perform each such step at the same time as
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Fig. 4. A block diagram of the Cray add unit.

all the other steps. Then the data or code is processed step by step by moving

from segment to segment; this is pipelining.

In our model of a computer, some of the main units are the fetch and store

unit, the decode unit, and the arithmetic and logic unit. This makes it possible,

for example, for the instructions of the program to be fetched before their turn

in the execution sequence and held in special registers. This is called caching,

allowing for advance decoding. In this way, operands can be prefetched so as

to be available at the moment needed. Among the tasks of the decode unit is to

precalculate the possible branches of conditional statements so that no matter

which branch is taken, the right machine instruction is waiting in the instruction

cache.

The innovation that gives a vector computer its name is the application of

this principle to floating point numerical calculations. The result is an assembly

line processing of much of the program’s calculations. The assembly line in

this case is called a vector pipe.

Assembly line processing is effective especially for the floating point oper-

ations of a program. Consider the sum of two vectors x + y of length 200. To

produce the first sum, x1 + y1, several machine cycles are required as we saw

above. By analogy, the first item to roll off an assembly line takes the full time

required for assembling one item. But immediately behind it is the second item

and behind that the third and so on. In the same way, the second and subsequent

sums xi + yi , i = 2, . . . , 200, are produced one per clock cycle. In the next

section we derive some equations governing such vector computations.

Example. Calculate yi = xi + x2
i for i = 1, 2, . . . , 100

loop i = 1...100

yi = xi*(1+xi) or? yi = xi + xi * xi
end loop

Not all operations on mathematical vectors can be done via the vector pipes. We

regard a vector operation as one which can. Mathematically it is an operation on

the components of a vector which also results in a vector. For example, vector

addition x + y as above. In components this is zi = xi + yi , i = 1, . . . , n, and

would be coded as a loop with index i running from 1 to n. Multiplying two
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Table 1. Vector timing data∗

Type of arithmetic operation Time in ns for n operations

Vector add/multiply/boolean 1000 + 10n
Vector division 1600 + 70n
Saxpy (cf. pp 14) 1600 + 10n
Scalar operation∗∗ 100n
Inner product 2000 + 20n
Square roots 500n

∗ For a mid-80’s memory-to-memory vector computer.
∗∗ Except division, assume division is 7 times longer.

vectors componentwise and scalar multiplication, that is, the multiplication

of the components of a vector by a constant, are other examples of a vector

operation.

By contrast, the inner or dot product of two vectors is not a vector operation in

this regard, because the requirement of summing the resulting componentwise

products cannot be done using the vector pipes. (At least not directly, see the

exercises for pseudo-vectorizing such an operaton.)

Hockney’s Formulas

Let tn be the time to calculate a vector operation on vectors of length of n. If s
is the number of clock cycles to prepare the pipe and fetch the operands and l
is the number of cycles to fill up the pipe, then (s + l)τ is the time for the first

result to emerge from the pipe where τ is the time for a clock cycle. Thereafter,

another result is produced per clock cycle, hence

tn = (s + l + (n − 1))τ,

see Table 1.

The startup time is (s + l − 1)τ in seconds. And the operation rate, r , is

defined as the number of operations per unit time so

r = n

tn
.

Theoretical peak performance, r∞, is one per clock cycle or

r∞ = 1

τ
.

Thus we can write

r = r∞
1 + s+l−1

n

.

This relationship is shown in Fig. 5.
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Fig. 5. Operation rate vs. vector length.

Hockney’s n1/2 value is defined as the vector length for achieving one-half

peak performance, that is,

1

2τ
= n1/2

(s + l − 1 + n1/2)τ
.

This gives

n1/2 = s + l − 1

or equal to the startup time. Using n1/2, the operation rate can now be written

r = r∞
1 + n1/2

n

.

Hockney’s break-even point is defined as the vector length for which the

scalar calculation takes the same time as the vector calculation. Letting r∞,v

denote the peak performance in vector mode and r∞,s the same in scalar mode,

we have

vector time for n = scalar time for n

s + l − 1 + nb

r∞,v
= nb

r∞,s
.

Solving this for nb gives

nb = n1/2
r∞,v

r∞,s
− 1

.
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Fig. 6. Gain for vector multiplication.

This calculation is not exactly correct for a register machine such as the Cray

since, by having to shuttle data between the vector registers and the vector pipes,

there results a bottleneck at the vector registers. Of course, r∞,v > r∞,s (or else

there is no need for a vector computer). At one time that ratio was about 4 for

Cray machines and nb was about 8.


